1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Block multiqueue core code 4 * 5 * Copyright (C) 2013-2014 Jens Axboe 6 * Copyright (C) 2013-2014 Christoph Hellwig 7 */ 8 #include <linux/kernel.h> 9 #include <linux/module.h> 10 #include <linux/backing-dev.h> 11 #include <linux/bio.h> 12 #include <linux/blkdev.h> 13 #include <linux/blk-integrity.h> 14 #include <linux/kmemleak.h> 15 #include <linux/mm.h> 16 #include <linux/init.h> 17 #include <linux/slab.h> 18 #include <linux/workqueue.h> 19 #include <linux/smp.h> 20 #include <linux/interrupt.h> 21 #include <linux/llist.h> 22 #include <linux/cpu.h> 23 #include <linux/cache.h> 24 #include <linux/sched/sysctl.h> 25 #include <linux/sched/topology.h> 26 #include <linux/sched/signal.h> 27 #include <linux/delay.h> 28 #include <linux/crash_dump.h> 29 #include <linux/prefetch.h> 30 #include <linux/blk-crypto.h> 31 #include <linux/part_stat.h> 32 33 #include <trace/events/block.h> 34 35 #include <linux/blk-mq.h> 36 #include <linux/t10-pi.h> 37 #include "blk.h" 38 #include "blk-mq.h" 39 #include "blk-mq-debugfs.h" 40 #include "blk-mq-tag.h" 41 #include "blk-pm.h" 42 #include "blk-stat.h" 43 #include "blk-mq-sched.h" 44 #include "blk-rq-qos.h" 45 #include "blk-ioprio.h" 46 47 static DEFINE_PER_CPU(struct llist_head, blk_cpu_done); 48 49 static void blk_mq_poll_stats_start(struct request_queue *q); 50 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb); 51 52 static int blk_mq_poll_stats_bkt(const struct request *rq) 53 { 54 int ddir, sectors, bucket; 55 56 ddir = rq_data_dir(rq); 57 sectors = blk_rq_stats_sectors(rq); 58 59 bucket = ddir + 2 * ilog2(sectors); 60 61 if (bucket < 0) 62 return -1; 63 else if (bucket >= BLK_MQ_POLL_STATS_BKTS) 64 return ddir + BLK_MQ_POLL_STATS_BKTS - 2; 65 66 return bucket; 67 } 68 69 #define BLK_QC_T_SHIFT 16 70 #define BLK_QC_T_INTERNAL (1U << 31) 71 72 static inline struct blk_mq_hw_ctx *blk_qc_to_hctx(struct request_queue *q, 73 blk_qc_t qc) 74 { 75 return xa_load(&q->hctx_table, 76 (qc & ~BLK_QC_T_INTERNAL) >> BLK_QC_T_SHIFT); 77 } 78 79 static inline struct request *blk_qc_to_rq(struct blk_mq_hw_ctx *hctx, 80 blk_qc_t qc) 81 { 82 unsigned int tag = qc & ((1U << BLK_QC_T_SHIFT) - 1); 83 84 if (qc & BLK_QC_T_INTERNAL) 85 return blk_mq_tag_to_rq(hctx->sched_tags, tag); 86 return blk_mq_tag_to_rq(hctx->tags, tag); 87 } 88 89 static inline blk_qc_t blk_rq_to_qc(struct request *rq) 90 { 91 return (rq->mq_hctx->queue_num << BLK_QC_T_SHIFT) | 92 (rq->tag != -1 ? 93 rq->tag : (rq->internal_tag | BLK_QC_T_INTERNAL)); 94 } 95 96 /* 97 * Check if any of the ctx, dispatch list or elevator 98 * have pending work in this hardware queue. 99 */ 100 static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx) 101 { 102 return !list_empty_careful(&hctx->dispatch) || 103 sbitmap_any_bit_set(&hctx->ctx_map) || 104 blk_mq_sched_has_work(hctx); 105 } 106 107 /* 108 * Mark this ctx as having pending work in this hardware queue 109 */ 110 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx, 111 struct blk_mq_ctx *ctx) 112 { 113 const int bit = ctx->index_hw[hctx->type]; 114 115 if (!sbitmap_test_bit(&hctx->ctx_map, bit)) 116 sbitmap_set_bit(&hctx->ctx_map, bit); 117 } 118 119 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx, 120 struct blk_mq_ctx *ctx) 121 { 122 const int bit = ctx->index_hw[hctx->type]; 123 124 sbitmap_clear_bit(&hctx->ctx_map, bit); 125 } 126 127 struct mq_inflight { 128 struct block_device *part; 129 unsigned int inflight[2]; 130 }; 131 132 static bool blk_mq_check_inflight(struct request *rq, void *priv) 133 { 134 struct mq_inflight *mi = priv; 135 136 if (rq->part && blk_do_io_stat(rq) && 137 (!mi->part->bd_partno || rq->part == mi->part) && 138 blk_mq_rq_state(rq) == MQ_RQ_IN_FLIGHT) 139 mi->inflight[rq_data_dir(rq)]++; 140 141 return true; 142 } 143 144 unsigned int blk_mq_in_flight(struct request_queue *q, 145 struct block_device *part) 146 { 147 struct mq_inflight mi = { .part = part }; 148 149 blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi); 150 151 return mi.inflight[0] + mi.inflight[1]; 152 } 153 154 void blk_mq_in_flight_rw(struct request_queue *q, struct block_device *part, 155 unsigned int inflight[2]) 156 { 157 struct mq_inflight mi = { .part = part }; 158 159 blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi); 160 inflight[0] = mi.inflight[0]; 161 inflight[1] = mi.inflight[1]; 162 } 163 164 void blk_freeze_queue_start(struct request_queue *q) 165 { 166 mutex_lock(&q->mq_freeze_lock); 167 if (++q->mq_freeze_depth == 1) { 168 percpu_ref_kill(&q->q_usage_counter); 169 mutex_unlock(&q->mq_freeze_lock); 170 if (queue_is_mq(q)) 171 blk_mq_run_hw_queues(q, false); 172 } else { 173 mutex_unlock(&q->mq_freeze_lock); 174 } 175 } 176 EXPORT_SYMBOL_GPL(blk_freeze_queue_start); 177 178 void blk_mq_freeze_queue_wait(struct request_queue *q) 179 { 180 wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter)); 181 } 182 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait); 183 184 int blk_mq_freeze_queue_wait_timeout(struct request_queue *q, 185 unsigned long timeout) 186 { 187 return wait_event_timeout(q->mq_freeze_wq, 188 percpu_ref_is_zero(&q->q_usage_counter), 189 timeout); 190 } 191 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout); 192 193 /* 194 * Guarantee no request is in use, so we can change any data structure of 195 * the queue afterward. 196 */ 197 void blk_freeze_queue(struct request_queue *q) 198 { 199 /* 200 * In the !blk_mq case we are only calling this to kill the 201 * q_usage_counter, otherwise this increases the freeze depth 202 * and waits for it to return to zero. For this reason there is 203 * no blk_unfreeze_queue(), and blk_freeze_queue() is not 204 * exported to drivers as the only user for unfreeze is blk_mq. 205 */ 206 blk_freeze_queue_start(q); 207 blk_mq_freeze_queue_wait(q); 208 } 209 210 void blk_mq_freeze_queue(struct request_queue *q) 211 { 212 /* 213 * ...just an alias to keep freeze and unfreeze actions balanced 214 * in the blk_mq_* namespace 215 */ 216 blk_freeze_queue(q); 217 } 218 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue); 219 220 void __blk_mq_unfreeze_queue(struct request_queue *q, bool force_atomic) 221 { 222 mutex_lock(&q->mq_freeze_lock); 223 if (force_atomic) 224 q->q_usage_counter.data->force_atomic = true; 225 q->mq_freeze_depth--; 226 WARN_ON_ONCE(q->mq_freeze_depth < 0); 227 if (!q->mq_freeze_depth) { 228 percpu_ref_resurrect(&q->q_usage_counter); 229 wake_up_all(&q->mq_freeze_wq); 230 } 231 mutex_unlock(&q->mq_freeze_lock); 232 } 233 234 void blk_mq_unfreeze_queue(struct request_queue *q) 235 { 236 __blk_mq_unfreeze_queue(q, false); 237 } 238 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue); 239 240 /* 241 * FIXME: replace the scsi_internal_device_*block_nowait() calls in the 242 * mpt3sas driver such that this function can be removed. 243 */ 244 void blk_mq_quiesce_queue_nowait(struct request_queue *q) 245 { 246 unsigned long flags; 247 248 spin_lock_irqsave(&q->queue_lock, flags); 249 if (!q->quiesce_depth++) 250 blk_queue_flag_set(QUEUE_FLAG_QUIESCED, q); 251 spin_unlock_irqrestore(&q->queue_lock, flags); 252 } 253 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue_nowait); 254 255 /** 256 * blk_mq_wait_quiesce_done() - wait until in-progress quiesce is done 257 * @set: tag_set to wait on 258 * 259 * Note: it is driver's responsibility for making sure that quiesce has 260 * been started on or more of the request_queues of the tag_set. This 261 * function only waits for the quiesce on those request_queues that had 262 * the quiesce flag set using blk_mq_quiesce_queue_nowait. 263 */ 264 void blk_mq_wait_quiesce_done(struct blk_mq_tag_set *set) 265 { 266 if (set->flags & BLK_MQ_F_BLOCKING) 267 synchronize_srcu(set->srcu); 268 else 269 synchronize_rcu(); 270 } 271 EXPORT_SYMBOL_GPL(blk_mq_wait_quiesce_done); 272 273 /** 274 * blk_mq_quiesce_queue() - wait until all ongoing dispatches have finished 275 * @q: request queue. 276 * 277 * Note: this function does not prevent that the struct request end_io() 278 * callback function is invoked. Once this function is returned, we make 279 * sure no dispatch can happen until the queue is unquiesced via 280 * blk_mq_unquiesce_queue(). 281 */ 282 void blk_mq_quiesce_queue(struct request_queue *q) 283 { 284 blk_mq_quiesce_queue_nowait(q); 285 /* nothing to wait for non-mq queues */ 286 if (queue_is_mq(q)) 287 blk_mq_wait_quiesce_done(q->tag_set); 288 } 289 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue); 290 291 /* 292 * blk_mq_unquiesce_queue() - counterpart of blk_mq_quiesce_queue() 293 * @q: request queue. 294 * 295 * This function recovers queue into the state before quiescing 296 * which is done by blk_mq_quiesce_queue. 297 */ 298 void blk_mq_unquiesce_queue(struct request_queue *q) 299 { 300 unsigned long flags; 301 bool run_queue = false; 302 303 spin_lock_irqsave(&q->queue_lock, flags); 304 if (WARN_ON_ONCE(q->quiesce_depth <= 0)) { 305 ; 306 } else if (!--q->quiesce_depth) { 307 blk_queue_flag_clear(QUEUE_FLAG_QUIESCED, q); 308 run_queue = true; 309 } 310 spin_unlock_irqrestore(&q->queue_lock, flags); 311 312 /* dispatch requests which are inserted during quiescing */ 313 if (run_queue) 314 blk_mq_run_hw_queues(q, true); 315 } 316 EXPORT_SYMBOL_GPL(blk_mq_unquiesce_queue); 317 318 void blk_mq_quiesce_tagset(struct blk_mq_tag_set *set) 319 { 320 struct request_queue *q; 321 322 mutex_lock(&set->tag_list_lock); 323 list_for_each_entry(q, &set->tag_list, tag_set_list) { 324 if (!blk_queue_skip_tagset_quiesce(q)) 325 blk_mq_quiesce_queue_nowait(q); 326 } 327 blk_mq_wait_quiesce_done(set); 328 mutex_unlock(&set->tag_list_lock); 329 } 330 EXPORT_SYMBOL_GPL(blk_mq_quiesce_tagset); 331 332 void blk_mq_unquiesce_tagset(struct blk_mq_tag_set *set) 333 { 334 struct request_queue *q; 335 336 mutex_lock(&set->tag_list_lock); 337 list_for_each_entry(q, &set->tag_list, tag_set_list) { 338 if (!blk_queue_skip_tagset_quiesce(q)) 339 blk_mq_unquiesce_queue(q); 340 } 341 mutex_unlock(&set->tag_list_lock); 342 } 343 EXPORT_SYMBOL_GPL(blk_mq_unquiesce_tagset); 344 345 void blk_mq_wake_waiters(struct request_queue *q) 346 { 347 struct blk_mq_hw_ctx *hctx; 348 unsigned long i; 349 350 queue_for_each_hw_ctx(q, hctx, i) 351 if (blk_mq_hw_queue_mapped(hctx)) 352 blk_mq_tag_wakeup_all(hctx->tags, true); 353 } 354 355 void blk_rq_init(struct request_queue *q, struct request *rq) 356 { 357 memset(rq, 0, sizeof(*rq)); 358 359 INIT_LIST_HEAD(&rq->queuelist); 360 rq->q = q; 361 rq->__sector = (sector_t) -1; 362 INIT_HLIST_NODE(&rq->hash); 363 RB_CLEAR_NODE(&rq->rb_node); 364 rq->tag = BLK_MQ_NO_TAG; 365 rq->internal_tag = BLK_MQ_NO_TAG; 366 rq->start_time_ns = ktime_get_ns(); 367 rq->part = NULL; 368 blk_crypto_rq_set_defaults(rq); 369 } 370 EXPORT_SYMBOL(blk_rq_init); 371 372 static struct request *blk_mq_rq_ctx_init(struct blk_mq_alloc_data *data, 373 struct blk_mq_tags *tags, unsigned int tag, u64 alloc_time_ns) 374 { 375 struct blk_mq_ctx *ctx = data->ctx; 376 struct blk_mq_hw_ctx *hctx = data->hctx; 377 struct request_queue *q = data->q; 378 struct request *rq = tags->static_rqs[tag]; 379 380 rq->q = q; 381 rq->mq_ctx = ctx; 382 rq->mq_hctx = hctx; 383 rq->cmd_flags = data->cmd_flags; 384 385 if (data->flags & BLK_MQ_REQ_PM) 386 data->rq_flags |= RQF_PM; 387 if (blk_queue_io_stat(q)) 388 data->rq_flags |= RQF_IO_STAT; 389 rq->rq_flags = data->rq_flags; 390 391 if (!(data->rq_flags & RQF_ELV)) { 392 rq->tag = tag; 393 rq->internal_tag = BLK_MQ_NO_TAG; 394 } else { 395 rq->tag = BLK_MQ_NO_TAG; 396 rq->internal_tag = tag; 397 } 398 rq->timeout = 0; 399 400 if (blk_mq_need_time_stamp(rq)) 401 rq->start_time_ns = ktime_get_ns(); 402 else 403 rq->start_time_ns = 0; 404 rq->part = NULL; 405 #ifdef CONFIG_BLK_RQ_ALLOC_TIME 406 rq->alloc_time_ns = alloc_time_ns; 407 #endif 408 rq->io_start_time_ns = 0; 409 rq->stats_sectors = 0; 410 rq->nr_phys_segments = 0; 411 #if defined(CONFIG_BLK_DEV_INTEGRITY) 412 rq->nr_integrity_segments = 0; 413 #endif 414 rq->end_io = NULL; 415 rq->end_io_data = NULL; 416 417 blk_crypto_rq_set_defaults(rq); 418 INIT_LIST_HEAD(&rq->queuelist); 419 /* tag was already set */ 420 WRITE_ONCE(rq->deadline, 0); 421 req_ref_set(rq, 1); 422 423 if (rq->rq_flags & RQF_ELV) { 424 struct elevator_queue *e = data->q->elevator; 425 426 INIT_HLIST_NODE(&rq->hash); 427 RB_CLEAR_NODE(&rq->rb_node); 428 429 if (!op_is_flush(data->cmd_flags) && 430 e->type->ops.prepare_request) { 431 e->type->ops.prepare_request(rq); 432 rq->rq_flags |= RQF_ELVPRIV; 433 } 434 } 435 436 return rq; 437 } 438 439 static inline struct request * 440 __blk_mq_alloc_requests_batch(struct blk_mq_alloc_data *data, 441 u64 alloc_time_ns) 442 { 443 unsigned int tag, tag_offset; 444 struct blk_mq_tags *tags; 445 struct request *rq; 446 unsigned long tag_mask; 447 int i, nr = 0; 448 449 tag_mask = blk_mq_get_tags(data, data->nr_tags, &tag_offset); 450 if (unlikely(!tag_mask)) 451 return NULL; 452 453 tags = blk_mq_tags_from_data(data); 454 for (i = 0; tag_mask; i++) { 455 if (!(tag_mask & (1UL << i))) 456 continue; 457 tag = tag_offset + i; 458 prefetch(tags->static_rqs[tag]); 459 tag_mask &= ~(1UL << i); 460 rq = blk_mq_rq_ctx_init(data, tags, tag, alloc_time_ns); 461 rq_list_add(data->cached_rq, rq); 462 nr++; 463 } 464 /* caller already holds a reference, add for remainder */ 465 percpu_ref_get_many(&data->q->q_usage_counter, nr - 1); 466 data->nr_tags -= nr; 467 468 return rq_list_pop(data->cached_rq); 469 } 470 471 static struct request *__blk_mq_alloc_requests(struct blk_mq_alloc_data *data) 472 { 473 struct request_queue *q = data->q; 474 u64 alloc_time_ns = 0; 475 struct request *rq; 476 unsigned int tag; 477 478 /* alloc_time includes depth and tag waits */ 479 if (blk_queue_rq_alloc_time(q)) 480 alloc_time_ns = ktime_get_ns(); 481 482 if (data->cmd_flags & REQ_NOWAIT) 483 data->flags |= BLK_MQ_REQ_NOWAIT; 484 485 if (q->elevator) { 486 struct elevator_queue *e = q->elevator; 487 488 data->rq_flags |= RQF_ELV; 489 490 /* 491 * Flush/passthrough requests are special and go directly to the 492 * dispatch list. Don't include reserved tags in the 493 * limiting, as it isn't useful. 494 */ 495 if (!op_is_flush(data->cmd_flags) && 496 !blk_op_is_passthrough(data->cmd_flags) && 497 e->type->ops.limit_depth && 498 !(data->flags & BLK_MQ_REQ_RESERVED)) 499 e->type->ops.limit_depth(data->cmd_flags, data); 500 } 501 502 retry: 503 data->ctx = blk_mq_get_ctx(q); 504 data->hctx = blk_mq_map_queue(q, data->cmd_flags, data->ctx); 505 if (!