xref: /linux/block/blk-mq.c (revision 08df80a3c51674ab73ae770885a383ca553fbbbf)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Block multiqueue core code
4  *
5  * Copyright (C) 2013-2014 Jens Axboe
6  * Copyright (C) 2013-2014 Christoph Hellwig
7  */
8 #include <linux/kernel.h>
9 #include <linux/module.h>
10 #include <linux/backing-dev.h>
11 #include <linux/bio.h>
12 #include <linux/blkdev.h>
13 #include <linux/blk-integrity.h>
14 #include <linux/kmemleak.h>
15 #include <linux/mm.h>
16 #include <linux/init.h>
17 #include <linux/slab.h>
18 #include <linux/workqueue.h>
19 #include <linux/smp.h>
20 #include <linux/interrupt.h>
21 #include <linux/llist.h>
22 #include <linux/cpu.h>
23 #include <linux/cache.h>
24 #include <linux/sched/sysctl.h>
25 #include <linux/sched/topology.h>
26 #include <linux/sched/signal.h>
27 #include <linux/delay.h>
28 #include <linux/crash_dump.h>
29 #include <linux/prefetch.h>
30 #include <linux/blk-crypto.h>
31 #include <linux/part_stat.h>
32 
33 #include <trace/events/block.h>
34 
35 #include <linux/t10-pi.h>
36 #include "blk.h"
37 #include "blk-mq.h"
38 #include "blk-mq-debugfs.h"
39 #include "blk-pm.h"
40 #include "blk-stat.h"
41 #include "blk-mq-sched.h"
42 #include "blk-rq-qos.h"
43 #include "blk-ioprio.h"
44 
45 static DEFINE_PER_CPU(struct llist_head, blk_cpu_done);
46 static DEFINE_PER_CPU(call_single_data_t, blk_cpu_csd);
47 
48 static void blk_mq_insert_request(struct request *rq, blk_insert_t flags);
49 static void blk_mq_request_bypass_insert(struct request *rq,
50 		blk_insert_t flags);
51 static void blk_mq_try_issue_list_directly(struct blk_mq_hw_ctx *hctx,
52 		struct list_head *list);
53 static int blk_hctx_poll(struct request_queue *q, struct blk_mq_hw_ctx *hctx,
54 			 struct io_comp_batch *iob, unsigned int flags);
55 
56 /*
57  * Check if any of the ctx, dispatch list or elevator
58  * have pending work in this hardware queue.
59  */
60 static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
61 {
62 	return !list_empty_careful(&hctx->dispatch) ||
63 		sbitmap_any_bit_set(&hctx->ctx_map) ||
64 			blk_mq_sched_has_work(hctx);
65 }
66 
67 /*
68  * Mark this ctx as having pending work in this hardware queue
69  */
70 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
71 				     struct blk_mq_ctx *ctx)
72 {
73 	const int bit = ctx->index_hw[hctx->type];
74 
75 	if (!sbitmap_test_bit(&hctx->ctx_map, bit))
76 		sbitmap_set_bit(&hctx->ctx_map, bit);
77 }
78 
79 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
80 				      struct blk_mq_ctx *ctx)
81 {
82 	const int bit = ctx->index_hw[hctx->type];
83 
84 	sbitmap_clear_bit(&hctx->ctx_map, bit);
85 }
86 
87 struct mq_inflight {
88 	struct block_device *part;
89 	unsigned int inflight[2];
90 };
91 
92 static bool blk_mq_check_inflight(struct request *rq, void *priv)
93 {
94 	struct mq_inflight *mi = priv;
95 
96 	if (rq->part && blk_do_io_stat(rq) &&
97 	    (!mi->part->bd_partno || rq->part == mi->part) &&
98 	    blk_mq_rq_state(rq) == MQ_RQ_IN_FLIGHT)
99 		mi->inflight[rq_data_dir(rq)]++;
100 
101 	return true;
102 }
103 
104 unsigned int blk_mq_in_flight(struct request_queue *q,
105 		struct block_device *part)
106 {
107 	struct mq_inflight mi = { .part = part };
108 
109 	blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
110 
111 	return mi.inflight[0] + mi.inflight[1];
112 }
113 
114 void blk_mq_in_flight_rw(struct request_queue *q, struct block_device *part,
115 		unsigned int inflight[2])
116 {
117 	struct mq_inflight mi = { .part = part };
118 
119 	blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
120 	inflight[0] = mi.inflight[0];
121 	inflight[1] = mi.inflight[1];
122 }
123 
124 void blk_freeze_queue_start(struct request_queue *q)
125 {
126 	mutex_lock(&q->mq_freeze_lock);
127 	if (++q->mq_freeze_depth == 1) {
128 		percpu_ref_kill(&q->q_usage_counter);
129 		mutex_unlock(&q->mq_freeze_lock);
130 		if (queue_is_mq(q))
131 			blk_mq_run_hw_queues(q, false);
132 	} else {
133 		mutex_unlock(&q->mq_freeze_lock);
134 	}
135 }
136 EXPORT_SYMBOL_GPL(blk_freeze_queue_start);
137 
138 void blk_mq_freeze_queue_wait(struct request_queue *q)
139 {
140 	wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
141 }
142 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait);
143 
144 int blk_mq_freeze_queue_wait_timeout(struct request_queue *q,
145 				     unsigned long timeout)
146 {
147 	return wait_event_timeout(q->mq_freeze_wq,
148 					percpu_ref_is_zero(&q->q_usage_counter),
149 					timeout);
150 }
151 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout);
152 
153 /*
154  * Guarantee no request is in use, so we can change any data structure of
155  * the queue afterward.
156  */
157 void blk_freeze_queue(struct request_queue *q)
158 {
159 	/*
160 	 * In the !blk_mq case we are only calling this to kill the
161 	 * q_usage_counter, otherwise this increases the freeze depth
162 	 * and waits for it to return to zero.  For this reason there is
163 	 * no blk_unfreeze_queue(), and blk_freeze_queue() is not
164 	 * exported to drivers as the only user for unfreeze is blk_mq.
165 	 */
166 	blk_freeze_queue_start(q);
167 	blk_mq_freeze_queue_wait(q);
168 }
169 
170 void blk_mq_freeze_queue(struct request_queue *q)
171 {
172 	/*
173 	 * ...just an alias to keep freeze and unfreeze actions balanced
174 	 * in the blk_mq_* namespace
175 	 */
176 	blk_freeze_queue(q);
177 }
178 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
179 
180 void __blk_mq_unfreeze_queue(struct request_queue *q, bool force_atomic)
181 {
182 	mutex_lock(&q->mq_freeze_lock);
183 	if (force_atomic)
184 		q->q_usage_counter.data->force_atomic = true;
185 	q->mq_freeze_depth--;
186 	WARN_ON_ONCE(q->mq_freeze_depth < 0);
187 	if (!q->mq_freeze_depth) {
188 		percpu_ref_resurrect(&q->q_usage_counter);
189 		wake_up_all(&q->mq_freeze_wq);
190 	}
191 	mutex_unlock(&q->mq_freeze_lock);
192 }
193 
194 void blk_mq_unfreeze_queue(struct request_queue *q)
195 {
196 	__blk_mq_unfreeze_queue(q, false);
197 }
198 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
199 
200 /*
201  * FIXME: replace the scsi_internal_device_*block_nowait() calls in the
202  * mpt3sas driver such that this function can be removed.
203  */
204 void blk_mq_quiesce_queue_nowait(struct request_queue *q)
205 {
206 	unsigned long flags;
207 
208 	spin_lock_irqsave(&q->queue_lock, flags);
209 	if (!q->quiesce_depth++)
210 		blk_queue_flag_set(QUEUE_FLAG_QUIESCED, q);
211 	spin_unlock_irqrestore(&q->queue_lock, flags);
212 }
213 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue_nowait);
214 
215 /**
216  * blk_mq_wait_quiesce_done() - wait until in-progress quiesce is done
217  * @set: tag_set to wait on
218  *
219  * Note: it is driver's responsibility for making sure that quiesce has
220  * been started on or more of the request_queues of the tag_set.  This
221  * function only waits for the quiesce on those request_queues that had
222  * the quiesce flag set using blk_mq_quiesce_queue_nowait.
223  */
224 void blk_mq_wait_quiesce_done(struct blk_mq_tag_set *set)
225 {
226 	if (set->flags & BLK_MQ_F_BLOCKING)
227 		synchronize_srcu(set->srcu);
228 	else
229 		synchronize_rcu();
230 }
231 EXPORT_SYMBOL_GPL(blk_mq_wait_quiesce_done);
232 
233 /**
234  * blk_mq_quiesce_queue() - wait until all ongoing dispatches have finished
235  * @q: request queue.
236  *
237  * Note: this function does not prevent that the struct request end_io()
238  * callback function is invoked. Once this function is returned, we make
239  * sure no dispatch can happen until the queue is unquiesced via
240  * blk_mq_unquiesce_queue().
241  */
242 void blk_mq_quiesce_queue(struct request_queue *q)
243 {
244 	blk_mq_quiesce_queue_nowait(q);
245 	/* nothing to wait for non-mq queues */
246 	if (queue_is_mq(q))
247 		blk_mq_wait_quiesce_done(q->tag_set);
248 }
249 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);
250 
251 /*
252  * blk_mq_unquiesce_queue() - counterpart of blk_mq_quiesce_queue()
253  * @q: request queue.
254  *
255  * This function recovers queue into the state before quiescing
256  * which is done by blk_mq_quiesce_queue.
257  */
258 void blk_mq_unquiesce_queue(struct request_queue *q)
259 {
260 	unsigned long flags;
261 	bool run_queue = false;
262 
263 	spin_lock_irqsave(&q->queue_lock, flags);
264 	if (WARN_ON_ONCE(q->quiesce_depth <= 0)) {
265 		;
266 	} else if (!--q->quiesce_depth) {
267 		blk_queue_flag_clear(QUEUE_FLAG_QUIESCED, q);
268 		run_queue = true;
269 	}
270 	spin_unlock_irqrestore(&q->queue_lock, flags);
271 
272 	/* dispatch requests which are inserted during quiescing */
273 	if (run_queue)
274 		blk_mq_run_hw_queues(q, true);
275 }
276 EXPORT_SYMBOL_GPL(blk_mq_unquiesce_queue);
277 
278 void blk_mq_quiesce_tagset(struct blk_mq_tag_set *set)
279 {
280 	struct request_queue *q;
281 
282 	mutex_lock(&set->tag_list_lock);
283 	list_for_each_entry(q, &set->tag_list, tag_set_list) {
284 		if (!blk_queue_skip_tagset_quiesce(q))
285 			blk_mq_quiesce_queue_nowait(q);
286 	}
287 	blk_mq_wait_quiesce_done(set);
288 	mutex_unlock(&set->tag_list_lock);
289 }
290 EXPORT_SYMBOL_GPL(blk_mq_quiesce_tagset);
291 
292 void blk_mq_unquiesce_tagset(struct blk_mq_tag_set *set)
293 {
294 	struct request_queue *q;
295 
296 	mutex_lock(&set->tag_list_lock);
297 	list_for_each_entry(q, &set->tag_list, tag_set_list) {
298 		if (!blk_queue_skip_tagset_quiesce(q))
299 			blk_mq_unquiesce_queue(q);
300 	}
301 	mutex_unlock(&set->tag_list_lock);
302 }
303 EXPORT_SYMBOL_GPL(blk_mq_unquiesce_tagset);
304 
305 void blk_mq_wake_waiters(struct request_queue *q)
306 {
307 	struct blk_mq_hw_ctx *hctx;
308 	unsigned long i;
309 
310 	queue_for_each_hw_ctx(q, hctx, i)
311 		if (blk_mq_hw_queue_mapped(hctx))
312 			blk_mq_tag_wakeup_all(hctx->tags, true);
313 }
314 
315 void blk_rq_init(struct request_queue *q, struct request *rq)
316 {
317 	memset(rq, 0, sizeof(*rq));
318 
319 	INIT_LIST_HEAD(&rq->queuelist);
320 	rq->q = q;
321 	rq->__sector = (sector_t) -1;
322 	INIT_HLIST_NODE(&rq->hash);
323 	RB_CLEAR_NODE(&rq->rb_node);
324 	rq->tag = BLK_MQ_NO_TAG;
325 	rq->internal_tag = BLK_MQ_NO_TAG;
326 	rq->start_time_ns = ktime_get_ns();
327 	rq->part = NULL;
328 	blk_crypto_rq_set_defaults(rq);
329 }
330 EXPORT_SYMBOL(blk_rq_init);
331 
332 /* Set start and alloc time when the allocated request is actually used */
333 static inline void blk_mq_rq_time_init(struct request *rq, u64 alloc_time_ns)
334 {
335 	if (blk_mq_need_time_stamp(rq))
336 		rq->start_time_ns = ktime_get_ns();
337 	else
338 		rq->start_time_ns = 0;
339 
340 #ifdef CONFIG_BLK_RQ_ALLOC_TIME
341 	if (blk_queue_rq_alloc_time(rq->q))
342 		rq->alloc_time_ns = alloc_time_ns ?: rq->start_time_ns;
343 	else
344 		rq->alloc_time_ns = 0;
345 #endif
346 }
347 
348 static struct request *blk_mq_rq_ctx_init(struct blk_mq_alloc_data *data,
349 		struct blk_mq_tags *tags, unsigned int tag)
350 {
351 	struct blk_mq_ctx *ctx = data->ctx;
352 	struct blk_mq_hw_ctx *hctx = data->hctx;
353 	struct request_queue *q = data->q;
354 	struct request *rq = tags->static_rqs[tag];
355 
356 	rq->q = q;
357 	rq->mq_ctx = ctx;
358 	rq->mq_hctx = hctx;
359 	rq->cmd_flags = data->cmd_flags;
360 
361 	if (data->flags & BLK_MQ_REQ_PM)
362 		data->rq_flags |= RQF_PM;
363 	if (blk_queue_io_stat(q))
364 		data->rq_flags |= RQF_IO_STAT;
365 	rq->rq_flags = data->rq_flags;
366 
367 	if (data->rq_flags & RQF_SCHED_TAGS) {
368 		rq->tag = BLK_MQ_NO_TAG;
369 		rq->internal_tag = tag;
370 	} else {
371 		rq->tag = tag;
372 		rq->internal_tag = BLK_MQ_NO_TAG;
373 	}
374 	rq->timeout = 0;
375 
376 	rq->part = NULL;
377 	rq->io_start_time_ns = 0;
378 	rq->stats_sectors = 0;
379 	rq->nr_phys_segments = 0;
380 #if defined(CONFIG_BLK_DEV_INTEGRITY)
381 	rq->nr_integrity_segments = 0;
382 #endif
383 	rq->end_io = NULL;
384 	rq->end_io_data = NULL;
385 
386 	blk_crypto_rq_set_defaults(rq);
387 	INIT_LIST_HEAD(&rq->queuelist);
388 	/* tag was already set */
389 	WRITE_ONCE(rq->deadline, 0);
390 	req_ref_set(rq, 1);
391 
392 	if (rq->rq_flags & RQF_USE_SCHED) {
393 		struct elevator_queue *e = data->q->elevator;
394 
395 		INIT_HLIST_NODE(&rq->hash);
396 		RB_CLEAR_NODE(&rq->rb_node);
397 
398 		if (e->type->ops.prepare_request)
399 			e->type->ops.prepare_request(rq);
400 	}
401 
402 	return rq;
403 }
404 
405 static inline struct request *
406 __blk_mq_alloc_requests_batch(struct blk_mq_alloc_data *data)
407 {
408 	unsigned int tag, tag_offset;
409 	struct blk_mq_tags *tags;
410 	struct request *rq;
411 	unsigned long tag_mask;
412 	int i, nr = 0;
413 
414 	tag_mask = blk_mq_get_tags(data, data->nr_tags, &tag_offset);
415 	if (unlikely(!tag_mask))
416 		return NULL;
417 
418 	tags = blk_mq_tags_from_data(data);
419 	for (i = 0; tag_mask; i++) {
420 		if (!(tag_mask & (1UL << i)))
421 			continue;
422 		tag = tag_offset + i;
423 		prefetch(tags->static_rqs[tag]);
424 		tag_mask &= ~(1UL << i);
425 		rq = blk_mq_rq_ctx_init(data, tags, tag);
426 		rq_list_add(data->cached_rq, rq);
427 		nr++;
428 	}
429 	if (!(data->rq_flags & RQF_SCHED_TAGS))
430 		blk_mq_add_active_requests(data->hctx, nr);
431 	/* caller already holds a reference, add for remainder */
432 	percpu_ref_get_many(&data->q->q_usage_counter, nr - 1);
433 	data->nr_tags -= nr;
434 
435 	return rq_list_pop(data->cached_rq);
436 }
437 
438 static struct request *__blk_mq_alloc_requests(struct blk_mq_alloc_data *data)
439 {
440 	struct request_queue *q = data->q;
441 	u64 alloc_time_ns = 0;
442 	struct request *rq;
443 	unsigned int tag;
444 
445 	/* alloc_time includes depth and tag waits */
446 	if (blk_queue_rq_alloc_time(q))
447 		alloc_time_ns = ktime_get_ns();
448 
449 	if (data->cmd_flags & REQ_NOWAIT)
450 		data->flags |= BLK_MQ_REQ_NOWAIT;
451 
452 	if (q->elevator) {
453 		/*
454 		 * All requests use scheduler tags when an I/O scheduler is
455 		 * enabled for the queue.
456 		 */
457 		data->rq_flags |= RQF_SCHED_TAGS;
458 
459 		/*
460 		 * Flush/passthrough requests are special and go directly to the
461 		 * dispatch list.
462 		 */
463 		if ((data->cmd_flags & REQ_OP_MASK) != REQ_OP_FLUSH &&
464 		    !blk_op_is_passthrough(data->cmd_flags)) {
465 			struct elevator_mq_ops *ops = &q->elevator->type->ops;
466 
467 			WARN_ON_ONCE(data->flags & BLK_MQ_REQ_RESERVED);
468 
469 			data->rq_flags |= RQF_USE_SCHED;
470 			if (ops->limit_depth)
471 				ops->limit_depth(data->cmd_flags, data);
472 		}
473 	}
474 
475 retry:
476 	data->ctx = blk_mq_get_ctx(q);
477 	data->hctx = blk_mq_map_queue(q, data->cmd_flags, data->ctx);
478 	if (!(data->rq_flags & RQF_SCHED_TAGS))
479 		blk_mq_tag_busy(data->hctx);
480 
481 	if (data->flags & BLK_MQ_REQ_RESERVED)
482 		data->rq_flags |= RQF_RESV;
483 
484 	/*
485 	 * Try batched alloc if we want more than 1 tag.
486 	 */
487 	if (data->nr_tags > 1) {
488 		rq = __blk_mq_alloc_requests_batch(data);
489 		if (rq) {
490 			blk_mq_rq_time_init(rq, alloc_time_ns);
491 			return rq;
492 		}
493 		data->nr_tags = 1;
494 	}
495 
496 	/*
497 	 * Waiting allocations only fail because of an inactive hctx.  In that
498 	 * case just retry the hctx assignment and tag allocation as CPU hotplug
499 	 * should have migrated us to an online CPU by now.
500 	 */
501 	tag = blk_mq_get_tag(data);
502 	if (tag == BLK_MQ_NO_TAG) {
503 		if (data->flags & BLK_MQ_REQ_NOWAIT)
504 			return NULL;
505 		/*
506 		 * Give up the CPU and sleep for a random short time to
507 		 * ensure that thread using a realtime scheduling class
508 		 * are migrated off the CPU, and thus off the hctx that
509 		 * is going away.
510 		 */
511 		msleep(3);
512 		goto retry;
513 	}
514 
515 	if (!(data->rq_flags & RQF_SCHED_TAGS))
516 		blk_mq_inc_active_requests(data->hctx);
517 	rq = blk_mq_rq_ctx_init(data, blk_mq_tags_from_data(data), tag);
518 	blk_mq_rq_time_init(rq, alloc_time_ns);
519 	return rq;
520 }
521 
522 static struct request *blk_mq_rq_cache_fill(struct request_queue *q,
523 					    struct blk_plug *plug,
524 					    blk_opf_t opf,
525 					    blk_mq_req_flags_t flags)
526 {
527 	struct blk_mq_alloc_data data = {
528 		.q		= q,
529 		.flags		= flags,
530 		.cmd_flags	= opf,
531 		.nr_tags	= plug->nr_ios,
532 		.cached_rq	= &plug->cached_rq,
533 	};
534 	struct request *rq;
535 
536 	if (blk_queue_enter(q, flags))
537 		return NULL;
538 
539 	plug->nr_ios = 1;
540 
541 	rq = __blk_mq_alloc_requests(&data);
542 	if (unlikely(!rq))
543 		blk_queue_exit(q);
544 	return rq;
545 }
546 
547 static struct request *blk_mq_alloc_cached_request(struct request_queue *q,
548 						   blk_opf_t opf,
549 						   blk_mq_req_flags_t flags)
550 {
551 	struct blk_plug *plug = current->plug;
552 	struct request *rq;
553 
554 	if (!plug)
555 		return NULL;
556 
557 	if (rq_list_empty(plug->cached_rq)) {
558 		if (plug->nr_ios == 1)
559 			return NULL;
560 		rq = blk_mq_rq_cache_fill(q, plug, opf, flags);
561 		if (!rq)
562 			return NULL;
563 	} else {
564 		rq = rq_list_peek(&plug->cached_rq);
565 		if (!rq || rq->q != q)
566 			return NULL;
567 
568 		if (blk_mq_get_hctx_type(opf) != rq->mq_hctx->type)
569 			return NULL;
570 		if (op_is_flush(rq->cmd_flags) != op_is_flush(opf))
571 			return NULL;
572 
573 		plug->cached_rq = rq_list_next(rq);
574 		blk_mq_rq_time_init(rq, 0);
575 	}
576 
577 	rq->cmd_flags = opf;
578 	INIT_LIST_HEAD(&rq->queuelist);
579 	return rq;
580 }
581 
582 struct request *blk_mq_alloc_request(struct request_queue *q, blk_opf_t opf,
583 		blk_mq_req_flags_t flags)
584 {
585 	struct request *rq;
586 
587 	rq = blk_mq_alloc_cached_request(q, opf, flags);
588 	if (!rq) {
589 		struct blk_mq_alloc_data data = {
590 			.q		= q,
591 			.flags		= flags,
592 			.cmd_flags	= opf,
593 			.nr_tags	= 1,
594 		};
595 		int ret;
596 
597 		ret = blk_queue_enter(q, flags);
598 		if (ret)
599 			return ERR_PTR(ret);
600 
601 		rq = __blk_mq_alloc_requests(&data);
602 		if (!rq)
603 			goto out_queue_exit;
604 	}
605 	rq->__data_len = 0;
606 	rq->__sector = (sector_t) -1;
607 	rq->bio = rq->biotail = NULL;
608 	return rq;
609 out_queue_exit:
610 	blk_queue_exit(q);
611 	return ERR_PTR(-EWOULDBLOCK);
612 }
613 EXPORT_SYMBOL(blk_mq_alloc_request);
614 
615 struct request *blk_mq_alloc_request_hctx(struct request_queue *q,
616 	blk_opf_t opf, blk_mq_req_flags_t flags, unsigned int hctx_idx)
617 {
618 	struct blk_mq_alloc_data data = {
619 		.q		= q,
620 		.flags		= flags,
621 		.cmd_flags	= opf,
622 		.nr_tags	= 1,
623 	};
624 	u64 alloc_time_ns = 0;
625 	struct request *rq;
626 	unsigned int cpu;
627 	unsigned int tag;
628 	int ret;
629 
630 	/* alloc_time includes depth and tag waits */
631 	if (blk_queue_rq_alloc_time(q))
632 		alloc_time_ns = ktime_get_ns();
633 
634 	/*
635 	 * If the tag allocator sleeps we could get an allocation for a
636 	 * different hardware context.  No need to complicate the low level
637 	 * allocator for this for the rare use case of a command tied to
638 	 * a specific queue.