(data->rq_flags & RQF_ELV)) 506 blk_mq_tag_busy(data->hctx); 507 508 if (data->flags & BLK_MQ_REQ_RESERVED) 509 data->rq_flags |= RQF_RESV; 510 511 /* 512 * Try batched alloc if we want more than 1 tag. 513 */ 514 if (data->nr_tags > 1) { 515 rq = __blk_mq_alloc_requests_batch(data, alloc_time_ns); 516 if (rq) 517 return rq; 518 data->nr_tags = 1; 519 } 520 521 /* 522 * Waiting allocations only fail because of an inactive hctx. In that 523 * case just retry the hctx assignment and tag allocation as CPU hotplug 524 * should have migrated us to an online CPU by now. 525 */ 526 tag = blk_mq_get_tag(data); 527 if (tag == BLK_MQ_NO_TAG) { 528 if (data->flags & BLK_MQ_REQ_NOWAIT) 529 return NULL; 530 /* 531 * Give up the CPU and sleep for a random short time to 532 * ensure that thread using a realtime scheduling class 533 * are migrated off the CPU, and thus off the hctx that 534 * is going away. 535 */ 536 msleep(3); 537 goto retry; 538 } 539 540 return blk_mq_rq_ctx_init(data, blk_mq_tags_from_data(data), tag, 541 alloc_time_ns); 542 } 543 544 static struct request *blk_mq_rq_cache_fill(struct request_queue *q, 545 struct blk_plug *plug, 546 blk_opf_t opf, 547 blk_mq_req_flags_t flags) 548 { 549 struct blk_mq_alloc_data data = { 550 .q = q, 551 .flags = flags, 552 .cmd_flags = opf, 553 .nr_tags = plug->nr_ios, 554 .cached_rq = &plug->cached_rq, 555 }; 556 struct request *rq; 557 558 if (blk_queue_enter(q, flags)) 559 return NULL; 560 561 plug->nr_ios = 1; 562 563 rq = __blk_mq_alloc_requests(&data); 564 if (unlikely(!rq)) 565 blk_queue_exit(q); 566 return rq; 567 } 568 569 static struct request *blk_mq_alloc_cached_request(struct request_queue *q, 570 blk_opf_t opf, 571 blk_mq_req_flags_t flags) 572 { 573 struct blk_plug *plug = current->plug; 574 struct request *rq; 575 576 if (!plug) 577 return NULL; 578 579 if (rq_list_empty(plug->cached_rq)) { 580 if (plug->nr_ios == 1) 581 return NULL; 582 rq = blk_mq_rq_cache_fill(q, plug, opf, flags); 583 if (!rq) 584 return NULL; 585 } else { 586 rq = rq_list_peek(&plug->cached_rq); 587 if (!rq || rq->q != q) 588 return NULL; 589 590 if (blk_mq_get_hctx_type(opf) != rq->mq_hctx->type) 591 return NULL; 592 if (op_is_flush(rq->cmd_flags) != op_is_flush(opf)) 593 return NULL; 594 595 plug->cached_rq = rq_list_next(rq); 596 } 597 598 rq->cmd_flags = opf; 599 INIT_LIST_HEAD(&rq->queuelist); 600 return rq; 601 } 602 603 struct request *blk_mq_alloc_request(struct request_queue *q, blk_opf_t opf, 604 blk_mq_req_flags_t flags) 605 { 606 struct request *rq; 607 608 rq = blk_mq_alloc_cached_request(q, opf, flags); 609 if (!rq) { 610 struct blk_mq_alloc_data data = { 611 .q = q, 612 .flags = flags, 613 .cmd_flags = opf, 614 .nr_tags = 1, 615 }; 616 int ret; 617 618 ret = blk_queue_enter(q, flags); 619 if (ret) 620 return ERR_PTR(ret); 621 622 rq = __blk_mq_alloc_requests(&data); 623 if (!rq) 624 goto out_queue_exit; 625 } 626 rq->__data_len = 0; 627 rq->__sector = (sector_t) -1; 628 rq->bio = rq->biotail = NULL; 629 return rq; 630 out_queue_exit: 631 blk_queue_exit(q); 632 return ERR_PTR(-EWOULDBLOCK); 633 } 634 EXPORT_SYMBOL(blk_mq_alloc_request); 635 636 struct request *blk_mq_alloc_request_hctx(struct request_queue *q, 637 blk_opf_t opf, blk_mq_req_flags_t flags, unsigned int hctx_idx) 638 { 639 struct blk_mq_alloc_data data = { 640 .q = q, 641 .flags = flags, 642 .cmd_flags = opf, 643 .nr_tags = 1, 644 }; 645 u64 alloc_time_ns = 0; 646 struct request *rq; 647 unsigned int cpu; 648 unsigned int tag; 649 int ret; 650 651 /* alloc_time includes depth and tag waits */ 652 if (blk_queue_rq_alloc_time(q)) 653 alloc_time_ns = ktime_get_ns(); 654 655 /* 656 * If the tag allocator sleeps we could get an allocation for a 657 * different hardware context. No need to complicate the low level 658 * allocator for this for the rare use case of a command tied to 659 * a specific queue. 660 */ 661 if (WARN_ON_ONCE(!(flags & BLK_MQ_REQ_NOWAIT)) || 662 WARN_ON_ONCE(!(flags & BLK_MQ_REQ_RESERVED))) 663 return ERR_PTR(-EINVAL); 664 665 if (hctx_idx >= q->nr_hw_queues) 666 return ERR_PTR(-EIO); 667 668 ret = blk_queue_enter(q, flags); 669 if (ret) 670 return ERR_PTR(ret); 671 672 /* 673 * Check if the hardware context is actually mapped to anything. 674 * If not tell the caller that it should skip this queue. 675 */ 676 ret = -EXDEV; 677 data.hctx = xa_load(&q->hctx_table, hctx_idx); 678 if (!blk_mq_hw_queue_mapped(data.hctx)) 679 goto out_queue_exit; 680 cpu = cpumask_first_and(data.hctx->cpumask, cpu_online_mask); 681 if (cpu >= nr_cpu_ids) 682 goto out_queue_exit; 683 data.ctx = __blk_mq_get_ctx(q, cpu); 684 685 if (!q->elevator) 686 blk_mq_tag_busy(data.hctx); 687 else 688 data.rq_flags |= RQF_ELV; 689 690 if (flags & BLK_MQ_REQ_RESERVED) 691 data.rq_flags |= RQF_RESV; 692 693 ret = -EWOULDBLOCK; 694 tag = blk_mq_get_tag(&data); 695 if (tag == BLK_MQ_NO_TAG) 696 goto out_queue_exit; 697 rq = blk_mq_rq_ctx_init(&data, blk_mq_tags_from_data(&data), tag, 698 alloc_time_ns); 699 rq->__data_len = 0; 700 rq->__sector = (sector_t) -1; 701 rq->bio = rq->biotail = NULL; 702 return rq; 703 704 out_queue_exit: 705 blk_queue_exit(q); 706 return ERR_PTR(ret); 707 } 708 EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx); 709 710 static void __blk_mq_free_request(struct request *rq) 711 { 712 struct request_queue *q = rq->q; 713 struct blk_mq_ctx *ctx = rq->mq_ctx; 714 struct blk_mq_hw_ctx *hctx = rq->mq_hctx; 715 const int sched_tag = rq->internal_tag; 716 717 blk_crypto_free_request(rq); 718 blk_pm_mark_last_busy(rq); 719 rq->mq_hctx = NULL; 720 if (rq->tag != BLK_MQ_NO_TAG) 721 blk_mq_put_tag(hctx->tags, ctx, rq->tag); 722 if (sched_tag != BLK_MQ_NO_TAG) 723 blk_mq_put_tag(hctx->sched_tags, ctx, sched_tag); 724 blk_mq_sched_restart(hctx); 725 blk_queue_exit(q); 726 } 727 728 void blk_mq_free_request(struct request *rq) 729 { 730 struct request_queue *q = rq->q; 731 struct blk_mq_hw_ctx *hctx = rq->mq_hctx; 732 733 if ((rq->rq_flags & RQF_ELVPRIV) && 734 q->elevator->type->ops.finish_request) 735 q->elevator->type->ops.finish_request(rq); 736 737 if (rq->rq_flags & RQF_MQ_INFLIGHT) 738 __blk_mq_dec_active_requests(hctx); 739 740 if (unlikely(laptop_mode && !blk_rq_is_passthrough(rq))) 741 laptop_io_completion(q->disk->bdi); 742 743 rq_qos_done(q, rq); 744 745 WRITE_ONCE(rq->state, MQ_RQ_IDLE); 746 if (req_ref_put_and_test(rq)) 747 __blk_mq_free_request(rq); 748 } 749 EXPORT_SYMBOL_GPL(blk_mq_free_request); 750 751 void blk_mq_free_plug_rqs(struct blk_plug *plug) 752 { 753 struct request *rq; 754 755 while ((rq = rq_list_pop(&plug->cached_rq)) != NULL) 756 blk_mq_free_request(rq); 757 } 758 759 void blk_dump_rq_flags(struct request *rq, char *msg) 760 { 761 printk(KERN_INFO "%s: dev %s: flags=%llx\n", msg, 762 rq->q->disk ? rq->q->disk->disk_name : "?", 763 (__force unsigned long long) rq->cmd_flags); 764 765 printk(KERN_INFO " sector %llu, nr/cnr %u/%u\n", 766 (unsigned long long)blk_rq_pos(rq), 767 blk_rq_sectors(rq), blk_rq_cur_sectors(rq)); 768 printk(KERN_INFO " bio %p, biotail %p, len %u\n", 769 rq->bio, rq->biotail, blk_rq_bytes(rq)); 770 } 771 EXPORT_SYMBOL(blk_dump_rq_flags); 772 773 static void req_bio_endio(struct request *rq, struct bio *bio, 774 unsigned int nbytes, blk_status_t error) 775 { 776 if (unlikely(error)) { 777 bio->bi_status = error; 778 } else if (req_op(rq) == REQ_OP_ZONE_APPEND) { 779 /* 780 * Partial zone append completions cannot be supported as the 781 * BIO fragments may end up not being written sequentially. 782 */ 783 if (bio->bi_iter.bi_size != nbytes) 784 bio->bi_status = BLK_STS_IOERR; 785 else 786 bio->bi_iter.bi_sector = rq->__sector; 787 } 788 789 bio_advance(bio, nbytes); 790 791 if (unlikely(rq->rq_flags & RQF_QUIET)) 792 bio_set_flag(bio, BIO_QUIET); 793 /* don't actually finish bio if it's part of flush sequence */ 794 if (bio->bi_iter.bi_size == 0 && !(rq->rq_flags & RQF_FLUSH_SEQ)) 795 bio_endio(bio); 796 } 797 798 static void blk_account_io_completion(struct request *req, unsigned int bytes) 799 { 800 if (req->part && blk_do_io_stat(req)) { 801 const int sgrp = op_stat_group(req_op(req)); 802 803 part_stat_lock(); 804 part_stat_add(req->part, sectors[sgrp], bytes >> 9); 805 part_stat_unlock(); 806 } 807 } 808 809 static void blk_print_req_error(struct request *req, blk_status_t status) 810 { 811 printk_ratelimited(KERN_ERR 812 "%s error, dev %s, sector %llu op 0x%x:(%s) flags 0x%x " 813 "phys_seg %u prio class %u\n", 814 blk_status_to_str(status), 815 req->q->disk ? req->q->disk->disk_name : "?", 816 blk_rq_pos(req), (__force u32)req_op(req), 817 blk_op_str(req_op(req)), 818 (__force u32)(req->cmd_flags & ~REQ_OP_MASK), 819 req->nr_phys_segments, 820 IOPRIO_PRIO_CLASS(req->ioprio)); 821 } 822 823 /* 824 * Fully end IO on a request. Does not support partial completions, or 825 * errors. 826 */ 827 static void blk_complete_request(struct request *req) 828 { 829 const bool is_flush = (req->rq_flags & RQF_FLUSH_SEQ) != 0; 830 int total_bytes = blk_rq_bytes(req); 831 struct bio *bio = req->bio; 832 833 trace_block_rq_complete(req, BLK_STS_OK, total_bytes); 834 835 if (!bio) 836 return; 837 838 #ifdef CONFIG_BLK_DEV_INTEGRITY 839 if (blk_integrity_rq(req) && req_op(req) == REQ_OP_READ) 840 req->q->integrity.profile->complete_fn(req, total_bytes); 841 #endif 842 843 blk_account_io_completion(req, total_bytes); 844 845 do { 846 struct bio *next = bio->bi_next; 847 848 /* Completion has already been traced */ 849 bio_clear_flag(bio, BIO_TRACE_COMPLETION); 850 851 if (req_op(req) == REQ_OP_ZONE_APPEND) 852 bio->bi_iter.bi_sector = req->__sector; 853 854 if (!is_flush) 855 bio_endio(bio); 856 bio = next; 857 } while (bio); 858 859 /* 860 * Reset counters so that the request stacking driver 861 * can find how many bytes remain in the request 862 * later. 863 */ 864 if (!req->end_io) { 865 req->bio = NULL; 866 req->__data_len = 0; 867 } 868 } 869 870 /** 871 * blk_update_request - Complete multiple bytes without completing the request 872 * @req: the request being processed 873 * @error: block status code 874 * @nr_bytes: number of bytes to complete for @req 875 * 876 * Description: 877 * Ends I/O on a number of bytes attached to @req, but doesn't complete 878 * the request structure even if @req doesn't have leftover. 879 * If @req has leftover, sets it up for the next range of segments. 880 * 881 * Passing the result of blk_rq_bytes() as @nr_bytes guarantees 882 * %false return from this function. 883 * 884 * Note: 885 * The RQF_SPECIAL_PAYLOAD flag is ignored on purpose in this function 886 * except in the consistency check at the end of this function. 887 * 888 * Return: 889 * %false - this request doesn't have any more data 890 * %true - this request has more data 891 **/ 892 bool blk_update_request(struct request *req, blk_status_t error, 893 unsigned int nr_bytes) 894 { 895 int total_bytes; 896 897 trace_block_rq_complete(req, error, nr_bytes); 898 899 if (!req->bio) 900 return false; 901 902 #ifdef CONFIG_BLK_DEV_INTEGRITY 903 if (blk_integrity_rq(req) && req_op(req) == REQ_OP_READ && 904 error == BLK_STS_OK) 905 req->q->integrity.profile->complete_fn(req, nr_bytes); 906 #endif 907 908 if (unlikely(error && !blk_rq_is_passthrough(req) && 909 !(req->rq_flags & RQF_QUIET)) && 910 !test_bit(GD_DEAD, &req->q->disk->state)) { 911 blk_print_req_error(req, error); 912 trace_block_rq_error(req, error, nr_bytes); 913 } 914 915 blk_account_io_completion(req, nr_bytes); 916 917 total_bytes = 0; 918 while (req->bio) { 919 struct bio *bio = req->bio; 920 unsigned bio_bytes = min(bio->bi_iter.bi_size, nr_bytes); 921 922 if (bio_bytes == bio->bi_iter.bi_size) 923 req->bio = bio->bi_next; 924 925 /* Completion has already been traced */ 926 bio_clear_flag(bio, BIO_TRACE_COMPLETION); 927 req_bio_endio(req, bio, bio_bytes, error); 928 929 total_bytes += bio_bytes; 930 nr_bytes -= bio_bytes; 931 932 if (!nr_bytes) 933 break; 934 } 935 936 /* 937 * completely done 938 */ 939 if (!req->bio) { 940 /* 941 * Reset counters so that the request stacking driver 942 * can find how many bytes remain in the request 943 * later. 944 */ 945 req->__data_len = 0; 946 return false; 947 } 948 949 req->__data_len -= total_bytes; 950 951 /* update sector only for requests with clear definition of sector */ 952 if (!blk_rq_is_passthrough(req)) 953 req->__sector += total_bytes >> 9; 954 955 /* mixed attributes always follow the first bio */ 956 if (req->rq_flags & RQF_MIXED_MERGE) { 957 req->cmd_flags &= ~REQ_FAILFAST_MASK; 958 req->cmd_flags |= req->bio->bi_opf & REQ_FAILFAST_MASK; 959 } 960 961 if (!(req->rq_flags & RQF_SPECIAL_PAYLOAD)) { 962 /* 963 * If total number of sectors is less than the first segment 964 * size, something has gone terribly wrong. 965 */ 966 if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) { 967 blk_dump_rq_flags(req, "request botched"); 968 req->__data_len = blk_rq_cur_bytes(req); 969 } 970 971 /* recalculate the number of segments */ 972 req->nr_phys_segments = blk_recalc_rq_segments(req); 973 } 974 975 return true; 976 } 977 EXPORT_SYMBOL_GPL(blk_update_request); 978 979 static void __blk_account_io_done(struct request *req, u64 now) 980 { 981 const int sgrp = op_stat_group(req_op(req)); 982 983 part_stat_lock(); 984 update_io_ticks(req->part, jiffies, true); 985 part_stat_inc(req->part, ios[sgrp]); 986 part_stat_add(req->part, nsecs[sgrp], now - req->start_time_ns); 987 part_stat_unlock(); 988 } 989 990 static inline void blk_account_io_done(struct request *req, u64 now) 991 { 992 /* 993 * Account IO completion. flush_rq isn't accounted as a 994 * normal IO on queueing nor completion. Accounting the 995 * containing request is enough. 996 */ 997 if (blk_do_io_stat(req) && req->part && 998 !(req->rq_flags & RQF_FLUSH_SEQ)) 999 __blk_account_io_done(req, now); 1000 } 1001 1002 static void __blk_account_io_start(struct request *rq) 1003 { 1004 /* 1005 * All non-passthrough requests are created from a bio with one 1006 * exception: when a flush command that is part of a flush sequence 1007 * generated by the state machine in blk-flush.c is cloned onto the 1008 * lower device by dm-multipath we can get here without a bio. 1009 */ 1010 if (rq->bio) 1011 rq->part = rq->bio->bi_bdev; 1012 else 1013 rq->part = rq->q->disk->part0; 1014 1015 part_stat_lock(); 1016 update_io_ticks(rq->part, jiffies, false); 1017 part_stat_unlock(); 1018 } 1019 1020 static inline void blk_account_io_start(struct request *req) 1021 { 1022 if (blk_do_io_stat(req)) 1023 __blk_account_io_start(req); 1024 } 1025 1026 static inline void __blk_mq_end_request_acct(struct request *rq, u64 now) 1027 { 1028 if (rq->rq_flags & RQF_STATS) { 1029 blk_mq_poll_stats_start(rq->q); 1030 blk_stat_add(rq, now); 1031 } 1032 1033 blk_mq_sched_completed_request(rq, now); 1034 blk_account_io_done(rq, now); 1035 } 1036 1037 inline void __blk_mq_end_request(struct request *rq, blk_status_t error) 1038 { 1039 if (blk_mq_need_time_stamp(rq)) 1040 __blk_mq_end_request_acct(rq, ktime_get_ns()); 1041 1042 if (rq->end_io) { 1043 rq_qos_done(rq->q, rq); 1044 if (rq->end_io(rq, error) == RQ_END_IO_FREE) 1045 blk_mq_free_request(rq); 1046 } else { 1047 blk_mq_free_request(rq); 1048 } 1049 } 1050 EXPORT_SYMBOL(__blk_mq_end_request); 1051 1052 void blk_mq_end_request(struct request *rq, blk_status_t error) 1053 { 1054 if (blk_update_request(rq, error, blk_rq_bytes(rq))) 1055 BUG(); 1056 __blk_mq_end_request(rq, error); 1057 } 1058 EXPORT_SYMBOL(blk_mq_end_request); 1059 1060 #define TAG_COMP_BATCH 32 1061 1062 static inline void blk_mq_flush_tag_batch(struct blk_mq_hw_ctx *hctx, 1063 int *tag_array, int nr_tags) 1064 { 1065 struct request_queue *q = hctx->queue; 1066 1067 /* 1068 * All requests should have been marked as RQF_MQ_INFLIGHT, so 1069 * update hctx->nr_active in batch 1070 */ 1071 if (hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED) 1072 __blk_mq_sub_active_requests(hctx, nr_tags); 1073 1074 blk_mq_put_tags(hctx->tags, tag_array, nr_tags); 1075 percpu_ref_put_many(&q->q_usage_counter, nr_tags); 1076 } 1077 1078 void blk_mq_end_request_batch(struct io_comp_batch *iob) 1079 { 1080 int tags[TAG_COMP_BATCH], nr_tags = 0; 1081 struct blk_mq_hw_ctx *cur_hctx = NULL; 1082 struct request *rq; 1083 u64 now = 0; 1084 1085 if (iob->need_ts) 1086 now = ktime_get_ns(); 1087 1088 while ((rq = rq_list_pop(&iob->req_list)) != NULL) { 1089 prefetch(rq->bio); 1090 prefetch(rq->rq_next); 1091 1092 blk_complete_request(rq); 1093 if (iob->need_ts) 1094 __blk_mq_end_request_acct(rq, now); 1095 1096 rq_qos_done(rq->q, rq); 1097 1098 /* 1099 * If end_io handler returns NONE, then it still has 1100 * ownership of the request. 1101 */ 1102 if (rq->end_io && rq->end_io(rq, 0) == RQ_END_IO_NONE) 1103 continue; 1104 1105 WRITE_ONCE(rq->state, MQ_RQ_IDLE); 1106 if (!req_ref_put_and_test(rq)) 1107 continue; 1108 1109 blk_crypto_free_request(rq); 1110 blk_pm_mark_last_busy(rq); 1111 1112 if (nr_tags == TAG_COMP_BATCH || cur_hctx != rq->mq_hctx) { 1113 if (cur_hctx) 1114 blk_mq_flush_tag_batch(cur_hctx, tags, nr_tags); 1115 nr_tags = 0; 1116 cur_hctx = rq->mq_hctx; 1117 } 1118 tags[nr_tags++] = rq->tag; 1119 } 1120 1121 if (nr_tags) 1122 blk_mq_flush_tag_batch(cur_hctx, tags, nr_tags); 1123 } 1124 EXPORT_SYMBOL_GPL(blk_mq_end_request_batch); 1125 1126 static void blk_complete_reqs(struct llist_head *list) 1127 { 1128 struct llist_node *entry = llist_reverse_order(llist_del_all(list)); 1129 struct request *rq, *next; 1130 1131 llist_for_each_entry_safe(rq, next, entry, ipi_list) 1132 rq->q->mq_ops->complete(rq); 1133 } 1134 1135 static __latent_entropy void blk_done_softirq(struct softirq_action *h) 1136 { 1137 blk_complete_reqs(this_cpu_ptr(&blk_cpu_done)); 1138 } 1139 1140 static int blk_softirq_cpu_dead(unsigned int cpu) 1141 { 1142 blk_complete_reqs(&per_cpu(blk_cpu_done, cpu)); 1143 return 0; 1144 } 1145 1146 static void __blk_mq_complete_request_remote(void *data) 1147 { 1148 __raise_softirq_irqoff(BLOCK_SOFTIRQ); 1149 } 1150 1151 static inline bool blk_mq_complete_need_ipi(struct request *rq) 1152 { 1153 int cpu = raw_smp_processor_id(); 1154 1155 if (!IS_ENABLED(CONFIG_SMP) || 1156 !test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags)) 1157 return false; 1158 /* 1159 * With force threaded interrupts enabled, raising softirq from an SMP 1160 * function call will always result in waking the ksoftirqd thread. 1161 * This is probably worse than completing the request on a different 1162 * cache domain. 1163 */ 1164 if (force_irqthreads()) 1165 return false; 1166 1167 /* same CPU or cache domain? Complete locally */ 1168 if (cpu == rq->mq_ctx->cpu || 1169 (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags) && 1170 cpus_share_cache(cpu, rq->mq_ctx->cpu))) 1171 return false; 1172 1173 /* don't try to IPI to an offline CPU */ 1174 return cpu_online(rq->mq_ctx->cpu); 1175 } 1176 1177 static void blk_mq_complete_send_ipi(struct request *rq) 1178 { 1179 struct llist_head *list; 1180 unsigned int cpu; 1181 1182 cpu = rq->mq_ctx->cpu; 1183 list = &per_cpu(blk_cpu_done, cpu); 1184 if (llist_add(&rq->ipi_list, list)) { 1185 INIT_CSD(&rq->csd, __blk_mq_complete_request_remote, rq); 1186 smp_call_function_single_async(cpu, &rq->csd); 1187 } 1188 } 1189 1190 static void blk_mq_raise_softirq(struct request *rq) 1191 { 1192 struct llist_head *list; 1193 1194 preempt_disable(); 1195 list = this_cpu_ptr(&blk_cpu_done); 1196 if (llist_add(&rq->ipi_list, list)) 1197 raise_softirq(BLOCK_SOFTIRQ); 1198 preempt_enable(); 1199 } 1200 1201 bool blk_mq_complete_request_remote(struct request *rq) 1202 { 1203 WRITE_ONCE(rq->state, MQ_RQ_COMPLETE); 1204 1205 /* 1206 * For request which hctx has only one ctx mapping, 1207 * or a polled request, always complete locally, 1208 * it's pointless to redirect the completion. 1209 */ 1210 if (rq->mq_hctx->nr_ctx == 1 || 1211 rq->cmd_flags & REQ_POLLED) 1212 return false; 1213 1214 if (blk_mq_complete_need_ipi(rq)) { 1215 blk_mq_complete_send_ipi(rq); 1216 return true; 1217 } 1218 1219 if (rq->q->nr_hw_queues == 1) { 1220 blk_mq_raise_softirq(rq); 1221 return true; 1222 } 1223 return false; 1224 } 1225 EXPORT_SYMBOL_GPL(blk_mq_complete_request_remote); 1226 1227 /** 1228 * blk_mq_complete_request - end I/O on a request 1229 * @rq: the request being processed 1230 * 1231 * Description: 1232 * Complete a request by scheduling the ->complete_rq operation. 1233 **/ 1234 void blk_mq_complete_request(struct request *rq) 1235 { 1236 if (!blk_mq_complete_request_remote(rq)) 1237 rq->q->mq_ops->complete(rq); 1238 } 1239 EXPORT_SYMBOL(blk_mq_complete_request); 1240 1241 /** 1242 * blk_mq_start_request - Start processing a request 1243 * @rq: Pointer to request to be started 1244 * 1245 * Function used by device drivers to notify the block layer that a request 1246 * is going to be processed now, so blk layer can do proper initializations 1247 * such as starting the timeout timer. 1248 */ 1249 void blk_mq_start_request(struct request *rq) 1250 { 1251 struct request_queue *q = rq->q; 1252 1253 trace_block_rq_issue(rq); 1254 1255 if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) { 1256 rq->io_start_time_ns = ktime_get_ns(); 1257 rq->stats_sectors = blk_rq_sectors(rq); 1258 rq->rq_flags |= RQF_STATS; 1259 rq_qos_issue(q, rq); 1260 } 1261 1262 WARN_ON_ONCE(blk_mq_rq_state(rq) != MQ_RQ_IDLE); 1263 1264 blk_add_timer(rq); 1265 WRITE_ONCE(rq->state, MQ_RQ_IN_FLIGHT); 1266 1267 #ifdef CONFIG_BLK_DEV_INTEGRITY 1268 if (blk_integrity_rq(rq) && req_op(rq) == REQ_OP_WRITE) 1269 q->integrity.profile->prepare_fn(rq); 1270 #endif 1271 if (rq->bio && rq->bio->bi_opf & REQ_POLLED) 1272 WRITE_ONCE(rq->bio->bi_cookie, blk_rq_to_qc(rq)); 1273 } 1274 EXPORT_SYMBOL(blk_mq_start_request); 1275 1276 /* 1277 * Allow 2x BLK_MAX_REQUEST_COUNT requests on plug queue for multiple 1278 * queues. This is important for md arrays to benefit from merging 1279 * requests. 1280 */ 1281 static inline unsigned short blk_plug_max_rq_count(struct blk_plug *plug) 1282 { 1283 if (plug->multiple_queues) 1284 return BLK_MAX_REQUEST_COUNT * 2; 1285 return BLK_MAX_REQUEST_COUNT; 1286 } 1287 1288 static void blk_add_rq_to_plug(struct blk_plug *plug, struct request *rq) 1289 { 1290 struct request *last = rq_list_peek(&plug->mq_list); 1291 1292 if (!plug->rq_count) { 1293 trace_block_plug(rq->q); 1294 } else if (plug->rq_count >= blk_plug_max_rq_count(plug) || 1295 (!blk_queue_nomerges(rq->q) && 1296 blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) { 1297 blk_mq_flush_plug_list(plug, false); 1298 last = NULL; 1299 trace_block_plug(rq->q); 1300 } 1301 1302 if (!plug->multiple_queues && last && last->q != rq->q) 1303 plug->multiple_queues = true; 1304 if (!plug->has_elevator && (rq->rq_flags & RQF_ELV)) 1305 plug->has_elevator = true; 1306 rq->rq_next = NULL; 1307 rq_list_add(&plug->mq_list, rq); 1308 plug->rq_count++; 1309 } 1310 1311 /** 1312 * blk_execute_rq_nowait - insert a request to I/O scheduler for execution 1313 * @rq: request to insert 1314 * @at_head: insert request at head or tail of queue 1315 * 1316 * Description: 1317 * Insert a fully prepared request at the back of the I/O scheduler queue 1318 * for execution. Don't wait for completion. 1319 * 1320 * Note: 1321 * This function will invoke @done directly if the queue is dead. 1322 */ 1323 void blk_execute_rq_nowait(struct request *rq, bool at_head) 1324 { 1325 WARN_ON(irqs_disabled()); 1326 WARN_ON(!blk_rq_is_passthrough(rq)); 1327 1328 blk_account_io_start(rq); 1329 1330 /* 1331 * As plugging can be enabled for passthrough requests on a zoned 1332 * device, directly accessing the plug instead of using blk_mq_plug() 1333 * should not have any consequences. 1334 */ 1335 if (current->plug) 1336 blk_add_rq_to_plug(current->plug, rq); 1337 else 1338 blk_mq_sched_insert_request(rq, at_head, true, false); 1339 } 1340 EXPORT_SYMBOL_GPL(blk_execute_rq_nowait); 1341 1342 struct blk_rq_wait { 1343 struct completion done; 1344 blk_status_t ret; 1345 }; 1346 1347 static enum rq_end_io_ret blk_end_sync_rq(struct request *rq, blk_status_t ret) 1348 { 1349 struct blk_rq_wait *wait = rq->end_io_data; 1350 1351 wait->ret = ret; 1352 complete(&wait->done); 1353 return RQ_END_IO_NONE; 1354 } 1355 1356 bool blk_rq_is_poll(struct request *rq) 1357 { 1358 if (!rq->mq_hctx) 1359 return false; 1360 if (rq->mq_hctx->type != HCTX_TYPE_POLL) 1361 return false; 1362 if (WARN_ON_ONCE(!rq->bio)) 1363 return false; 1364 return true; 1365 } 1366 EXPORT_SYMBOL_GPL(blk_rq_is_poll); 1367 1368 static void blk_rq_poll_completion(struct request *rq, struct completion *wait) 1369 { 1370 do { 1371 bio_poll(rq->bio, NULL, 0); 1372 cond_resched(); 1373 } while (!completion_done(wait)); 1374 } 1375 1376 /** 1377 * blk_execute_rq - insert a request into queue for execution 1378 * @rq: request to insert 1379 * @at_head: insert request at head or tail of queue 1380 * 1381 * Description: 1382 * Insert a fully prepared request at the back of the I/O scheduler queue 1383 * for execution and wait for completion. 1384 * Return: The blk_status_t result provided to blk_mq_end_request(). 1385 */ 1386 blk_status_t blk_execute_rq(struct request *rq, bool at_head) 1387 { 1388 struct blk_rq_wait wait = { 1389 .done = COMPLETION_INITIALIZER_ONSTACK(wait.done), 1390 }; 1391 1392 WARN_ON(irqs_disabled()); 1393 WARN_ON(!blk_rq_is_passthrough(rq)); 1394 1395 rq->end_io_data = &wait; 1396 rq->end_io = blk_end_sync_rq; 1397 1398 blk_account_io_start(rq); 1399 blk_mq_sched_insert_request(rq, at_head, true, false); 1400 1401 if (blk_rq_is_poll(rq)) { 1402 blk_rq_poll_completion(rq, &wait.done); 1403 } else { 1404 /* 1405 * Prevent hang_check timer from firing at us during very long 1406 * I/O 1407 */ 1408 unsigned long hang_check = sysctl_hung_task_timeout_secs; 1409 1410 if (hang_check) 1411 while (!wait_for_completion_io_timeout(&wait.done, 1412 hang_check * (HZ/2))) 1413 ; 1414 else 1415 wait_for_completion_io(&wait.done); 1416 } 1417 1418 return wait.ret; 1419 } 1420 EXPORT_SYMBOL(blk_execute_rq); 1421 1422 static void __blk_mq_requeue_request(struct request *rq) 1423 { 1424 struct request_queue *q = rq->q; 1425 1426 blk_mq_put_driver_tag(rq); 1427 1428 trace_block_rq_requeue(rq); 1429 rq_qos_requeue(q, rq); 1430 1431 if (blk_mq_request_started(rq)) { 1432 WRITE_ONCE(rq->state, MQ_RQ_IDLE); 1433 rq->rq_flags &= ~RQF_TIMED_OUT; 1434 } 1435 } 1436 1437 void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list) 1438 { 1439 __blk_mq_requeue_request(rq); 1440 1441 /* this request will be re-inserted to io scheduler queue */ 1442 blk_mq_sched_requeue_request(rq); 1443 1444 blk_mq_add_to_requeue_list(rq, true, kick_requeue_list); 1445 } 1446 EXPORT_SYMBOL(blk_mq_requeue_request); 1447 1448 static void blk_mq_requeue_work(struct work_struct *work) 1449 { 1450 struct request_queue *q = 1451 container_of(work, struct request_queue, requeue_work.work); 1452 LIST_HEAD(rq_list); 1453 struct request *rq, *next; 1454 1455 spin_lock_irq(&q->requeue_lock); 1456 list_splice_init(&q->requeue_list, &rq_list); 1457 spin_unlock_irq(&q->requeue_lock); 1458 1459 list_for_each_entry_safe(rq, next, &rq_list, queuelist) { 1460 if (!(rq->rq_flags & (RQF_SOFTBARRIER | RQF_DONTPREP))) 1461 continue; 1462 1463 rq->rq_flags &= ~RQF_SOFTBARRIER; 1464 list_del_init(&rq->queuelist); 1465 /* 1466 * If RQF_DONTPREP, rq has contained some driver specific 1467 * data, so insert it to hctx dispatch list to avoid any 1468 * merge. 1469 */ 1470 if (rq->rq_flags & RQF_DONTPREP) 1471 blk_mq_request_bypass_insert(rq, false, false); 1472 else 1473 blk_mq_sched_insert_request(rq, true, false, false); 1474 } 1475 1476 while (!list_empty(&rq_list)) { 1477 rq = list_entry(rq_list.next, struct request, queuelist); 1478 list_del_init(&rq->queuelist); 1479 blk_mq_sched_insert_request(rq, false, false, false); 1480 } 1481 1482 blk_mq_run_hw_queues(q, false); 1483 } 1484 1485 void blk_mq_add_to_requeue_list(struct request *rq, bool at_head, 1486 bool kick_requeue_list) 1487 { 1488 struct request_queue *q = rq->q; 1489 unsigned long flags; 1490 1491 /* 1492 * We abuse this flag that is otherwise used by the I/O scheduler to 1493 * request head insertion from the workqueue. 1494 */ 1495 BUG_ON(rq->rq_flags & RQF_SOFTBARRIER); 1496 1497 spin_lock_irqsave(&q->requeue_lock, flags); 1498 if (at_head) { 1499 rq->rq_flags |= RQF_SOFTBARRIER; 1500 list_add(&rq->queuelist, &q->requeue_list); 1501 } else { 1502 list_add_tail(&rq->queuelist, &q->requeue_list); 1503 } 1504 spin_unlock_irqrestore(&q->requeue_lock, flags); 1505 1506 if (kick_requeue_list) 1507 blk_mq_kick_requeue_list(q); 1508 } 1509 1510 void blk_mq_kick_requeue_list(struct request_queue *q) 1511 { 1512 kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work, 0); 1513 } 1514 EXPORT_SYMBOL(blk_mq_kick_requeue_list); 1515 1516 void blk_mq_delay_kick_requeue_list(struct request_queue *q, 1517 unsigned long msecs) 1518 { 1519 kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work, 1520 msecs_to_jiffies(msecs)); 1521 } 1522 EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list); 1523 1524 static bool blk_mq_rq_inflight(struct request *rq, void *priv) 1525 { 1526 /* 1527 * If we find a request that isn't idle we know the queue is busy 1528 * as it's checked in the iter. 1529 * Return false to stop the iteration. 1530 */ 1531 if (blk_mq_request_started(rq)) { 1532 bool *busy = priv; 1533 1534 *busy = true; 1535 return false; 1536 } 1537 1538 return true; 1539 } 1540 1541 bool blk_mq_queue_inflight(struct request_queue *q) 1542 { 1543 bool busy = false; 1544 1545 blk_mq_queue_tag_busy_iter(q, blk_mq_rq_inflight, &busy); 1546 return busy; 1547 } 1548 EXPORT_SYMBOL_GPL(blk_mq_queue_inflight); 1549 1550 static void blk_mq_rq_timed_out(struct request *req) 1551 { 1552 req->rq_flags |= RQF_TIMED_OUT; 1553 if (req->q->mq_ops->timeout) { 1554 enum blk_eh_timer_return ret; 1555 1556 ret = req->q->mq_ops->timeout(req); 1557 if (ret == BLK_EH_DONE) 1558 return; 1559 WARN_ON_ONCE(ret != BLK_EH_RESET_TIMER); 1560 } 1561 1562 blk_add_timer(req); 1563 } 1564 1565 struct blk_expired_data { 1566 bool has_timedout_rq; 1567 unsigned long next; 1568 unsigned long timeout_start; 1569 }; 1570 1571 static bool blk_mq_req_expired(struct request *rq, struct blk_expired_data *expired) 1572 { 1573 unsigned long deadline; 1574 1575 if (blk_mq_rq_state(rq) != MQ_RQ_IN_FLIGHT) 1576 return false; 1577 if (rq->rq_flags & RQF_TIMED_OUT) 1578 return false; 1579 1580 deadline = READ_ONCE(rq->deadline); 1581 if (time_after_eq(expired->timeout_start, deadline)) 1582 return true; 1583 1584 if (expired->next == 0) 1585 expired->next = deadline; 1586 else if (time_after(expired->next, deadline)) 1587 expired->next = deadline; 1588 return false; 1589 } 1590 1591 void blk_mq_put_rq_ref(struct request *rq) 1592 { 1593 if (is_flush_rq(rq)) { 1594 if (rq->end_io(rq, 0) == RQ_END_IO_FREE) 1595 blk_mq_free_request(rq); 1596 } else if (req_ref_put_and_test(rq)) { 1597 __blk_mq_free_request(rq); 1598 } 1599 } 1600 1601 static bool blk_mq_check_expired(struct request *rq, void *priv) 1602 { 1603 struct blk_expired_data *expired = priv; 1604 1605 /* 1606 * blk_mq_queue_tag_busy_iter() has locked the request, so it cannot 1607 * be reallocated underneath the timeout handler's processing, then 1608 * the expire check is reliable. If the request is not expired, then 1609 * it was completed and reallocated as a new request after returning 1610 * from blk_mq_check_expired(). 1611 */ 1612 if (blk_mq_req_expired(rq, expired)) { 1613 expired->has_timedout_rq = true; 1614 return false; 1615 } 1616 return true; 1617 } 1618 1619 static bool blk_mq_handle_expired(struct request *rq, void *priv) 1620 { 1621 struct blk_expired_data *expired = priv; 1622 1623 if (blk_mq_req_expired(rq, expired)) 1624 blk_mq_rq_timed_out(rq); 1625 return true; 1626 } 1627 1628 static void blk_mq_timeout_work(struct work_struct *work) 1629 { 1630 struct request_queue *q = 1631 container_of(work, struct request_queue, timeout_work); 1632 struct blk_expired_data expired = { 1633 .timeout_start = jiffies, 1634 }; 1635 struct blk_mq_hw_ctx *hctx; 1636 unsigned long i; 1637 1638 /* A deadlock might occur if a request is stuck requiring a 1639 * timeout at the same time a queue freeze is waiting 1640 * completion, since the timeout code would not be able to 1641 * acquire the queue reference here. 1642 * 1643 * That's why we don't use blk_queue_enter here; instead, we use 1644 * percpu_ref_tryget directly, because we need to be able to 1645 * obtain a reference even in the short window between the queue 1646 * starting to freeze, by dropping the first reference in 1647 * blk_freeze_queue_start, and the moment the last request is 1648 * consumed, marked by the instant q_usage_counter reaches 1649 * zero. 1650 */ 1651 if (!percpu_ref_tryget(&q->q_usage_counter)) 1652 return; 1653 1654 /* check if there is any timed-out request */ 1655 blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &expired); 1656 if (expired.has_timedout_rq) { 1657 /* 1658 * Before walking tags, we must ensure any submit started 1659 * before the current time has finished. Since the submit 1660 * uses srcu or rcu, wait for a synchronization point to 1661 * ensure all running submits have finished 1662 */ 1663 blk_mq_wait_quiesce_done(q->tag_set); 1664 1665 expired.next = 0; 1666 blk_mq_queue_tag_busy_iter(q, blk_mq_handle_expired, &expired); 1667 } 1668 1669 if (expired.next != 0) { 1670 mod_timer(&q->timeout, expired.next); 1671 } else { 1672 /* 1673 * Request timeouts are handled as a forward rolling timer. If 1674 * we end up here it means that no requests are pending and 1675 * also that no request has been pending for a while. Mark 1676 * each hctx as idle. 1677 */ 1678 queue_for_each_hw_ctx(q, hctx, i) { 1679 /* the hctx may be unmapped, so check it here */ 1680 if (blk_mq_hw_queue_mapped(hctx)) 1681 blk_mq_tag_idle(hctx); 1682 } 1683 } 1684 blk_queue_exit(q); 1685 } 1686 1687 struct flush_busy_ctx_data { 1688 struct blk_mq_hw_ctx *hctx; 1689 struct list_head *list; 1690 }; 1691 1692 static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data) 1693 { 1694 struct flush_busy_ctx_data *flush_data = data; 1695 struct blk_mq_hw_ctx *hctx = flush_data->hctx; 1696 struct blk_mq_ctx *ctx = hctx->ctxs[bitnr]; 1697 enum hctx_type type = hctx->type; 1698 1699 spin_lock(&ctx->lock); 1700 list_splice_tail_init(&ctx->rq_lists[type], flush_data->list); 1701 sbitmap_clear_bit(sb, bitnr); 1702 spin_unlock(&ctx->lock); 1703 return true; 1704 } 1705 1706 /* 1707 * Process software queues that have been marked busy, splicing them 1708 * to the for-dispatch 1709 */ 1710 void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list) 1711 { 1712 struct flush_busy_ctx_data data = { 1713 .hctx = hctx, 1714 .list = list, 1715 }; 1716 1717 sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data); 1718 } 1719 EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs); 1720 1721 struct dispatch_rq_data { 1722 struct blk_mq_hw_ctx *hctx; 1723 struct request *rq; 1724 }; 1725 1726 static bool dispatch_rq_from_ctx(struct sbitmap *sb, unsigned int bitnr, 1727 void *data) 1728 { 1729 struct dispatch_rq_data *dispatch_data = data; 1730 struct blk_mq_hw_ctx *hctx = dispatch_data->hctx; 1731 struct blk_mq_ctx *ctx = hctx->ctxs[bitnr]; 1732 enum hctx_type type = hctx->type; 1733 1734 spin_lock(&ctx->lock); 1735 if (!list_empty(&ctx->rq_lists[type])) { 1736 dispatch_data->rq = list_entry_rq(ctx->rq_lists[type].next); 1737 list_del_init(&dispatch_data->rq->queuelist); 1738 if (list_empty(&ctx->rq_lists[type])) 1739 sbitmap_clear_bit(sb, bitnr); 1740 } 1741 spin_unlock(&ctx->lock); 1742 1743 return !dispatch_data->rq; 1744 } 1745 1746 struct request *blk_mq_dequeue_from_ctx(struct blk_mq_hw_ctx *hctx, 1747 struct blk_mq_ctx *start) 1748 { 1749 unsigned off = start ? start->index_hw[hctx->type] : 0; 1750 struct dispatch_rq_data data = { 1751 .hctx = hctx, 1752 .rq = NULL, 1753 }; 1754 1755 __sbitmap_for_each_set(&hctx->ctx_map, off, 1756 dispatch_rq_from_ctx, &data); 1757 1758 return data.rq; 1759 } 1760 1761 static bool __blk_mq_alloc_driver_tag(struct request *rq) 1762 { 1763 struct sbitmap_queue *bt = &rq->mq_hctx->tags->bitmap_tags; 1764 unsigned int tag_offset = rq->mq_hctx->tags->nr_reserved_tags; 1765 int tag; 1766 1767 blk_mq_tag_busy(rq->mq_hctx); 1768 1769 if (blk_mq_tag_is_reserved(rq->mq_hctx->sched_tags, rq->internal_tag)) { 1770 bt = &rq->mq_hctx->tags->breserved_tags; 1771 tag_offset = 0; 1772 } else { 1773 if (!hctx_may_queue(rq->mq_hctx, bt)) 1774 return false; 1775 } 1776 1777 tag = __sbitmap_queue_get(bt); 1778 if (tag == BLK_MQ_NO_TAG) 1779 return false; 1780 1781 rq->tag = tag + tag_offset; 1782 return true; 1783 } 1784 1785 bool __blk_mq_get_driver_tag(struct blk_mq_hw_ctx *hctx, struct request *rq) 1786 { 1787 if (rq->tag == BLK_MQ_NO_TAG && !