639 	 */
640 	if (WARN_ON_ONCE(!(flags & BLK_MQ_REQ_NOWAIT)) ||
641 	    WARN_ON_ONCE(!(flags & BLK_MQ_REQ_RESERVED)))
642 		return ERR_PTR(-EINVAL);
643 
644 	if (hctx_idx >= q->nr_hw_queues)
645 		return ERR_PTR(-EIO);
646 
647 	ret = blk_queue_enter(q, flags);
648 	if (ret)
649 		return ERR_PTR(ret);
650 
651 	/*
652 	 * Check if the hardware context is actually mapped to anything.
653 	 * If not tell the caller that it should skip this queue.
654 	 */
655 	ret = -EXDEV;
656 	data.hctx = xa_load(&q->hctx_table, hctx_idx);
657 	if (!blk_mq_hw_queue_mapped(data.hctx))
658 		goto out_queue_exit;
659 	cpu = cpumask_first_and(data.hctx->cpumask, cpu_online_mask);
660 	if (cpu >= nr_cpu_ids)
661 		goto out_queue_exit;
662 	data.ctx = __blk_mq_get_ctx(q, cpu);
663 
664 	if (q->elevator)
665 		data.rq_flags |= RQF_SCHED_TAGS;
666 	else
667 		blk_mq_tag_busy(data.hctx);
668 
669 	if (flags & BLK_MQ_REQ_RESERVED)
670 		data.rq_flags |= RQF_RESV;
671 
672 	ret = -EWOULDBLOCK;
673 	tag = blk_mq_get_tag(&data);
674 	if (tag == BLK_MQ_NO_TAG)
675 		goto out_queue_exit;
676 	if (!(data.rq_flags & RQF_SCHED_TAGS))
677 		blk_mq_inc_active_requests(data.hctx);
678 	rq = blk_mq_rq_ctx_init(&data, blk_mq_tags_from_data(&data), tag);
679 	blk_mq_rq_time_init(rq, alloc_time_ns);
680 	rq->__data_len = 0;
681 	rq->__sector = (sector_t) -1;
682 	rq->bio = rq->biotail = NULL;
683 	return rq;
684 
685 out_queue_exit:
686 	blk_queue_exit(q);
687 	return ERR_PTR(ret);
688 }
689 EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);
690 
691 static void blk_mq_finish_request(struct request *rq)
692 {
693 	struct request_queue *q = rq->q;
694 
695 	if (rq->rq_flags & RQF_USE_SCHED) {
696 		q->elevator->type->ops.finish_request(rq);
697 		/*
698 		 * For postflush request that may need to be
699 		 * completed twice, we should clear this flag
700 		 * to avoid double finish_request() on the rq.
701 		 */
702 		rq->rq_flags &= ~RQF_USE_SCHED;
703 	}
704 }
705 
706 static void __blk_mq_free_request(struct request *rq)
707 {
708 	struct request_queue *q = rq->q;
709 	struct blk_mq_ctx *ctx = rq->mq_ctx;
710 	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
711 	const int sched_tag = rq->internal_tag;
712 
713 	blk_crypto_free_request(rq);
714 	blk_pm_mark_last_busy(rq);
715 	rq->mq_hctx = NULL;
716 
717 	if (rq->tag != BLK_MQ_NO_TAG) {
718 		blk_mq_dec_active_requests(hctx);
719 		blk_mq_put_tag(hctx->tags, ctx, rq->tag);
720 	}
721 	if (sched_tag != BLK_MQ_NO_TAG)
722 		blk_mq_put_tag(hctx->sched_tags, ctx, sched_tag);
723 	blk_mq_sched_restart(hctx);
724 	blk_queue_exit(q);
725 }
726 
727 void blk_mq_free_request(struct request *rq)
728 {
729 	struct request_queue *q = rq->q;
730 
731 	blk_mq_finish_request(rq);
732 
733 	if (unlikely(laptop_mode && !blk_rq_is_passthrough(rq)))
734 		laptop_io_completion(q->disk->bdi);
735 
736 	rq_qos_done(q, rq);
737 
738 	WRITE_ONCE(rq->state, MQ_RQ_IDLE);
739 	if (req_ref_put_and_test(rq))
740 		__blk_mq_free_request(rq);
741 }
742 EXPORT_SYMBOL_GPL(blk_mq_free_request);
743 
744 void blk_mq_free_plug_rqs(struct blk_plug *plug)
745 {
746 	struct request *rq;
747 
748 	while ((rq = rq_list_pop(&plug->cached_rq)) != NULL)
749 		blk_mq_free_request(rq);
750 }
751 
752 void blk_dump_rq_flags(struct request *rq, char *msg)
753 {
754 	printk(KERN_INFO "%s: dev %s: flags=%llx\n", msg,
755 		rq->q->disk ? rq->q->disk->disk_name : "?",
756 		(__force unsigned long long) rq->cmd_flags);
757 
758 	printk(KERN_INFO "  sector %llu, nr/cnr %u/%u\n",
759 	       (unsigned long long)blk_rq_pos(rq),
760 	       blk_rq_sectors(rq), blk_rq_cur_sectors(rq));
761 	printk(KERN_INFO "  bio %p, biotail %p, len %u\n",
762 	       rq->bio, rq->biotail, blk_rq_bytes(rq));
763 }
764 EXPORT_SYMBOL(blk_dump_rq_flags);
765 
766 static void req_bio_endio(struct request *rq, struct bio *bio,
767 			  unsigned int nbytes, blk_status_t error)
768 {
769 	if (unlikely(error)) {
770 		bio->bi_status = error;
771 	} else if (req_op(rq) == REQ_OP_ZONE_APPEND) {
772 		/*
773 		 * Partial zone append completions cannot be supported as the
774 		 * BIO fragments may end up not being written sequentially.
775 		 */
776 		if (bio->bi_iter.bi_size != nbytes)
777 			bio->bi_status = BLK_STS_IOERR;
778 		else
779 			bio->bi_iter.bi_sector = rq->__sector;
780 	}
781 
782 	bio_advance(bio, nbytes);
783 
784 	if (unlikely(rq->rq_flags & RQF_QUIET))
785 		bio_set_flag(bio, BIO_QUIET);
786 	/* don't actually finish bio if it's part of flush sequence */
787 	if (bio->bi_iter.bi_size == 0 && !(rq->rq_flags & RQF_FLUSH_SEQ))
788 		bio_endio(bio);
789 }
790 
791 static void blk_account_io_completion(struct request *req, unsigned int bytes)
792 {
793 	if (req->part && blk_do_io_stat(req)) {
794 		const int sgrp = op_stat_group(req_op(req));
795 
796 		part_stat_lock();
797 		part_stat_add(req->part, sectors[sgrp], bytes >> 9);
798 		part_stat_unlock();
799 	}
800 }
801 
802 static void blk_print_req_error(struct request *req, blk_status_t status)
803 {
804 	printk_ratelimited(KERN_ERR
805 		"%s error, dev %s, sector %llu op 0x%x:(%s) flags 0x%x "
806 		"phys_seg %u prio class %u\n",
807 		blk_status_to_str(status),
808 		req->q->disk ? req->q->disk->disk_name : "?",
809 		blk_rq_pos(req), (__force u32)req_op(req),
810 		blk_op_str(req_op(req)),
811 		(__force u32)(req->cmd_flags & ~REQ_OP_MASK),
812 		req->nr_phys_segments,
813 		IOPRIO_PRIO_CLASS(req->ioprio));
814 }
815 
816 /*
817  * Fully end IO on a request. Does not support partial completions, or
818  * errors.
819  */
820 static void blk_complete_request(struct request *req)
821 {
822 	const bool is_flush = (req->rq_flags & RQF_FLUSH_SEQ) != 0;
823 	int total_bytes = blk_rq_bytes(req);
824 	struct bio *bio = req->bio;
825 
826 	trace_block_rq_complete(req, BLK_STS_OK, total_bytes);
827 
828 	if (!bio)
829 		return;
830 
831 #ifdef CONFIG_BLK_DEV_INTEGRITY
832 	if (blk_integrity_rq(req) && req_op(req) == REQ_OP_READ)
833 		req->q->integrity.profile->complete_fn(req, total_bytes);
834 #endif
835 
836 	/*
837 	 * Upper layers may call blk_crypto_evict_key() anytime after the last
838 	 * bio_endio().  Therefore, the keyslot must be released before that.
839 	 */
840 	blk_crypto_rq_put_keyslot(req);
841 
842 	blk_account_io_completion(req, total_bytes);
843 
844 	do {
845 		struct bio *next = bio->bi_next;
846 
847 		/* Completion has already been traced */
848 		bio_clear_flag(bio, BIO_TRACE_COMPLETION);
849 
850 		if (req_op(req) == REQ_OP_ZONE_APPEND)
851 			bio->bi_iter.bi_sector = req->__sector;
852 
853 		if (!is_flush)
854 			bio_endio(bio);
855 		bio = next;
856 	} while (bio);
857 
858 	/*
859 	 * Reset counters so that the request stacking driver
860 	 * can find how many bytes remain in the request
861 	 * later.
862 	 */
863 	if (!req->end_io) {
864 		req->bio = NULL;
865 		req->__data_len = 0;
866 	}
867 }
868 
869 /**
870  * blk_update_request - Complete multiple bytes without completing the request
871  * @req:      the request being processed
872  * @error:    block status code
873  * @nr_bytes: number of bytes to complete for @req
874  *
875  * Description:
876  *     Ends I/O on a number of bytes attached to @req, but doesn't complete
877  *     the request structure even if @req doesn't have leftover.
878  *     If @req has leftover, sets it up for the next range of segments.
879  *
880  *     Passing the result of blk_rq_bytes() as @nr_bytes guarantees
881  *     %false return from this function.
882  *
883  * Note:
884  *	The RQF_SPECIAL_PAYLOAD flag is ignored on purpose in this function
885  *      except in the consistency check at the end of this function.
886  *
887  * Return:
888  *     %false - this request doesn't have any more data
889  *     %true  - this request has more data
890  **/
891 bool blk_update_request(struct request *req, blk_status_t error,
892 		unsigned int nr_bytes)
893 {
894 	int total_bytes;
895 
896 	trace_block_rq_complete(req, error, nr_bytes);
897 
898 	if (!req->bio)
899 		return false;
900 
901 #ifdef CONFIG_BLK_DEV_INTEGRITY
902 	if (blk_integrity_rq(req) && req_op(req) == REQ_OP_READ &&
903 	    error == BLK_STS_OK)
904 		req->q->integrity.profile->complete_fn(req, nr_bytes);
905 #endif
906 
907 	/*
908 	 * Upper layers may call blk_crypto_evict_key() anytime after the last
909 	 * bio_endio().  Therefore, the keyslot must be released before that.
910 	 */
911 	if (blk_crypto_rq_has_keyslot(req) && nr_bytes >= blk_rq_bytes(req))
912 		__blk_crypto_rq_put_keyslot(req);
913 
914 	if (unlikely(error && !blk_rq_is_passthrough(req) &&
915 		     !(req->rq_flags & RQF_QUIET)) &&
916 		     !test_bit(GD_DEAD, &req->q->disk->state)) {
917 		blk_print_req_error(req, error);
918 		trace_block_rq_error(req, error, nr_bytes);
919 	}
920 
921 	blk_account_io_completion(req, nr_bytes);
922 
923 	total_bytes = 0;
924 	while (req->bio) {
925 		struct bio *bio = req->bio;
926 		unsigned bio_bytes = min(bio->bi_iter.bi_size, nr_bytes);
927 
928 		if (bio_bytes == bio->bi_iter.bi_size)
929 			req->bio = bio->bi_next;
930 
931 		/* Completion has already been traced */
932 		bio_clear_flag(bio, BIO_TRACE_COMPLETION);
933 		req_bio_endio(req, bio, bio_bytes, error);
934 
935 		total_bytes += bio_bytes;
936 		nr_bytes -= bio_bytes;
937 
938 		if (!nr_bytes)
939 			break;
940 	}
941 
942 	/*
943 	 * completely done
944 	 */
945 	if (!req->bio) {
946 		/*
947 		 * Reset counters so that the request stacking driver
948 		 * can find how many bytes remain in the request
949 		 * later.
950 		 */
951 		req->__data_len = 0;
952 		return false;
953 	}
954 
955 	req->__data_len -= total_bytes;
956 
957 	/* update sector only for requests with clear definition of sector */
958 	if (!blk_rq_is_passthrough(req))
959 		req->__sector += total_bytes >> 9;
960 
961 	/* mixed attributes always follow the first bio */
962 	if (req->rq_flags & RQF_MIXED_MERGE) {
963 		req->cmd_flags &= ~REQ_FAILFAST_MASK;
964 		req->cmd_flags |= req->bio->bi_opf & REQ_FAILFAST_MASK;
965 	}
966 
967 	if (!(req->rq_flags & RQF_SPECIAL_PAYLOAD)) {
968 		/*
969 		 * If total number of sectors is less than the first segment
970 		 * size, something has gone terribly wrong.
971 		 */
972 		if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) {
973 			blk_dump_rq_flags(req, "request botched");
974 			req->__data_len = blk_rq_cur_bytes(req);
975 		}
976 
977 		/* recalculate the number of segments */
978 		req->nr_phys_segments = blk_recalc_rq_segments(req);
979 	}
980 
981 	return true;
982 }
983 EXPORT_SYMBOL_GPL(blk_update_request);
984 
985 static inline void blk_account_io_done(struct request *req, u64 now)
986 {
987 	trace_block_io_done(req);
988 
989 	/*
990 	 * Account IO completion.  flush_rq isn't accounted as a
991 	 * normal IO on queueing nor completion.  Accounting the
992 	 * containing request is enough.
993 	 */
994 	if (blk_do_io_stat(req) && req->part &&
995 	    !(req->rq_flags & RQF_FLUSH_SEQ)) {
996 		const int sgrp = op_stat_group(req_op(req));
997 
998 		part_stat_lock();
999 		update_io_ticks(req->part, jiffies, true);
1000 		part_stat_inc(req->part, ios[sgrp]);
1001 		part_stat_add(req->part, nsecs[sgrp], now - req->start_time_ns);
1002 		part_stat_unlock();
1003 	}
1004 }
1005 
1006 static inline void blk_account_io_start(struct request *req)
1007 {
1008 	trace_block_io_start(req);
1009 
1010 	if (blk_do_io_stat(req)) {
1011 		/*
1012 		 * All non-passthrough requests are created from a bio with one
1013 		 * exception: when a flush command that is part of a flush sequence
1014 		 * generated by the state machine in blk-flush.c is cloned onto the
1015 		 * lower device by dm-multipath we can get here without a bio.
1016 		 */
1017 		if (req->bio)
1018 			req->part = req->bio->bi_bdev;
1019 		else
1020 			req->part = req->q->disk->part0;
1021 
1022 		part_stat_lock();
1023 		update_io_ticks(req->part, jiffies, false);
1024 		part_stat_unlock();
1025 	}
1026 }
1027 
1028 static inline void __blk_mq_end_request_acct(struct request *rq, u64 now)
1029 {
1030 	if (rq->rq_flags & RQF_STATS)
1031 		blk_stat_add(rq, now);
1032 
1033 	blk_mq_sched_completed_request(rq, now);
1034 	blk_account_io_done(rq, now);
1035 }
1036 
1037 inline void __blk_mq_end_request(struct request *rq, blk_status_t error)
1038 {
1039 	if (blk_mq_need_time_stamp(rq))
1040 		__blk_mq_end_request_acct(rq, ktime_get_ns());
1041 
1042 	blk_mq_finish_request(rq);
1043 
1044 	if (rq->end_io) {
1045 		rq_qos_done(rq->q, rq);
1046 		if (rq->end_io(rq, error) == RQ_END_IO_FREE)
1047 			blk_mq_free_request(rq);
1048 	} else {
1049 		blk_mq_free_request(rq);
1050 	}
1051 }
1052 EXPORT_SYMBOL(__blk_mq_end_request);
1053 
1054 void blk_mq_end_request(struct request *rq, blk_status_t error)
1055 {
1056 	if (blk_update_request(rq, error, blk_rq_bytes(rq)))
1057 		BUG();
1058 	__blk_mq_end_request(rq, error);
1059 }
1060 EXPORT_SYMBOL(blk_mq_end_request);
1061 
1062 #define TAG_COMP_BATCH		32
1063 
1064 static inline void blk_mq_flush_tag_batch(struct blk_mq_hw_ctx *hctx,
1065 					  int *tag_array, int nr_tags)
1066 {
1067 	struct request_queue *q = hctx->queue;
1068 
1069 	blk_mq_sub_active_requests(hctx, nr_tags);
1070 
1071 	blk_mq_put_tags(hctx->tags, tag_array, nr_tags);
1072 	percpu_ref_put_many(&q->q_usage_counter, nr_tags);
1073 }
1074 
1075 void blk_mq_end_request_batch(struct io_comp_batch *iob)
1076 {
1077 	int tags[TAG_COMP_BATCH], nr_tags = 0;
1078 	struct blk_mq_hw_ctx *cur_hctx = NULL;
1079 	struct request *rq;
1080 	u64 now = 0;
1081 
1082 	if (iob->need_ts)
1083 		now = ktime_get_ns();
1084 
1085 	while ((rq = rq_list_pop(&iob->req_list)) != NULL) {
1086 		prefetch(rq->bio);
1087 		prefetch(rq->rq_next);
1088 
1089 		blk_complete_request(rq);
1090 		if (iob->need_ts)
1091 			__blk_mq_end_request_acct(rq, now);
1092 
1093 		blk_mq_finish_request(rq);
1094 
1095 		rq_qos_done(rq->q, rq);
1096 
1097 		/*
1098 		 * If end_io handler returns NONE, then it still has
1099 		 * ownership of the request.
1100 		 */
1101 		if (rq->end_io && rq->end_io(rq, 0) == RQ_END_IO_NONE)
1102 			continue;
1103 
1104 		WRITE_ONCE(rq->state, MQ_RQ_IDLE);
1105 		if (!req_ref_put_and_test(rq))
1106 			continue;
1107 
1108 		blk_crypto_free_request(rq);
1109 		blk_pm_mark_last_busy(rq);
1110 
1111 		if (nr_tags == TAG_COMP_BATCH || cur_hctx != rq->mq_hctx) {
1112 			if (cur_hctx)
1113 				blk_mq_flush_tag_batch(cur_hctx, tags, nr_tags);
1114 			nr_tags = 0;
1115 			cur_hctx = rq->mq_hctx;
1116 		}
1117 		tags[nr_tags++] = rq->tag;
1118 	}
1119 
1120 	if (nr_tags)
1121 		blk_mq_flush_tag_batch(cur_hctx, tags, nr_tags);
1122 }
1123 EXPORT_SYMBOL_GPL(blk_mq_end_request_batch);
1124 
1125 static void blk_complete_reqs(struct llist_head *list)
1126 {
1127 	struct llist_node *entry = llist_reverse_order(llist_del_all(list));
1128 	struct request *rq, *next;
1129 
1130 	llist_for_each_entry_safe(rq, next, entry, ipi_list)
1131 		rq->q->mq_ops->complete(rq);
1132 }
1133 
1134 static __latent_entropy void blk_done_softirq(struct softirq_action *h)
1135 {
1136 	blk_complete_reqs(this_cpu_ptr(&blk_cpu_done));
1137 }
1138 
1139 static int blk_softirq_cpu_dead(unsigned int cpu)
1140 {
1141 	blk_complete_reqs(&per_cpu(blk_cpu_done, cpu));
1142 	return 0;
1143 }
1144 
1145 static void __blk_mq_complete_request_remote(void *data)
1146 {
1147 	__raise_softirq_irqoff(BLOCK_SOFTIRQ);
1148 }
1149 
1150 static inline bool blk_mq_complete_need_ipi(struct request *rq)
1151 {
1152 	int cpu = raw_smp_processor_id();
1153 
1154 	if (!IS_ENABLED(CONFIG_SMP) ||
1155 	    !test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags))
1156 		return false;
1157 	/*
1158 	 * With force threaded interrupts enabled, raising softirq from an SMP
1159 	 * function call will always result in waking the ksoftirqd thread.
1160 	 * This is probably worse than completing the request on a different
1161 	 * cache domain.
1162 	 */
1163 	if (force_irqthreads())
1164 		return false;
1165 
1166 	/* same CPU or cache domain?  Complete locally */
1167 	if (cpu == rq->mq_ctx->cpu ||
1168 	    (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags) &&
1169 	     cpus_share_cache(cpu, rq->mq_ctx->cpu)))
1170 		return false;
1171 
1172 	/* don't try to IPI to an offline CPU */
1173 	return cpu_online(rq->mq_ctx->cpu);
1174 }
1175 
1176 static void blk_mq_complete_send_ipi(struct request *rq)
1177 {
1178 	unsigned int cpu;
1179 
1180 	cpu = rq->mq_ctx->cpu;
1181 	if (llist_add(&rq->ipi_list, &per_cpu(blk_cpu_done, cpu)))
1182 		smp_call_function_single_async(cpu, &per_cpu(blk_cpu_csd, cpu));
1183 }
1184 
1185 static void blk_mq_raise_softirq(struct request *rq)
1186 {
1187 	struct llist_head *list;
1188 
1189 	preempt_disable();
1190 	list = this_cpu_ptr(&blk_cpu_done);
1191 	if (llist_add(&rq->ipi_list, list))
1192 		raise_softirq(BLOCK_SOFTIRQ);
1193 	preempt_enable();
1194 }
1195 
1196 bool blk_mq_complete_request_remote(struct request *rq)
1197 {
1198 	WRITE_ONCE(rq->state, MQ_RQ_COMPLETE);
1199 
1200 	/*
1201 	 * For request which hctx has only one ctx mapping,
1202 	 * or a polled request, always complete locally,
1203 	 * it's pointless to redirect the completion.
1204 	 */
1205 	if ((rq->mq_hctx->nr_ctx == 1 &&
1206 	     rq->mq_ctx->cpu == raw_smp_processor_id()) ||
1207 	     rq->cmd_flags & REQ_POLLED)
1208 		return false;
1209 
1210 	if (blk_mq_complete_need_ipi(rq)) {
1211 		blk_mq_complete_send_ipi(rq);
1212 		return true;
1213 	}
1214 
1215 	if (rq->q->nr_hw_queues == 1) {
1216 		blk_mq_raise_softirq(rq);
1217 		return true;
1218 	}
1219 	return false;
1220 }
1221 EXPORT_SYMBOL_GPL(blk_mq_complete_request_remote);
1222 
1223 /**
1224  * blk_mq_complete_request - end I/O on a request
1225  * @rq:		the request being processed
1226  *
1227  * Description:
1228  *	Complete a request by scheduling the ->complete_rq operation.