__blk_mq_alloc_driver_tag(rq)) 1788 return false; 1789 1790 if ((hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED) && 1791 !(rq->rq_flags & RQF_MQ_INFLIGHT)) { 1792 rq->rq_flags |= RQF_MQ_INFLIGHT; 1793 __blk_mq_inc_active_requests(hctx); 1794 } 1795 hctx->tags->rqs[rq->tag] = rq; 1796 return true; 1797 } 1798 1799 static int blk_mq_dispatch_wake(wait_queue_entry_t *wait, unsigned mode, 1800 int flags, void *key) 1801 { 1802 struct blk_mq_hw_ctx *hctx; 1803 1804 hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait); 1805 1806 spin_lock(&hctx->dispatch_wait_lock); 1807 if (!list_empty(&wait->entry)) { 1808 struct sbitmap_queue *sbq; 1809 1810 list_del_init(&wait->entry); 1811 sbq = &hctx->tags->bitmap_tags; 1812 atomic_dec(&sbq->ws_active); 1813 } 1814 spin_unlock(&hctx->dispatch_wait_lock); 1815 1816 blk_mq_run_hw_queue(hctx, true); 1817 return 1; 1818 } 1819 1820 /* 1821 * Mark us waiting for a tag. For shared tags, this involves hooking us into 1822 * the tag wakeups. For non-shared tags, we can simply mark us needing a 1823 * restart. For both cases, take care to check the condition again after 1824 * marking us as waiting. 1825 */ 1826 static bool blk_mq_mark_tag_wait(struct blk_mq_hw_ctx *hctx, 1827 struct request *rq) 1828 { 1829 struct sbitmap_queue *sbq; 1830 struct wait_queue_head *wq; 1831 wait_queue_entry_t *wait; 1832 bool ret; 1833 1834 if (!(hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED) && 1835 !(blk_mq_is_shared_tags(hctx->flags))) { 1836 blk_mq_sched_mark_restart_hctx(hctx); 1837 1838 /* 1839 * It's possible that a tag was freed in the window between the 1840 * allocation failure and adding the hardware queue to the wait 1841 * queue. 1842 * 1843 * Don't clear RESTART here, someone else could have set it. 1844 * At most this will cost an extra queue run. 1845 */ 1846 return blk_mq_get_driver_tag(rq); 1847 } 1848 1849 wait = &hctx->dispatch_wait; 1850 if (!list_empty_careful(&wait->entry)) 1851 return false; 1852 1853 if (blk_mq_tag_is_reserved(rq->mq_hctx->sched_tags, rq->internal_tag)) 1854 sbq = &hctx->tags->breserved_tags; 1855 else 1856 sbq = &hctx->tags->bitmap_tags; 1857 wq = &bt_wait_ptr(sbq, hctx)->wait; 1858 1859 spin_lock_irq(&wq->lock); 1860 spin_lock(&hctx->dispatch_wait_lock); 1861 if (!list_empty(&wait->entry)) { 1862 spin_unlock(&hctx->dispatch_wait_lock); 1863 spin_unlock_irq(&wq->lock); 1864 return false; 1865 } 1866 1867 atomic_inc(&sbq->ws_active); 1868 wait->flags &= ~WQ_FLAG_EXCLUSIVE; 1869 __add_wait_queue(wq, wait); 1870 1871 /* 1872 * It's possible that a tag was freed in the window between the 1873 * allocation failure and adding the hardware queue to the wait 1874 * queue. 1875 */ 1876 ret = blk_mq_get_driver_tag(rq); 1877 if (!ret) { 1878 spin_unlock(&hctx->dispatch_wait_lock); 1879 spin_unlock_irq(&wq->lock); 1880 return false; 1881 } 1882 1883 /* 1884 * We got a tag, remove ourselves from the wait queue to ensure 1885 * someone else gets the wakeup. 1886 */ 1887 list_del_init(&wait->entry); 1888 atomic_dec(&sbq->ws_active); 1889 spin_unlock(&hctx->dispatch_wait_lock); 1890 spin_unlock_irq(&wq->lock); 1891 1892 return true; 1893 } 1894 1895 #define BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT 8 1896 #define BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR 4 1897 /* 1898 * Update dispatch busy with the Exponential Weighted Moving Average(EWMA): 1899 * - EWMA is one simple way to compute running average value 1900 * - weight(7/8 and 1/8) is applied so that it can decrease exponentially 1901 * - take 4 as factor for avoiding to get too small(0) result, and this 1902 * factor doesn't matter because EWMA decreases exponentially 1903 */ 1904 static void blk_mq_update_dispatch_busy(struct blk_mq_hw_ctx *hctx, bool busy) 1905 { 1906 unsigned int ewma; 1907 1908 ewma = hctx->dispatch_busy; 1909 1910 if (!ewma && !busy) 1911 return; 1912 1913 ewma *= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT - 1; 1914 if (busy) 1915 ewma += 1 << BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR; 1916 ewma /= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT; 1917 1918 hctx->dispatch_busy = ewma; 1919 } 1920 1921 #define BLK_MQ_RESOURCE_DELAY 3 /* ms units */ 1922 1923 static void blk_mq_handle_dev_resource(struct request *rq, 1924 struct list_head *list) 1925 { 1926 list_add(&rq->queuelist, list); 1927 __blk_mq_requeue_request(rq); 1928 } 1929 1930 static void blk_mq_handle_zone_resource(struct request *rq, 1931 struct list_head *zone_list) 1932 { 1933 /* 1934 * If we end up here it is because we cannot dispatch a request to a 1935 * specific zone due to LLD level zone-write locking or other zone 1936 * related resource not being available. In this case, set the request 1937 * aside in zone_list for retrying it later. 1938 */ 1939 list_add(&rq->queuelist, zone_list); 1940 __blk_mq_requeue_request(rq); 1941 } 1942 1943 enum prep_dispatch { 1944 PREP_DISPATCH_OK, 1945 PREP_DISPATCH_NO_TAG, 1946 PREP_DISPATCH_NO_BUDGET, 1947 }; 1948 1949 static enum prep_dispatch blk_mq_prep_dispatch_rq(struct request *rq, 1950 bool need_budget) 1951 { 1952 struct blk_mq_hw_ctx *hctx = rq->mq_hctx; 1953 int budget_token = -1; 1954 1955 if (need_budget) { 1956 budget_token = blk_mq_get_dispatch_budget(rq->q); 1957 if (budget_token < 0) { 1958 blk_mq_put_driver_tag(rq); 1959 return PREP_DISPATCH_NO_BUDGET; 1960 } 1961 blk_mq_set_rq_budget_token(rq, budget_token); 1962 } 1963 1964 if (!blk_mq_get_driver_tag(rq)) { 1965 /* 1966 * The initial allocation attempt failed, so we need to 1967 * rerun the hardware queue when a tag is freed. The 1968 * waitqueue takes care of that. If the queue is run 1969 * before we add this entry back on the dispatch list, 1970 * we'll re-run it below. 1971 */ 1972 if (!blk_mq_mark_tag_wait(hctx, rq)) { 1973 /* 1974 * All budgets not got from this function will be put 1975 * together during handling partial dispatch 1976 */ 1977 if (need_budget) 1978 blk_mq_put_dispatch_budget(rq->q, budget_token); 1979 return PREP_DISPATCH_NO_TAG; 1980 } 1981 } 1982 1983 return PREP_DISPATCH_OK; 1984 } 1985 1986 /* release all allocated budgets before calling to blk_mq_dispatch_rq_list */ 1987 static void blk_mq_release_budgets(struct request_queue *q, 1988 struct list_head *list) 1989 { 1990 struct request *rq; 1991 1992 list_for_each_entry(rq, list, queuelist) { 1993 int budget_token = blk_mq_get_rq_budget_token(rq); 1994 1995 if (budget_token >= 0) 1996 blk_mq_put_dispatch_budget(q, budget_token); 1997 } 1998 } 1999 2000 /* 2001 * blk_mq_commit_rqs will notify driver using bd->last that there is no 2002 * more requests. (See comment in struct blk_mq_ops for commit_rqs for 2003 * details) 2004 * Attention, we should explicitly call this in unusual cases: 2005 * 1) did not queue everything initially scheduled to queue 2006 * 2) the last attempt to queue a request failed 2007 */ 2008 static void blk_mq_commit_rqs(struct blk_mq_hw_ctx *hctx, int queued, 2009 bool from_schedule) 2010 { 2011 if (hctx->queue->mq_ops->commit_rqs && queued) { 2012 trace_block_unplug(hctx->queue, queued, !from_schedule); 2013 hctx->queue->mq_ops->commit_rqs(hctx); 2014 } 2015 } 2016 2017 /* 2018 * Returns true if we did some work AND can potentially do more. 2019 */ 2020 bool blk_mq_dispatch_rq_list(struct blk_mq_hw_ctx *hctx, struct list_head *list, 2021 unsigned int nr_budgets) 2022 { 2023 enum prep_dispatch prep; 2024 struct request_queue *q = hctx->queue; 2025 struct request *rq; 2026 int queued; 2027 blk_status_t ret = BLK_STS_OK; 2028 LIST_HEAD(zone_list); 2029 bool needs_resource = false; 2030 2031 if (list_empty(list)) 2032 return false; 2033 2034 /* 2035 * Now process all the entries, sending them to the driver. 2036 */ 2037 queued = 0; 2038 do { 2039 struct blk_mq_queue_data bd; 2040 2041 rq = list_first_entry(list, struct request, queuelist); 2042 2043 WARN_ON_ONCE(hctx != rq->mq_hctx); 2044 prep = blk_mq_prep_dispatch_rq(rq, !nr_budgets); 2045 if (prep != PREP_DISPATCH_OK) 2046 break; 2047 2048 list_del_init(&rq->queuelist); 2049 2050 bd.rq = rq; 2051 bd.last = list_empty(list); 2052 2053 /* 2054 * once the request is queued to lld, no need to cover the 2055 * budget any more 2056 */ 2057 if (nr_budgets) 2058 nr_budgets--; 2059 ret = q->mq_ops->queue_rq(hctx, &bd); 2060 switch (ret) { 2061 case BLK_STS_OK: 2062 queued++; 2063 break; 2064 case BLK_STS_RESOURCE: 2065 needs_resource = true; 2066 fallthrough; 2067 case BLK_STS_DEV_RESOURCE: 2068 blk_mq_handle_dev_resource(rq, list); 2069 goto out; 2070 case BLK_STS_ZONE_RESOURCE: 2071 /* 2072 * Move the request to zone_list and keep going through 2073 * the dispatch list to find more requests the drive can 2074 * accept. 2075 */ 2076 blk_mq_handle_zone_resource(rq, &zone_list); 2077 needs_resource = true; 2078 break; 2079 default: 2080 blk_mq_end_request(rq, ret); 2081 } 2082 } while (!list_empty(list)); 2083 out: 2084 if (!list_empty(&zone_list)) 2085 list_splice_tail_init(&zone_list, list); 2086 2087 /* If we didn't flush the entire list, we could have told the driver 2088 * there was more coming, but that turned out to be a lie. 2089 */ 2090 if (!list_empty(list) || ret != BLK_STS_OK) 2091 blk_mq_commit_rqs(hctx, queued, false); 2092 2093 /* 2094 * Any items that need requeuing? Stuff them into hctx->dispatch, 2095 * that is where we will continue on next queue run. 2096 */ 2097 if (!list_empty(list)) { 2098 bool needs_restart; 2099 /* For non-shared tags, the RESTART check will suffice */ 2100 bool no_tag = prep == PREP_DISPATCH_NO_TAG && 2101 ((hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED) || 2102 blk_mq_is_shared_tags(hctx->flags)); 2103 2104 if (nr_budgets) 2105 blk_mq_release_budgets(q, list); 2106 2107 spin_lock(&hctx->lock); 2108 list_splice_tail_init(list, &hctx->dispatch); 2109 spin_unlock(&hctx->lock); 2110 2111 /* 2112 * Order adding requests to hctx->dispatch and checking 2113 * SCHED_RESTART flag. The pair of this smp_mb() is the one 2114 * in blk_mq_sched_restart(). Avoid restart code path to 2115 * miss the new added requests to hctx->dispatch, meantime 2116 * SCHED_RESTART is observed here. 2117 */ 2118 smp_mb(); 2119 2120 /* 2121 * If SCHED_RESTART was set by the caller of this function and 2122 * it is no longer set that means that it was cleared by another 2123 * thread and hence that a queue rerun is needed. 2124 * 2125 * If 'no_tag' is set, that means that we failed getting 2126 * a driver tag with an I/O scheduler attached. If our dispatch 2127 * waitqueue is no longer active, ensure that we run the queue 2128 * AFTER adding our entries back to the list. 2129 * 2130 * If no I/O scheduler has been configured it is possible that 2131 * the hardware queue got stopped and restarted before requests 2132 * were pushed back onto the dispatch list. Rerun the queue to 2133 * avoid starvation. Notes: 2134 * - blk_mq_run_hw_queue() checks whether or not a queue has 2135 * been stopped before rerunning a queue. 2136 * - Some but not all block drivers stop a queue before 2137 * returning BLK_STS_RESOURCE. Two exceptions are scsi-mq 2138 * and dm-rq. 2139 * 2140 * If driver returns BLK_STS_RESOURCE and SCHED_RESTART 2141 * bit is set, run queue after a delay to avoid IO stalls 2142 * that could otherwise occur if the queue is idle. We'll do 2143 * similar if we couldn't get budget or couldn't lock a zone 2144 * and SCHED_RESTART is set. 2145 */ 2146 needs_restart = blk_mq_sched_needs_restart(hctx); 2147 if (prep == PREP_DISPATCH_NO_BUDGET) 2148 needs_resource = true; 2149 if (!needs_restart || 2150 (no_tag && list_empty_careful(&hctx->dispatch_wait.entry))) 2151 blk_mq_run_hw_queue(hctx, true); 2152 else if (needs_resource) 2153 blk_mq_delay_run_hw_queue(hctx, BLK_MQ_RESOURCE_DELAY); 2154 2155 blk_mq_update_dispatch_busy(hctx, true); 2156 return false; 2157 } 2158 2159 blk_mq_update_dispatch_busy(hctx, false); 2160 return true; 2161 } 2162 2163 /** 2164 * __blk_mq_run_hw_queue - Run a hardware queue. 2165 * @hctx: Pointer to the hardware queue to run. 2166 * 2167 * Send pending requests to the hardware. 2168 */ 2169 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx) 2170 { 2171 /* 2172 * We can't run the queue inline with ints disabled. Ensure that 2173 * we catch bad users of this early. 2174 */ 2175 WARN_ON_ONCE(in_interrupt()); 2176 2177 blk_mq_run_dispatch_ops(hctx->queue, 2178 blk_mq_sched_dispatch_requests(hctx)); 2179 } 2180 2181 static inline int blk_mq_first_mapped_cpu(struct blk_mq_hw_ctx *hctx) 2182 { 2183 int cpu = cpumask_first_and(hctx->cpumask, cpu_online_mask); 2184 2185 if (cpu >= nr_cpu_ids) 2186 cpu = cpumask_first(hctx->cpumask); 2187 return cpu; 2188 } 2189 2190 /* 2191 * It'd be great if the workqueue API had a way to pass 2192 * in a mask and had some smarts for more clever placement. 2193 * For now we just round-robin here, switching for every 2194 * BLK_MQ_CPU_WORK_BATCH queued items. 2195 */ 2196 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx) 2197 { 2198 bool tried = false; 2199 int next_cpu = hctx->next_cpu; 2200 2201 if (hctx->queue->nr_hw_queues == 1) 2202 return WORK_CPU_UNBOUND; 2203 2204 if (--hctx->next_cpu_batch <= 0) { 2205 select_cpu: 2206 next_cpu = cpumask_next_and(next_cpu, hctx->cpumask, 2207 cpu_online_mask); 2208 if (next_cpu >= nr_cpu_ids) 2209 next_cpu = blk_mq_first_mapped_cpu(hctx); 2210 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH; 2211 } 2212 2213 /* 2214 * Do unbound schedule if we can't find a online CPU for this hctx, 2215 * and it should only happen in the path of handling CPU DEAD. 2216 */ 2217 if (!cpu_online(next_cpu)) { 2218 if (!tried) { 2219 tried = true; 2220 goto select_cpu; 2221 } 2222 2223 /* 2224 * Make sure to re-select CPU next time once after CPUs 2225 * in hctx->cpumask become online again. 2226 */ 2227 hctx->next_cpu = next_cpu; 2228 hctx->next_cpu_batch = 1; 2229 return WORK_CPU_UNBOUND; 2230 } 2231 2232 hctx->next_cpu = next_cpu; 2233 return next_cpu; 2234 } 2235 2236 /** 2237 * __blk_mq_delay_run_hw_queue - Run (or schedule to run) a hardware queue. 2238 * @hctx: Pointer to the hardware queue to run. 2239 * @async: If we want to run the queue asynchronously. 2240 * @msecs: Milliseconds of delay to wait before running the queue. 2241 * 2242 * If !@async, try to run the queue now. Else, run the queue asynchronously and 2243 * with a delay of @msecs. 2244 */ 2245 static void __blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async, 2246 unsigned long msecs) 2247 { 2248 if (unlikely(blk_mq_hctx_stopped(hctx))) 2249 return; 2250 2251 if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) { 2252 if (cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask)) { 2253 __blk_mq_run_hw_queue(hctx); 2254 return; 2255 } 2256 } 2257 2258 kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx), &hctx->run_work, 2259 msecs_to_jiffies(msecs)); 2260 } 2261 2262 /** 2263 * blk_mq_delay_run_hw_queue - Run a hardware queue asynchronously. 2264 * @hctx: Pointer to the hardware queue to run. 2265 * @msecs: Milliseconds of delay to wait before running the queue. 2266 * 2267 * Run a hardware queue asynchronously with a delay of @msecs. 2268 */ 2269 void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs) 2270 { 2271 __blk_mq_delay_run_hw_queue(hctx, true, msecs); 2272 } 2273 EXPORT_SYMBOL(blk_mq_delay_run_hw_queue); 2274 2275 /** 2276 * blk_mq_run_hw_queue - Start to run a hardware queue. 2277 * @hctx: Pointer to the hardware queue to run. 2278 * @async: If we want to run the queue asynchronously. 2279 * 2280 * Check if the request queue is not in a quiesced state and if there are 2281 * pending requests to be sent. If this is true, run the queue to send requests 2282 * to hardware. 2283 */ 2284 void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async) 2285 { 2286 bool need_run; 2287 2288 /* 2289 * When queue is quiesced, we may be switching io scheduler, or 2290 * updating nr_hw_queues, or other things, and we can't run queue 2291 * any more, even __blk_mq_hctx_has_pending() can't be called safely. 2292 * 2293 * And queue will be rerun in blk_mq_unquiesce_queue() if it is 2294 * quiesced. 2295 */ 2296 __blk_mq_run_dispatch_ops(hctx->queue, false, 2297 need_run = !blk_queue_quiesced(hctx->queue) && 2298 blk_mq_hctx_has_pending(hctx)); 2299 2300 if (need_run) 2301 __blk_mq_delay_run_hw_queue(hctx, async, 0); 2302 } 2303 EXPORT_SYMBOL(blk_mq_run_hw_queue); 2304 2305 /* 2306 * Return prefered queue to dispatch from (if any) for non-mq aware IO 2307 * scheduler. 2308 */ 2309 static struct blk_mq_hw_ctx *blk_mq_get_sq_hctx(struct request_queue *q) 2310 { 2311 struct blk_mq_ctx *ctx = blk_mq_get_ctx(q); 2312 /* 2313 * If the IO scheduler does not respect hardware queues when 2314 * dispatching, we just don't bother with multiple HW queues and 2315 * dispatch from hctx for the current CPU since running multiple queues 2316 * just causes lock contention inside the scheduler and pointless cache 2317 * bouncing. 2318 */ 2319 struct blk_mq_hw_ctx *hctx = ctx->hctxs[HCTX_TYPE_DEFAULT]; 2320 2321 if (!blk_mq_hctx_stopped(hctx)) 2322 return hctx; 2323 return NULL; 2324 } 2325 2326 /** 2327 * blk_mq_run_hw_queues - Run all hardware queues in a request queue. 2328 * @q: Pointer to the request queue to run. 2329 * @async: If we want to run the queue asynchronously. 2330 */ 2331 void blk_mq_run_hw_queues(struct request_queue *q, bool async) 2332 { 2333 struct blk_mq_hw_ctx *hctx, *sq_hctx; 2334 unsigned long i; 2335 2336 sq_hctx = NULL; 2337 if (blk_queue_sq_sched(q)) 2338 sq_hctx = blk_mq_get_sq_hctx(q); 2339 queue_for_each_hw_ctx(q, hctx, i) { 2340 if (blk_mq_hctx_stopped(hctx)) 2341 continue; 2342 /* 2343 * Dispatch from this hctx either if there's no hctx preferred 2344 * by IO scheduler or if it has requests that bypass the 2345 * scheduler. 2346 */ 2347 if (!sq_hctx || sq_hctx == hctx || 2348 !list_empty_careful(&hctx->dispatch)) 2349 blk_mq_run_hw_queue(hctx, async); 2350 } 2351 } 2352 EXPORT_SYMBOL(blk_mq_run_hw_queues); 2353 2354 /** 2355 * blk_mq_delay_run_hw_queues - Run all hardware queues asynchronously. 2356 * @q: Pointer to the request queue to run. 2357 * @msecs: Milliseconds of delay to wait before running the queues. 2358 */ 2359 void blk_mq_delay_run_hw_queues(struct request_queue *q, unsigned long msecs) 2360 { 2361 struct blk_mq_hw_ctx *hctx, *sq_hctx; 2362 unsigned long i; 2363 2364 sq_hctx = NULL; 2365 if (blk_queue_sq_sched(q)) 2366 sq_hctx = blk_mq_get_sq_hctx(q); 2367 queue_for_each_hw_ctx(q, hctx, i) { 2368 if (blk_mq_hctx_stopped(hctx)) 2369 continue; 2370 /* 2371 * If there is already a run_work pending, leave the 2372 * pending delay untouched. Otherwise, a hctx can stall 2373 * if another hctx is re-delaying the other's work 2374 * before the work executes. 2375 */ 2376 if (delayed_work_pending(&hctx->run_work)) 2377 continue; 2378 /* 2379 * Dispatch from this hctx either if there's no hctx preferred 2380 * by IO scheduler or if it has requests that bypass the 2381 * scheduler. 2382 */ 2383 if (!sq_hctx || sq_hctx == hctx || 2384 !list_empty_careful(&hctx->dispatch)) 2385 blk_mq_delay_run_hw_queue(hctx, msecs); 2386 } 2387 } 2388 EXPORT_SYMBOL(blk_mq_delay_run_hw_queues); 2389 2390 /* 2391 * This function is often used for pausing .queue_rq() by driver when 2392 * there isn't enough resource or some conditions aren't satisfied, and 2393 * BLK_STS_RESOURCE is usually returned. 2394 * 2395 * We do not guarantee that dispatch can be drained or blocked 2396 * after blk_mq_stop_hw_queue() returns. Please use 2397 * blk_mq_quiesce_queue() for that requirement. 2398 */ 2399 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx) 2400 { 2401 cancel_delayed_work(&hctx->run_work); 2402 2403 set_bit(BLK_MQ_S_STOPPED, &hctx->state); 2404 } 2405 EXPORT_SYMBOL(blk_mq_stop_hw_queue); 2406 2407 /* 2408 * This function is often used for pausing .queue_rq() by driver when 2409 * there isn't enough resource or some conditions aren't satisfied, and 2410 * BLK_STS_RESOURCE is usually returned. 2411 * 2412 * We do not guarantee that dispatch can be drained or blocked 2413 * after blk_mq_stop_hw_queues() returns. Please use 2414 * blk_mq_quiesce_queue() for that requirement. 2415 */ 2416 void blk_mq_stop_hw_queues(struct request_queue *q) 2417 { 2418 struct blk_mq_hw_ctx *hctx; 2419 unsigned long i; 2420 2421 queue_for_each_hw_ctx(q, hctx, i) 2422 blk_mq_stop_hw_queue(hctx); 2423 } 2424 EXPORT_SYMBOL(blk_mq_stop_hw_queues); 2425 2426 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx) 2427 { 2428 clear_bit(BLK_MQ_S_STOPPED, &hctx->state); 2429 2430 blk_mq_run_hw_queue(hctx, false); 2431 } 2432 EXPORT_SYMBOL(blk_mq_start_hw_queue); 2433 2434 void blk_mq_start_hw_queues(struct request_queue *q) 2435 { 2436 struct blk_mq_hw_ctx *hctx; 2437 unsigned long i; 2438 2439 queue_for_each_hw_ctx(q, hctx, i) 2440 blk_mq_start_hw_queue(hctx); 2441 } 2442 EXPORT_SYMBOL(blk_mq_start_hw_queues); 2443 2444 void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async) 2445 { 2446 if (!blk_mq_hctx_stopped(hctx)) 2447 return; 2448 2449 clear_bit(BLK_MQ_S_STOPPED, &hctx->state); 2450 blk_mq_run_hw_queue(hctx, async); 2451 } 2452 EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue); 2453 2454 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async) 2455 { 2456 struct blk_mq_hw_ctx *hctx; 2457 unsigned long i; 2458 2459 queue_for_each_hw_ctx(q, hctx, i) 2460 blk_mq_start_stopped_hw_queue(hctx, async); 2461 } 2462 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues); 2463 2464 static void blk_mq_run_work_fn(struct work_struct *work) 2465 { 2466 struct blk_mq_hw_ctx *hctx; 2467 2468 hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work); 2469 2470 /* 2471 * If we are stopped, don't run the queue. 2472 */ 2473 if (blk_mq_hctx_stopped(hctx)) 2474 return; 2475 2476 __blk_mq_run_hw_queue(hctx); 2477 } 2478 2479 static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx, 2480 struct request *rq, 2481 bool at_head) 2482 { 2483 struct blk_mq_ctx *ctx = rq->mq_ctx; 2484 enum hctx_type type = hctx->type; 2485 2486 lockdep_assert_held(&ctx->lock); 2487 2488 trace_block_rq_insert(rq); 2489 2490 if (at_head) 2491 list_add(&rq->queuelist, &ctx->rq_lists[type]); 2492 else 2493 list_add_tail(&rq->queuelist, &ctx->rq_lists[type]); 2494 } 2495 2496 void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq, 2497 bool at_head) 2498 { 2499 struct blk_mq_ctx *ctx = rq->mq_ctx; 2500 2501 lockdep_assert_held(&ctx->lock); 2502 2503 __blk_mq_insert_req_list(hctx, rq, at_head); 2504 blk_mq_hctx_mark_pending(hctx, ctx); 2505 } 2506 2507 /** 2508 * blk_mq_request_bypass_insert - Insert a request at dispatch list. 2509 * @rq: Pointer to request to be inserted. 2510 * @at_head: true if the request should be inserted at the head of the list. 2511 * @run_queue: If we should run the hardware queue after inserting the request. 2512 * 2513 * Should only be used carefully, when the caller knows we want to 2514 * bypass a potential IO scheduler on the target device. 2515 */ 2516 void blk_mq_request_bypass_insert(struct request *rq, bool at_head, 2517 bool run_queue) 2518 { 2519 struct blk_mq_hw_ctx *hctx = rq->mq_hctx; 2520 2521 spin_lock(&hctx->lock); 2522 if (at_head) 2523 list_add(&rq->queuelist, &hctx->dispatch); 2524 else 2525 list_add_tail(&rq->queuelist, &hctx->dispatch); 2526 spin_unlock(&hctx->lock); 2527 2528 if (run_queue) 2529 blk_mq_run_hw_queue(hctx, false); 2530 } 2531 2532 void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx, 2533 struct list_head *list) 2534 2535 { 2536 struct request *rq; 2537 enum hctx_type type = hctx->type; 2538 2539 /* 2540 * preemption doesn't flush plug list, so it's possible ctx->cpu is 2541 * offline now 2542 */ 2543 list_for_each_entry(rq, list, queuelist) { 2544 BUG_ON(rq->mq_ctx != ctx); 2545 trace_block_rq_insert(rq); 2546 } 2547 2548 spin_lock(&ctx->lock); 2549 list_splice_tail_init(list, &ctx->rq_lists[type]); 2550 blk_mq_hctx_mark_pending(hctx, ctx); 2551 spin_unlock(&ctx->lock); 2552 } 2553 2554 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio, 2555 unsigned int nr_segs) 2556 { 2557 int err; 2558 2559 if (bio->bi_opf & REQ_RAHEAD) 2560 rq->cmd_flags |= REQ_FAILFAST_MASK; 2561 2562 rq->__sector = bio->bi_iter.bi_sector; 2563 blk_rq_bio_prep(rq, bio, nr_segs); 2564 2565 /* This can't fail, since GFP_NOIO includes __GFP_DIRECT_RECLAIM. */ 2566 err = blk_crypto_rq_bio_prep(rq, bio, GFP_NOIO); 2567 WARN_ON_ONCE(err); 2568 2569 blk_account_io_start(rq); 2570 } 2571 2572 static blk_status_t __blk_mq_issue_directly(struct blk_mq_hw_ctx *hctx, 2573 struct request *rq, bool last) 2574 { 2575 struct request_queue *q = rq->q; 2576 struct blk_mq_queue_data bd = { 2577 .rq = rq, 2578 .last = last, 2579 }; 2580 blk_status_t ret; 2581 2582 /* 2583 * For OK queue, we are done. For error, caller may kill it. 2584 * Any other error (busy), just add it to our list as we 2585 * previously would have done. 2586 */ 2587 ret = q->mq_ops->queue_rq(hctx, &bd); 2588 switch (ret) { 2589 case BLK_STS_OK: 2590 blk_mq_update_dispatch_busy(hctx, false); 2591 break; 2592 case BLK_STS_RESOURCE: 2593 case BLK_STS_DEV_RESOURCE: 2594 blk_mq_update_dispatch_busy(hctx, true); 2595 __blk_mq_requeue_request(rq); 2596 break; 2597 default: 2598 blk_mq_update_dispatch_busy(hctx, false); 2599 break; 2600 } 2601 2602 return ret; 2603 } 2604 2605 static blk_status_t __blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx, 2606 struct request *rq, 2607 bool bypass_insert, bool last) 2608 { 2609 struct request_queue *q = rq->q; 2610 bool run_queue = true; 2611 int budget_token; 2612 2613 /* 2614 * RCU or SRCU read lock is needed before checking quiesced flag. 2615 * 2616 * When queue is stopped or quiesced, ignore 'bypass_insert' from 2617 * blk_mq_request_issue_directly(), and return BLK_STS_OK to caller, 2618 * and avoid driver to try to dispatch again. 2619 */ 2620 if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(q)) { 2621 run_queue = false; 2622 bypass_insert = false; 2623 goto insert; 2624 } 2625 2626 if ((rq->rq_flags & RQF_ELV) && !bypass_insert) 2627 goto insert; 2628 2629 budget_token = blk_mq_get_dispatch_budget(q); 2630 if (budget_token < 0) 2631 goto insert; 2632 2633 blk_mq_set_rq_budget_token(rq, budget_token); 2634 2635 if (!blk_mq_get_driver_tag(rq)) { 2636 blk_mq_put_dispatch_budget(q, budget_token); 2637 goto insert; 2638 } 2639 2640 return __blk_mq_issue_directly(hctx, rq, last); 2641 insert: 2642 if (bypass_insert) 2643 return BLK_STS_RESOURCE; 2644 2645 blk_mq_sched_insert_request(rq, false, run_queue, false); 2646 2647 return BLK_STS_OK; 2648 } 2649 2650 /** 2651 * blk_mq_try_issue_directly - Try to send a request directly to device driver. 2652 * @hctx: Pointer of the associated hardware queue. 2653 * @rq: Pointer to request to be sent. 2654 * 2655 * If the device has enough resources to accept a new request now, send the 2656 * request directly to device driver. Else, insert at hctx->dispatch queue, so 2657 * we can try send it another time in the future. Requests inserted at this 2658 * queue have higher priority. 2659 */ 2660 static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx, 2661 struct request *rq) 2662 { 2663 blk_status_t ret = 2664 __blk_mq_try_issue_directly(hctx, rq, false, true); 2665 2666 if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE) 2667 blk_mq_request_bypass_insert(rq, false, true); 2668 else if (ret != BLK_STS_OK) 2669 blk_mq_end_request(rq, ret); 2670 } 2671 2672 static blk_status_t blk_mq_request_issue_directly(struct request *rq, bool last) 2673 { 2674 return __blk_mq_try_issue_directly(rq->mq_hctx, rq, true, last); 2675 } 2676 2677 static void blk_mq_plug_issue_direct(struct blk_plug *plug) 2678 { 2679 struct blk_mq_hw_ctx *hctx = NULL; 2680 struct request *rq; 2681 int queued = 0; 2682 blk_status_t ret = BLK_STS_OK; 2683 2684 while ((rq = rq_list_pop(&plug->mq_list))) { 2685 bool last = rq_list_empty(plug->mq_list); 2686 2687 if (hctx != rq->mq_hctx) { 2688 if (hctx) { 2689 blk_mq_commit_rqs(hctx, queued, false); 2690 queued = 0; 2691 } 2692 hctx = rq->mq_hctx; 2693 } 2694 2695 ret = blk_mq_request_issue_directly(rq, last); 2696 switch (ret) { 2697 case BLK_STS_OK: 2698 queued++; 2699 break; 2700 case BLK_STS_RESOURCE: 2701 case BLK_STS_DEV_RESOURCE: 2702 blk_mq_request_bypass_insert(rq, false, true); 2703 goto out; 2704 default: 2705 blk_mq_end_request(rq, ret); 2706 break; 2707 } 2708 } 2709 2710 out: 2711 if (ret != BLK_STS_OK) 2712 blk_mq_commit_rqs(hctx, queued, false); 2713 } 2714 2715 static void __blk_mq_flush_plug_list(struct request_queue *q, 2716 struct blk_plug *plug) 2717 { 2718 if (blk_queue_quiesced(q)) 2719 return; 2720 q->mq_ops->queue_rqs(&plug->mq_list); 2721 } 2722 2723 static void blk_mq_dispatch_plug_list(struct blk_plug *plug, bool from_sched) 2724 { 2725 struct blk_mq_hw_ctx *this_hctx = NULL; 2726 struct blk_mq_ctx *this_ctx = NULL; 2727 struct request *requeue_list = NULL; 2728 unsigned int depth = 0; 2729 LIST_HEAD(list); 2730 2731 do { 2732 struct request *rq = rq_list_pop(&plug->mq_list); 2733 2734 if (!this_hctx) { 2735 this_hctx = rq->mq_hctx; 2736 this_ctx = rq->mq_ctx; 2737 } else if (this_hctx != rq->mq_hctx || this_ctx != rq->mq_ctx) { 2738 rq_list_add(&requeue_list, rq); 2739 continue; 2740 } 2741 list_add_tail(&rq->queuelist, &list); 2742 depth++; 2743 } while (!rq_list_empty(plug->mq_list)); 2744 2745 plug->mq_list = requeue_list; 2746 trace_block_unplug(this_hctx->queue, depth, !from_sched); 2747 blk_mq_sched_insert_requests(this_hctx, this_ctx, &list, from_sched); 2748 } 2749 2750 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule) 2751 { 2752 struct request *rq; 2753 2754 if (rq_list_empty(plug->mq_list)) 2755 return; 2756 plug->rq_count = 0; 2757 2758 if (!plug->multiple_queues && !plug->has_elevator && !from_schedule) { 2759 struct request_queue *q; 2760 2761 rq = rq_list_peek(&plug->mq_list); 2762 q = rq->q; 2763 2764 /* 2765 * Peek first request and see if we have a ->queue_rqs() hook. 2766 * If we do, we can dispatch the whole plug list in one go. We 2767 * already know at this point that all requests belong to the 2768 * same queue, caller must ensure that's the case. 2769 * 2770 * Since we pass off the full list to the driver at this point, 2771 * we do not increment the active request count for the queue. 2772 * Bypass shared tags for now because of that. 2773 */ 2774 if (q->mq_ops->queue_rqs && 2775 !