1229  **/
1230 void blk_mq_complete_request(struct request *rq)
1231 {
1232 	if (!blk_mq_complete_request_remote(rq))
1233 		rq->q->mq_ops->complete(rq);
1234 }
1235 EXPORT_SYMBOL(blk_mq_complete_request);
1236 
1237 /**
1238  * blk_mq_start_request - Start processing a request
1239  * @rq: Pointer to request to be started
1240  *
1241  * Function used by device drivers to notify the block layer that a request
1242  * is going to be processed now, so blk layer can do proper initializations
1243  * such as starting the timeout timer.
1244  */
1245 void blk_mq_start_request(struct request *rq)
1246 {
1247 	struct request_queue *q = rq->q;
1248 
1249 	trace_block_rq_issue(rq);
1250 
1251 	if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags) &&
1252 	    !blk_rq_is_passthrough(rq)) {
1253 		rq->io_start_time_ns = ktime_get_ns();
1254 		rq->stats_sectors = blk_rq_sectors(rq);
1255 		rq->rq_flags |= RQF_STATS;
1256 		rq_qos_issue(q, rq);
1257 	}
1258 
1259 	WARN_ON_ONCE(blk_mq_rq_state(rq) != MQ_RQ_IDLE);
1260 
1261 	blk_add_timer(rq);
1262 	WRITE_ONCE(rq->state, MQ_RQ_IN_FLIGHT);
1263 	rq->mq_hctx->tags->rqs[rq->tag] = rq;
1264 
1265 #ifdef CONFIG_BLK_DEV_INTEGRITY
1266 	if (blk_integrity_rq(rq) && req_op(rq) == REQ_OP_WRITE)
1267 		q->integrity.profile->prepare_fn(rq);
1268 #endif
1269 	if (rq->bio && rq->bio->bi_opf & REQ_POLLED)
1270 	        WRITE_ONCE(rq->bio->bi_cookie, rq->mq_hctx->queue_num);
1271 }
1272 EXPORT_SYMBOL(blk_mq_start_request);
1273 
1274 /*
1275  * Allow 2x BLK_MAX_REQUEST_COUNT requests on plug queue for multiple
1276  * queues. This is important for md arrays to benefit from merging
1277  * requests.
1278  */
1279 static inline unsigned short blk_plug_max_rq_count(struct blk_plug *plug)
1280 {
1281 	if (plug->multiple_queues)
1282 		return BLK_MAX_REQUEST_COUNT * 2;
1283 	return BLK_MAX_REQUEST_COUNT;
1284 }
1285 
1286 static void blk_add_rq_to_plug(struct blk_plug *plug, struct request *rq)
1287 {
1288 	struct request *last = rq_list_peek(&plug->mq_list);
1289 
1290 	if (!plug->rq_count) {
1291 		trace_block_plug(rq->q);
1292 	} else if (plug->rq_count >= blk_plug_max_rq_count(plug) ||
1293 		   (!blk_queue_nomerges(rq->q) &&
1294 		    blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) {
1295 		blk_mq_flush_plug_list(plug, false);
1296 		last = NULL;
1297 		trace_block_plug(rq->q);
1298 	}
1299 
1300 	if (!plug->multiple_queues && last && last->q != rq->q)
1301 		plug->multiple_queues = true;
1302 	/*
1303 	 * Any request allocated from sched tags can't be issued to
1304 	 * ->queue_rqs() directly
1305 	 */
1306 	if (!plug->has_elevator && (rq->rq_flags & RQF_SCHED_TAGS))
1307 		plug->has_elevator = true;
1308 	rq->rq_next = NULL;
1309 	rq_list_add(&plug->mq_list, rq);
1310 	plug->rq_count++;
1311 }
1312 
1313 /**
1314  * blk_execute_rq_nowait - insert a request to I/O scheduler for execution
1315  * @rq:		request to insert
1316  * @at_head:    insert request at head or tail of queue
1317  *
1318  * Description:
1319  *    Insert a fully prepared request at the back of the I/O scheduler queue
1320  *    for execution.  Don't wait for completion.
1321  *
1322  * Note:
1323  *    This function will invoke @done directly if the queue is dead.
1324  */
1325 void blk_execute_rq_nowait(struct request *rq, bool at_head)
1326 {
1327 	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1328 
1329 	WARN_ON(irqs_disabled());
1330 	WARN_ON(!blk_rq_is_passthrough(rq));
1331 
1332 	blk_account_io_start(rq);
1333 
1334 	/*
1335 	 * As plugging can be enabled for passthrough requests on a zoned
1336 	 * device, directly accessing the plug instead of using blk_mq_plug()
1337 	 * should not have any consequences.
1338 	 */
1339 	if (current->plug && !at_head) {
1340 		blk_add_rq_to_plug(current->plug, rq);
1341 		return;
1342 	}
1343 
1344 	blk_mq_insert_request(rq, at_head ? BLK_MQ_INSERT_AT_HEAD : 0);
1345 	blk_mq_run_hw_queue(hctx, hctx->flags & BLK_MQ_F_BLOCKING);
1346 }
1347 EXPORT_SYMBOL_GPL(blk_execute_rq_nowait);
1348 
1349 struct blk_rq_wait {
1350 	struct completion done;
1351 	blk_status_t ret;
1352 };
1353 
1354 static enum rq_end_io_ret blk_end_sync_rq(struct request *rq, blk_status_t ret)
1355 {
1356 	struct blk_rq_wait *wait = rq->end_io_data;
1357 
1358 	wait->ret = ret;
1359 	complete(&wait->done);
1360 	return RQ_END_IO_NONE;
1361 }
1362 
1363 bool blk_rq_is_poll(struct request *rq)
1364 {
1365 	if (!rq->mq_hctx)
1366 		return false;
1367 	if (rq->mq_hctx->type != HCTX_TYPE_POLL)
1368 		return false;
1369 	return true;
1370 }
1371 EXPORT_SYMBOL_GPL(blk_rq_is_poll);
1372 
1373 static void blk_rq_poll_completion(struct request *rq, struct completion *wait)
1374 {
1375 	do {
1376 		blk_hctx_poll(rq->q, rq->mq_hctx, NULL, 0);
1377 		cond_resched();
1378 	} while (!completion_done(wait));
1379 }
1380 
1381 /**
1382  * blk_execute_rq - insert a request into queue for execution
1383  * @rq:		request to insert
1384  * @at_head:    insert request at head or tail of queue
1385  *
1386  * Description:
1387  *    Insert a fully prepared request at the back of the I/O scheduler queue
1388  *    for execution and wait for completion.
1389  * Return: The blk_status_t result provided to blk_mq_end_request().
1390  */
1391 blk_status_t blk_execute_rq(struct request *rq, bool at_head)
1392 {
1393 	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1394 	struct blk_rq_wait wait = {
1395 		.done = COMPLETION_INITIALIZER_ONSTACK(wait.done),
1396 	};
1397 
1398 	WARN_ON(irqs_disabled());
1399 	WARN_ON(!blk_rq_is_passthrough(rq));
1400 
1401 	rq->end_io_data = &wait;
1402 	rq->end_io = blk_end_sync_rq;
1403 
1404 	blk_account_io_start(rq);
1405 	blk_mq_insert_request(rq, at_head ? BLK_MQ_INSERT_AT_HEAD : 0);
1406 	blk_mq_run_hw_queue(hctx, false);
1407 
1408 	if (blk_rq_is_poll(rq)) {
1409 		blk_rq_poll_completion(rq, &wait.done);
1410 	} else {
1411 		/*
1412 		 * Prevent hang_check timer from firing at us during very long
1413 		 * I/O
1414 		 */
1415 		unsigned long hang_check = sysctl_hung_task_timeout_secs;
1416 
1417 		if (hang_check)
1418 			while (!wait_for_completion_io_timeout(&wait.done,
1419 					hang_check * (HZ/2)))
1420 				;
1421 		else
1422 			wait_for_completion_io(&wait.done);
1423 	}
1424 
1425 	return wait.ret;
1426 }
1427 EXPORT_SYMBOL(blk_execute_rq);
1428 
1429 static void __blk_mq_requeue_request(struct request *rq)
1430 {
1431 	struct request_queue *q = rq->q;
1432 
1433 	blk_mq_put_driver_tag(rq);
1434 
1435 	trace_block_rq_requeue(rq);
1436 	rq_qos_requeue(q, rq);
1437 
1438 	if (blk_mq_request_started(rq)) {
1439 		WRITE_ONCE(rq->state, MQ_RQ_IDLE);
1440 		rq->rq_flags &= ~RQF_TIMED_OUT;
1441 	}
1442 }
1443 
1444 void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
1445 {
1446 	struct request_queue *q = rq->q;
1447 	unsigned long flags;
1448 
1449 	__blk_mq_requeue_request(rq);
1450 
1451 	/* this request will be re-inserted to io scheduler queue */
1452 	blk_mq_sched_requeue_request(rq);
1453 
1454 	spin_lock_irqsave(&q->requeue_lock, flags);
1455 	list_add_tail(&rq->queuelist, &q->requeue_list);
1456 	spin_unlock_irqrestore(&q->requeue_lock, flags);
1457 
1458 	if (kick_requeue_list)
1459 		blk_mq_kick_requeue_list(q);
1460 }
1461 EXPORT_SYMBOL(blk_mq_requeue_request);
1462 
1463 static void blk_mq_requeue_work(struct work_struct *work)
1464 {
1465 	struct request_queue *q =
1466 		container_of(work, struct request_queue, requeue_work.work);
1467 	LIST_HEAD(rq_list);
1468 	LIST_HEAD(flush_list);
1469 	struct request *rq;
1470 
1471 	spin_lock_irq(&q->requeue_lock);
1472 	list_splice_init(&q->requeue_list, &rq_list);
1473 	list_splice_init(&q->flush_list, &flush_list);
1474 	spin_unlock_irq(&q->requeue_lock);
1475 
1476 	while (!list_empty(&rq_list)) {
1477 		rq = list_entry(rq_list.next, struct request, queuelist);
1478 		/*
1479 		 * If RQF_DONTPREP ist set, the request has been started by the
1480 		 * driver already and might have driver-specific data allocated
1481 		 * already.  Insert it into the hctx dispatch list to avoid
1482 		 * block layer merges for the request.
1483 		 */
1484 		if (rq->rq_flags & RQF_DONTPREP) {
1485 			list_del_init(&rq->queuelist);
1486 			blk_mq_request_bypass_insert(rq, 0);
1487 		} else {
1488 			list_del_init(&rq->queuelist);
1489 			blk_mq_insert_request(rq, BLK_MQ_INSERT_AT_HEAD);
1490 		}
1491 	}
1492 
1493 	while (!list_empty(&flush_list)) {
1494 		rq = list_entry(flush_list.next, struct request, queuelist);
1495 		list_del_init(&rq->queuelist);
1496 		blk_mq_insert_request(rq, 0);
1497 	}
1498 
1499 	blk_mq_run_hw_queues(q, false);
1500 }
1501 
1502 void blk_mq_kick_requeue_list(struct request_queue *q)
1503 {
1504 	kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work, 0);
1505 }
1506 EXPORT_SYMBOL(blk_mq_kick_requeue_list);
1507 
1508 void blk_mq_delay_kick_requeue_list(struct request_queue *q,
1509 				    unsigned long msecs)
1510 {
1511 	kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work,
1512 				    msecs_to_jiffies(msecs));
1513 }
1514 EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);
1515 
1516 static bool blk_is_flush_data_rq(struct request *rq)
1517 {
1518 	return (rq->rq_flags & RQF_FLUSH_SEQ) && !is_flush_rq(rq);
1519 }
1520 
1521 static bool blk_mq_rq_inflight(struct request *rq, void *priv)
1522 {
1523 	/*
1524 	 * If we find a request that isn't idle we know the queue is busy
1525 	 * as it's checked in the iter.
1526 	 * Return false to stop the iteration.
1527 	 *
1528 	 * In case of queue quiesce, if one flush data request is completed,
1529 	 * don't count it as inflight given the flush sequence is suspended,
1530 	 * and the original flush data request is invisible to driver, just
1531 	 * like other pending requests because of quiesce
1532 	 */
1533 	if (blk_mq_request_started(rq) && !(blk_queue_quiesced(rq->q) &&
1534 				blk_is_flush_data_rq(rq) &&
1535 				blk_mq_request_completed(rq))) {
1536 		bool *busy = priv;
1537 
1538 		*busy = true;
1539 		return false;
1540 	}
1541 
1542 	return true;
1543 }
1544 
1545 bool blk_mq_queue_inflight(struct request_queue *q)
1546 {
1547 	bool busy = false;
1548 
1549 	blk_mq_queue_tag_busy_iter(q, blk_mq_rq_inflight, &busy);
1550 	return busy;
1551 }
1552 EXPORT_SYMBOL_GPL(blk_mq_queue_inflight);
1553 
1554 static void blk_mq_rq_timed_out(struct request *req)
1555 {
1556 	req->rq_flags |= RQF_TIMED_OUT;
1557 	if (req->q->mq_ops->timeout) {
1558 		enum blk_eh_timer_return ret;
1559 
1560 		ret = req->q->mq_ops->timeout(req);
1561 		if (ret == BLK_EH_DONE)
1562 			return;
1563 		WARN_ON_ONCE(ret != BLK_EH_RESET_TIMER);
1564 	}
1565 
1566 	blk_add_timer(req);
1567 }
1568 
1569 struct blk_expired_data {
1570 	bool has_timedout_rq;
1571 	unsigned long next;
1572 	unsigned long timeout_start;
1573 };
1574 
1575 static bool blk_mq_req_expired(struct request *rq, struct blk_expired_data *expired)
1576 {
1577 	unsigned long deadline;
1578 
1579 	if (blk_mq_rq_state(rq) != MQ_RQ_IN_FLIGHT)
1580 		return false;
1581 	if (rq->rq_flags & RQF_TIMED_OUT)
1582 		return false;
1583 
1584 	deadline = READ_ONCE(rq->deadline);
1585 	if (time_after_eq(expired->timeout_start, deadline))
1586 		return true;
1587 
1588 	if (expired->next == 0)
1589 		expired->next = deadline;
1590 	else if (time_after(expired->next, deadline))
1591 		expired->next = deadline;
1592 	return false;
1593 }
1594 
1595 void blk_mq_put_rq_ref(struct request *rq)
1596 {
1597 	if (is_flush_rq(rq)) {
1598 		if (rq->end_io(rq, 0) == RQ_END_IO_FREE)
1599 			blk_mq_free_request(rq);
1600 	} else if (req_ref_put_and_test(rq)) {
1601 		__blk_mq_free_request(rq);
1602 	}
1603 }
1604 
1605 static bool blk_mq_check_expired(struct request *rq, void *priv)
1606 {
1607 	struct blk_expired_data *expired = priv;
1608 
1609 	/*
1610 	 * blk_mq_queue_tag_busy_iter() has locked the request, so it cannot
1611 	 * be reallocated underneath the timeout handler's processing, then
1612 	 * the expire check is reliable. If the request is not expired, then
1613 	 * it was completed and reallocated as a new request after returning
1614 	 * from blk_mq_check_expired().
1615 	 */
1616 	if (blk_mq_req_expired(rq, expired)) {
1617 		expired->has_timedout_rq = true;
1618 		return false;
1619 	}
1620 	return true;
1621 }
1622 
1623 static bool blk_mq_handle_expired(struct request *rq, void *priv)
1624 {
1625 	struct blk_expired_data *expired = priv;
1626 
1627 	if (blk_mq_req_expired(rq, expired))
1628 		blk_mq_rq_timed_out(rq);
1629 	return true;
1630 }
1631 
1632 static void blk_mq_timeout_work(struct work_struct *work)
1633 {
1634 	struct request_queue *q =
1635 		container_of(work, struct request_queue, timeout_work);
1636 	struct blk_expired_data expired = {
1637 		.timeout_start = jiffies,
1638 	};
1639 	struct blk_mq_hw_ctx *hctx;
1640 	unsigned long i;
1641 
1642 	/* A deadlock might occur if a request is stuck requiring a
1643 	 * timeout at the same time a queue freeze is waiting
1644 	 * completion, since the timeout code would not be able to
1645 	 * acquire the queue reference here.
1646 	 *
1647 	 * That's why we don't use blk_queue_enter here; instead, we use
1648 	 * percpu_ref_tryget directly, because we need to be able to
1649 	 * obtain a reference even in the short window between the queue
1650 	 * starting to freeze, by dropping the first reference in
1651 	 * blk_freeze_queue_start, and the moment the last request is
1652 	 * consumed, marked by the instant q_usage_counter reaches
1653 	 * zero.
1654 	 */
1655 	if (!percpu_ref_tryget(&q->q_usage_counter))
1656 		return;
1657 
1658 	/* check if there is any timed-out request */
1659 	blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &expired);
1660 	if (expired.has_timedout_rq) {
1661 		/*
1662 		 * Before walking tags, we must ensure any submit started
1663 		 * before the current time has finished. Since the submit
1664 		 * uses srcu or rcu, wait for a synchronization point to
1665 		 * ensure all running submits have finished
1666 		 */
1667 		blk_mq_wait_quiesce_done(q->tag_set);
1668 
1669 		expired.next = 0;
1670 		blk_mq_queue_tag_busy_iter(q, blk_mq_handle_expired, &expired);
1671 	}
1672 
1673 	if (expired.next != 0) {
1674 		mod_timer(&q->timeout, expired.next);
1675 	} else {
1676 		/*
1677 		 * Request timeouts are handled as a forward rolling timer. If
1678 		 * we end up here it means that no requests are pending and
1679 		 * also that no request has been pending for a while. Mark
1680 		 * each hctx as idle.
1681 		 */
1682 		queue_for_each_hw_ctx(q, hctx, i) {
1683 			/* the hctx may be unmapped, so check it here */
1684 			if (blk_mq_hw_queue_mapped(hctx))
1685 				blk_mq_tag_idle(hctx);
1686 		}
1687 	}
1688 	blk_queue_exit(q);
1689 }
1690 
1691 struct flush_busy_ctx_data {
1692 	struct blk_mq_hw_ctx *hctx;
1693 	struct list_head *list;
1694 };
1695 
1696 static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
1697 {
1698 	struct flush_busy_ctx_data *flush_data = data;
1699 	struct blk_mq_hw_ctx *hctx = flush_data->hctx;
1700 	struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
1701 	enum hctx_type type = hctx->type;
1702 
1703 	spin_lock(&ctx->lock);
1704 	list_splice_tail_init(&ctx->rq_lists[type], flush_data->list);
1705 	sbitmap_clear_bit(sb, bitnr);
1706 	spin_unlock(&ctx->lock);
1707 	return true;
1708 }
1709 
1710 /*
1711  * Process software queues that have been marked busy, splicing them
1712  * to the for-dispatch
1713  */
1714 void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
1715 {
1716 	struct flush_busy_ctx_data data = {
1717 		.hctx = hctx,
1718 		.list = list,
1719 	};
1720 
1721 	sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
1722 }
1723 EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs);
1724 
1725 struct dispatch_rq_data {
1726 	struct blk_mq_hw_ctx *hctx;
1727 	struct request *rq;
1728 };
1729 
1730 static bool dispatch_rq_from_ctx(struct sbitmap *sb, unsigned int bitnr,
1731 		void *data)
1732 {
1733 	struct dispatch_rq_data *dispatch_data = data;
1734 	struct blk_mq_hw_ctx *hctx = dispatch_data->hctx;
1735 	struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
1736 	enum hctx_type type = hctx->type;
1737 
1738 	spin_lock(&ctx->lock);
1739 	if (!list_empty(&ctx->rq_lists[type])) {
1740 		dispatch_data->rq = list_entry_rq(ctx->rq_lists[type].next);
1741 		list_del_init(&dispatch_data->rq->queuelist);
1742 		if (list_empty(&ctx->rq_lists[type]))
1743 			sbitmap_clear_bit(sb, bitnr);
1744 	}
1745 	spin_unlock(&ctx->lock);
1746 
1747 	return !dispatch_data->rq;
1748 }
1749 
1750 struct request *blk_mq_dequeue_from_ctx(struct blk_mq_hw_ctx *hctx,
1751 					struct blk_mq_ctx *start)
1752 {
1753 	unsigned off = start ? start->index_hw[hctx->type] : 0;
1754 	struct dispatch_rq_data data = {
1755 		.hctx = hctx,
1756 		.rq   = NULL,
1757 	};
1758 
1759 	__sbitmap_for_each_set(&hctx->ctx_map, off,
1760 			       dispatch_rq_from_ctx, &data);
1761 
1762 	return data.rq;
1763 }
1764 
1765 bool __blk_mq_alloc_driver_tag(struct request *rq)
1766 {
1767 	struct sbitmap_queue *bt = &rq->mq_hctx->tags->bitmap_tags;
1768 	unsigned int tag_offset = rq->mq_hctx->tags->nr_reserved_tags;
1769 	int tag;
1770 
1771 	blk_mq_tag_busy(rq->mq_hctx);
1772 
1773 	if (blk_mq_tag_is_reserved(rq->mq_hctx->sched_tags, rq->internal_tag)) {
1774 		bt = &rq->mq_hctx->tags->breserved_tags;
1775 		tag_offset = 0;
1776 	} else {
1777 		if (!hctx_may_queue(rq->mq_hctx, bt))
1778 			return false;
1779 	}
1780 
1781 	tag = __sbitmap_queue_get(bt);
1782 	if (tag == BLK_MQ_NO_TAG)
1783 		return false;
1784 
1785 	rq->tag = tag + tag_offset;
1786 	blk_mq_inc_active_requests(rq->mq_hctx);
1787 	return true;
1788 }
1789 
1790 static int blk_mq_dispatch_wake(wait_queue_entry_t *wait, unsigned mode,
1791 				int flags, void *key)
1792 {
1793 	struct blk_mq_hw_ctx *hctx;
1794 
1795 	hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait);
1796 
1797 	spin_lock(&hctx->dispatch_wait_lock);
1798 	if (!list_empty(&wait->entry)) {
1799 		struct sbitmap_queue *sbq;
1800 
1801 		list_del_init(&wait->entry);
1802 		sbq = &hctx->tags->bitmap_tags;
1803 		atomic_dec(&sbq->ws_active);
1804 	}
1805 	spin_unlock(&hctx->dispatch_wait_lock);
1806 
1807 	blk_mq_run_hw_queue(hctx, true);
1808 	return 1;
1809 }
1810 
1811 /*
1812  * Mark us waiting for a tag. For shared tags, this involves hooking us into
1813  * the tag wakeups. For non-shared tags, we can simply mark us needing a
1814  * restart. For both cases, take care to check the condition again after
1815  * marking us as waiting.
1816  */
1817 static bool blk_mq_mark_tag_wait(struct blk_mq_hw_ctx *hctx,
1818 				 struct request *rq)
1819 {
1820 	struct sbitmap_queue *sbq;
1821 	struct wait_queue_head *wq;
1822 	wait_queue_entry_t *wait;
1823 	bool ret;
1824 
1825 	if (!(hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED) &&
1826 	    !(blk_mq_is_shared_tags(hctx->flags))) {
1827 		blk_mq_sched_mark_restart_hctx(hctx);
1828 
1829 		/*
1830 		 * It's possible that a tag was freed in the window between the
1831 		 * allocation failure and adding the hardware queue to the wait
1832 		 * queue.
1833 		 *
1834 		 * Don't clear RESTART here, someone else could have set it.
1835 		 * At most this will cost an extra queue run.
1836 		 */
1837 		return blk_mq_get_driver_tag(rq);
1838 	}
1839 
1840 	wait = &hctx->dispatch_wait;
1841 	if (!list_empty_careful(&wait->entry))
1842 		return false;
1843 
1844 	if (blk_mq_tag_is_reserved(rq->mq_hctx->sched_tags, rq->internal_tag))
1845 		sbq = &hctx->tags->breserved_tags;
1846 	else
1847 		sbq = &hctx->tags->bitmap_tags;
1848 	wq = &bt_wait_ptr(sbq, hctx)->wait;
1849 
1850 	spin_lock_irq(&wq->lock);
1851 	spin_lock(&hctx->dispatch_wait_lock);
1852 	if (!list_empty(&wait->entry)) {
1853 		spin_unlock(&hctx->dispatch_wait_lock);
1854 		spin_unlock_irq(&wq->lock);
1855 		return false;
1856 	}
1857 
1858 	atomic_inc(&sbq->ws_active);
1859 	wait->flags &= ~WQ_FLAG_EXCLUSIVE;
1860 	__add_wait_queue(wq, wait);
1861 
1862 	/*
1863 	 * It's possible that a tag was freed in the window between the
1864 	 * allocation failure and adding the hardware queue to the wait
1865 	 * queue.
1866 	 */
1867 	ret = blk_mq_get_driver_tag(rq);
1868 	if (!ret) {
1869 		spin_unlock(&hctx->dispatch_wait_lock);
1870 		spin_unlock_irq(&wq->lock);
1871 		return false;
1872 	}
1873 
1874 	/*
1875 	 * We got a tag, remove ourselves from the wait queue to ensure
1876 	 * someone else gets the wakeup.
1877 	 */
1878 	list_del_init(&wait->entry);
1879 	atomic_dec(&sbq->ws_active);
1880 	spin_unlock(&hctx->dispatch_wait_lock);
1881 	spin_unlock_irq(&wq->lock);
1882 
1883 	return true;
1884 }
1885 
1886 #define BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT  8
1887 #define BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR  4
1888 /*
1889  * Update dispatch busy with the Exponential Weighted Moving Average(EWMA):
1890  * - EWMA is one simple way to compute running average value
1891  * - weight(7/8 and 1/8) is applied so that it can decrease exponentially
1892  * - take 4 as factor for avoiding to get too small(0) result, and this
1893  *   factor doesn't matter because EWMA decreases exponentially
1894  */
1895 static void blk_mq_update_dispatch_busy(struct blk_mq_hw_ctx *hctx, bool busy)
1896 {
1897 	unsigned int ewma;
1898 
1899 	ewma = hctx->dispatch_busy;
1900 
1901 	if (!ewma && !busy)
1902 		return;
1903 
1904 	ewma *= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT - 1;
1905 	if (busy)
1906 		ewma += 1 << BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR;
1907 	ewma /= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT;
1908 
1909 	hctx->dispatch_busy = ewma;
1910 }
1911 
1912 #define BLK_MQ_RESOURCE_DELAY	3		/* ms units */
1913 
1914 static void blk_mq_handle_dev_resource(struct request *rq,
1915 				       struct list_head *list)
1916 {
1917 	list_add(&rq->queuelist, list);
1918 	__blk_mq_requeue_request(rq);
1919 }
1920 
1921 static void blk_mq_handle_zone_resource(struct request *rq,
1922 					struct list_head *zone_list)
1923 {
1924 	/*
1925 	 * If we end up here it is because we cannot dispatch a request to a
1926 	 * specific zone due to LLD level zone-write locking or other zone
1927 	 * related resource not being available. In this case, set the request
1928 	 * aside in zone_list for retrying it later.
1929 	 */
1930 	list_add(&rq->queuelist, zone_list);
1931 	__blk_mq_requeue_request(rq);
1932 }
1933 
1934 enum prep_dispatch {
1935 	PREP_DISPATCH_OK,
1936 	PREP_DISPATCH_NO_TAG,
1937 	PREP_DISPATCH_NO_BUDGET,
1938 };
1939 
1940 static enum prep_dispatch blk_mq_prep_dispatch_rq(struct request *rq,
1941 						  bool need_budget)
1942 {
1943 	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1944 	int budget_token = -1;
1945 
1946 	if (need_budget) {
1947 		budget_token = blk_mq_get_dispatch_budget(rq->q);
1948 		if (budget_token < 0) {
1949 			blk_mq_put_driver_tag(rq);
1950 			return PREP_DISPATCH_NO_BUDGET;
1951 		}
1952 		blk_mq_set_rq_budget_token(rq, budget_token);
1953 	}
1954 
1955 	if (!blk_mq_get_driver_tag(rq)) {
1956 		/*
1957 		 * The initial allocation attempt failed, so we need to
1958 		 * rerun the hardware queue when a tag is freed. The
1959 		 * waitqueue takes care of that. If the queue is run
1960 		 * before we add this entry back on the dispatch list,
1961 		 * we'll re-run it below.
1962 		 */
1963 		if (!blk_mq_mark_tag_wait(hctx, rq)) {
1964 			/*
1965 			 * All budgets not got from this function will be put
1966 			 * together during handling partial dispatch
1967 			 */
1968 			if (need_budget)
1969 				blk_mq_put_dispatch_budget(rq->q, budget_token);
1970 			return PREP_DISPATCH_NO_TAG;
1971 		}
1972 	}
1973 
1974 	return PREP_DISPATCH_OK;
1975 }
1976 
1977 /* release all allocated budgets before calling to blk_mq_dispatch_rq_list */
1978 static void blk_mq_release_budgets(struct request_queue *q,
1979 		struct list_head *list)
1980 {
1981 	struct request *rq;
1982 
1983 	list_for_each_entry(rq, list, queuelist) {
1984 		int budget_token = blk_mq_get_rq_budget_token(rq);
1985 
1986 		if (budget_token >= 0)
1987 			blk_mq_put_dispatch_budget(q, budget_token);
1988 	}
1989 }
1990 
1991 /*
1992  * blk_mq_commit_rqs will notify driver using bd->last that there is no
1993  * more requests. (See comment in struct blk_mq_ops for commit_rqs for
1994  * details)
1995  * Attention, we should explicitly call this in unusual cases:
1996  *  1) did not queue everything initially scheduled to queue
1997  *  2) the last attempt to queue a request failed
1998  */
1999 static void blk_mq_commit_rqs(struct blk_mq_hw_ctx *hctx, int queued,
2000 			      bool from_schedule)
2001 {
2002 	if (hctx->queue->mq_ops->commit_rqs && queued) {
2003 		trace_block_unplug(hctx->queue, queued, !from_schedule);
2004 		hctx->queue->mq_ops->commit_rqs(hctx);
2005 	}
2006 }
2007 
2008 /*
2009  * Returns true if we did some work AND can potentially do more.
2010  */
2011 bool blk_mq_dispatch_rq_list(struct blk_mq_hw_ctx *hctx, struct list_head *list,
2012 			     unsigned int nr_budgets)
2013 {
2014 	enum prep_dispatch prep;
2015 	struct request_queue *q = hctx->queue;
2016 	struct request *rq;
2017 	int queued;
2018 	blk_status_t ret = BLK_STS_OK;
2019 	LIST_HEAD(zone_list);
2020 	bool needs_resource = false;
2021 
2022 	if (list_empty(list))
2023 		return false;
2024 
2025 	/*
2026 	 * Now process all the entries, sending them to the driver.
2027 	 */
2028 	queued = 0;
2029 	do {
2030 		struct blk_mq_queue_data bd;
2031 
2032 		rq = list_first_entry(list, struct request, queuelist);
2033 
2034 		WARN_ON_ONCE(hctx != rq->mq_hctx);
2035 		prep = blk_mq_prep_dispatch_rq(rq, !nr_budgets);
2036 		if (prep != PREP_DISPATCH_OK)
2037 			break;
2038 
2039 		list_del_init(&rq->queuelist);
2040 
2041 		bd.rq = rq;
2042 		bd.last = list_empty(list);
2043 
2044 		/*
2045 		 * once the request is queued to lld, no need to cover the
2046 		 * budget any more
2047 		 */
2048 		if (nr_budgets)
2049 			nr_budgets--;
2050 		ret = q->mq_ops->queue_rq(hctx, &bd);
2051 		switch (ret) {
2052 		case BLK_STS_OK:
2053 			queued++;
2054 			break;
2055 		case BLK_STS_RESOURCE:
2056 			needs_resource = true;
2057 			fallthrough;
2058 		case BLK_STS_DEV_RESOURCE:
2059 			blk_mq_handle_dev_resource(rq, list);
2060 			goto out;
2061 		case BLK_STS_ZONE_RESOURCE:
2062 			/*
2063 			 * Move the request to zone_list and keep going through
2064 			 * the dispatch list to find more requests the drive can
2065 			 * accept.
2066 			 */
2067 			blk_mq_handle_zone_resource(rq, &zone_list);
2068 			needs_resource = true;
2069 			break;
2070 		default:
2071 			blk_mq_end_request(rq, ret);
2072 		}
2073 	} while (!list_empty(list));
2074 out:
2075 	if (!list_empty(&zone_list))
2076 		list_splice_tail_init(&zone_list, list);
2077 
2078 	/* If we didn't flush the entire list, we could have told the driver
2079 	 * there was more coming, but that turned out to be a lie.
2080 	 */
2081 	if (!list_empty(list) || ret != BLK_STS_OK)
2082 		blk_mq_commit_rqs(hctx, queued, false);
2083 
2084 	/*
2085 	 * Any items that need requeuing? Stuff them into hctx->dispatch,
2086 	 * that is where we will continue on next queue run.
2087 	 */
2088 	if (!list_empty(list)) {
2089 		bool needs_restart;
2090 		/* For non-shared tags, the RESTART check will suffice */
2091 		bool no_tag = prep == PREP_DISPATCH_NO_TAG &&
2092 			((hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED) ||
2093 			blk_mq_is_shared_tags(hctx->flags));
2094 
2095 		if (nr_budgets)
2096 			blk_mq_release_budgets(q, list);
2097 
2098 		spin_lock(&hctx->lock);
2099 		list_splice_tail_init(list, &hctx->dispatch);
2100 		spin_unlock(&hctx->lock);
2101 
2102 		/*
2103 		 * Order adding requests to hctx->dispatch and checking
2104 		 * SCHED_RESTART flag. The pair of this smp_mb() is the one
2105 		 * in blk_mq_sched_restart(). Avoid restart code path to
2106 		 * miss the new added requests to hctx->dispatch, meantime
2107 		 * SCHED_RESTART is observed here.
2108 		 */
2109 		smp_mb();
2110 
2111 		/*
2112 		 * If SCHED_RESTART was set by the caller of this function and
2113 		 * it is no longer set that means that it was cleared by another
2114 		 * thread and hence that a queue rerun is needed.
2115 		 *
2116 		 * If 'no_tag' is set, that means that we failed getting
2117 		 * a driver tag with an I/O scheduler attached. If our dispatch
2118 		 * waitqueue is no longer active, ensure that we run the queue
2119 		 * AFTER adding our entries back to the list.
2120 		 *
2121 		 * If no I/O scheduler has been configured it is possible that
2122 		 * the hardware queue got stopped and restarted before requests
2123 		 * were pushed back onto the dispatch list. Rerun the queue to
2124 		 * avoid starvation. Notes:
2125 		 * - blk_mq_run_hw_queue() checks whether or not a queue has
2126 		 *   been stopped before rerunning a queue.
2127 		 * - Some but not all block drivers stop a queue before
2128 		 *   returning BLK_STS_RESOURCE. Two exceptions are scsi-mq
2129 		 *   and dm-rq.
2130 		 *
2131 		 * If driver returns BLK_STS_RESOURCE and SCHED_RESTART
2132 		 * bit is set, run queue after a delay to avoid IO stalls
2133 		 * that could otherwise occur if the queue is idle.  We'll do
2134 		 * similar if we couldn't get budget or couldn't lock a zone
2135 		 * and SCHED_RESTART is set.
2136 		 */
2137 		needs_restart = blk_mq_sched_needs_restart(hctx);
2138 		if (prep == PREP_DISPATCH_NO_BUDGET)
2139 			needs_resource = true;
2140 		if (!needs_restart ||
2141 		    (no_tag && list_empty_careful(&hctx->dispatch_wait.entry)))
2142 			blk_mq_run_hw_queue(hctx, true);
2143 		else if (needs_resource)
2144 			blk_mq_delay_run_hw_queue(hctx, BLK_MQ_RESOURCE_DELAY);
2145 
2146 		blk_mq_update_dispatch_busy(hctx, true);
2147 		return false;
2148 	}
2149 
2150 	blk_mq_update_dispatch_busy(hctx, false);
2151 	return true;
2152 }
2153 
2154 static inline int blk_mq_first_mapped_cpu(struct blk_mq_hw_ctx *hctx)
2155 {
2156 	int cpu = cpumask_first_and(hctx->cpumask, cpu_online_mask);
2157 
2158 	if (cpu >= nr_cpu_ids)
2159 		cpu = cpumask_first(hctx->cpumask);
2160 	return cpu;
2161 }
2162 
2163 /*
2164  * It'd be great if the workqueue API had a way to pass
2165  * in a mask and had some smarts for more clever placement.
2166  * For now we just round-robin here, switching for every
2167  * BLK_MQ_CPU_WORK_BATCH queued items.
2168  */
2169 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
2170 {
2171 	bool tried = false;
2172 	int next_cpu = hctx->next_cpu;
2173 
2174 	if (hctx->queue->nr_hw_queues == 1)
2175 		return WORK_CPU_UNBOUND;
2176 
2177 	if (--hctx->next_cpu_batch <= 0) {
2178 select_cpu:
2179 		next_cpu = cpumask_next_and(next_cpu, hctx->cpumask,
2180 				cpu_online_mask);
2181 		if (next_cpu >= nr_cpu_ids)
2182 			next_cpu = blk_mq_first_mapped_cpu(hctx);
2183 		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
2184 	}
2185 
2186 	/*
2187 	 * Do unbound schedule if we can't find a online CPU for this hctx,
2188 	 * and it should only happen in the path of handling CPU DEAD.
2189 	 */
2190 	if (!cpu_online(next_cpu)) {
2191 		if (!tried) {
2192 			tried = true;
2193 			goto select_cpu;
2194 		}
2195 
2196 		/*
2197 		 * Make sure to re-select CPU next time once after CPUs
2198 		 * in hctx->cpumask become online again.
2199 		 */
2200 		hctx->next_cpu = next_cpu;
2201 		hctx->next_cpu_batch = 1;
2202 		return WORK_CPU_UNBOUND;
2203 	}
2204 
2205 	hctx->next_cpu = next_cpu;
2206 	return next_cpu;
2207 }
2208 
2209 /**
2210  * blk_mq_delay_run_hw_queue - Run a hardware queue asynchronously.
2211  * @hctx: Pointer to the hardware queue to run.
2212  * @msecs: Milliseconds of delay to wait before running the queue.
2213  *
2214  * Run a hardware queue asynchronously with a delay of @msecs.
2215  */
2216 void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
2217 {
2218 	if (unlikely(blk_mq_hctx_stopped(hctx)))
2219 		return;
2220 	kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx), &hctx->run_work,
2221 				    msecs_to_jiffies(msecs));
2222 }
2223 EXPORT_SYMBOL(blk_mq_delay_run_hw_queue);
2224 
2225 /**
2226  * blk_mq_run_hw_queue - Start to run a hardware queue.
2227  * @hctx: Pointer to the hardware queue to run.
2228  * @async: If we want to run the queue asynchronously.
2229  *
2230  * Check if the request queue is not in a quiesced state and if there are
2231  * pending requests to be sent. If this is true, run the queue to send requests
2232  * to hardware.
2233  */
2234 void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
2235 {
2236 	bool need_run;
2237 
2238 	/*
2239 	 * We can't run the queue inline with interrupts disabled.
2240 	 */
2241 	WARN_ON_ONCE(!async && in_interrupt());
2242 
2243 	might_sleep_if(!async && hctx->flags & BLK_MQ_F_BLOCKING);
2244 
2245 	/*
2246 	 * When queue is quiesced, we may be switching io scheduler, or
2247 	 * updating nr_hw_queues, or other things, and we can't run queue
2248 	 * any more, even __blk_mq_hctx_has_pending() can't be called safely.
2249 	 *
2250 	 * And queue will be rerun in blk_mq_unquiesce_queue() if it is
2251 	 * quiesced.
2252 	 */
2253 	__blk_mq_run_dispatch_ops(hctx->queue, false,
2254 		need_run = !blk_queue_quiesced(hctx->queue) &&
2255 		blk_mq_hctx_has_pending(hctx));
2256 
2257 	if (!need_run)
2258 		return;
2259 
2260 	if (async || !cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask)) {
2261 		blk_mq_delay_run_hw_queue(hctx, 0);
2262 		return;
2263 	}
2264 
2265 	blk_mq_run_dispatch_ops(hctx->queue,
2266 				blk_mq_sched_dispatch_requests(hctx));
2267 }
2268 EXPORT_SYMBOL(blk_mq_run_hw_queue);
2269 
2270 /*
2271  * Return prefered queue to dispatch from (if any) for non-mq aware IO
2272  * scheduler.
2273  */
2274 static struct blk_mq_hw_ctx *blk_mq_get_sq_hctx(struct request_queue *q)
2275 {
2276 	struct blk_mq_ctx *ctx = blk_mq_get_ctx(q);
2277 	/*
2278 	 * If the IO scheduler does not respect hardware queues when
2279 	 * dispatching, we just don't bother with multiple HW queues and
2280 	 * dispatch from hctx for the current CPU since running multiple queues
2281 	 * just causes lock contention inside the scheduler and pointless cache
2282 	 * bouncing.
2283 	 */
2284 	struct blk_mq_hw_ctx *hctx = ctx->hctxs[HCTX_TYPE_DEFAULT];
2285 
2286 	if (!blk_mq_hctx_stopped(hctx))
2287 		return hctx;
2288 	return NULL;
2289 }
2290 
2291 /**
2292  * blk_mq_run_hw_queues - Run all hardware queues in a request queue.
2293  * @q: Pointer to the request queue to run.
2294  * @async: If we want to run the queue asynchronously.
2295  */
2296 void blk_mq_run_hw_queues(struct request_queue *q, bool async)
2297 {
2298 	struct blk_mq_hw_ctx *hctx, *sq_hctx;
2299 	unsigned long i;
2300 
2301 	sq_hctx = NULL;
2302 	if (blk_queue_sq_sched(q))
2303 		sq_hctx = blk_mq_get_sq_hctx(q);
2304 	queue_for_each_hw_ctx(q, hctx, i) {
2305 		if (blk_mq_hctx_stopped(hctx))
2306 			continue;
2307 		/*
2308 		 * Dispatch from this hctx either if there's no hctx preferred
2309 		 * by IO scheduler or if it has requests that bypass the
2310 		 * scheduler.
2311 		 */
2312 		if (!sq_hctx || sq_hctx == hctx ||
2313 		    !list_empty_careful(&hctx->dispatch))
2314 			blk_mq_run_hw_queue(hctx, async);
2315 	}
2316 }
2317 EXPORT_SYMBOL(blk_mq_run_hw_queues);
2318 
2319 /**
2320  * blk_mq_delay_run_hw_queues - Run all hardware queues asynchronously.
2321  * @q: Pointer to the request queue to run.
2322  * @msecs: Milliseconds of delay to wait before running the queues.
2323  */
2324 void blk_mq_delay_run_hw_queues(struct request_queue *q, unsigned long msecs)
2325 {
2326 	struct blk_mq_hw_ctx *hctx, *sq_hctx;
2327 	unsigned long i;
2328 
2329 	sq_hctx = NULL;
2330 	if (blk_queue_sq_sched(q))
2331 		sq_hctx = blk_mq_get_sq_hctx(q);
2332 	queue_for_each_hw_ctx(q, hctx, i) {
2333 		if (blk_mq_hctx_stopped(hctx))
2334 			continue;
2335 		/*
2336 		 * If there is already a run_work pending, leave the
2337 		 * pending delay untouched. Otherwise, a hctx can stall
2338 		 * if another hctx is re-delaying the other's work
2339 		 * before the work executes.
2340 		 */
2341 		if (delayed_work_pending(&hctx->run_work))
2342 			continue;
2343 		/*
2344 		 * Dispatch from this hctx either if there's no hctx preferred
2345 		 * by IO scheduler or if it has requests that bypass the
2346 		 * scheduler.
2347 		 */
2348 		if (!sq_hctx || sq_hctx == hctx ||
2349 		    !list_empty_careful(&hctx->dispatch))
2350 			blk_mq_delay_run_hw_queue(hctx, msecs);
2351 	}
2352 }
2353 EXPORT_SYMBOL(blk_mq_delay_run_hw_queues);
2354 
2355 /*
2356  * This function is often used for pausing .queue_rq() by driver when
2357  * there isn't enough resource or some conditions aren't satisfied, and
2358  * BLK_STS_RESOURCE is usually returned.
2359  *
2360  * We do not guarantee that dispatch can be drained or blocked
2361  * after blk_mq_stop_hw_queue() returns. Please use
2362  * blk_mq_quiesce_queue() for that requirement.
2363  */
2364 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
2365 {
2366 	cancel_delayed_work(&hctx->run_work);
2367 
2368 	set_bit(BLK_MQ_S_STOPPED, &hctx->state);
2369 }
2370 EXPORT_SYMBOL(blk_mq_stop_hw_queue);
2371 
2372 /*
2373  * This function is often used for pausing .queue_rq() by driver when
2374  * there isn't enough resource or some conditions aren't satisfied, and
2375  * BLK_STS_RESOURCE is usually returned.
2376  *
2377  * We do not guarantee that dispatch can be drained or blocked
2378  * after blk_mq_stop_hw_queues() returns. Please use
2379  * blk_mq_quiesce_queue() for that requirement.
2380  */
2381 void blk_mq_stop_hw_queues(struct request_queue *q)
2382 {
2383 	struct blk_mq_hw_ctx *hctx;
2384 	unsigned long i;
2385 
2386 	queue_for_each_hw_ctx(q, hctx, i)
2387 		blk_mq_stop_hw_queue(hctx);
2388 }
2389 EXPORT_SYMBOL(blk_mq_stop_hw_queues);
2390 
2391 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
2392 {
2393 	clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
2394 
2395 	blk_mq_run_hw_queue(hctx, hctx->flags & BLK_MQ_F_BLOCKING);
2396 }
2397 EXPORT_SYMBOL(blk_mq_start_hw_queue);
2398 
2399 void blk_mq_start_hw_queues(struct request_queue *q)
2400 {
2401 	struct blk_mq_hw_ctx *hctx;
2402 	unsigned long i;
2403 
2404 	queue_for_each_hw_ctx(q, hctx, i)
2405 		blk_mq_start_hw_queue(hctx);
2406 }
2407 EXPORT_SYMBOL(blk_mq_start_hw_queues);
2408 
2409 void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
2410 {
2411 	if (!blk_mq_hctx_stopped(hctx))
2412 		return;
2413 
2414 	clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
2415 	blk_mq_run_hw_queue(hctx, async);
2416 }
2417 EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue);
2418 
2419 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
2420 {
2421 	struct blk_mq_hw_ctx *hctx;
2422 	unsigned long i;
2423 
2424 	queue_for_each_hw_ctx(q, hctx, i)
2425 		blk_mq_start_stopped_hw_queue(hctx, async ||
2426 					(hctx->flags & BLK_MQ_F_BLOCKING));
2427 }
2428 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
2429 
2430 static void blk_mq_run_work_fn(struct work_struct *work)
2431 {
2432 	struct blk_mq_hw_ctx *hctx =
2433 		container_of(work, struct blk_mq_hw_ctx, run_work.work);
2434 
2435 	blk_mq_run_dispatch_ops(hctx->queue,
2436 				blk_mq_sched_dispatch_requests(hctx));
2437 }
2438 
2439 /**
2440  * blk_mq_request_bypass_insert - Insert a request at dispatch list.