(rq->mq_hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED)) { 2776 blk_mq_run_dispatch_ops(q, 2777 __blk_mq_flush_plug_list(q, plug)); 2778 if (rq_list_empty(plug->mq_list)) 2779 return; 2780 } 2781 2782 blk_mq_run_dispatch_ops(q, 2783 blk_mq_plug_issue_direct(plug)); 2784 if (rq_list_empty(plug->mq_list)) 2785 return; 2786 } 2787 2788 do { 2789 blk_mq_dispatch_plug_list(plug, from_schedule); 2790 } while (!rq_list_empty(plug->mq_list)); 2791 } 2792 2793 void blk_mq_try_issue_list_directly(struct blk_mq_hw_ctx *hctx, 2794 struct list_head *list) 2795 { 2796 int queued = 0; 2797 blk_status_t ret = BLK_STS_OK; 2798 2799 while (!list_empty(list)) { 2800 struct request *rq = list_first_entry(list, struct request, 2801 queuelist); 2802 2803 list_del_init(&rq->queuelist); 2804 ret = blk_mq_request_issue_directly(rq, list_empty(list)); 2805 switch (ret) { 2806 case BLK_STS_OK: 2807 queued++; 2808 break; 2809 case BLK_STS_RESOURCE: 2810 case BLK_STS_DEV_RESOURCE: 2811 blk_mq_request_bypass_insert(rq, false, 2812 list_empty(list)); 2813 goto out; 2814 default: 2815 blk_mq_end_request(rq, ret); 2816 break; 2817 } 2818 } 2819 2820 out: 2821 if (ret != BLK_STS_OK) 2822 blk_mq_commit_rqs(hctx, queued, false); 2823 } 2824 2825 static bool blk_mq_attempt_bio_merge(struct request_queue *q, 2826 struct bio *bio, unsigned int nr_segs) 2827 { 2828 if (!blk_queue_nomerges(q) && bio_mergeable(bio)) { 2829 if (blk_attempt_plug_merge(q, bio, nr_segs)) 2830 return true; 2831 if (blk_mq_sched_bio_merge(q, bio, nr_segs)) 2832 return true; 2833 } 2834 return false; 2835 } 2836 2837 static struct request *blk_mq_get_new_requests(struct request_queue *q, 2838 struct blk_plug *plug, 2839 struct bio *bio, 2840 unsigned int nsegs) 2841 { 2842 struct blk_mq_alloc_data data = { 2843 .q = q, 2844 .nr_tags = 1, 2845 .cmd_flags = bio->bi_opf, 2846 }; 2847 struct request *rq; 2848 2849 if (unlikely(bio_queue_enter(bio))) 2850 return NULL; 2851 2852 if (blk_mq_attempt_bio_merge(q, bio, nsegs)) 2853 goto queue_exit; 2854 2855 rq_qos_throttle(q, bio); 2856 2857 if (plug) { 2858 data.nr_tags = plug->nr_ios; 2859 plug->nr_ios = 1; 2860 data.cached_rq = &plug->cached_rq; 2861 } 2862 2863 rq = __blk_mq_alloc_requests(&data); 2864 if (rq) 2865 return rq; 2866 rq_qos_cleanup(q, bio); 2867 if (bio->bi_opf & REQ_NOWAIT) 2868 bio_wouldblock_error(bio); 2869 queue_exit: 2870 blk_queue_exit(q); 2871 return NULL; 2872 } 2873 2874 static inline struct request *blk_mq_get_cached_request(struct request_queue *q, 2875 struct blk_plug *plug, struct bio **bio, unsigned int nsegs) 2876 { 2877 struct request *rq; 2878 enum hctx_type type, hctx_type; 2879 2880 if (!plug) 2881 return NULL; 2882 2883 if (blk_mq_attempt_bio_merge(q, *bio, nsegs)) { 2884 *bio = NULL; 2885 return NULL; 2886 } 2887 2888 rq = rq_list_peek(&plug->cached_rq); 2889 if (!rq || rq->q != q) 2890 return NULL; 2891 2892 type = blk_mq_get_hctx_type((*bio)->bi_opf); 2893 hctx_type = rq->mq_hctx->type; 2894 if (type != hctx_type && 2895 !(type == HCTX_TYPE_READ && hctx_type == HCTX_TYPE_DEFAULT)) 2896 return NULL; 2897 if (op_is_flush(rq->cmd_flags) != op_is_flush((*bio)->bi_opf)) 2898 return NULL; 2899 2900 /* 2901 * If any qos ->throttle() end up blocking, we will have flushed the 2902 * plug and hence killed the cached_rq list as well. Pop this entry 2903 * before we throttle. 2904 */ 2905 plug->cached_rq = rq_list_next(rq); 2906 rq_qos_throttle(q, *bio); 2907 2908 rq->cmd_flags = (*bio)->bi_opf; 2909 INIT_LIST_HEAD(&rq->queuelist); 2910 return rq; 2911 } 2912 2913 static void bio_set_ioprio(struct bio *bio) 2914 { 2915 /* Nobody set ioprio so far? Initialize it based on task's nice value */ 2916 if (IOPRIO_PRIO_CLASS(bio->bi_ioprio) == IOPRIO_CLASS_NONE) 2917 bio->bi_ioprio = get_current_ioprio(); 2918 blkcg_set_ioprio(bio); 2919 } 2920 2921 /** 2922 * blk_mq_submit_bio - Create and send a request to block device. 2923 * @bio: Bio pointer. 2924 * 2925 * Builds up a request structure from @q and @bio and send to the device. The 2926 * request may not be queued directly to hardware if: 2927 * * This request can be merged with another one 2928 * * We want to place request at plug queue for possible future merging 2929 * * There is an IO scheduler active at this queue 2930 * 2931 * It will not queue the request if there is an error with the bio, or at the 2932 * request creation. 2933 */ 2934 void blk_mq_submit_bio(struct bio *bio) 2935 { 2936 struct request_queue *q = bdev_get_queue(bio->bi_bdev); 2937 struct blk_plug *plug = blk_mq_plug(bio); 2938 const int is_sync = op_is_sync(bio->bi_opf); 2939 struct request *rq; 2940 unsigned int nr_segs = 1; 2941 blk_status_t ret; 2942 2943 bio = blk_queue_bounce(bio, q); 2944 if (bio_may_exceed_limits(bio, &q->limits)) { 2945 bio = __bio_split_to_limits(bio, &q->limits, &nr_segs); 2946 if (!bio) 2947 return; 2948 } 2949 2950 if (!bio_integrity_prep(bio)) 2951 return; 2952 2953 bio_set_ioprio(bio); 2954 2955 rq = blk_mq_get_cached_request(q, plug, &bio, nr_segs); 2956 if (!rq) { 2957 if (!bio) 2958 return; 2959 rq = blk_mq_get_new_requests(q, plug, bio, nr_segs); 2960 if (unlikely(!rq)) 2961 return; 2962 } 2963 2964 trace_block_getrq(bio); 2965 2966 rq_qos_track(q, rq, bio); 2967 2968 blk_mq_bio_to_request(rq, bio, nr_segs); 2969 2970 ret = blk_crypto_init_request(rq); 2971 if (ret != BLK_STS_OK) { 2972 bio->bi_status = ret; 2973 bio_endio(bio); 2974 blk_mq_free_request(rq); 2975 return; 2976 } 2977 2978 if (op_is_flush(bio->bi_opf)) { 2979 blk_insert_flush(rq); 2980 return; 2981 } 2982 2983 if (plug) 2984 blk_add_rq_to_plug(plug, rq); 2985 else if ((rq->rq_flags & RQF_ELV) || 2986 (rq->mq_hctx->dispatch_busy && 2987 (q->nr_hw_queues == 1 || !is_sync))) 2988 blk_mq_sched_insert_request(rq, false, true, true); 2989 else 2990 blk_mq_run_dispatch_ops(rq->q, 2991 blk_mq_try_issue_directly(rq->mq_hctx, rq)); 2992 } 2993 2994 #ifdef CONFIG_BLK_MQ_STACKING 2995 /** 2996 * blk_insert_cloned_request - Helper for stacking drivers to submit a request 2997 * @rq: the request being queued 2998 */ 2999 blk_status_t blk_insert_cloned_request(struct request *rq) 3000 { 3001 struct request_queue *q = rq->q; 3002 unsigned int max_sectors = blk_queue_get_max_sectors(q, req_op(rq)); 3003 unsigned int max_segments = blk_rq_get_max_segments(rq); 3004 blk_status_t ret; 3005 3006 if (blk_rq_sectors(rq) > max_sectors) { 3007 /* 3008 * SCSI device does not have a good way to return if 3009 * Write Same/Zero is actually supported. If a device rejects 3010 * a non-read/write command (discard, write same,etc.) the 3011 * low-level device driver will set the relevant queue limit to 3012 * 0 to prevent blk-lib from issuing more of the offending 3013 * operations. Commands queued prior to the queue limit being 3014 * reset need to be completed with BLK_STS_NOTSUPP to avoid I/O 3015 * errors being propagated to upper layers. 3016 */ 3017 if (max_sectors == 0) 3018 return BLK_STS_NOTSUPP; 3019 3020 printk(KERN_ERR "%s: over max size limit. (%u > %u)\n", 3021 __func__, blk_rq_sectors(rq), max_sectors); 3022 return BLK_STS_IOERR; 3023 } 3024 3025 /* 3026 * The queue settings related to segment counting may differ from the 3027 * original queue. 3028 */ 3029 rq->nr_phys_segments = blk_recalc_rq_segments(rq); 3030 if (rq->nr_phys_segments > max_segments) { 3031 printk(KERN_ERR "%s: over max segments limit. (%u > %u)\n", 3032 __func__, rq->nr_phys_segments, max_segments); 3033 return BLK_STS_IOERR; 3034 } 3035 3036 if (q->disk && should_fail_request(q->disk->part0, blk_rq_bytes(rq))) 3037 return BLK_STS_IOERR; 3038 3039 if (blk_crypto_insert_cloned_request(rq)) 3040 return BLK_STS_IOERR; 3041 3042 blk_account_io_start(rq); 3043 3044 /* 3045 * Since we have a scheduler attached on the top device, 3046 * bypass a potential scheduler on the bottom device for 3047 * insert. 3048 */ 3049 blk_mq_run_dispatch_ops(q, 3050 ret = blk_mq_request_issue_directly(rq, true)); 3051 if (ret) 3052 blk_account_io_done(rq, ktime_get_ns()); 3053 return ret; 3054 } 3055 EXPORT_SYMBOL_GPL(blk_insert_cloned_request); 3056 3057 /** 3058 * blk_rq_unprep_clone - Helper function to free all bios in a cloned request 3059 * @rq: the clone request to be cleaned up 3060 * 3061 * Description: 3062 * Free all bios in @rq for a cloned request. 3063 */ 3064 void blk_rq_unprep_clone(struct request *rq) 3065 { 3066 struct bio *bio; 3067 3068 while ((bio = rq->bio) != NULL) { 3069 rq->bio = bio->bi_next; 3070 3071 bio_put(bio); 3072 } 3073 } 3074 EXPORT_SYMBOL_GPL(blk_rq_unprep_clone); 3075 3076 /** 3077 * blk_rq_prep_clone - Helper function to setup clone request 3078 * @rq: the request to be setup 3079 * @rq_src: original request to be cloned 3080 * @bs: bio_set that bios for clone are allocated from 3081 * @gfp_mask: memory allocation mask for bio 3082 * @bio_ctr: setup function to be called for each clone bio. 3083 * Returns %0 for success, non %0 for failure. 3084 * @data: private data to be passed to @bio_ctr 3085 * 3086 * Description: 3087 * Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq. 3088 * Also, pages which the original bios are pointing to are not copied 3089 * and the cloned bios just point same pages. 3090 * So cloned bios must be completed before original bios, which means 3091 * the caller must complete @rq before @rq_src. 3092 */ 3093 int blk_rq_prep_clone(struct request *rq, struct request *rq_src, 3094 struct bio_set *bs, gfp_t gfp_mask, 3095 int (*bio_ctr)(struct bio *, struct bio *, void *), 3096 void *data) 3097 { 3098 struct bio *bio, *bio_src; 3099 3100 if (!bs) 3101 bs = &fs_bio_set; 3102 3103 __rq_for_each_bio(bio_src, rq_src) { 3104 bio = bio_alloc_clone(rq->q->disk->part0, bio_src, gfp_mask, 3105 bs); 3106 if (!bio) 3107 goto free_and_out; 3108 3109 if (bio_ctr && bio_ctr(bio, bio_src, data)) 3110 goto free_and_out; 3111 3112 if (rq->bio) { 3113 rq->biotail->bi_next = bio; 3114 rq->biotail = bio; 3115 } else { 3116 rq->bio = rq->biotail = bio; 3117 } 3118 bio = NULL; 3119 } 3120 3121 /* Copy attributes of the original request to the clone request. */ 3122 rq->__sector = blk_rq_pos(rq_src); 3123 rq->__data_len = blk_rq_bytes(rq_src); 3124 if (rq_src->rq_flags & RQF_SPECIAL_PAYLOAD) { 3125 rq->rq_flags |= RQF_SPECIAL_PAYLOAD; 3126 rq->special_vec = rq_src->special_vec; 3127 } 3128 rq->nr_phys_segments = rq_src->nr_phys_segments; 3129 rq->ioprio = rq_src->ioprio; 3130 3131 if (rq->bio && blk_crypto_rq_bio_prep(rq, rq->bio, gfp_mask) < 0) 3132 goto free_and_out; 3133 3134 return 0; 3135 3136 free_and_out: 3137 if (bio) 3138 bio_put(bio); 3139 blk_rq_unprep_clone(rq); 3140 3141 return -ENOMEM; 3142 } 3143 EXPORT_SYMBOL_GPL(blk_rq_prep_clone); 3144 #endif /* CONFIG_BLK_MQ_STACKING */ 3145 3146 /* 3147 * Steal bios from a request and add them to a bio list. 3148 * The request must not have been partially completed before. 3149 */ 3150 void blk_steal_bios(struct bio_list *list, struct request *rq) 3151 { 3152 if (rq->bio) { 3153 if (list->tail) 3154 list->tail->bi_next = rq->bio; 3155 else 3156 list->head = rq->bio; 3157 list->tail = rq->biotail; 3158 3159 rq->bio = NULL; 3160 rq->biotail = NULL; 3161 } 3162 3163 rq->__data_len = 0; 3164 } 3165 EXPORT_SYMBOL_GPL(blk_steal_bios); 3166 3167 static size_t order_to_size(unsigned int order) 3168 { 3169 return (size_t)PAGE_SIZE << order; 3170 } 3171 3172 /* called before freeing request pool in @tags */ 3173 static void blk_mq_clear_rq_mapping(struct blk_mq_tags *drv_tags, 3174 struct blk_mq_tags *tags) 3175 { 3176 struct page *page; 3177 unsigned long flags; 3178 3179 /* 3180 * There is no need to clear mapping if driver tags is not initialized 3181 * or the mapping belongs to the driver tags. 3182 */ 3183 if (!drv_tags || drv_tags == tags) 3184 return; 3185 3186 list_for_each_entry(page, &tags->page_list, lru) { 3187 unsigned long start = (unsigned long)page_address(page); 3188 unsigned long end = start + order_to_size(page->private); 3189 int i; 3190 3191 for (i = 0; i < drv_tags->nr_tags; i++) { 3192 struct request *rq = drv_tags->rqs[i]; 3193 unsigned long rq_addr = (unsigned long)rq; 3194 3195 if (rq_addr >= start && rq_addr < end) { 3196 WARN_ON_ONCE(req_ref_read(rq) != 0); 3197 cmpxchg(&drv_tags->rqs[i], rq, NULL); 3198 } 3199 } 3200 } 3201 3202 /* 3203 * Wait until all pending iteration is done. 3204 * 3205 * Request reference is cleared and it is guaranteed to be observed 3206 * after the ->lock is released. 3207 */ 3208 spin_lock_irqsave(&drv_tags->lock, flags); 3209 spin_unlock_irqrestore(&drv_tags->lock, flags); 3210 } 3211 3212 void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags, 3213 unsigned int hctx_idx) 3214 { 3215 struct blk_mq_tags *drv_tags; 3216 struct page *page; 3217 3218 if (list_empty(&tags->page_list)) 3219 return; 3220 3221 if (blk_mq_is_shared_tags(set->flags)) 3222 drv_tags = set->shared_tags; 3223 else 3224 drv_tags = set->tags[hctx_idx]; 3225 3226 if (tags->static_rqs && set->ops->exit_request) { 3227 int i; 3228 3229 for (i = 0; i < tags->nr_tags; i++) { 3230 struct request *rq = tags->static_rqs[i]; 3231 3232 if (!rq) 3233 continue; 3234 set->ops->exit_request(set, rq, hctx_idx); 3235 tags->static_rqs[i] = NULL; 3236 } 3237 } 3238 3239 blk_mq_clear_rq_mapping(drv_tags, tags); 3240 3241 while (!list_empty(&tags->page_list)) { 3242 page = list_first_entry(&tags->page_list, struct page, lru); 3243 list_del_init(&page->lru); 3244 /* 3245 * Remove kmemleak object previously allocated in 3246 * blk_mq_alloc_rqs(). 3247 */ 3248 kmemleak_free(page_address(page)); 3249 __free_pages(page, page->private); 3250 } 3251 } 3252 3253 void blk_mq_free_rq_map(struct blk_mq_tags *tags) 3254 { 3255 kfree(tags->rqs); 3256 tags->rqs = NULL; 3257 kfree(tags->static_rqs); 3258 tags->static_rqs = NULL; 3259 3260 blk_mq_free_tags(tags); 3261 } 3262 3263 static enum hctx_type hctx_idx_to_type(struct blk_mq_tag_set *set, 3264 unsigned int hctx_idx) 3265 { 3266 int i; 3267 3268 for (i = 0; i < set->nr_maps; i++) { 3269 unsigned int start = set->map[i].queue_offset; 3270 unsigned int end = start + set->map[i].nr_queues; 3271 3272 if (hctx_idx >= start && hctx_idx < end) 3273 break; 3274 } 3275 3276 if (i >= set->nr_maps) 3277 i = HCTX_TYPE_DEFAULT; 3278 3279 return i; 3280 } 3281 3282 static int blk_mq_get_hctx_node(struct blk_mq_tag_set *set, 3283 unsigned int hctx_idx) 3284 { 3285 enum hctx_type type = hctx_idx_to_type(set, hctx_idx); 3286 3287 return blk_mq_hw_queue_to_node(&set->map[type], hctx_idx); 3288 } 3289 3290 static struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set, 3291 unsigned int hctx_idx, 3292 unsigned int nr_tags, 3293 unsigned int reserved_tags) 3294 { 3295 int node = blk_mq_get_hctx_node(set, hctx_idx); 3296 struct blk_mq_tags *tags; 3297 3298 if (node == NUMA_NO_NODE) 3299 node = set->numa_node; 3300 3301 tags = blk_mq_init_tags(nr_tags, reserved_tags, node, 3302 BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags)); 3303 if (!tags) 3304 return NULL; 3305 3306 tags->rqs = kcalloc_node(nr_tags, sizeof(struct request *), 3307 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY, 3308 node); 3309 if (!tags->rqs) 3310 goto err_free_tags; 3311 3312 tags->static_rqs = kcalloc_node(nr_tags, sizeof(struct request *), 3313 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY, 3314 node); 3315 if (!tags->static_rqs) 3316 goto err_free_rqs; 3317 3318 return tags; 3319 3320 err_free_rqs: 3321 kfree(tags->rqs); 3322 err_free_tags: 3323 blk_mq_free_tags(tags); 3324 return NULL; 3325 } 3326 3327 static int blk_mq_init_request(struct blk_mq_tag_set *set, struct request *rq, 3328 unsigned int hctx_idx, int node) 3329 { 3330 int ret; 3331 3332 if (set->ops->init_request) { 3333 ret = set->ops->init_request(set, rq, hctx_idx, node); 3334 if (ret) 3335 return ret; 3336 } 3337 3338 WRITE_ONCE(rq->state, MQ_RQ_IDLE); 3339 return 0; 3340 } 3341 3342 static int blk_mq_alloc_rqs(struct blk_mq_tag_set *set, 3343 struct blk_mq_tags *tags, 3344 unsigned int hctx_idx, unsigned int depth) 3345 { 3346 unsigned int i, j, entries_per_page, max_order = 4; 3347 int node = blk_mq_get_hctx_node(set, hctx_idx); 3348 size_t rq_size, left; 3349 3350 if (node == NUMA_NO_NODE) 3351 node = set->numa_node; 3352 3353 INIT_LIST_HEAD(&tags->page_list); 3354 3355 /* 3356 * rq_size is the size of the request plus driver payload, rounded 3357 * to the cacheline size 3358 */ 3359 rq_size = round_up(sizeof(struct request) + set->cmd_size, 3360 cache_line_size()); 3361 left = rq_size * depth; 3362 3363 for (i = 0; i < depth; ) { 3364 int this_order = max_order; 3365 struct page *page; 3366 int to_do; 3367 void *p; 3368 3369 while (this_order && left < order_to_size(this_order - 1)) 3370 this_order--; 3371 3372 do { 3373 page = alloc_pages_node(node, 3374 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO, 3375 this_order); 3376 if (page) 3377 break; 3378 if (!this_order--) 3379 break; 3380 if (order_to_size(this_order) < rq_size) 3381 break; 3382 } while (1); 3383 3384 if (!page) 3385 goto fail; 3386 3387 page->private = this_order; 3388 list_add_tail(&page->lru, &tags->page_list); 3389 3390 p = page_address(page); 3391 /* 3392 * Allow kmemleak to scan these pages as they contain pointers 3393 * to additional allocations like via ops->init_request(). 