2441  * @rq: Pointer to request to be inserted.
2442  * @flags: BLK_MQ_INSERT_*
2443  *
2444  * Should only be used carefully, when the caller knows we want to
2445  * bypass a potential IO scheduler on the target device.
2446  */
2447 static void blk_mq_request_bypass_insert(struct request *rq, blk_insert_t flags)
2448 {
2449 	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
2450 
2451 	spin_lock(&hctx->lock);
2452 	if (flags & BLK_MQ_INSERT_AT_HEAD)
2453 		list_add(&rq->queuelist, &hctx->dispatch);
2454 	else
2455 		list_add_tail(&rq->queuelist, &hctx->dispatch);
2456 	spin_unlock(&hctx->lock);
2457 }
2458 
2459 static void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx,
2460 		struct blk_mq_ctx *ctx, struct list_head *list,
2461 		bool run_queue_async)
2462 {
2463 	struct request *rq;
2464 	enum hctx_type type = hctx->type;
2465 
2466 	/*
2467 	 * Try to issue requests directly if the hw queue isn't busy to save an
2468 	 * extra enqueue & dequeue to the sw queue.
2469 	 */
2470 	if (!hctx->dispatch_busy && !run_queue_async) {
2471 		blk_mq_run_dispatch_ops(hctx->queue,
2472 			blk_mq_try_issue_list_directly(hctx, list));
2473 		if (list_empty(list))
2474 			goto out;
2475 	}
2476 
2477 	/*
2478 	 * preemption doesn't flush plug list, so it's possible ctx->cpu is
2479 	 * offline now
2480 	 */
2481 	list_for_each_entry(rq, list, queuelist) {
2482 		BUG_ON(rq->mq_ctx != ctx);
2483 		trace_block_rq_insert(rq);
2484 		if (rq->cmd_flags & REQ_NOWAIT)
2485 			run_queue_async = true;
2486 	}
2487 
2488 	spin_lock(&ctx->lock);
2489 	list_splice_tail_init(list, &ctx->rq_lists[type]);
2490 	blk_mq_hctx_mark_pending(hctx, ctx);
2491 	spin_unlock(&ctx->lock);
2492 out:
2493 	blk_mq_run_hw_queue(hctx, run_queue_async);
2494 }
2495 
2496 static void blk_mq_insert_request(struct request *rq, blk_insert_t flags)
2497 {
2498 	struct request_queue *q = rq->q;
2499 	struct blk_mq_ctx *ctx = rq->mq_ctx;
2500 	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
2501 
2502 	if (blk_rq_is_passthrough(rq)) {
2503 		/*
2504 		 * Passthrough request have to be added to hctx->dispatch
2505 		 * directly.  The device may be in a situation where it can't
2506 		 * handle FS request, and always returns BLK_STS_RESOURCE for
2507 		 * them, which gets them added to hctx->dispatch.
2508 		 *
2509 		 * If a passthrough request is required to unblock the queues,
2510 		 * and it is added to the scheduler queue, there is no chance to
2511 		 * dispatch it given we prioritize requests in hctx->dispatch.
2512 		 */
2513 		blk_mq_request_bypass_insert(rq, flags);
2514 	} else if (req_op(rq) == REQ_OP_FLUSH) {
2515 		/*
2516 		 * Firstly normal IO request is inserted to scheduler queue or
2517 		 * sw queue, meantime we add flush request to dispatch queue(
2518 		 * hctx->dispatch) directly and there is at most one in-flight
2519 		 * flush request for each hw queue, so it doesn't matter to add
2520 		 * flush request to tail or front of the dispatch queue.
2521 		 *
2522 		 * Secondly in case of NCQ, flush request belongs to non-NCQ
2523 		 * command, and queueing it will fail when there is any
2524 		 * in-flight normal IO request(NCQ command). When adding flush
2525 		 * rq to the front of hctx->dispatch, it is easier to introduce
2526 		 * extra time to flush rq's latency because of S_SCHED_RESTART
2527 		 * compared with adding to the tail of dispatch queue, then
2528 		 * chance of flush merge is increased, and less flush requests
2529 		 * will be issued to controller. It is observed that ~10% time
2530 		 * is saved in blktests block/004 on disk attached to AHCI/NCQ
2531 		 * drive when adding flush rq to the front of hctx->dispatch.
2532 		 *
2533 		 * Simply queue flush rq to the front of hctx->dispatch so that
2534 		 * intensive flush workloads can benefit in case of NCQ HW.
2535 		 */
2536 		blk_mq_request_bypass_insert(rq, BLK_MQ_INSERT_AT_HEAD);
2537 	} else if (q->elevator) {
2538 		LIST_HEAD(list);
2539 
2540 		WARN_ON_ONCE(rq->tag != BLK_MQ_NO_TAG);
2541 
2542 		list_add(&rq->queuelist, &list);
2543 		q->elevator->type->ops.insert_requests(hctx, &list, flags);
2544 	} else {
2545 		trace_block_rq_insert(rq);
2546 
2547 		spin_lock(&ctx->lock);
2548 		if (flags & BLK_MQ_INSERT_AT_HEAD)
2549 			list_add(&rq->queuelist, &ctx->rq_lists[hctx->type]);
2550 		else
2551 			list_add_tail(&rq->queuelist,
2552 				      &ctx->rq_lists[hctx->type]);
2553 		blk_mq_hctx_mark_pending(hctx, ctx);
2554 		spin_unlock(&ctx->lock);
2555 	}
2556 }
2557 
2558 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio,
2559 		unsigned int nr_segs)
2560 {
2561 	int err;
2562 
2563 	if (bio->bi_opf & REQ_RAHEAD)
2564 		rq->cmd_flags |= REQ_FAILFAST_MASK;
2565 
2566 	rq->__sector = bio->bi_iter.bi_sector;
2567 	blk_rq_bio_prep(rq, bio, nr_segs);
2568 
2569 	/* This can't fail, since GFP_NOIO includes __GFP_DIRECT_RECLAIM. */
2570 	err = blk_crypto_rq_bio_prep(rq, bio, GFP_NOIO);
2571 	WARN_ON_ONCE(err);
2572 
2573 	blk_account_io_start(rq);
2574 }
2575 
2576 static blk_status_t __blk_mq_issue_directly(struct blk_mq_hw_ctx *hctx,
2577 					    struct request *rq, bool last)
2578 {
2579 	struct request_queue *q = rq->q;
2580 	struct blk_mq_queue_data bd = {
2581 		.rq = rq,
2582 		.last = last,
2583 	};
2584 	blk_status_t ret;
2585 
2586 	/*
2587 	 * For OK queue, we are done. For error, caller may kill it.
2588 	 * Any other error (busy), just add it to our list as we
2589 	 * previously would have done.
2590 	 */
2591 	ret = q->mq_ops->queue_rq(hctx, &bd);
2592 	switch (ret) {
2593 	case BLK_STS_OK:
2594 		blk_mq_update_dispatch_busy(hctx, false);
2595 		break;
2596 	case BLK_STS_RESOURCE:
2597 	case BLK_STS_DEV_RESOURCE:
2598 		blk_mq_update_dispatch_busy(hctx, true);
2599 		__blk_mq_requeue_request(rq);
2600 		break;
2601 	default:
2602 		blk_mq_update_dispatch_busy(hctx, false);
2603 		break;
2604 	}
2605 
2606 	return ret;
2607 }
2608 
2609 static bool blk_mq_get_budget_and_tag(struct request *rq)
2610 {
2611 	int budget_token;
2612 
2613 	budget_token = blk_mq_get_dispatch_budget(rq->q);
2614 	if (budget_token < 0)
2615 		return false;
2616 	blk_mq_set_rq_budget_token(rq, budget_token);
2617 	if (!blk_mq_get_driver_tag(rq)) {
2618 		blk_mq_put_dispatch_budget(rq->q, budget_token);
2619 		return false;
2620 	}
2621 	return true;
2622 }
2623 
2624 /**
2625  * blk_mq_try_issue_directly - Try to send a request directly to device driver.
2626  * @hctx: Pointer of the associated hardware queue.
2627  * @rq: Pointer to request to be sent.
2628  *
2629  * If the device has enough resources to accept a new request now, send the
2630  * request directly to device driver. Else, insert at hctx->dispatch queue, so
2631  * we can try send it another time in the future. Requests inserted at this
2632  * queue have higher priority.
2633  */
2634 static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
2635 		struct request *rq)
2636 {
2637 	blk_status_t ret;
2638 
2639 	if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(rq->q)) {
2640 		blk_mq_insert_request(rq, 0);
2641 		return;
2642 	}
2643 
2644 	if ((rq->rq_flags & RQF_USE_SCHED) || !blk_mq_get_budget_and_tag(rq)) {
2645 		blk_mq_insert_request(rq, 0);
2646 		blk_mq_run_hw_queue(hctx, rq->cmd_flags & REQ_NOWAIT);
2647 		return;
2648 	}
2649 
2650 	ret = __blk_mq_issue_directly(hctx, rq, true);
2651 	switch (ret) {
2652 	case BLK_STS_OK:
2653 		break;
2654 	case BLK_STS_RESOURCE:
2655 	case BLK_STS_DEV_RESOURCE:
2656 		blk_mq_request_bypass_insert(rq, 0);
2657 		blk_mq_run_hw_queue(hctx, false);
2658 		break;
2659 	default:
2660 		blk_mq_end_request(rq, ret);
2661 		break;
2662 	}
2663 }
2664 
2665 static blk_status_t blk_mq_request_issue_directly(struct request *rq, bool last)
2666 {
2667 	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
2668 
2669 	if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(rq->q)) {
2670 		blk_mq_insert_request(rq, 0);
2671 		return BLK_STS_OK;
2672 	}
2673 
2674 	if (!blk_mq_get_budget_and_tag(rq))
2675 		return BLK_STS_RESOURCE;
2676 	return __blk_mq_issue_directly(hctx, rq, last);
2677 }
2678 
2679 static void blk_mq_plug_issue_direct(struct blk_plug *plug)
2680 {
2681 	struct blk_mq_hw_ctx *hctx = NULL;
2682 	struct request *rq;
2683 	int queued = 0;
2684 	blk_status_t ret = BLK_STS_OK;
2685 
2686 	while ((rq = rq_list_pop(&plug->mq_list))) {
2687 		bool last = rq_list_empty(plug->mq_list);
2688 
2689 		if (hctx != rq->mq_hctx) {
2690 			if (hctx) {
2691 				blk_mq_commit_rqs(hctx, queued, false);
2692 				queued = 0;
2693 			}
2694 			hctx = rq->mq_hctx;
2695 		}
2696 
2697 		ret = blk_mq_request_issue_directly(rq, last);
2698 		switch (ret) {
2699 		case BLK_STS_OK:
2700 			queued++;
2701 			break;
2702 		case BLK_STS_RESOURCE:
2703 		case BLK_STS_DEV_RESOURCE:
2704 			blk_mq_request_bypass_insert(rq, 0);
2705 			blk_mq_run_hw_queue(hctx, false);
2706 			goto out;
2707 		default:
2708 			blk_mq_end_request(rq, ret);
2709 			break;
2710 		}
2711 	}
2712 
2713 out:
2714 	if (ret != BLK_STS_OK)
2715 		blk_mq_commit_rqs(hctx, queued, false);
2716 }
2717 
2718 static void __blk_mq_flush_plug_list(struct request_queue *q,
2719 				     struct blk_plug *plug)
2720 {
2721 	if (blk_queue_quiesced(q))
2722 		return;
2723 	q->mq_ops->queue_rqs(&plug->mq_list);
2724 }
2725 
2726 static void blk_mq_dispatch_plug_list(struct blk_plug *plug, bool from_sched)
2727 {
2728 	struct blk_mq_hw_ctx *this_hctx = NULL;
2729 	struct blk_mq_ctx *this_ctx = NULL;
2730 	struct request *requeue_list = NULL;
2731 	struct request **requeue_lastp = &requeue_list;
2732 	unsigned int depth = 0;
2733 	bool is_passthrough = false;
2734 	LIST_HEAD(list);
2735 
2736 	do {
2737 		struct request *rq = rq_list_pop(&plug->mq_list);
2738 
2739 		if (!this_hctx) {
2740 			this_hctx = rq->mq_hctx;
2741 			this_ctx = rq->mq_ctx;
2742 			is_passthrough = blk_rq_is_passthrough(rq);
2743 		} else if (this_hctx != rq->mq_hctx || this_ctx != rq->mq_ctx ||
2744 			   is_passthrough != blk_rq_is_passthrough(rq)) {
2745 			rq_list_add_tail(&requeue_lastp, rq);
2746 			continue;
2747 		}
2748 		list_add(&rq->queuelist, &list);
2749 		depth++;
2750 	} while (!rq_list_empty(plug->mq_list));
2751 
2752 	plug->mq_list = requeue_list;
2753 	trace_block_unplug(this_hctx->queue, depth, !from_sched);
2754 
2755 	percpu_ref_get(&this_hctx->queue->q_usage_counter);
2756 	/* passthrough requests should never be issued to the I/O scheduler */
2757 	if (is_passthrough) {
2758 		spin_lock(&this_hctx->lock);
2759 		list_splice_tail_init(&list, &this_hctx->dispatch);
2760 		spin_unlock(&this_hctx->lock);
2761 		blk_mq_run_hw_queue(this_hctx, from_sched);
2762 	} else if (this_hctx->queue->elevator) {
2763 		this_hctx->queue->elevator->type->ops.insert_requests(this_hctx,
2764 				&list, 0);
2765 		blk_mq_run_hw_queue(this_hctx, from_sched);
2766 	} else {
2767 		blk_mq_insert_requests(this_hctx, this_ctx, &list, from_sched);
2768 	}
2769 	percpu_ref_put(&this_hctx->queue->q_usage_counter);
2770 }
2771 
2772 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
2773 {
2774 	struct request *rq;
2775 
2776 	/*
2777 	 * We may have been called recursively midway through handling
2778 	 * plug->mq_list via a schedule() in the driver's queue_rq() callback.
2779 	 * To avoid mq_list changing under our feet, clear rq_count early and
2780 	 * bail out specifically if rq_count is 0 rather than checking
2781 	 * whether the mq_list is empty.
2782 	 */
2783 	if (plug->rq_count == 0)
2784 		return;
2785 	plug->rq_count = 0;
2786 
2787 	if (!plug->multiple_queues && !plug->has_elevator && !from_schedule) {
2788 		struct request_queue *q;
2789 
2790 		rq = rq_list_peek(&plug->mq_list);
2791 		q = rq->q;
2792 
2793 		/*
2794 		 * Peek first request and see if we have a ->queue_rqs() hook.
2795 		 * If we do, we can dispatch the whole plug list in one go. We
2796 		 * already know at this point that all requests belong to the
2797 		 * same queue, caller must ensure that's the case.
2798 		 */
2799 		if (q->mq_ops->queue_rqs) {
2800 			blk_mq_run_dispatch_ops(q,
2801 				__blk_mq_flush_plug_list(q, plug));
2802 			if (rq_list_empty(plug->mq_list))
2803 				return;
2804 		}
2805 
2806 		blk_mq_run_dispatch_ops(q,
2807 				blk_mq_plug_issue_direct(plug));
2808 		if (rq_list_empty(plug->mq_list))
2809 			return;
2810 	}
2811 
2812 	do {
2813 		blk_mq_dispatch_plug_list(plug, from_schedule);
2814 	} while (!rq_list_empty(plug->mq_list));
2815 }
2816 
2817 static void blk_mq_try_issue_list_directly(struct blk_mq_hw_ctx *hctx,
2818 		struct list_head *list)
2819 {
2820 	int queued = 0;
2821 	blk_status_t ret = BLK_STS_OK;
2822 
2823 	while (!list_empty(list)) {
2824 		struct request *rq = list_first_entry(list, struct request,
2825 				queuelist);
2826 
2827 		list_del_init(&rq->queuelist);
2828 		ret = blk_mq_request_issue_directly(rq, list_empty(list));
2829 		switch (ret) {
2830 		case BLK_STS_OK:
2831 			queued++;
2832 			break;
2833 		case BLK_STS_RESOURCE:
2834 		case BLK_STS_DEV_RESOURCE:
2835 			blk_mq_request_bypass_insert(rq, 0);
2836 			if (list_empty(list))
2837 				blk_mq_run_hw_queue(hctx, false);
2838 			goto out;
2839 		default:
2840 			blk_mq_end_request(rq, ret);
2841 			break;
2842 		}
2843 	}
2844 
2845 out:
2846 	if (ret != BLK_STS_OK)
2847 		blk_mq_commit_rqs(hctx, queued, false);
2848 }
2849 
2850 static bool blk_mq_attempt_bio_merge(struct request_queue *q,
2851 				     struct bio *bio, unsigned int nr_segs)
2852 {
2853 	if (!blk_queue_nomerges(q) && bio_mergeable(bio)) {
2854 		if (blk_attempt_plug_merge(q, bio, nr_segs))
2855 			return true;
2856 		if (blk_mq_sched_bio_merge(q, bio, nr_segs))
2857 			return true;
2858 	}
2859 	return false;
2860 }
2861 
2862 static struct request *blk_mq_get_new_requests(struct request_queue *q,
2863 					       struct blk_plug *plug,
2864 					       struct bio *bio,
2865 					       unsigned int nsegs)
2866 {
2867 	struct blk_mq_alloc_data data = {
2868 		.q		= q,
2869 		.nr_tags	= 1,
2870 		.cmd_flags	= bio->bi_opf,
2871 	};
2872 	struct request *rq;
2873 
2874 	if (blk_mq_attempt_bio_merge(q, bio, nsegs))
2875 		return NULL;
2876 
2877 	rq_qos_throttle(q, bio);
2878 
2879 	if (plug) {
2880 		data.nr_tags = plug->nr_ios;
2881 		plug->nr_ios = 1;
2882 		data.cached_rq = &plug->cached_rq;
2883 	}
2884 
2885 	rq = __blk_mq_alloc_requests(&data);
2886 	if (rq)
2887 		return rq;
2888 	rq_qos_cleanup(q, bio);
2889 	if (bio->bi_opf & REQ_NOWAIT)
2890 		bio_wouldblock_error(bio);
2891 	return NULL;
2892 }
2893 
2894 /* return true if this @rq can be used for @bio */
2895 static bool blk_mq_can_use_cached_rq(struct request *rq, struct blk_plug *plug,
2896 		struct bio *bio)
2897 {
2898 	enum hctx_type type = blk_mq_get_hctx_type(bio->bi_opf);
2899 	enum hctx_type hctx_type = rq->mq_hctx->type;
2900 
2901 	WARN_ON_ONCE(rq_list_peek(&plug->cached_rq) != rq);
2902 
2903 	if (type != hctx_type &&
2904 	    !(type == HCTX_TYPE_READ && hctx_type == HCTX_TYPE_DEFAULT))
2905 		return false;
2906 	if (op_is_flush(rq->cmd_flags) != op_is_flush(bio->bi_opf))
2907 		return false;
2908 
2909 	/*
2910 	 * If any qos ->throttle() end up blocking, we will have flushed the
2911 	 * plug and hence killed the cached_rq list as well. Pop this entry
2912 	 * before we throttle.
2913 	 */
2914 	plug->cached_rq = rq_list_next(rq);
2915 	rq_qos_throttle(rq->q, bio);
2916 
2917 	blk_mq_rq_time_init(rq, 0);
2918 	rq->cmd_flags = bio->bi_opf;
2919 	INIT_LIST_HEAD(&rq->queuelist);
2920 	return true;
2921 }
2922 
2923 static void bio_set_ioprio(struct bio *bio)
2924 {
2925 	/* Nobody set ioprio so far? Initialize it based on task's nice value */
2926 	if (IOPRIO_PRIO_CLASS(bio->bi_ioprio) == IOPRIO_CLASS_NONE)
2927 		bio->bi_ioprio = get_current_ioprio();
2928 	blkcg_set_ioprio(bio);
2929 }
2930 
2931 /**
2932  * blk_mq_submit_bio - Create and send a request to block device.
2933  * @bio: Bio pointer.
2934  *
2935  * Builds up a request structure from @q and @bio and send to the device. The
2936  * request may not be queued directly to hardware if:
2937  * * This request can be merged with another one
2938  * * We want to place request at plug queue for possible future merging
2939  * * There is an IO scheduler active at this queue
2940  *
2941  * It will not queue the request if there is an error with the bio, or at the
2942  * request creation.
2943  */
2944 void blk_mq_submit_bio(struct bio *bio)
2945 {
2946 	struct request_queue *q = bdev_get_queue(bio->bi_bdev);
2947 	struct blk_plug *plug = blk_mq_plug(bio);
2948 	const int is_sync = op_is_sync(bio->bi_opf);
2949 	struct blk_mq_hw_ctx *hctx;
2950 	struct request *rq = NULL;
2951 	unsigned int nr_segs = 1;
2952 	blk_status_t ret;
2953 
2954 	bio = blk_queue_bounce(bio, q);
2955 	if (bio_may_exceed_limits(bio, &q->limits)) {
2956 		bio = __bio_split_to_limits(bio, &q->limits, &nr_segs);
2957 		if (!bio)
2958 			return;
2959 	}
2960 
2961 	bio_set_ioprio(bio);
2962 
2963 	if (plug) {
2964 		rq = rq_list_peek(&plug->cached_rq);
2965 		if (rq && rq->q != q)
2966 			rq = NULL;
2967 	}
2968 	if (rq) {
2969 		if (!bio_integrity_prep(bio))
2970 			return;
2971 		if (blk_mq_attempt_bio_merge(q, bio, nr_segs))
2972 			return;
2973 		if (blk_mq_can_use_cached_rq(rq, plug, bio))
2974 			goto done;
2975 		percpu_ref_get(&q->q_usage_counter);
2976 	} else {
2977 		if (unlikely(bio_queue_enter(bio)))
2978 			return;
2979 		if (!bio_integrity_prep(bio))
2980 			goto fail;
2981 	}
2982 
2983 	rq = blk_mq_get_new_requests(q, plug, bio, nr_segs);
2984 	if (unlikely(!rq)) {
2985 fail:
2986 		blk_queue_exit(q);
2987 		return;
2988 	}
2989 
2990 done:
2991 	trace_block_getrq(bio);
2992 
2993 	rq_qos_track(q, rq, bio);
2994 
2995 	blk_mq_bio_to_request(rq, bio, nr_segs);
2996 
2997 	ret = blk_crypto_rq_get_keyslot(rq);
2998 	if (ret != BLK_STS_OK) {
2999 		bio->bi_status = ret;
3000 		bio_endio(bio);
3001 		blk_mq_free_request(rq);
3002 		return;
3003 	}
3004 
3005 	if (op_is_flush(bio->bi_opf) && blk_insert_flush(rq))
3006 		return;
3007 
3008 	if (plug) {
3009 		blk_add_rq_to_plug(plug, rq);
3010 		return;
3011 	}
3012 
3013 	hctx = rq->mq_hctx;
3014 	if ((rq->rq_flags & RQF_USE_SCHED) ||
3015 	    (hctx->dispatch_busy && (q->nr_hw_queues == 1 || !is_sync))) {
3016 		blk_mq_insert_request(rq, 0);
3017 		blk_mq_run_hw_queue(hctx, true);
3018 	} else {
3019 		blk_mq_run_dispatch_ops(q, blk_mq_try_issue_directly(hctx, rq));
3020 	}
3021 }
3022 
3023 #ifdef CONFIG_BLK_MQ_STACKING
3024 /**
3025  * blk_insert_cloned_request - Helper for stacking drivers to submit a request
3026  * @rq: the request being queued
3027  */
3028 blk_status_t blk_insert_cloned_request(struct request *rq)
3029 {
3030 	struct request_queue *q = rq->q;
3031 	unsigned int max_sectors = blk_queue_get_max_sectors(q, req_op(rq));
3032 	unsigned int max_segments = blk_rq_get_max_segments(rq);
3033 	blk_status_t ret;
3034 
3035 	if (blk_rq_sectors(rq) > max_sectors) {
3036 		/*
3037 		 * SCSI device does not have a good way to return if
3038 		 * Write Same/Zero is actually supported. If a device rejects
3039 		 * a non-read/write command (discard, write same,etc.) the
3040 		 * low-level device driver will set the relevant queue limit to
3041 		 * 0 to prevent blk-lib from issuing more of the offending
3042 		 * operations. Commands queued prior to the queue limit being
3043 		 * reset need to be completed with BLK_STS_NOTSUPP to avoid I/O
3044 		 * errors being propagated to upper layers.
3045 		 */
3046 		if (max_sectors == 0)
3047 			return BLK_STS_NOTSUPP;
3048 
3049 		printk(KERN_ERR "%s: over max size limit. (%u > %u)\n",
3050 			__func__, blk_rq_sectors(rq), max_sectors);
3051 		return BLK_STS_IOERR;
3052 	}
3053 
3054 	/*
3055 	 * The queue settings related to segment counting may differ from the
3056 	 * original queue.
3057 	 */
3058 	rq->nr_phys_segments = blk_recalc_rq_segments(rq);
3059 	if (rq->nr_phys_segments > max_segments) {
3060 		printk(KERN_ERR "%s: over max segments limit. (%u > %u)\n",
3061 			__func__, rq->nr_phys_segments, max_segments);
3062 		return BLK_STS_IOERR;
3063 	}
3064 
3065 	if (q->disk && should_fail_request(q->disk->part0, blk_rq_bytes(rq)))
3066 		return BLK_STS_IOERR;
3067 
3068 	ret = blk_crypto_rq_get_keyslot(rq);
3069 	if (ret != BLK_STS_OK)
3070 		return ret;
3071 
3072 	blk_account_io_start(rq);
3073 
3074 	/*
3075 	 * Since we have a scheduler attached on the top device,
3076 	 * bypass a potential scheduler on the bottom device for
3077 	 * insert.
3078 	 */
3079 	blk_mq_run_dispatch_ops(q,
3080 			ret = blk_mq_request_issue_directly(rq, true));
3081 	if (ret)
3082 		blk_account_io_done(rq, ktime_get_ns());
3083 	return ret;
3084 }
3085 EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
3086 
3087 /**
3088  * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
3089  * @rq: the clone request to be cleaned up
3090  *
3091  * Description:
3092  *     Free all bios in @rq for a cloned request.
3093  */
3094 void blk_rq_unprep_clone(struct request *rq)
3095 {
3096 	struct bio *bio;
3097 
3098 	while ((bio = rq->bio) != NULL) {
3099 		rq->bio = bio->bi_next;
3100 
3101 		bio_put(bio);
3102 	}
3103 }
3104 EXPORT_SYMBOL_GPL(blk_rq_unprep_clone);
3105 
3106 /**
3107  * blk_rq_prep_clone - Helper function to setup clone request
3108  * @rq: the request to be setup
3109  * @rq_src: original request to be cloned
3110  * @bs: bio_set that bios for clone are allocated from
3111  * @gfp_mask: memory allocation mask for bio
3112  * @bio_ctr: setup function to be called for each clone bio.
3113  *           Returns %0 for success, non %0 for failure.
3114  * @data: private data to be passed to @bio_ctr
3115  *
3116  * Description:
3117  *     Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
3118  *     Also, pages which the original bios are pointing to are not copied
3119  *     and the cloned bios just point same pages.
3120  *     So cloned bios must be completed before original bios, which means
3121  *     the caller must complete @rq before @rq_src.
3122  */
3123 int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
3124 		      struct bio_set *bs, gfp_t gfp_mask,
3125 		      int (*bio_ctr)(struct bio *, struct bio *, void *),
3126 		      void *data)
3127 {
3128 	struct bio *bio, *bio_src;
3129 
3130 	if (!bs)
3131 		bs = &fs_bio_set;
3132 
3133 	__rq_for_each_bio(bio_src, rq_src) {
3134 		bio = bio_alloc_clone(rq->q->disk->part0, bio_src, gfp_mask,
3135 				      bs);
3136 		if (!bio)
3137 			goto free_and_out;
3138 
3139 		if (bio_ctr && bio_ctr(bio, bio_src, data))
3140 			goto free_and_out;
3141 
3142 		if (rq->bio) {
3143 			rq->biotail->bi_next = bio;
3144 			rq->biotail = bio;
3145 		} else {
3146 			rq->bio = rq->biotail = bio;
3147 		}
3148 		bio = NULL;
3149 	}
3150 
3151 	/* Copy attributes of the original request to the clone request. */
3152 	rq->__sector = blk_rq_pos(rq_src);
3153 	rq->__data_len = blk_rq_bytes(rq_src);
3154 	if (rq_src->rq_flags & RQF_SPECIAL_PAYLOAD) {
3155 		rq->rq_flags |= RQF_SPECIAL_PAYLOAD;
3156 		rq->special_vec = rq_src->special_vec;
3157 	}
3158 	rq->nr_phys_segments = rq_src->nr_phys_segments;
3159 	rq->ioprio = rq_src->ioprio;
3160 
3161 	if (rq->bio && blk_crypto_rq_bio_prep(rq, rq->bio, gfp_mask) < 0)
3162 		goto free_and_out;
3163 
3164 	return 0;
3165 
3166 free_and_out:
3167 	if (bio)
3168 		bio_put(bio);
3169 	blk_rq_unprep_clone(rq);
3170 
3171 	return -ENOMEM;
3172 }
3173 EXPORT_SYMBOL_GPL(blk_rq_prep_clone);
3174 #endif /* CONFIG_BLK_MQ_STACKING */
3175 
3176 /*
3177  * Steal bios from a request and add them to a bio list.
3178  * The request must not have been partially completed before.
3179  */
3180 void blk_steal_bios(struct bio_list *list, struct request *rq)
3181 {
3182 	if (rq->bio) {
3183 		if (list->tail)
3184 			list->tail->bi_next = rq->bio;
3185 		else
3186 			list->head = rq->bio;
3187 		list->tail = rq->biotail;
3188 
3189 		rq->bio = NULL;
3190 		rq->biotail = NULL;
3191 	}
3192 
3193 	rq->__data_len = 0;
3194 }
3195 EXPORT_SYMBOL_GPL(blk_steal_bios);
3196 
3197 static size_t order_to_size(unsigned int order)
3198 {
3199 	return (size_t)PAGE_SIZE << order;
3200 }
3201 
3202 /* called before freeing request pool in @tags */
3203 static void blk_mq_clear_rq_mapping(struct blk_mq_tags *drv_tags,
3204 				    struct blk_mq_tags *tags)
3205 {
3206 	struct page *page;
3207 	unsigned long flags;
3208 
3209 	/*
3210 	 * There is no need to clear mapping if driver tags is not initialized
3211 	 * or the mapping belongs to the driver tags.
3212 	 */
3213 	if (!drv_tags || drv_tags == tags)
3214 		return;
3215 
3216 	list_for_each_entry(page, &tags->page_list, lru) {
3217 		unsigned long start = (unsigned long)page_address(page);
3218 		unsigned long end = start + order_to_size(page->private);
3219 		int i;
3220 
3221 		for (i = 0; i < drv_tags->nr_tags; i++) {
3222 			struct request *rq = drv_tags->rqs[i];
3223 			unsigned long rq_addr = (unsigned long)rq;
3224 
3225 			if (rq_addr >= start && rq_addr < end) {
3226 				WARN_ON_ONCE(req_ref_read(rq) != 0);
3227 				cmpxchg(&drv_tags->rqs[i], rq, NULL);
3228 			}
3229 		}
3230 	}
3231 
3232 	/*
3233 	 * Wait until all pending iteration is done.
3234 	 *
3235 	 * Request reference is cleared and it is guaranteed to be observed
3236 	 * after the ->lock is released.
3237 	 */
3238 	spin_lock_irqsave(&drv_tags->lock, flags);
3239 	spin_unlock_irqrestore(&drv_tags->lock, flags);
3240 }
3241 
3242 void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
3243 		     unsigned int hctx_idx)
3244 {
3245 	struct blk_mq_tags *drv_tags;
3246 	struct page *page;
3247 
3248 	if (list_empty(&tags->page_list))
3249 		return;
3250 
3251 	if (blk_mq_is_shared_tags(set->flags))
3252 		drv_tags = set->shared_tags;
3253 	else
3254 		drv_tags = set->tags[hctx_idx];
3255 
3256 	if (tags->static_rqs && set->ops->exit_request) {
3257 		int i;
3258 
3259 		for (i = 0; i < tags->nr_tags; i++) {
3260 			struct request *rq = tags->static_rqs[i];
3261 
3262 			if (!rq)
3263 				continue;
3264 			set->ops->exit_request(set, rq, hctx_idx);
3265 			tags->static_rqs[i] = NULL;
3266 		}
3267 	}
3268 
3269 	blk_mq_clear_rq_mapping(drv_tags, tags);
3270 
3271 	while (!list_empty(&tags->page_list)) {
3272 		page = list_first_entry(&tags->page_list, struct page, lru);
3273 		list_del_init(&page->lru);
3274 		/*
3275 		 * Remove kmemleak object previously allocated in
3276 		 * blk_mq_alloc_rqs().
3277 		 */
3278 		kmemleak_free(page_address(page));
3279 		__free_pages(page, page->private);
3280 	}
3281 }
3282 
3283 void blk_mq_free_rq_map(struct blk_mq_tags *tags)
3284 {
3285 	kfree(tags->rqs);
3286 	tags->rqs = NULL;
3287 	kfree(tags->static_rqs);
3288 	tags->static_rqs = NULL;
3289 
3290 	blk_mq_free_tags(tags);
3291 }
3292 
3293 static enum hctx_type hctx_idx_to_type(struct blk_mq_tag_set *set,
3294 		unsigned int hctx_idx)
3295 {
3296 	int i;
3297 
3298 	for (i = 0; i < set->nr_maps; i++) {
3299 		unsigned int start = set->map[i].queue_offset;
3300 		unsigned int end = start + set->map[i].nr_queues;
3301 
3302 		if (hctx_idx >= start && hctx_idx < end)
3303 			break;
3304 	}
3305 
3306 	if (i >= set->nr_maps)
3307 		i = HCTX_TYPE_DEFAULT;
3308 
3309 	return i;
3310 }
3311 
3312 static int blk_mq_get_hctx_node(struct blk_mq_tag_set *set,
3313 		unsigned int hctx_idx)
3314 {
3315 	enum hctx_type type = hctx_idx_to_type(set, hctx_idx);
3316 
3317 	return blk_mq_hw_queue_to_node(&set->map[type], hctx_idx);
3318 }
3319 
3320 static struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set,
3321 					       unsigned int hctx_idx,
3322 					       unsigned int nr_tags,
3323 					       unsigned int reserved_tags)
3324 {
3325 	int node = blk_mq_get_hctx_node(set, hctx_idx);
3326 	struct blk_mq_tags *tags;
3327 
3328 	if (node == NUMA_NO_NODE)
3329 		node = set->numa_node;
3330 
3331 	tags = blk_mq_init_tags(nr_tags, reserved_tags, node,
3332 				BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
3333 	if (!tags)
3334 		return NULL;
3335 
3336 	tags->rqs = kcalloc_node(nr_tags, sizeof(struct request *),
3337 				 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
3338 				 node);
3339 	if (!tags->rqs)
3340 		goto err_free_tags;
3341 
3342 	tags->static_rqs = kcalloc_node(nr_tags, sizeof(struct request *),
3343 					GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
3344 					node);
3345 	if (!tags->static_rqs)
3346 		goto err_free_rqs;
3347 
3348 	return tags;
3349 
3350 err_free_rqs:
3351 	kfree(tags->rqs);
3352 err_free_tags:
3353 	blk_mq_free_tags(tags);
3354 	return NULL;
3355 }
3356 
3357 static int blk_mq_init_request(struct blk_mq_tag_set *set, struct request *rq,
3358 			       unsigned int hctx_idx, int node)
3359 {
3360 	int ret;
3361 
3362 	if (set->ops->init_request) {
3363 		ret = set->ops->init_request(set, rq, hctx_idx, node);
3364 		if (ret)
3365 			return ret;
3366 	}
3367 
3368 	WRITE_ONCE(rq->state, MQ_RQ_IDLE);
3369 	return 0;
3370 }
3371 
3372 static int blk_mq_alloc_rqs(struct blk_mq_tag_set *set,
3373 			    struct blk_mq_tags *tags,
3374 			    unsigned int hctx_idx, unsigned int depth)
3375 {
3376 	unsigned int i, j, entries_per_page, max_order = 4;
3377 	int node = blk_mq_get_hctx_node(set, hctx_idx);
3378 	size_t rq_size, left;
3379 
3380 	if (node == NUMA_NO_NODE)
3381 		node = set->numa_node;
3382 
3383 	INIT_LIST_HEAD(&tags->page_list);
3384 
3385 	/*
3386 	 * rq_size is the size of the request plus driver payload, rounded
3387 	 * to the cacheline size
3388 	 */
3389 	rq_size = round_up(sizeof(struct request) + set->cmd_size,
3390 				cache_line_size());
3391 	left = rq_size * depth;
3392 
3393 	for (i = 0; i < depth; ) {
3394 		int this_order = max_order;
3395 		struct page *page;
3396 		int to_do;
3397 		void *p;
3398 
3399 		while (this_order && left < order_to_size(this_order - 1))
3400 			this_order--;
3401 
3402 		do {
3403 			page = alloc_pages_node(node,
3404 				GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
3405 				this_order);
3406 			if (page)
3407 				break;
3408 			if (!this_order--)
3409 				break;
3410 			if (order_to_size(this_order) < rq_size)
3411 				break;
3412 		} while (1);
3413 
3414 		if (!page)
3415 			goto fail;
3416 
3417 		page->private = this_order;
3418 		list_add_tail(&page->lru, &tags->page_list);
3419 
3420 		p = page_address(page);
3421 		/*
3422 		 * Allow kmemleak to scan these pages as they contain pointers
3423 		 * to additional allocations like via ops->init_request().
3424 		 */
3425 		kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO);
3426 		entries_per_page = order_to_size(this_order) / rq_size;
3427 		to_do = min(entries_per_page, depth - i);
3428 		left -= to_do * rq_size;
3429 		for (j = 0; j < to_do; j++) {
3430 			struct request *rq = p;
3431 
3432 			tags->static_rqs[i] = rq;
3433 			if (blk_mq_init_request(set, rq, hctx_idx, node)) {
3434 				tags->static_rqs[i] = NULL;
3435 				goto fail;
3436 			}
3437 
3438 			p += rq_size;
3439 			i++;
3440 		}
3441 	}
3442 	return 0;
3443 
3444 fail:
3445 	blk_mq_free_rqs(set, tags, hctx_idx);
3446 	return -ENOMEM;
3447 }
3448 
3449 struct rq_iter_data {
3450 	struct blk_mq_hw_ctx *hctx;
3451 	bool has_rq;
3452 };
3453 
3454 static bool blk_mq_has_request(struct request *rq, void *data)
3455 {
3456 	struct rq_iter_data *iter_data = data;
3457 
3458 	if (rq->mq_hctx != iter_data->hctx)
3459 		return true;
3460 	iter_data->has_rq = true;
3461 	return false;
3462 }
3463 
3464 static bool blk_mq_hctx_has_requests(struct blk_mq_hw_ctx *hctx)
3465 {
3466 	struct blk_mq_tags *tags = hctx->sched_tags ?
3467 			hctx->sched_tags : hctx->tags;
3468 	struct rq_iter_data data = {
3469 		.hctx	= hctx,
3470 	};
3471 
3472 	blk_mq_all_tag_iter(tags, blk_mq_has_request, &data);
3473 	return data.has_rq;
3474 }
3475 
3476 static inline bool blk_mq_last_cpu_in_hctx(unsigned int cpu,
3477 		struct blk_mq_hw_ctx *hctx)
3478 {
3479 	if (cpumask_first_and(hctx->cpumask, cpu_online_mask) != cpu)
3480 		return false;
3481 	if (cpumask_next_and(cpu, hctx->cpumask, cpu_online_mask) < nr_cpu_ids)
3482 		return false;
3483 	return true;
3484 }
3485 
3486 static int blk_mq_hctx_notify_offline(unsigned int cpu, struct hlist_node *node)
3487 {
3488 	struct blk_mq_hw_ctx *hctx = hlist_entry_safe(node,
3489 			struct blk_mq_hw_ctx, cpuhp_online);
3490 
3491 	if (!cpumask_test_cpu(cpu, hctx->cpumask) ||
3492 	    !blk_mq_last_cpu_in_hctx(cpu, hctx))
3493 		return 0;
3494 
3495 	/*
3496 	 * Prevent new request from being allocated on the current hctx.
3497 	 *
3498 	 * The smp_mb__after_atomic() Pairs with the implied barrier in
3499 	 * test_and_set_bit_lock in sbitmap_get().  Ensures the inactive flag is
3500 	 * seen once we return from the tag allocator.
3501 	 */
3502 	set_bit(BLK_MQ_S_INACTIVE, &hctx->state);
3503 	smp_mb__after_atomic();
3504 
3505 	/*
3506 	 * Try to grab a reference to the queue and wait for any outstanding
3507 	 * requests.  If we could not grab a reference the queue has been
3508 	 * frozen and there are no requests.
3509 	 */
3510 	if (percpu_ref_tryget(&hctx->queue->q_usage_counter)) {
3511 		while (blk_mq_hctx_has_requests(hctx))
3512 			msleep(5);
3513 		percpu_ref_put(&hctx->queue->q_usage_counter);
3514 	}
3515 
3516 	return 0;
3517 }
3518 
3519 static int blk_mq_hctx_notify_online(unsigned int cpu, struct hlist_node *node)
3520 {
3521 	struct blk_mq_hw_ctx *hctx = hlist_entry_safe(node,
3522 			struct blk_mq_hw_ctx, cpuhp_online);
3523 
3524 	if (cpumask_test_cpu(cpu, hctx->cpumask))
3525 		clear_bit(BLK_MQ_S_INACTIVE, &hctx->state);
3526 	return 0;
3527 }
3528 
3529 /*
3530  * 'cpu' is going away. splice any existing rq_list entries from this
3531  * software queue to the hw queue dispatch list, and ensure that it
3532  * gets run.
3533  */
3534 static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
3535 {
3536 	struct blk_mq_hw_ctx *hctx;
3537 	struct blk_mq_ctx *ctx;
3538 	LIST_HEAD(tmp);
3539 	enum hctx_type type;
3540 
3541 	hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
3542 	if (!cpumask_test_cpu(cpu, hctx->cpumask))
3543 		return 0;
3544 
3545 	ctx = __blk_mq_get_ctx(hctx->queue, cpu);
3546 	type = hctx->type;
3547 
3548 	spin_lock(&ctx->lock);
3549 	if (!list_empty(&ctx->rq_lists[type])) {
3550 		list_splice_init(&ctx->rq_lists[type], &tmp);
3551 		blk_mq_hctx_clear_pending(hctx, ctx);
3552 	}
3553 	spin_unlock(&ctx->lock);
3554 
3555 	if (list_empty(&tmp))
3556 		return 0;
3557 
3558 	spin_lock(&hctx->lock);
3559 	list_splice_tail_init(&tmp, &hctx->dispatch);
3560 	spin_unlock(&hctx->lock);
3561 
3562 	blk_mq_run_hw_queue(hctx, true);
3563 	return 0;
3564 }
3565 
3566 static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
3567 {
3568 	if (!(hctx->flags & BLK_MQ_F_STACKING))
3569 		cpuhp_state_remove_instance_nocalls(CPUHP_AP_BLK_MQ_ONLINE,
3570 						    &hctx->cpuhp_online);
3571 	cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
3572 					    &hctx->cpuhp_dead);
3573 }
3574 
3575 /*
3576  * Before freeing hw queue, clearing the flush request reference in
3577  * tags->rqs[] for avoiding potential UAF.
3578  */
3579 static void blk_mq_clear_flush_rq_mapping(struct blk_mq_tags *tags,
3580 		unsigned int queue_depth, struct request *flush_rq)
3581 {
3582 	int i;
3583 	unsigned long flags;
3584 
3585 	/* The hw queue may not be mapped yet */
3586 	if (!tags)
3587 		return;
3588 
3589 	WARN_ON_ONCE(req_ref_read(flush_rq) != 0);
3590 
3591 	for (i = 0; i < queue_depth; i++)
3592 		cmpxchg(&tags->rqs[i], flush_rq, NULL);
3593 
3594 	/*
3595 	 * Wait until all pending iteration is done.
3596 	 *
3597 	 * Request reference is cleared and it is guaranteed to be observed
3598 	 * after the ->lock is released.