3394 */ 3395 kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO); 3396 entries_per_page = order_to_size(this_order) / rq_size; 3397 to_do = min(entries_per_page, depth - i); 3398 left -= to_do * rq_size; 3399 for (j = 0; j < to_do; j++) { 3400 struct request *rq = p; 3401 3402 tags->static_rqs[i] = rq; 3403 if (blk_mq_init_request(set, rq, hctx_idx, node)) { 3404 tags->static_rqs[i] = NULL; 3405 goto fail; 3406 } 3407 3408 p += rq_size; 3409 i++; 3410 } 3411 } 3412 return 0; 3413 3414 fail: 3415 blk_mq_free_rqs(set, tags, hctx_idx); 3416 return -ENOMEM; 3417 } 3418 3419 struct rq_iter_data { 3420 struct blk_mq_hw_ctx *hctx; 3421 bool has_rq; 3422 }; 3423 3424 static bool blk_mq_has_request(struct request *rq, void *data) 3425 { 3426 struct rq_iter_data *iter_data = data; 3427 3428 if (rq->mq_hctx != iter_data->hctx) 3429 return true; 3430 iter_data->has_rq = true; 3431 return false; 3432 } 3433 3434 static bool blk_mq_hctx_has_requests(struct blk_mq_hw_ctx *hctx) 3435 { 3436 struct blk_mq_tags *tags = hctx->sched_tags ? 3437 hctx->sched_tags : hctx->tags; 3438 struct rq_iter_data data = { 3439 .hctx = hctx, 3440 }; 3441 3442 blk_mq_all_tag_iter(tags, blk_mq_has_request, &data); 3443 return data.has_rq; 3444 } 3445 3446 static inline bool blk_mq_last_cpu_in_hctx(unsigned int cpu, 3447 struct blk_mq_hw_ctx *hctx) 3448 { 3449 if (cpumask_first_and(hctx->cpumask, cpu_online_mask) != cpu) 3450 return false; 3451 if (cpumask_next_and(cpu, hctx->cpumask, cpu_online_mask) < nr_cpu_ids) 3452 return false; 3453 return true; 3454 } 3455 3456 static int blk_mq_hctx_notify_offline(unsigned int cpu, struct hlist_node *node) 3457 { 3458 struct blk_mq_hw_ctx *hctx = hlist_entry_safe(node, 3459 struct blk_mq_hw_ctx, cpuhp_online); 3460 3461 if (!cpumask_test_cpu(cpu, hctx->cpumask) || 3462 !blk_mq_last_cpu_in_hctx(cpu, hctx)) 3463 return 0; 3464 3465 /* 3466 * Prevent new request from being allocated on the current hctx. 3467 * 3468 * The smp_mb__after_atomic() Pairs with the implied barrier in 3469 * test_and_set_bit_lock in sbitmap_get(). Ensures the inactive flag is 3470 * seen once we return from the tag allocator. 3471 */ 3472 set_bit(BLK_MQ_S_INACTIVE, &hctx->state); 3473 smp_mb__after_atomic(); 3474 3475 /* 3476 * Try to grab a reference to the queue and wait for any outstanding 3477 * requests. If we could not grab a reference the queue has been 3478 * frozen and there are no requests. 3479 */ 3480 if (percpu_ref_tryget(&hctx->queue->q_usage_counter)) { 3481 while (blk_mq_hctx_has_requests(hctx)) 3482 msleep(5); 3483 percpu_ref_put(&hctx->queue->q_usage_counter); 3484 } 3485 3486 return 0; 3487 } 3488 3489 static int blk_mq_hctx_notify_online(unsigned int cpu, struct hlist_node *node) 3490 { 3491 struct blk_mq_hw_ctx *hctx = hlist_entry_safe(node, 3492 struct blk_mq_hw_ctx, cpuhp_online); 3493 3494 if (cpumask_test_cpu(cpu, hctx->cpumask)) 3495 clear_bit(BLK_MQ_S_INACTIVE, &hctx->state); 3496 return 0; 3497 } 3498 3499 /* 3500 * 'cpu' is going away. splice any existing rq_list entries from this 3501 * software queue to the hw queue dispatch list, and ensure that it 3502 * gets run. 3503 */ 3504 static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node) 3505 { 3506 struct blk_mq_hw_ctx *hctx; 3507 struct blk_mq_ctx *ctx; 3508 LIST_HEAD(tmp); 3509 enum hctx_type type; 3510 3511 hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead); 3512 if (!cpumask_test_cpu(cpu, hctx->cpumask)) 3513 return 0; 3514 3515 ctx = __blk_mq_get_ctx(hctx->queue, cpu); 3516 type = hctx->type; 3517 3518 spin_lock(&ctx->lock); 3519 if (!list_empty(&ctx->rq_lists[type])) { 3520 list_splice_init(&ctx->rq_lists[type], &tmp); 3521 blk_mq_hctx_clear_pending(hctx, ctx); 3522 } 3523 spin_unlock(&ctx->lock); 3524 3525 if (list_empty(&tmp)) 3526 return 0; 3527 3528 spin_lock(&hctx->lock); 3529 list_splice_tail_init(&tmp, &hctx->dispatch); 3530 spin_unlock(&hctx->lock); 3531 3532 blk_mq_run_hw_queue(hctx, true); 3533 return 0; 3534 } 3535 3536 static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx) 3537 { 3538 if (!(hctx->flags & BLK_MQ_F_STACKING)) 3539 cpuhp_state_remove_instance_nocalls(CPUHP_AP_BLK_MQ_ONLINE, 3540 &hctx->cpuhp_online); 3541 cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD, 3542 &hctx->cpuhp_dead); 3543 } 3544 3545 /* 3546 * Before freeing hw queue, clearing the flush request reference in 3547 * tags->rqs[] for avoiding potential UAF. 3548 */ 3549 static void blk_mq_clear_flush_rq_mapping(struct blk_mq_tags *tags, 3550 unsigned int queue_depth, struct request *flush_rq) 3551 { 3552 int i; 3553 unsigned long flags; 3554 3555 /* The hw queue may not be mapped yet */ 3556 if (!tags) 3557 return; 3558 3559 WARN_ON_ONCE(req_ref_read(flush_rq) != 0); 3560 3561 for (i = 0; i < queue_depth; i++) 3562 cmpxchg(&tags->rqs[i], flush_rq, NULL); 3563 3564 /* 3565 * Wait until all pending iteration is done. 3566 * 3567 * Request reference is cleared and it is guaranteed to be observed 3568 * after the ->lock is released. 3569 */ 3570 spin_lock_irqsave(&tags->lock, flags); 3571 spin_unlock_irqrestore(&tags->lock, flags); 3572 } 3573 3574 /* hctx->ctxs will be freed in queue's release handler */ 3575 static void blk_mq_exit_hctx(struct request_queue *q, 3576 struct blk_mq_tag_set *set, 3577 struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx) 3578 { 3579 struct request *flush_rq = hctx->fq->flush_rq; 3580 3581 if (blk_mq_hw_queue_mapped(hctx)) 3582 blk_mq_tag_idle(hctx); 3583 3584 if (blk_queue_init_done(q)) 3585 blk_mq_clear_flush_rq_mapping(set->tags[hctx_idx], 3586 set->queue_depth, flush_rq); 3587 if (set->ops->exit_request) 3588 set->ops->exit_request(set, flush_rq, hctx_idx); 3589 3590 if (set->ops->exit_hctx) 3591 set->ops->exit_hctx(hctx, hctx_idx); 3592 3593 blk_mq_remove_cpuhp(hctx); 3594 3595 xa_erase(&q->hctx_table, hctx_idx); 3596 3597 spin_lock(&q->unused_hctx_lock); 3598 list_add(&hctx->hctx_list, &q->unused_hctx_list); 3599 spin_unlock(&q->unused_hctx_lock); 3600 } 3601 3602 static void blk_mq_exit_hw_queues(struct request_queue *q, 3603 struct blk_mq_tag_set *set, int nr_queue) 3604 { 3605 struct blk_mq_hw_ctx *hctx; 3606 unsigned long i; 3607 3608 queue_for_each_hw_ctx(q, hctx, i) { 3609 if (i == nr_queue) 3610 break; 3611 blk_mq_exit_hctx(q, set, hctx, i); 3612 } 3613 } 3614 3615 static int blk_mq_init_hctx(struct request_queue *q, 3616 struct blk_mq_tag_set *set, 3617 struct blk_mq_hw_ctx *hctx, unsigned hctx_idx) 3618 { 3619 hctx->queue_num = hctx_idx; 3620 3621 if (!(hctx->flags & BLK_MQ_F_STACKING)) 3622 cpuhp_state_add_instance_nocalls(CPUHP_AP_BLK_MQ_ONLINE, 3623 &hctx->cpuhp_online); 3624 cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead); 3625 3626 hctx->tags = set->tags[hctx_idx]; 3627 3628 if (set->ops->init_hctx && 3629 set->ops->init_hctx(hctx, set->driver_data, hctx_idx)) 3630 goto unregister_cpu_notifier; 3631 3632 if (blk_mq_init_request(set, hctx->fq->flush_rq, hctx_idx, 3633 hctx->numa_node)) 3634 goto exit_hctx; 3635 3636 if (xa_insert(&q->hctx_table, hctx_idx, hctx, GFP_KERNEL)) 3637 goto exit_flush_rq; 3638 3639 return 0; 3640 3641 exit_flush_rq: 3642 if (set->ops->exit_request) 3643 set->ops->exit_request(set, hctx->fq->flush_rq, hctx_idx); 3644 exit_hctx: 3645 if (set->ops->exit_hctx) 3646 set->ops->exit_hctx(hctx, hctx_idx); 3647 unregister_cpu_notifier: 3648 blk_mq_remove_cpuhp(hctx); 3649 return -1; 3650 } 3651 3652 static struct blk_mq_hw_ctx * 3653 blk_mq_alloc_hctx(struct request_queue *q, struct blk_mq_tag_set *set, 3654 int node) 3655 { 3656 struct blk_mq_hw_ctx *hctx; 3657 gfp_t gfp = GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY; 3658 3659 hctx = kzalloc_node(sizeof(struct blk_mq_hw_ctx), gfp, node); 3660 if (!hctx) 3661 goto fail_alloc_hctx; 3662 3663 if (!zalloc_cpumask_var_node(&hctx->cpumask, gfp, node)) 3664 goto free_hctx; 3665 3666 atomic_set(&hctx->nr_active, 0); 3667 if (node == NUMA_NO_NODE) 3668 node = set->numa_node; 3669 hctx->numa_node = node; 3670 3671 INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn); 3672 spin_lock_init(&hctx->lock); 3673 INIT_LIST_HEAD(&hctx->dispatch); 3674 hctx->queue = q; 3675 hctx->flags = set->flags & ~BLK_MQ_F_TAG_QUEUE_SHARED; 3676 3677 INIT_LIST_HEAD(&hctx->hctx_list); 3678 3679 /* 3680 * Allocate space for all possible cpus to avoid allocation at 3681 * runtime 3682 */ 3683 hctx->ctxs = kmalloc_array_node(nr_cpu_ids, sizeof(void *), 3684 gfp, node); 3685 if (!hctx->ctxs) 3686 goto free_cpumask; 3687 3688 if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8), 3689 gfp, node, false, false)) 3690 goto free_ctxs; 3691 hctx->nr_ctx = 0; 3692 3693 spin_lock_init(&hctx->dispatch_wait_lock); 3694 init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake); 3695 INIT_LIST_HEAD(&hctx->dispatch_wait.entry); 3696 3697 hctx->fq = blk_alloc_flush_queue(hctx->numa_node, set->cmd_size, gfp); 3698 if (!hctx->fq) 3699 goto free_bitmap; 3700 3701 blk_mq_hctx_kobj_init(hctx); 3702 3703 return hctx; 3704 3705 free_bitmap: 3706 sbitmap_free(&hctx->ctx_map); 3707 free_ctxs: 3708 kfree(hctx->ctxs); 3709 free_cpumask: 3710 free_cpumask_var(hctx->cpumask); 3711 free_hctx: 3712 kfree(hctx); 3713 fail_alloc_hctx: 3714 return NULL; 3715 } 3716 3717 static void blk_mq_init_cpu_queues(struct request_queue *q, 3718 unsigned int nr_hw_queues) 3719 { 3720 struct blk_mq_tag_set *set = q->tag_set; 3721 unsigned int i, j; 3722 3723 for_each_possible_cpu(i) { 3724 struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i); 3725 struct blk_mq_hw_ctx *hctx; 3726 int k; 3727 3728 __ctx->cpu = i; 3729 spin_lock_init(&__ctx->lock); 3730 for (k = HCTX_TYPE_DEFAULT; k < HCTX_MAX_TYPES; k++) 3731 INIT_LIST_HEAD(&__ctx->rq_lists[k]); 3732 3733 __ctx->queue = q; 3734 3735 /* 3736 * Set local node, IFF we have more than one hw queue. If 3737 * not, we remain on the home node of the device 3738 */ 3739 for (j = 0; j < set->nr_maps; j++) { 3740 hctx = blk_mq_map_queue_type(q, j, i); 3741 if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE) 3742 hctx->numa_node = cpu_to_node(i); 3743 } 3744 } 3745 } 3746 3747 struct blk_mq_tags *blk_mq_alloc_map_and_rqs(struct blk_mq_tag_set *set, 3748 unsigned int hctx_idx, 3749 unsigned int depth) 3750 { 3751 struct blk_mq_tags *tags; 3752 int ret; 3753 3754 tags = blk_mq_alloc_rq_map(set, hctx_idx, depth, set->reserved_tags); 3755 if (!tags) 3756 return NULL; 3757 3758 ret = blk_mq_alloc_rqs(set, tags, hctx_idx, depth); 3759 if (ret) { 3760 blk_mq_free_rq_map(tags); 3761 return NULL; 3762 } 3763 3764 return tags; 3765 } 3766 3767 static bool __blk_mq_alloc_map_and_rqs(struct blk_mq_tag_set *set, 3768 int hctx_idx) 3769 { 3770 if (blk_mq_is_shared_tags(set->flags)) { 3771 set->tags[hctx_idx] = set->shared_tags; 3772 3773 return true; 3774 } 3775 3776 set->tags[hctx_idx] = blk_mq_alloc_map_and_rqs(set, hctx_idx, 3777 set->queue_depth); 3778 3779 return set->tags[hctx_idx]; 3780 } 3781 3782 void blk_mq_free_map_and_rqs(struct blk_mq_tag_set *set, 3783 struct blk_mq_tags *tags, 3784 unsigned int hctx_idx) 3785 { 3786 if (tags) { 3787 blk_mq_free_rqs(set, tags, hctx_idx); 3788 blk_mq_free_rq_map(tags); 3789 } 3790 } 3791 3792 static void __blk_mq_free_map_and_rqs(struct blk_mq_tag_set *set, 3793 unsigned int hctx_idx) 3794 { 3795 if (!blk_mq_is_shared_tags(set->flags)) 3796 blk_mq_free_map_and_rqs(set, set->tags[hctx_idx], hctx_idx); 3797 3798 set->tags[hctx_idx] = NULL; 3799 } 3800 3801 static void blk_mq_map_swqueue(struct request_queue *q) 3802 { 3803 unsigned int j, hctx_idx; 3804 unsigned long i; 3805 struct blk_mq_hw_ctx *hctx; 3806 struct blk_mq_ctx *ctx; 3807 struct blk_mq_tag_set *set = q->tag_set; 3808 3809 queue_for_each_hw_ctx(q, hctx, i) { 3810 cpumask_clear(hctx->cpumask); 3811 hctx->nr_ctx = 0; 3812 hctx->dispatch_from = NULL; 3813 } 3814 3815 /* 3816 * Map software to hardware queues. 3817 * 3818 * If the cpu isn't present, the cpu is mapped to first hctx. 3819 */ 3820 for_each_possible_cpu(i) { 3821 3822 ctx = per_cpu_ptr(q->queue_ctx, i); 3823 for (j = 0; j < set->nr_maps; j++) { 3824 if (!set->map[j].nr_queues) { 3825 ctx->hctxs[j] = blk_mq_map_queue_type(q, 3826 HCTX_TYPE_DEFAULT, i); 3827 continue; 3828 } 3829 hctx_idx = set->map[j].mq_map[i]; 3830 /* unmapped hw queue can be remapped after CPU topo changed */ 3831 if (!set->tags[hctx_idx] && 3832 !__blk_mq_alloc_map_and_rqs(set, hctx_idx)) { 3833 /* 3834 * If tags initialization fail for some hctx, 3835 * that hctx won't be brought online. In this 3836 * case, remap the current ctx to hctx[0] which 3837 * is guaranteed to always have tags allocated 3838 */ 3839 set->map[j].mq_map[i] = 0; 3840 } 3841 3842 hctx = blk_mq_map_queue_type(q, j, i); 3843 ctx->hctxs[j] = hctx; 3844 /* 3845 * If the CPU is already set in the mask, then we've 3846 * mapped this one already. This can happen if 3847 * devices share queues across queue maps. 3848 */ 3849 if (cpumask_test_cpu(i, hctx->cpumask)) 3850 continue; 3851 3852 cpumask_set_cpu(i, hctx->cpumask); 3853 hctx->type = j; 3854 ctx->index_hw[hctx->type] = hctx->nr_ctx; 3855 hctx->ctxs[hctx->nr_ctx++] = ctx; 3856 3857 /* 3858 * If the nr_ctx type overflows, we have exceeded the 3859 * amount of sw queues we can support. 3860 */ 3861 BUG_ON(!hctx->nr_ctx); 3862 } 3863 3864 for (; j < HCTX_MAX_TYPES; j++) 3865 ctx->hctxs[j] = blk_mq_map_queue_type(q, 3866 HCTX_TYPE_DEFAULT, i); 3867 } 3868 3869 queue_for_each_hw_ctx(q, hctx, i) { 3870 /* 3871 * If no software queues are mapped to this hardware queue, 3872 * disable it and free the request entries. 3873 */ 3874 if (!hctx->nr_ctx) { 3875 /* Never unmap queue 0. We need it as a 3876 * fallback in case of a new remap fails 3877 * allocation 3878 */ 3879 if (i) 3880 __blk_mq_free_map_and_rqs(set, i); 3881 3882 hctx->tags = NULL; 3883 continue; 3884 } 3885 3886 hctx->tags = set->tags[i]; 3887 WARN_ON(!hctx->tags); 3888 3889 /* 3890 * Set the map size to the number of mapped software queues. 3891 * This is more accurate and more efficient than looping 3892 * over all possibly mapped software queues. 3893 */ 3894 sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx); 3895 3896 /* 3897 * Initialize batch roundrobin counts 3898 */ 3899 hctx->next_cpu = blk_mq_first_mapped_cpu(hctx); 3900 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH; 3901 } 3902 } 3903 3904 /* 3905 * Caller needs to ensure that we're either frozen/quiesced, or that 3906 * the queue isn't live yet. 3907 */ 3908 static void queue_set_hctx_shared(struct request_queue *q, bool shared) 3909 { 3910 struct blk_mq_hw_ctx *hctx; 3911 unsigned long i; 3912 3913 queue_for_each_hw_ctx(q, hctx, i) { 3914 if (shared) { 3915 hctx->flags |= BLK_MQ_F_TAG_QUEUE_SHARED; 3916 } else { 3917 blk_mq_tag_idle(hctx); 3918 hctx->flags &= ~BLK_MQ_F_TAG_QUEUE_SHARED; 3919 } 3920 } 3921 } 3922 3923 static void blk_mq_update_tag_set_shared(struct blk_mq_tag_set *set, 3924 bool shared) 3925 { 3926 struct request_queue *q; 3927 3928 lockdep_assert_held(&set->tag_list_lock); 3929 3930 list_for_each_entry(q, &set->tag_list, tag_set_list) { 3931 blk_mq_freeze_queue(q); 3932 queue_set_hctx_shared(q, shared); 3933 blk_mq_unfreeze_queue(q); 3934 } 3935 } 3936 3937 static void blk_mq_del_queue_tag_set(struct request_queue *q) 3938 { 3939 struct blk_mq_tag_set *set = q->tag_set; 3940 3941 mutex_lock(&set->tag_list_lock); 3942 list_del(&q->tag_set_list); 3943 if (list_is_singular(&set->tag_list)) { 3944 /* just transitioned to unshared */ 3945 set->flags &= ~BLK_MQ_F_TAG_QUEUE_SHARED; 3946 /* update existing queue */ 3947 blk_mq_update_tag_set_shared(set, false); 3948 } 3949 mutex_unlock(&set->tag_list_lock); 3950 INIT_LIST_HEAD(&q->tag_set_list); 3951 } 3952 3953 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set, 3954 struct request_queue *q) 3955 { 3956 mutex_lock(&set->tag_list_lock); 3957 3958 /* 3959 * Check to see if we're transitioning to shared (from 1 to 2 queues). 