3599 	 */
3600 	spin_lock_irqsave(&tags->lock, flags);
3601 	spin_unlock_irqrestore(&tags->lock, flags);
3602 }
3603 
3604 /* hctx->ctxs will be freed in queue's release handler */
3605 static void blk_mq_exit_hctx(struct request_queue *q,
3606 		struct blk_mq_tag_set *set,
3607 		struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
3608 {
3609 	struct request *flush_rq = hctx->fq->flush_rq;
3610 
3611 	if (blk_mq_hw_queue_mapped(hctx))
3612 		blk_mq_tag_idle(hctx);
3613 
3614 	if (blk_queue_init_done(q))
3615 		blk_mq_clear_flush_rq_mapping(set->tags[hctx_idx],
3616 				set->queue_depth, flush_rq);
3617 	if (set->ops->exit_request)
3618 		set->ops->exit_request(set, flush_rq, hctx_idx);
3619 
3620 	if (set->ops->exit_hctx)
3621 		set->ops->exit_hctx(hctx, hctx_idx);
3622 
3623 	blk_mq_remove_cpuhp(hctx);
3624 
3625 	xa_erase(&q->hctx_table, hctx_idx);
3626 
3627 	spin_lock(&q->unused_hctx_lock);
3628 	list_add(&hctx->hctx_list, &q->unused_hctx_list);
3629 	spin_unlock(&q->unused_hctx_lock);
3630 }
3631 
3632 static void blk_mq_exit_hw_queues(struct request_queue *q,
3633 		struct blk_mq_tag_set *set, int nr_queue)
3634 {
3635 	struct blk_mq_hw_ctx *hctx;
3636 	unsigned long i;
3637 
3638 	queue_for_each_hw_ctx(q, hctx, i) {
3639 		if (i == nr_queue)
3640 			break;
3641 		blk_mq_exit_hctx(q, set, hctx, i);
3642 	}
3643 }
3644 
3645 static int blk_mq_init_hctx(struct request_queue *q,
3646 		struct blk_mq_tag_set *set,
3647 		struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
3648 {
3649 	hctx->queue_num = hctx_idx;
3650 
3651 	if (!(hctx->flags & BLK_MQ_F_STACKING))
3652 		cpuhp_state_add_instance_nocalls(CPUHP_AP_BLK_MQ_ONLINE,
3653 				&hctx->cpuhp_online);
3654 	cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead);
3655 
3656 	hctx->tags = set->tags[hctx_idx];
3657 
3658 	if (set->ops->init_hctx &&
3659 	    set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
3660 		goto unregister_cpu_notifier;
3661 
3662 	if (blk_mq_init_request(set, hctx->fq->flush_rq, hctx_idx,
3663 				hctx->numa_node))
3664 		goto exit_hctx;
3665 
3666 	if (xa_insert(&q->hctx_table, hctx_idx, hctx, GFP_KERNEL))
3667 		goto exit_flush_rq;
3668 
3669 	return 0;
3670 
3671  exit_flush_rq:
3672 	if (set->ops->exit_request)
3673 		set->ops->exit_request(set, hctx->fq->flush_rq, hctx_idx);
3674  exit_hctx:
3675 	if (set->ops->exit_hctx)
3676 		set->ops->exit_hctx(hctx, hctx_idx);
3677  unregister_cpu_notifier:
3678 	blk_mq_remove_cpuhp(hctx);
3679 	return -1;
3680 }
3681 
3682 static struct blk_mq_hw_ctx *
3683 blk_mq_alloc_hctx(struct request_queue *q, struct blk_mq_tag_set *set,
3684 		int node)
3685 {
3686 	struct blk_mq_hw_ctx *hctx;
3687 	gfp_t gfp = GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY;
3688 
3689 	hctx = kzalloc_node(sizeof(struct blk_mq_hw_ctx), gfp, node);
3690 	if (!hctx)
3691 		goto fail_alloc_hctx;
3692 
3693 	if (!zalloc_cpumask_var_node(&hctx->cpumask, gfp, node))
3694 		goto free_hctx;
3695 
3696 	atomic_set(&hctx->nr_active, 0);
3697 	if (node == NUMA_NO_NODE)
3698 		node = set->numa_node;
3699 	hctx->numa_node = node;
3700 
3701 	INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
3702 	spin_lock_init(&hctx->lock);
3703 	INIT_LIST_HEAD(&hctx->dispatch);
3704 	hctx->queue = q;
3705 	hctx->flags = set->flags & ~BLK_MQ_F_TAG_QUEUE_SHARED;
3706 
3707 	INIT_LIST_HEAD(&hctx->hctx_list);
3708 
3709 	/*
3710 	 * Allocate space for all possible cpus to avoid allocation at
3711 	 * runtime
3712 	 */
3713 	hctx->ctxs = kmalloc_array_node(nr_cpu_ids, sizeof(void *),
3714 			gfp, node);
3715 	if (!hctx->ctxs)
3716 		goto free_cpumask;
3717 
3718 	if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8),
3719 				gfp, node, false, false))
3720 		goto free_ctxs;
3721 	hctx->nr_ctx = 0;
3722 
3723 	spin_lock_init(&hctx->dispatch_wait_lock);
3724 	init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake);
3725 	INIT_LIST_HEAD(&hctx->dispatch_wait.entry);
3726 
3727 	hctx->fq = blk_alloc_flush_queue(hctx->numa_node, set->cmd_size, gfp);
3728 	if (!hctx->fq)
3729 		goto free_bitmap;
3730 
3731 	blk_mq_hctx_kobj_init(hctx);
3732 
3733 	return hctx;
3734 
3735  free_bitmap:
3736 	sbitmap_free(&hctx->ctx_map);
3737  free_ctxs:
3738 	kfree(hctx->ctxs);
3739  free_cpumask:
3740 	free_cpumask_var(hctx->cpumask);
3741  free_hctx:
3742 	kfree(hctx);
3743  fail_alloc_hctx:
3744 	return NULL;
3745 }
3746 
3747 static void blk_mq_init_cpu_queues(struct request_queue *q,
3748 				   unsigned int nr_hw_queues)
3749 {
3750 	struct blk_mq_tag_set *set = q->tag_set;
3751 	unsigned int i, j;
3752 
3753 	for_each_possible_cpu(i) {
3754 		struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
3755 		struct blk_mq_hw_ctx *hctx;
3756 		int k;
3757 
3758 		__ctx->cpu = i;
3759 		spin_lock_init(&__ctx->lock);
3760 		for (k = HCTX_TYPE_DEFAULT; k < HCTX_MAX_TYPES; k++)
3761 			INIT_LIST_HEAD(&__ctx->rq_lists[k]);
3762 
3763 		__ctx->queue = q;
3764 
3765 		/*
3766 		 * Set local node, IFF we have more than one hw queue. If
3767 		 * not, we remain on the home node of the device
3768 		 */
3769 		for (j = 0; j < set->nr_maps; j++) {
3770 			hctx = blk_mq_map_queue_type(q, j, i);
3771 			if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
3772 				hctx->numa_node = cpu_to_node(i);
3773 		}
3774 	}
3775 }
3776 
3777 struct blk_mq_tags *blk_mq_alloc_map_and_rqs(struct blk_mq_tag_set *set,
3778 					     unsigned int hctx_idx,
3779 					     unsigned int depth)
3780 {
3781 	struct blk_mq_tags *tags;
3782 	int ret;
3783 
3784 	tags = blk_mq_alloc_rq_map(set, hctx_idx, depth, set->reserved_tags);
3785 	if (!tags)
3786 		return NULL;
3787 
3788 	ret = blk_mq_alloc_rqs(set, tags, hctx_idx, depth);
3789 	if (ret) {
3790 		blk_mq_free_rq_map(tags);
3791 		return NULL;
3792 	}
3793 
3794 	return tags;
3795 }
3796 
3797 static bool __blk_mq_alloc_map_and_rqs(struct blk_mq_tag_set *set,
3798 				       int hctx_idx)
3799 {
3800 	if (blk_mq_is_shared_tags(set->flags)) {
3801 		set->tags[hctx_idx] = set->shared_tags;
3802 
3803 		return true;
3804 	}
3805 
3806 	set->tags[hctx_idx] = blk_mq_alloc_map_and_rqs(set, hctx_idx,
3807 						       set->queue_depth);
3808 
3809 	return set->tags[hctx_idx];
3810 }
3811 
3812 void blk_mq_free_map_and_rqs(struct blk_mq_tag_set *set,
3813 			     struct blk_mq_tags *tags,
3814 			     unsigned int hctx_idx)
3815 {
3816 	if (tags) {
3817 		blk_mq_free_rqs(set, tags, hctx_idx);
3818 		blk_mq_free_rq_map(tags);
3819 	}
3820 }
3821 
3822 static void __blk_mq_free_map_and_rqs(struct blk_mq_tag_set *set,
3823 				      unsigned int hctx_idx)
3824 {
3825 	if (!blk_mq_is_shared_tags(set->flags))
3826 		blk_mq_free_map_and_rqs(set, set->tags[hctx_idx], hctx_idx);
3827 
3828 	set->tags[hctx_idx] = NULL;
3829 }
3830 
3831 static void blk_mq_map_swqueue(struct request_queue *q)
3832 {
3833 	unsigned int j, hctx_idx;
3834 	unsigned long i;
3835 	struct blk_mq_hw_ctx *hctx;
3836 	struct blk_mq_ctx *ctx;
3837 	struct blk_mq_tag_set *set = q->tag_set;
3838 
3839 	queue_for_each_hw_ctx(q, hctx, i) {
3840 		cpumask_clear(hctx->cpumask);
3841 		hctx->nr_ctx = 0;
3842 		hctx->dispatch_from = NULL;
3843 	}
3844 
3845 	/*
3846 	 * Map software to hardware queues.
3847 	 *
3848 	 * If the cpu isn't present, the cpu is mapped to first hctx.
3849 	 */
3850 	for_each_possible_cpu(i) {
3851 
3852 		ctx = per_cpu_ptr(q->queue_ctx, i);
3853 		for (j = 0; j < set->nr_maps; j++) {
3854 			if (!set->map[j].nr_queues) {
3855 				ctx->hctxs[j] = blk_mq_map_queue_type(q,
3856 						HCTX_TYPE_DEFAULT, i);
3857 				continue;
3858 			}
3859 			hctx_idx = set->map[j].mq_map[i];
3860 			/* unmapped hw queue can be remapped after CPU topo changed */
3861 			if (!set->tags[hctx_idx] &&
3862 			    !__blk_mq_alloc_map_and_rqs(set, hctx_idx)) {
3863 				/*
3864 				 * If tags initialization fail for some hctx,
3865 				 * that hctx won't be brought online.  In this
3866 				 * case, remap the current ctx to hctx[0] which
3867 				 * is guaranteed to always have tags allocated
3868 				 */
3869 				set->map[j].mq_map[i] = 0;
3870 			}
3871 
3872 			hctx = blk_mq_map_queue_type(q, j, i);
3873 			ctx->hctxs[j] = hctx;
3874 			/*
3875 			 * If the CPU is already set in the mask, then we've
3876 			 * mapped this one already. This can happen if
3877 			 * devices share queues across queue maps.
3878 			 */
3879 			if (cpumask_test_cpu(i, hctx->cpumask))
3880 				continue;
3881 
3882 			cpumask_set_cpu(i, hctx->cpumask);
3883 			hctx->type = j;
3884 			ctx->index_hw[hctx->type] = hctx->nr_ctx;
3885 			hctx->ctxs[hctx->nr_ctx++] = ctx;
3886 
3887 			/*
3888 			 * If the nr_ctx type overflows, we have exceeded the
3889 			 * amount of sw queues we can support.
3890 			 */
3891 			BUG_ON(!hctx->nr_ctx);
3892 		}
3893 
3894 		for (; j < HCTX_MAX_TYPES; j++)
3895 			ctx->hctxs[j] = blk_mq_map_queue_type(q,
3896 					HCTX_TYPE_DEFAULT, i);
3897 	}
3898 
3899 	queue_for_each_hw_ctx(q, hctx, i) {
3900 		/*
3901 		 * If no software queues are mapped to this hardware queue,
3902 		 * disable it and free the request entries.
3903 		 */
3904 		if (!hctx->nr_ctx) {
3905 			/* Never unmap queue 0.  We need it as a
3906 			 * fallback in case of a new remap fails
3907 			 * allocation
3908 			 */
3909 			if (i)
3910 				__blk_mq_free_map_and_rqs(set, i);
3911 
3912 			hctx->tags = NULL;
3913 			continue;
3914 		}
3915 
3916 		hctx->tags = set->tags[i];
3917 		WARN_ON(!hctx->tags);
3918 
3919 		/*
3920 		 * Set the map size to the number of mapped software queues.
3921 		 * This is more accurate and more efficient than looping
3922 		 * over all possibly mapped software queues.
3923 		 */
3924 		sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
3925 
3926 		/*
3927 		 * Initialize batch roundrobin counts
3928 		 */
3929 		hctx->next_cpu = blk_mq_first_mapped_cpu(hctx);
3930 		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
3931 	}
3932 }
3933 
3934 /*
3935  * Caller needs to ensure that we're either frozen/quiesced, or that
3936  * the queue isn't live yet.
3937  */
3938 static void queue_set_hctx_shared(struct request_queue *q, bool shared)
3939 {
3940 	struct blk_mq_hw_ctx *hctx;
3941 	unsigned long i;
3942 
3943 	queue_for_each_hw_ctx(q, hctx, i) {
3944 		if (shared) {
3945 			hctx->flags |= BLK_MQ_F_TAG_QUEUE_SHARED;
3946 		} else {
3947 			blk_mq_tag_idle(hctx);
3948 			hctx->flags &= ~BLK_MQ_F_TAG_QUEUE_SHARED;
3949 		}
3950 	}
3951 }
3952 
3953 static void blk_mq_update_tag_set_shared(struct blk_mq_tag_set *set,
3954 					 bool shared)
3955 {
3956 	struct request_queue *q;
3957 
3958 	lockdep_assert_held(&set->tag_list_lock);
3959 
3960 	list_for_each_entry(q, &set->tag_list, tag_set_list) {
3961 		blk_mq_freeze_queue(q);
3962 		queue_set_hctx_shared(q, shared);
3963 		blk_mq_unfreeze_queue(q);
3964 	}
3965 }
3966 
3967 static void blk_mq_del_queue_tag_set(struct request_queue *q)
3968 {
3969 	struct blk_mq_tag_set *set = q->tag_set;
3970 
3971 	mutex_lock(&set->tag_list_lock);
3972 	list_del(&q->tag_set_list);
3973 	if (list_is_singular(&set->tag_list)) {
3974 		/* just transitioned to unshared */
3975 		set->flags &= ~BLK_MQ_F_TAG_QUEUE_SHARED;
3976 		/* update existing queue */
3977 		blk_mq_update_tag_set_shared(set, false);
3978 	}
3979 	mutex_unlock(&set->tag_list_lock);
3980 	INIT_LIST_HEAD(&q->tag_set_list);
3981 }
3982 
3983 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
3984 				     struct request_queue *q)
3985 {
3986 	mutex_lock(&set->tag_list_lock);
3987 
3988 	/*
3989 	 * Check to see if we're transitioning to shared (from 1 to 2 queues).
3990 	 */
3991 	if (!list_empty(&set->tag_list) &&
3992 	    !(set->flags & BLK_MQ_F_TAG_QUEUE_SHARED)) {
3993 		set->flags |= BLK_MQ_F_TAG_QUEUE_SHARED;
3994 		/* update existing queue */
3995 		blk_mq_update_tag_set_shared(set, true);
3996 	}
3997 	if (set->flags & BLK_MQ_F_TAG_QUEUE_SHARED)
3998 		queue_set_hctx_shared(q, true);
3999 	list_add_tail(&q->tag_set_list, &set->tag_list);
4000 
4001 	mutex_unlock(&set->tag_list_lock);
4002 }
4003 
4004 /* All allocations will be freed in release handler of q->mq_kobj */
4005 static int blk_mq_alloc_ctxs(struct request_queue *q)
4006 {
4007 	struct blk_mq_ctxs *ctxs;
4008 	int cpu;
4009 
4010 	ctxs = kzalloc(sizeof(*ctxs), GFP_KERNEL);
4011 	if (!ctxs)
4012 		return -ENOMEM;
4013 
4014 	ctxs->queue_ctx = alloc_percpu(struct blk_mq_ctx);
4015 	if (!ctxs->queue_ctx)
4016 		goto fail;
4017 
4018 	for_each_possible_cpu(cpu) {
4019 		struct blk_mq_ctx *ctx = per_cpu_ptr(ctxs->queue_ctx, cpu);
4020 		ctx->ctxs = ctxs;
4021 	}
4022 
4023 	q->mq_kobj = &ctxs->kobj;
4024 	q->queue_ctx = ctxs->queue_ctx;
4025 
4026 	return 0;
4027  fail:
4028 	kfree(ctxs);
4029 	return -ENOMEM;
4030 }
4031 
4032 /*
4033  * It is the actual release handler for mq, but we do it from
4034  * request queue's release handler for avoiding use-after-free
4035  * and headache because q->mq_kobj shouldn't have been introduced,
4036  * but we can't group ctx/kctx kobj without it.
4037  */
4038 void blk_mq_release(struct request_queue *q)
4039 {
4040 	struct blk_mq_hw_ctx *hctx, *next;
4041 	unsigned long i;
4042 
4043 	queue_for_each_hw_ctx(q, hctx, i)
4044 		WARN_ON_ONCE(hctx && list_empty(&hctx->hctx_list));
4045 
4046 	/* all hctx are in .unused_hctx_list now */
4047 	list_for_each_entry_safe(hctx, next, &q->unused_hctx_list, hctx_list) {
4048 		list_del_init(&hctx->hctx_list);
4049 		kobject_put(&hctx->kobj);
4050 	}
4051 
4052 	xa_destroy(&q->hctx_table);
4053 
4054 	/*
4055 	 * release .mq_kobj and sw queue's kobject now because
4056 	 * both share lifetime with request queue.
4057 	 */
4058 	blk_mq_sysfs_deinit(q);
4059 }
4060 
4061 static struct request_queue *blk_mq_init_queue_data(struct blk_mq_tag_set *set,
4062 		void *queuedata)
4063 {
4064 	struct request_queue *q;
4065 	int ret;
4066 
4067 	q = blk_alloc_queue(set->numa_node);
4068 	if (!q)
4069 		return ERR_PTR(-ENOMEM);
4070 	q->queuedata = queuedata;
4071 	ret = blk_mq_init_allocated_queue(set, q);
4072 	if (ret) {
4073 		blk_put_queue(q);
4074 		return ERR_PTR(ret);
4075 	}
4076 	return q;
4077 }
4078 
4079 struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
4080 {
4081 	return blk_mq_init_queue_data(set, NULL);
4082 }
4083 EXPORT_SYMBOL(blk_mq_init_queue);
4084 
4085 /**
4086  * blk_mq_destroy_queue - shutdown a request queue
4087  * @q: request queue to shutdown
4088  *
4089  * This shuts down a request queue allocated by blk_mq_init_queue(). All future
4090  * requests will be failed with -ENODEV. The caller is responsible for dropping
4091  * the reference from blk_mq_init_queue() by calling blk_put_queue().
4092  *
4093  * Context: can sleep
4094  */
4095 void blk_mq_destroy_queue(struct request_queue *q)
4096 {
4097 	WARN_ON_ONCE(!queue_is_mq(q));
4098 	WARN_ON_ONCE(blk_queue_registered(q));
4099 
4100 	might_sleep();
4101 
4102 	blk_queue_flag_set(QUEUE_FLAG_DYING, q);
4103 	blk_queue_start_drain(q);
4104 	blk_mq_freeze_queue_wait(q);
4105 
4106 	blk_sync_queue(q);
4107 	blk_mq_cancel_work_sync(q);
4108 	blk_mq_exit_queue(q);
4109 }
4110 EXPORT_SYMBOL(blk_mq_destroy_queue);
4111 
4112 struct gendisk *__blk_mq_alloc_disk(struct blk_mq_tag_set *set, void *queuedata,
4113 		struct lock_class_key *lkclass)
4114 {
4115 	struct request_queue *q;
4116 	struct gendisk *disk;
4117 
4118 	q = blk_mq_init_queue_data(set, queuedata);
4119 	if (IS_ERR(q))
4120 		return ERR_CAST(q);
4121 
4122 	disk = __alloc_disk_node(q, set->numa_node, lkclass);
4123 	if (!disk) {
4124 		blk_mq_destroy_queue(q);
4125 		blk_put_queue(q);
4126 		return ERR_PTR(-ENOMEM);
4127 	}
4128 	set_bit(GD_OWNS_QUEUE, &disk->state);
4129 	return disk;
4130 }
4131 EXPORT_SYMBOL(__blk_mq_alloc_disk);
4132 
4133 struct gendisk *blk_mq_alloc_disk_for_queue(struct request_queue *q,
4134 		struct lock_class_key *lkclass)
4135 {
4136 	struct gendisk *disk;
4137 
4138 	if (!blk_get_queue(q))
4139 		return NULL;
4140 	disk = __alloc_disk_node(q, NUMA_NO_NODE, lkclass);
4141 	if (!disk)
4142 		blk_put_queue(q);
4143 	return disk;
4144 }
4145 EXPORT_SYMBOL(blk_mq_alloc_disk_for_queue);
4146 
4147 static struct blk_mq_hw_ctx *blk_mq_alloc_and_init_hctx(
4148 		struct blk_mq_tag_set *set, struct request_queue *q,
4149 		int hctx_idx, int node)
4150 {
4151 	struct blk_mq_hw_ctx *hctx = NULL, *tmp;
4152 
4153 	/* reuse dead hctx first */
4154 	spin_lock(&q->unused_hctx_lock);
4155 	list_for_each_entry(tmp, &q->unused_hctx_list, hctx_list) {
4156 		if (tmp->numa_node == node) {
4157 			hctx = tmp;
4158 			break;
4159 		}
4160 	}
4161 	if (hctx)
4162 		list_del_init(&hctx->hctx_list);
4163 	spin_unlock(&q->unused_hctx_lock);
4164 
4165 	if (!hctx)
4166 		hctx = blk_mq_alloc_hctx(q, set, node);
4167 	if (!hctx)
4168 		goto fail;
4169 
4170 	if (blk_mq_init_hctx(q, set, hctx, hctx_idx))
4171 		goto free_hctx;
4172 
4173 	return hctx;
4174 
4175  free_hctx:
4176 	kobject_put(&hctx->kobj);
4177  fail:
4178 	return NULL;
4179 }
4180 
4181 static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
4182 						struct request_queue *q)
4183 {
4184 	struct blk_mq_hw_ctx *hctx;
4185 	unsigned long i, j;
4186 
4187 	/* protect against switching io scheduler  */
4188 	mutex_lock(&q->sysfs_lock);
4189 	for (i = 0; i < set->nr_hw_queues; i++) {
4190 		int old_node;
4191 		int node = blk_mq_get_hctx_node(set, i);
4192 		struct blk_mq_hw_ctx *old_hctx = xa_load(&q->hctx_table, i);
4193 
4194 		if (old_hctx) {
4195 			old_node = old_hctx->numa_node;
4196 			blk_mq_exit_hctx(q, set, old_hctx, i);
4197 		}
4198 
4199 		if (!blk_mq_alloc_and_init_hctx(set, q, i, node)) {
4200 			if (!old_hctx)
4201 				break;
4202 			pr_warn("Allocate new hctx on node %d fails, fallback to previous one on node %d\n",
4203 					node, old_node);
4204 			hctx = blk_mq_alloc_and_init_hctx(set, q, i, old_node);
4205 			WARN_ON_ONCE(!hctx);
4206 		}
4207 	}
4208 	/*
4209 	 * Increasing nr_hw_queues fails. Free the newly allocated
4210 	 * hctxs and keep the previous q->nr_hw_queues.
4211 	 */
4212 	if (i != set->nr_hw_queues) {
4213 		j = q->nr_hw_queues;
4214 	} else {
4215 		j = i;
4216 		q->nr_hw_queues = set->nr_hw_queues;
4217 	}
4218 
4219 	xa_for_each_start(&q->hctx_table, j, hctx, j)
4220 		blk_mq_exit_hctx(q, set, hctx, j);
4221 	mutex_unlock(&q->sysfs_lock);
4222 }
4223 
4224 static void blk_mq_update_poll_flag(struct request_queue *q)
4225 {
4226 	struct blk_mq_tag_set *set = q->tag_set;
4227 
4228 	if (set->nr_maps > HCTX_TYPE_POLL &&
4229 	    set->map[HCTX_TYPE_POLL].nr_queues)
4230 		blk_queue_flag_set(QUEUE_FLAG_POLL, q);
4231 	else
4232 		blk_queue_flag_clear(QUEUE_FLAG_POLL, q);
4233 }
4234 
4235 int blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
4236 		struct request_queue *q)
4237 {
4238 	/* mark the queue as mq asap */
4239 	q->mq_ops = set->ops;
4240 
4241 	if (blk_mq_alloc_ctxs(q))
4242 		goto err_exit;
4243 
4244 	/* init q->mq_kobj and sw queues' kobjects */
4245 	blk_mq_sysfs_init(q);
4246 
4247 	INIT_LIST_HEAD(&q->unused_hctx_list);
4248 	spin_lock_init(&q->unused_hctx_lock);
4249 
4250 	xa_init(&q->hctx_table);
4251 
4252 	blk_mq_realloc_hw_ctxs(set, q);
4253 	if (!q->nr_hw_queues)
4254 		goto err_hctxs;
4255 
4256 	INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
4257 	blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
4258 
4259 	q->tag_set = set;
4260 
4261 	q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
4262 	blk_mq_update_poll_flag(q);
4263 
4264 	INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
4265 	INIT_LIST_HEAD(&q->flush_list);
4266 	INIT_LIST_HEAD(&q->requeue_list);
4267 	spin_lock_init(&q->requeue_lock);
4268 
4269 	q->nr_requests = set->queue_depth;
4270 
4271 	blk_mq_init_cpu_queues(q, set->nr_hw_queues);
4272 	blk_mq_add_queue_tag_set(set, q);
4273 	blk_mq_map_swqueue(q);
4274 	return 0;
4275 
4276 err_hctxs:
4277 	blk_mq_release(q);
4278 err_exit:
4279 	q->mq_ops = NULL;
4280 	return -ENOMEM;
4281 }
4282 EXPORT_SYMBOL(blk_mq_init_allocated_queue);
4283 
4284 /* tags can _not_ be used after returning from blk_mq_exit_queue */
4285 void blk_mq_exit_queue(struct request_queue *q)
4286 {
4287 	struct blk_mq_tag_set *set = q->tag_set;
4288 
4289 	/* Checks hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED. */
4290 	blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
4291 	/* May clear BLK_MQ_F_TAG_QUEUE_SHARED in hctx->flags. */
4292 	blk_mq_del_queue_tag_set(q);
4293 }
4294 
4295 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
4296 {
4297 	int i;
4298 
4299 	if (blk_mq_is_shared_tags(set->flags)) {
4300 		set->shared_tags = blk_mq_alloc_map_and_rqs(set,
4301 						BLK_MQ_NO_HCTX_IDX,
4302 						set->queue_depth);
4303 		if (!set->shared_tags)
4304 			return -ENOMEM;
4305 	}
4306 
4307 	for (i = 0; i < set->nr_hw_queues; i++) {
4308 		if (!__blk_mq_alloc_map_and_rqs(set, i))
4309 			goto out_unwind;
4310 		cond_resched();
4311 	}
4312 
4313 	return 0;
4314 
4315 out_unwind:
4316 	while (--i >= 0)
4317 		__blk_mq_free_map_and_rqs(set, i);
4318 
4319 	if (blk_mq_is_shared_tags(set->flags)) {
4320 		blk_mq_free_map_and_rqs(set, set->shared_tags,
4321 					BLK_MQ_NO_HCTX_IDX);
4322 	}
4323 
4324 	return -ENOMEM;
4325 }
4326 
4327 /*
4328  * Allocate the request maps associated with this tag_set. Note that this
4329  * may reduce the depth asked for, if memory is tight. set->queue_depth
4330  * will be updated to reflect the allocated depth.
4331  */
4332 static int blk_mq_alloc_set_map_and_rqs(struct blk_mq_tag_set *set)
4333 {
4334 	unsigned int depth;
4335 	int err;
4336 
4337 	depth = set->queue_depth;
4338 	do {
4339 		err = __blk_mq_alloc_rq_maps(set);
4340 		if (!err)
4341 			break;
4342 
4343 		set->queue_depth >>= 1;
4344 		if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
4345 			err = -ENOMEM;
4346 			break;
4347 		}
4348 	} while (set->queue_depth);
4349 
4350 	if (!set->queue_depth || err) {
4351 		pr_err("blk-mq: failed to allocate request map\n");
4352 		return -ENOMEM;
4353 	}
4354 
4355 	if (depth != set->queue_depth)
4356 		pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
4357 						depth, set->queue_depth);
4358 
4359 	return 0;
4360 }
4361 
4362 static void blk_mq_update_queue_map(struct blk_mq_tag_set *set)
4363 {
4364 	/*
4365 	 * blk_mq_map_queues() and multiple .map_queues() implementations
4366 	 * expect that set->map[HCTX_TYPE_DEFAULT].nr_queues is set to the
4367 	 * number of hardware queues.
4368 	 */
4369 	if (set->nr_maps == 1)
4370 		set->map[HCTX_TYPE_DEFAULT].nr_queues = set->nr_hw_queues;
4371 
4372 	if (set->ops->map_queues && !is_kdump_kernel()) {
4373 		int i;
4374 
4375 		/*
4376 		 * transport .map_queues is usually done in the following
4377 		 * way:
4378 		 *
4379 		 * for (queue = 0; queue < set->nr_hw_queues; queue++) {
4380 		 * 	mask = get_cpu_mask(queue)
4381 		 * 	for_each_cpu(cpu, mask)
4382 		 * 		set->map[x].mq_map[cpu] = queue;
4383 		 * }
4384 		 *
4385 		 * When we need to remap, the table has to be cleared for
4386 		 * killing stale mapping since one CPU may not be mapped
4387 		 * to any hw queue.
4388 		 */
4389 		for (i = 0; i < set->nr_maps; i++)
4390 			blk_mq_clear_mq_map(&set->map[i]);
4391 
4392 		set->ops->map_queues(set);
4393 	} else {
4394 		BUG_ON(set->nr_maps > 1);
4395 		blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
4396 	}
4397 }
4398 
4399 static int blk_mq_realloc_tag_set_tags(struct blk_mq_tag_set *set,
4400 				       int new_nr_hw_queues)
4401 {
4402 	struct blk_mq_tags **new_tags;
4403 	int i;
4404 
4405 	if (set->nr_hw_queues >= new_nr_hw_queues)
4406 		goto done;
4407 
4408 	new_tags = kcalloc_node(new_nr_hw_queues, sizeof(struct blk_mq_tags *),
4409 				GFP_KERNEL, set->numa_node);
4410 	if (!new_tags)
4411 		return -ENOMEM;
4412 
4413 	if (set->tags)
4414 		memcpy(new_tags, set->tags, set->nr_hw_queues *
4415 		       sizeof(*set->tags));
4416 	kfree(set->tags);
4417 	set->tags = new_tags;
4418 
4419 	for (i = set->nr_hw_queues; i < new_nr_hw_queues; i++) {
4420 		if (!__blk_mq_alloc_map_and_rqs(set, i)) {
4421 			while (--i >= set->nr_hw_queues)
4422 				__blk_mq_free_map_and_rqs(set, i);
4423 			return -ENOMEM;
4424 		}
4425 		cond_resched();
4426 	}
4427 
4428 done:
4429 	set->nr_hw_queues = new_nr_hw_queues;
4430 	return 0;
4431 }
4432 
4433 /*
4434  * Alloc a tag set to be associated with one or more request queues.
4435  * May fail with EINVAL for various error conditions. May adjust the
4436  * requested depth down, if it's too large. In that case, the set
4437  * value will be stored in set->queue_depth.
4438  */
4439 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
4440 {
4441 	int i, ret;
4442 
4443 	BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);
4444 
4445 	if (!set->nr_hw_queues)
4446 		return -EINVAL;
4447 	if (!set->queue_depth)
4448 		return -EINVAL;
4449 	if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
4450 		return -EINVAL;
4451 
4452 	if (!set->ops->queue_rq)
4453 		return -EINVAL;
4454 
4455 	if (!set->ops->get_budget ^ !set->ops->put_budget)
4456 		return -EINVAL;
4457 
4458 	if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
4459 		pr_info("blk-mq: reduced tag depth to %u\n",
4460 			BLK_MQ_MAX_DEPTH);
4461 		set->queue_depth = BLK_MQ_MAX_DEPTH;
4462 	}
4463 
4464 	if (!set->nr_maps)
4465 		set->nr_maps = 1;
4466 	else if (set->nr_maps > HCTX_MAX_TYPES)
4467 		return -EINVAL;
4468 
4469 	/*
4470 	 * If a crashdump is active, then we are potentially in a very
4471 	 * memory constrained environment. Limit us to 1 queue and
4472 	 * 64 tags to prevent using too much memory.
4473 	 */
4474 	if (is_kdump_kernel()) {
4475 		set->nr_hw_queues = 1;
4476 		set->nr_maps = 1;
4477 		set->queue_depth = min(64U, set->queue_depth);
4478 	}
4479 	/*
4480 	 * There is no use for more h/w queues than cpus if we just have
4481 	 * a single map
4482 	 */
4483 	if (set->nr_maps == 1 && set->nr_hw_queues > nr_cpu_ids)
4484 		set->nr_hw_queues = nr_cpu_ids;
4485 
4486 	if (set->flags & BLK_MQ_F_BLOCKING) {
4487 		set->srcu = kmalloc(sizeof(*set->srcu), GFP_KERNEL);
4488 		if (!set->srcu)
4489 			return -ENOMEM;
4490 		ret = init_srcu_struct(set->srcu);
4491 		if (ret)
4492 			goto out_free_srcu;
4493 	}
4494 
4495 	ret = -ENOMEM;
4496 	set->tags = kcalloc_node(set->nr_hw_queues,
4497 				 sizeof(struct blk_mq_tags *), GFP_KERNEL,
4498 				 set->numa_node);
4499 	if (!set->tags)
4500 		goto out_cleanup_srcu;
4501 
4502 	for (i = 0; i < set->nr_maps; i++) {
4503 		set->map[i].mq_map = kcalloc_node(nr_cpu_ids,
4504 						  sizeof(set->map[i].mq_map[0]),
4505 						  GFP_KERNEL, set->numa_node);
4506 		if (!set->map[i].mq_map)
4507 			goto out_free_mq_map;
4508 		set->map[i].nr_queues = is_kdump_kernel() ? 1 : set->nr_hw_queues;
4509 	}
4510 
4511 	blk_mq_update_queue_map(set);
4512 
4513 	ret = blk_mq_alloc_set_map_and_rqs(set);
4514 	if (ret)
4515 		goto out_free_mq_map;
4516 
4517 	mutex_init(&set->tag_list_lock);
4518 	INIT_LIST_HEAD(&set->tag_list);
4519 
4520 	return 0;
4521 
4522 out_free_mq_map:
4523 	for (i = 0; i < set->nr_maps; i++) {
4524 		kfree(set->map[i].mq_map);
4525 		set->map[i].mq_map = NULL;
4526 	}
4527 	kfree(set->tags);
4528 	set->tags = NULL;
4529 out_cleanup_srcu:
4530 	if (set->flags & BLK_MQ_F_BLOCKING)
4531 		cleanup_srcu_struct(set->srcu);
4532 out_free_srcu:
4533 	if (set->flags & BLK_MQ_F_BLOCKING)
4534 		kfree(set->srcu);
4535 	return ret;
4536 }
4537 EXPORT_SYMBOL(blk_mq_alloc_tag_set);
4538 
4539 /* allocate and initialize a tagset for a simple single-queue device */
4540 int blk_mq_alloc_sq_tag_set(struct blk_mq_tag_set *set,
4541 		const struct blk_mq_ops *ops, unsigned int queue_depth,
4542 		unsigned int set_flags)
4543 {
4544 	memset(set, 0, sizeof(*set));
4545 	set->ops = ops;
4546 	set->nr_hw_queues = 1;
4547 	set->nr_maps = 1;
4548 	set->queue_depth = queue_depth;
4549 	set->numa_node = NUMA_NO_NODE;
4550 	set->flags = set_flags;
4551 	return blk_mq_alloc_tag_set(set);
4552 }
4553 EXPORT_SYMBOL_GPL(blk_mq_alloc_sq_tag_set);
4554 
4555 void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
4556 {
4557 	int i, j;
4558 
4559 	for (i = 0; i < set->nr_hw_queues; i++)
4560 		__blk_mq_free_map_and_rqs(set, i);
4561 
4562 	if (blk_mq_is_shared_tags(set->flags)) {
4563 		blk_mq_free_map_and_rqs(set, set->shared_tags,
4564 					BLK_MQ_NO_HCTX_IDX);
4565 	}
4566 
4567 	for (j = 0; j < set->nr_maps; j++) {
4568 		kfree(set->map[j].mq_map);
4569 		set->map[j].mq_map = NULL;
4570 	}
4571 
4572 	kfree(set->tags);
4573 	set->tags = NULL;
4574 	if (set->flags & BLK_MQ_F_BLOCKING) {
4575 		cleanup_srcu_struct(set->srcu);
4576 		kfree(set->srcu);
4577 	}
4578 }
4579 EXPORT_SYMBOL(blk_mq_free_tag_set);
4580 
4581 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
4582 {
4583 	struct blk_mq_tag_set *set = q->tag_set;
4584 	struct blk_mq_hw_ctx *hctx;
4585 	int ret;
4586 	unsigned long i;
4587 
4588 	if (!set)
4589 		return -EINVAL;
4590 
4591 	if (q->nr_requests == nr)
4592 		return 0;
4593 
4594 	blk_mq_freeze_queue(q);
4595 	blk_mq_quiesce_queue(q);
4596 
4597 	ret = 0;
4598 	queue_for_each_hw_ctx(q, hctx, i) {
4599 		if (!hctx->tags)
4600 			continue;
4601 		/*
4602 		 * If we're using an MQ scheduler, just update the scheduler
4603 		 * queue depth. This is similar to what the old code would do.
4604 		 */
4605 		if (hctx->sched_tags) {
4606 			ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags,
4607 						      nr, true);
4608 		} else {
4609 			ret = blk_mq_tag_update_depth(hctx, &hctx->tags, nr,
4610 						      false);
4611 		}
4612 		if (ret)
4613 			break;
4614 		if (q->elevator && q->elevator->type->ops.depth_updated)
4615 			q->elevator->type->ops.depth_updated(hctx);
4616 	}
4617 	if (!ret) {
4618 		q->nr_requests = nr;
4619 		if (blk_mq_is_shared_tags(set->flags)) {
4620 			if (q->elevator)
4621 				blk_mq_tag_update_sched_shared_tags(q);
4622 			else
4623 				blk_mq_tag_resize_shared_tags(set, nr);
4624 		}
4625 	}
4626 
4627 	blk_mq_unquiesce_queue(q);
4628 	blk_mq_unfreeze_queue(q);
4629 
4630 	return ret;
4631 }
4632 
4633 /*
4634  * request_queue and elevator_type pair.
4635  * It is just used by __blk_mq_update_nr_hw_queues to cache
4636  * the elevator_type associated with a request_queue.
4637  */
4638 struct blk_mq_qe_pair {
4639 	struct list_head node;
4640 	struct request_queue *q;
4641 	struct elevator_type *type;
4642 };
4643 
4644 /*
4645  * Cache the elevator_type in qe pair list and switch the
4646  * io scheduler to 'none'
4647  */
4648 static bool blk_mq_elv_switch_none(struct list_head *head,
4649 		struct request_queue *q)
4650 {
4651 	struct blk_mq_qe_pair *qe;
4652 
4653 	qe = kmalloc(sizeof(*qe), GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY);
4654 	if (!qe)
4655 		return false;
4656 
4657 	/* q->elevator needs protection from ->sysfs_lock */
4658 	mutex_lock(&q->sysfs_lock);
4659 
4660 	/* the check has to be done with holding sysfs_lock */
4661 	if (!q->elevator) {
4662 		kfree(qe);
4663 		goto unlock;
4664 	}
4665 
4666 	INIT_LIST_HEAD(&qe->node);
4667 	qe->q = q;
4668 	qe->type = q->elevator->type;
4669 	/* keep a reference to the elevator module as we'll switch back */
4670 	__elevator_get(qe->type);
4671 	list_add(&qe->node, head);
4672 	elevator_disable(q);
4673 unlock:
4674 	mutex_unlock(&q->sysfs_lock);
4675 
4676 	return true;
4677 }
4678 
4679 static struct blk_mq_qe_pair *blk_lookup_qe_pair(struct list_head *head,
4680 						struct request_queue *q)
4681 {
4682 	struct blk_mq_qe_pair *qe;
4683 
4684 	list_for_each_entry(qe, head, node)
4685 		if (qe->q == q)
4686 			return qe;
4687 
4688 	return NULL;
4689 }
4690 
4691 static void blk_mq_elv_switch_back(struct list_head *head,
4692 				  struct request_queue *q)
4693 {
4694 	struct blk_mq_qe_pair *qe;
4695 	struct elevator_type *t;
4696 
4697 	qe = blk_lookup_qe_pair(head, q);
4698 	if (!qe)
4699 		return;
4700 	t = qe->type;
4701 	list_del(&qe->node);
4702 	kfree(qe);
4703 
4704 	mutex_lock(&q->sysfs_lock);
4705 	elevator_switch(q, t);
4706 	/* drop the reference acquired in blk_mq_elv_switch_none */
4707 	elevator_put(t);
4708 	mutex_unlock(&q->sysfs_lock);
4709 }
4710 
4711 static void __blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set,
4712 							int nr_hw_queues)
4713 {
4714 	struct request_queue *q;
4715 	LIST_HEAD(head);
4716 	int prev_nr_hw_queues = set->nr_hw_queues;
4717 	int i;
4718 
4719 	lockdep_assert_held(&set->tag_list_lock);
4720 
4721 	if (set->nr_maps == 1 && nr_hw_queues > nr_cpu_ids)
4722 		nr_hw_queues = nr_cpu_ids;
4723 	if (nr_hw_queues < 1)
4724 		return;
4725 	if (set->nr_maps == 1 && nr_hw_queues == set->nr_hw_queues)
4726 		return;
4727 
4728 	list_for_each_entry(q, &set->tag_list, tag_set_list)
4729 		blk_mq_freeze_queue(q);
4730 	/*
4731 	 * Switch IO scheduler to 'none', cleaning up the data associated
4732 	 * with the previous scheduler. We will switch back once we are done
4733 	 * updating the new sw to hw queue mappings.
4734 	 */
4735 	list_for_each_entry(q, &set->tag_list, tag_set_list)
4736 		if (!blk_mq_elv_switch_none(&head, q))
4737 			goto switch_back;
4738 
4739 	list_for_each_entry(q, &set->tag_list, tag_set_list) {
4740 		blk_mq_debugfs_unregister_hctxs(q);
4741 		blk_mq_sysfs_unregister_hctxs(q);
4742 	}
4743 
4744 	if (blk_mq_realloc_tag_set_tags(set, nr_hw_queues) < 0)
4745 		goto reregister;
4746 
4747 fallback:
4748 	blk_mq_update_queue_map(set);
4749 	list_for_each_entry(q, &set->tag_list, tag_set_list) {
4750 		blk_mq_realloc_hw_ctxs(set, q);
4751 		blk_mq_update_poll_flag(q);
4752 		if (q->nr_hw_queues != set->nr_hw_queues) {
4753 			int i = prev_nr_hw_queues;
4754 
4755 			pr_warn("Increasing nr_hw_queues to %d fails, fallback to %d\n",
4756 					nr_hw_queues, prev_nr_hw_queues);
4757 			for (; i < set->nr_hw_queues; i++)
4758 				__blk_mq_free_map_and_rqs(set, i);
4759 
4760 			set->nr_hw_queues = prev_nr_hw_queues;
4761 			goto fallback;
4762 		}
4763 		blk_mq_map_swqueue(q);
4764 	}
4765 
4766 reregister:
4767 	list_for_each_entry(q, &set->tag_list, tag_set_list) {
4768 		blk_mq_sysfs_register_hctxs(q);
4769 		blk_mq_debugfs_register_hctxs(q);
4770 	}
4771 
4772 switch_back:
4773 	list_for_each_entry(q, &set->tag_list, tag_set_list)
4774 		blk_mq_elv_switch_back(&head, q);
4775 
4776 	list_for_each_entry(q, &set->tag_list, tag_set_list)
4777 		blk_mq_unfreeze_queue(q);
4778 
4779 	/* Free the excess tags when nr_hw_queues shrink. */
4780 	for (i = set->nr_hw_queues; i < prev_nr_hw_queues; i++)
4781 		__blk_mq_free_map_and_rqs(set, i);
4782 }
4783 
4784 void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
4785 {
4786 	mutex_lock(&set->tag_list_lock);
4787 	__blk_mq_update_nr_hw_queues(set, nr_hw_queues);
4788 	mutex_unlock(&set->tag_list_lock);
4789 }
4790 EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);
4791 
4792 static int blk_hctx_poll(struct request_queue *q, struct blk_mq_hw_ctx *hctx,
4793 			 struct io_comp_batch *iob, unsigned int flags)
4794 {
4795 	long state = get_current_state();
4796 	int ret;
4797 
4798 	do {
4799 		ret = q->mq_ops->poll(hctx, iob);
4800 		if (ret > 0) {
4801 			__set_current_state(TASK_RUNNING);
4802 			return ret;
4803 		}
4804 
4805 		if (signal_pending_state(state, current))
4806 			__set_current_state(TASK_RUNNING);
4807 		if (task_is_running(current))
4808 			return 1;
4809 
4810 		if (ret < 0 || (flags & BLK_POLL_ONESHOT))
4811 			break;
4812 		cpu_relax();
4813 	} while (!need_resched());
4814 
4815 	__set_current_state(TASK_RUNNING);
4816 	return 0;
4817 }
4818 
4819 int blk_mq_poll(struct request_queue *q, blk_qc_t cookie,
4820 		struct io_comp_batch *iob, unsigned int flags)
4821 {
4822 	struct blk_mq_hw_ctx *hctx = xa_load(&q->hctx_table, cookie);
4823 
4824 	return blk_hctx_poll(q, hctx, iob, flags);
4825 }
4826 
4827 int blk_rq_poll(struct request *rq, struct io_comp_batch *iob,
4828 		unsigned int poll_flags)
4829 {
4830 	struct request_queue *q = rq->q;
4831 	int ret;
4832 
4833 	if (!blk_rq_is_poll(rq))
4834 		return 0;
4835 	if (!percpu_ref_tryget(&q->q_usage_counter))
4836 		return 0;
4837 
4838 	ret = blk_hctx_poll(q, rq->mq_hctx, iob, poll_flags);
4839 	blk_queue_exit(q);
4840 
4841 	return ret;
4842 }
4843 EXPORT_SYMBOL_GPL(blk_rq_poll);
4844 
4845 unsigned int blk_mq_rq_cpu(struct request *rq)
4846 {
4847 	return rq->mq_ctx->cpu;
4848 }
4849 EXPORT_SYMBOL(blk_mq_rq_cpu);
4850 
4851 void blk_mq_cancel_work_sync(struct request_queue *q)
4852 {
4853 	struct blk_mq_hw_ctx *hctx;
4854 	unsigned long i;
4855 
4856 	cancel_delayed_work_sync(&q->requeue_work);
4857 
4858 	queue_for_each_hw_ctx(q, hctx, i)
4859 		cancel_delayed_work_sync(&hctx->run_work);
4860 }
4861 
4862 static int __init blk_mq_init(void)
4863 {
4864 	int i;
4865 
4866 	for_each_possible_cpu(i)
4867 		init_llist_head(&per_cpu(blk_cpu_done, i));
4868 	for_each_possible_cpu(i)
4869 		INIT_CSD(&per_cpu(blk_cpu_csd, i),
4870 			 __blk_mq_complete_request_remote, NULL);
4871 	open_softirq(BLOCK_SOFTIRQ, blk_done_softirq);
4872 
4873 	cpuhp_setup_state_nocalls(CPUHP_BLOCK_SOFTIRQ_DEAD,
4874 				  "block/softirq:dead", NULL,
4875 				  blk_softirq_cpu_dead);
4876 	cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
4877 				blk_mq_hctx_notify_dead);
4878 	cpuhp_setup_state_multi(CPUHP_AP_BLK_MQ_ONLINE, "block/mq:online",
4879 				blk_mq_hctx_notify_online,
4880 				blk_mq_hctx_notify_offline);
4881 	return 0;
4882 }
4883 subsys_initcall(blk_mq_init);
4884