3960 */ 3961 if (!list_empty(&set->tag_list) && 3962 !(set->flags & BLK_MQ_F_TAG_QUEUE_SHARED)) { 3963 set->flags |= BLK_MQ_F_TAG_QUEUE_SHARED; 3964 /* update existing queue */ 3965 blk_mq_update_tag_set_shared(set, true); 3966 } 3967 if (set->flags & BLK_MQ_F_TAG_QUEUE_SHARED) 3968 queue_set_hctx_shared(q, true); 3969 list_add_tail(&q->tag_set_list, &set->tag_list); 3970 3971 mutex_unlock(&set->tag_list_lock); 3972 } 3973 3974 /* All allocations will be freed in release handler of q->mq_kobj */ 3975 static int blk_mq_alloc_ctxs(struct request_queue *q) 3976 { 3977 struct blk_mq_ctxs *ctxs; 3978 int cpu; 3979 3980 ctxs = kzalloc(sizeof(*ctxs), GFP_KERNEL); 3981 if (!ctxs) 3982 return -ENOMEM; 3983 3984 ctxs->queue_ctx = alloc_percpu(struct blk_mq_ctx); 3985 if (!ctxs->queue_ctx) 3986 goto fail; 3987 3988 for_each_possible_cpu(cpu) { 3989 struct blk_mq_ctx *ctx = per_cpu_ptr(ctxs->queue_ctx, cpu); 3990 ctx->ctxs = ctxs; 3991 } 3992 3993 q->mq_kobj = &ctxs->kobj; 3994 q->queue_ctx = ctxs->queue_ctx; 3995 3996 return 0; 3997 fail: 3998 kfree(ctxs); 3999 return -ENOMEM; 4000 } 4001 4002 /* 4003 * It is the actual release handler for mq, but we do it from 4004 * request queue's release handler for avoiding use-after-free 4005 * and headache because q->mq_kobj shouldn't have been introduced, 4006 * but we can't group ctx/kctx kobj without it. 4007 */ 4008 void blk_mq_release(struct request_queue *q) 4009 { 4010 struct blk_mq_hw_ctx *hctx, *next; 4011 unsigned long i; 4012 4013 queue_for_each_hw_ctx(q, hctx, i) 4014 WARN_ON_ONCE(hctx && list_empty(&hctx->hctx_list)); 4015 4016 /* all hctx are in .unused_hctx_list now */ 4017 list_for_each_entry_safe(hctx, next, &q->unused_hctx_list, hctx_list) { 4018 list_del_init(&hctx->hctx_list); 4019 kobject_put(&hctx->kobj); 4020 } 4021 4022 xa_destroy(&q->hctx_table); 4023 4024 /* 4025 * release .mq_kobj and sw queue's kobject now because 4026 * both share lifetime with request queue. 4027 */ 4028 blk_mq_sysfs_deinit(q); 4029 } 4030 4031 static struct request_queue *blk_mq_init_queue_data(struct blk_mq_tag_set *set, 4032 void *queuedata) 4033 { 4034 struct request_queue *q; 4035 int ret; 4036 4037 q = blk_alloc_queue(set->numa_node); 4038 if (!q) 4039 return ERR_PTR(-ENOMEM); 4040 q->queuedata = queuedata; 4041 ret = blk_mq_init_allocated_queue(set, q); 4042 if (ret) { 4043 blk_put_queue(q); 4044 return ERR_PTR(ret); 4045 } 4046 return q; 4047 } 4048 4049 struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set) 4050 { 4051 return blk_mq_init_queue_data(set, NULL); 4052 } 4053 EXPORT_SYMBOL(blk_mq_init_queue); 4054 4055 /** 4056 * blk_mq_destroy_queue - shutdown a request queue 4057 * @q: request queue to shutdown 4058 * 4059 * This shuts down a request queue allocated by blk_mq_init_queue(). All future 4060 * requests will be failed with -ENODEV. The caller is responsible for dropping 4061 * the reference from blk_mq_init_queue() by calling blk_put_queue(). 4062 * 4063 * Context: can sleep 4064 */ 4065 void blk_mq_destroy_queue(struct request_queue *q) 4066 { 4067 WARN_ON_ONCE(!queue_is_mq(q)); 4068 WARN_ON_ONCE(blk_queue_registered(q)); 4069 4070 might_sleep(); 4071 4072 blk_queue_flag_set(QUEUE_FLAG_DYING, q); 4073 blk_queue_start_drain(q); 4074 blk_mq_freeze_queue_wait(q); 4075 4076 blk_sync_queue(q); 4077 blk_mq_cancel_work_sync(q); 4078 blk_mq_exit_queue(q); 4079 } 4080 EXPORT_SYMBOL(blk_mq_destroy_queue); 4081 4082 struct gendisk *__blk_mq_alloc_disk(struct blk_mq_tag_set *set, void *queuedata, 4083 struct lock_class_key *lkclass) 4084 { 4085 struct request_queue *q; 4086 struct gendisk *disk; 4087 4088 q = blk_mq_init_queue_data(set, queuedata); 4089 if (IS_ERR(q)) 4090 return ERR_CAST(q); 4091 4092 disk = __alloc_disk_node(q, set->numa_node, lkclass); 4093 if (!disk) { 4094 blk_mq_destroy_queue(q); 4095 blk_put_queue(q); 4096 return ERR_PTR(-ENOMEM); 4097 } 4098 set_bit(GD_OWNS_QUEUE, &disk->state); 4099 return disk; 4100 } 4101 EXPORT_SYMBOL(__blk_mq_alloc_disk); 4102 4103 struct gendisk *blk_mq_alloc_disk_for_queue(struct request_queue *q, 4104 struct lock_class_key *lkclass) 4105 { 4106 struct gendisk *disk; 4107 4108 if (!blk_get_queue(q)) 4109 return NULL; 4110 disk = __alloc_disk_node(q, NUMA_NO_NODE, lkclass); 4111 if (!disk) 4112 blk_put_queue(q); 4113 return disk; 4114 } 4115 EXPORT_SYMBOL(blk_mq_alloc_disk_for_queue); 4116 4117 static struct blk_mq_hw_ctx *blk_mq_alloc_and_init_hctx( 4118 struct blk_mq_tag_set *set, struct request_queue *q, 4119 int hctx_idx, int node) 4120 { 4121 struct blk_mq_hw_ctx *hctx = NULL, *tmp; 4122 4123 /* reuse dead hctx first */ 4124 spin_lock(&q->unused_hctx_lock); 4125 list_for_each_entry(tmp, &q->unused_hctx_list, hctx_list) { 4126 if (tmp->numa_node == node) { 4127 hctx = tmp; 4128 break; 4129 } 4130 } 4131 if (hctx) 4132 list_del_init(&hctx->hctx_list); 4133 spin_unlock(&q->unused_hctx_lock); 4134 4135 if (!hctx) 4136 hctx = blk_mq_alloc_hctx(q, set, node); 4137 if (!hctx) 4138 goto fail; 4139 4140 if (blk_mq_init_hctx(q, set, hctx, hctx_idx)) 4141 goto free_hctx; 4142 4143 return hctx; 4144 4145 free_hctx: 4146 kobject_put(&hctx->kobj); 4147 fail: 4148 return NULL; 4149 } 4150 4151 static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set, 4152 struct request_queue *q) 4153 { 4154 struct blk_mq_hw_ctx *hctx; 4155 unsigned long i, j; 4156 4157 /* protect against switching io scheduler */ 4158 mutex_lock(&q->sysfs_lock); 4159 for (i = 0; i < set->nr_hw_queues; i++) { 4160 int old_node; 4161 int node = blk_mq_get_hctx_node(set, i); 4162 struct blk_mq_hw_ctx *old_hctx = xa_load(&q->hctx_table, i); 4163 4164 if (old_hctx) { 4165 old_node = old_hctx->numa_node; 4166 blk_mq_exit_hctx(q, set, old_hctx, i); 4167 } 4168 4169 if (!blk_mq_alloc_and_init_hctx(set, q, i, node)) { 4170 if (!old_hctx) 4171 break; 4172 pr_warn("Allocate new hctx on node %d fails, fallback to previous one on node %d\n", 4173 node, old_node); 4174 hctx = blk_mq_alloc_and_init_hctx(set, q, i, old_node); 4175 WARN_ON_ONCE(!hctx); 4176 } 4177 } 4178 /* 4179 * Increasing nr_hw_queues fails. Free the newly allocated 4180 * hctxs and keep the previous q->nr_hw_queues. 4181 */ 4182 if (i != set->nr_hw_queues) { 4183 j = q->nr_hw_queues; 4184 } else { 4185 j = i; 4186 q->nr_hw_queues = set->nr_hw_queues; 4187 } 4188 4189 xa_for_each_start(&q->hctx_table, j, hctx, j) 4190 blk_mq_exit_hctx(q, set, hctx, j); 4191 mutex_unlock(&q->sysfs_lock); 4192 } 4193 4194 static void blk_mq_update_poll_flag(struct request_queue *q) 4195 { 4196 struct blk_mq_tag_set *set = q->tag_set; 4197 4198 if (set->nr_maps > HCTX_TYPE_POLL && 4199 set->map[HCTX_TYPE_POLL].nr_queues) 4200 blk_queue_flag_set(QUEUE_FLAG_POLL, q); 4201 else 4202 blk_queue_flag_clear(QUEUE_FLAG_POLL, q); 4203 } 4204 4205 int blk_mq_init_allocated_queue(struct blk_mq_tag_set *set, 4206 struct request_queue *q) 4207 { 4208 /* mark the queue as mq asap */ 4209 q->mq_ops = set->ops; 4210 4211 q->poll_cb = blk_stat_alloc_callback(blk_mq_poll_stats_fn, 4212 blk_mq_poll_stats_bkt, 4213 BLK_MQ_POLL_STATS_BKTS, q); 4214 if (!q->poll_cb) 4215 goto err_exit; 4216 4217 if (blk_mq_alloc_ctxs(q)) 4218 goto err_poll; 4219 4220 /* init q->mq_kobj and sw queues' kobjects */ 4221 blk_mq_sysfs_init(q); 4222 4223 INIT_LIST_HEAD(&q->unused_hctx_list); 4224 spin_lock_init(&q->unused_hctx_lock); 4225 4226 xa_init(&q->hctx_table); 4227 4228 blk_mq_realloc_hw_ctxs(set, q); 4229 if (!q->nr_hw_queues) 4230 goto err_hctxs; 4231 4232 INIT_WORK(&q->timeout_work, blk_mq_timeout_work); 4233 blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ); 4234 4235 q->tag_set = set; 4236 4237 q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT; 4238 blk_mq_update_poll_flag(q); 4239 4240 INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work); 4241 INIT_LIST_HEAD(&q->requeue_list); 4242 spin_lock_init(&q->requeue_lock); 4243 4244 q->nr_requests = set->queue_depth; 4245 4246 /* 4247 * Default to classic polling 4248 */ 4249 q->poll_nsec = BLK_MQ_POLL_CLASSIC; 4250 4251 blk_mq_init_cpu_queues(q, set->nr_hw_queues); 4252 blk_mq_add_queue_tag_set(set, q); 4253 blk_mq_map_swqueue(q); 4254 return 0; 4255 4256 err_hctxs: 4257 blk_mq_release(q); 4258 err_poll: 4259 blk_stat_free_callback(q->poll_cb); 4260 q->poll_cb = NULL; 4261 err_exit: 4262 q->mq_ops = NULL; 4263 return -ENOMEM; 4264 } 4265 EXPORT_SYMBOL(blk_mq_init_allocated_queue); 4266 4267 /* tags can _not_ be used after returning from blk_mq_exit_queue */ 4268 void blk_mq_exit_queue(struct request_queue *q) 4269 { 4270 struct blk_mq_tag_set *set = q->tag_set; 4271 4272 /* Checks hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED. */ 4273 blk_mq_exit_hw_queues(q, set, set->nr_hw_queues); 4274 /* May clear BLK_MQ_F_TAG_QUEUE_SHARED in hctx->flags. */ 4275 blk_mq_del_queue_tag_set(q); 4276 } 4277 4278 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set) 4279 { 4280 int i; 4281 4282 if (blk_mq_is_shared_tags(set->flags)) { 4283 set->shared_tags = blk_mq_alloc_map_and_rqs(set, 4284 BLK_MQ_NO_HCTX_IDX, 4285 set->queue_depth); 4286 if (!set->shared_tags) 4287 return -ENOMEM; 4288 } 4289 4290 for (i = 0; i < set->nr_hw_queues; i++) { 4291 if (!__blk_mq_alloc_map_and_rqs(set, i)) 4292 goto out_unwind; 4293 cond_resched(); 4294 } 4295 4296 return 0; 4297 4298 out_unwind: 4299 while (--i >= 0) 4300 __blk_mq_free_map_and_rqs(set, i); 4301 4302 if (blk_mq_is_shared_tags(set->flags)) { 4303 blk_mq_free_map_and_rqs(set, set->shared_tags, 4304 BLK_MQ_NO_HCTX_IDX); 4305 } 4306 4307 return -ENOMEM; 4308 } 4309 4310 /* 4311 * Allocate the request maps associated with this tag_set. Note that this 4312 * may reduce the depth asked for, if memory is tight. set->queue_depth 4313 * will be updated to reflect the allocated depth. 4314 */ 4315 static int blk_mq_alloc_set_map_and_rqs(struct blk_mq_tag_set *set) 4316 { 4317 unsigned int depth; 4318 int err; 4319 4320 depth = set->queue_depth; 4321 do { 4322 err = __blk_mq_alloc_rq_maps(set); 4323 if (!err) 4324 break; 4325 4326 set->queue_depth >>= 1; 4327 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) { 4328 err = -ENOMEM; 4329 break; 4330 } 4331 } while (set->queue_depth); 4332 4333 if (!set->queue_depth || err) { 4334 pr_err("blk-mq: failed to allocate request map\n"); 4335 return -ENOMEM; 4336 } 4337 4338 if (depth != set->queue_depth) 4339 pr_info("blk-mq: reduced tag depth (%u -> %u)\n", 4340 depth, set->queue_depth); 4341 4342 return 0; 4343 } 4344 4345 static void blk_mq_update_queue_map(struct blk_mq_tag_set *set) 4346 { 4347 /* 4348 * blk_mq_map_queues() and multiple .map_queues() implementations 4349 * expect that set->map[HCTX_TYPE_DEFAULT].nr_queues is set to the 4350 * number of hardware queues. 4351 */ 4352 if (set->nr_maps == 1) 4353 set->map[HCTX_TYPE_DEFAULT].nr_queues = set->nr_hw_queues; 4354 4355 if (set->ops->map_queues && !is_kdump_kernel()) { 4356 int i; 4357 4358 /* 4359 * transport .map_queues is usually done in the following 4360 * way: 4361 * 4362 * for (queue = 0; queue < set->nr_hw_queues; queue++) { 4363 * mask = get_cpu_mask(queue) 4364 * for_each_cpu(cpu, mask) 4365 * set->map[x].mq_map[cpu] = queue; 4366 * } 4367 * 4368 * When we need to remap, the table has to be cleared for 4369 * killing stale mapping since one CPU may not be mapped 4370 * to any hw queue. 4371 */ 4372 for (i = 0; i < set->nr_maps; i++) 4373 blk_mq_clear_mq_map(&set->map[i]); 4374 4375 set->ops->map_queues(set); 4376 } else { 4377 BUG_ON(set->nr_maps > 1); 4378 blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]); 4379 } 4380 } 4381 4382 static int blk_mq_realloc_tag_set_tags(struct blk_mq_tag_set *set, 4383 int new_nr_hw_queues) 4384 { 4385 struct blk_mq_tags **new_tags; 4386 4387 if (set->nr_hw_queues >= new_nr_hw_queues) 4388 goto done; 4389 4390 new_tags = kcalloc_node(new_nr_hw_queues, sizeof(struct blk_mq_tags *), 4391 GFP_KERNEL, set->numa_node); 4392 if (!new_tags) 4393 return -ENOMEM; 4394 4395 if (set->tags) 4396 memcpy(new_tags, set->tags, set->nr_hw_queues * 4397 sizeof(*set->tags)); 4398 kfree(set->tags); 4399 set->tags = new_tags; 4400 done: 4401 set->nr_hw_queues = new_nr_hw_queues; 4402 return 0; 4403 } 4404 4405 /* 4406 * Alloc a tag set to be associated with one or more request queues. 4407 * May fail with EINVAL for various error conditions. May adjust the 4408 * requested depth down, if it's too large. In that case, the set 4409 * value will be stored in set->queue_depth. 4410 */ 4411 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set) 4412 { 4413 int i, ret; 4414 4415 BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS); 4416 4417 if (!set->nr_hw_queues) 4418 return -EINVAL; 4419 if (!set->queue_depth) 4420 return -EINVAL; 4421 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) 4422 return -EINVAL; 4423 4424 if (!set->ops->queue_rq) 4425 return -EINVAL; 4426 4427 if (!set->ops->get_budget ^ !set->ops->put_budget) 4428 return -EINVAL; 4429 4430 if (set->queue_depth > BLK_MQ_MAX_DEPTH) { 4431 pr_info("blk-mq: reduced tag depth to %u\n", 4432 BLK_MQ_MAX_DEPTH); 4433 set->queue_depth = BLK_MQ_MAX_DEPTH; 4434 } 4435 4436 if (!set->nr_maps) 4437 set->nr_maps = 1; 4438 else if (set->nr_maps > HCTX_MAX_TYPES) 4439 return -EINVAL; 4440 4441 /* 4442 * If a crashdump is active, then we are potentially in a very 4443 * memory constrained environment. Limit us to 1 queue and 4444 * 64 tags to prevent using too much memory. 4445 */ 4446 if (is_kdump_kernel()) { 4447 set->nr_hw_queues = 1; 4448 set->nr_maps = 1; 4449 set->queue_depth = min(64U, set->queue_depth); 4450 } 4451 /* 4452 * There is no use for more h/w queues than cpus if we just have 4453 * a single map 4454 */ 4455 if (set->nr_maps == 1 && set->nr_hw_queues > nr_cpu_ids) 4456 set->nr_hw_queues = nr_cpu_ids; 4457 4458 if (set->flags & BLK_MQ_F_BLOCKING) { 4459 set->srcu = kmalloc(sizeof(*set->srcu), GFP_KERNEL); 4460 if (!set->srcu) 4461 return -ENOMEM; 4462 ret = init_srcu_struct(set->srcu); 4463 if (ret) 4464 goto out_free_srcu; 4465 } 4466 4467 ret = -ENOMEM; 4468 set->tags = kcalloc_node(set->nr_hw_queues, 4469 sizeof(struct blk_mq_tags *), GFP_KERNEL, 4470 set->numa_node); 4471 if (!set->tags) 4472 goto out_cleanup_srcu; 4473 4474 for (i = 0; i < set->nr_maps; i++) { 4475 set->map[i].mq_map = kcalloc_node(nr_cpu_ids, 4476 sizeof(set->map[i].mq_map[0]), 4477 GFP_KERNEL, set->numa_node); 4478 if (!set->map[i].mq_map) 4479 goto out_free_mq_map; 4480 set->map[i].nr_queues = is_kdump_kernel() ? 1 : set->nr_hw_queues; 4481 } 4482 4483 blk_mq_update_queue_map(set); 4484 4485 ret = blk_mq_alloc_set_map_and_rqs(set); 4486 if (ret) 4487 goto out_free_mq_map; 4488 4489 mutex_init(&set->tag_list_lock); 4490 INIT_LIST_HEAD(&set->tag_list); 4491 4492 return 0; 4493 4494 out_free_mq_map: 4495 for (i = 0; i < set->nr_maps; i++) { 4496 kfree(set->map[i].mq_map); 4497 set->map[i].mq_map = NULL; 4498 } 4499 kfree(set->tags); 4500 set->tags = NULL; 4501 out_cleanup_srcu: 4502 if (set->flags & BLK_MQ_F_BLOCKING) 4503 cleanup_srcu_struct(set->srcu); 4504 out_free_srcu: 4505 if (set->flags & BLK_MQ_F_BLOCKING) 4506 kfree(set->srcu); 4507 return ret; 4508 } 4509 EXPORT_SYMBOL(blk_mq_alloc_tag_set); 4510 4511 /* allocate and initialize a tagset for a simple single-queue device */ 4512 int blk_mq_alloc_sq_tag_set(struct blk_mq_tag_set *set, 4513 const struct blk_mq_ops *ops, unsigned int queue_depth, 4514 unsigned int set_flags) 4515 { 4516 memset(set, 0, sizeof(*set)); 4517 set->ops = ops; 4518 set->nr_hw_queues = 1; 4519 set->nr_maps = 1; 4520 set->queue_depth = queue_depth; 4521 set->numa_node = NUMA_NO_NODE; 4522 set->flags = set_flags; 4523 return blk_mq_alloc_tag_set(set); 4524 } 4525 EXPORT_SYMBOL_GPL(blk_mq_alloc_sq_tag_set); 4526 4527 void blk_mq_free_tag_set(struct blk_mq_tag_set *set) 4528 { 4529 int i, j; 4530 4531 for (i = 0; i < set->nr_hw_queues; i++) 4532 __blk_mq_free_map_and_rqs(set, i); 4533 4534 if (blk_mq_is_shared_tags(set->flags)) { 4535 blk_mq_free_map_and_rqs(set, set->shared_tags, 4536 BLK_MQ_NO_HCTX_IDX); 4537 } 4538 4539 for (j = 0; j < set->nr_maps; j++) { 4540 kfree(set->map[j].mq_map); 4541 set->map[j].mq_map = NULL; 4542 } 4543 4544 kfree(set->tags); 4545 set->tags = NULL; 4546 if (set->flags & BLK_MQ_F_BLOCKING) { 4547 cleanup_srcu_struct(set->srcu); 4548 kfree(set->srcu); 4549 } 4550 } 4551 EXPORT_SYMBOL(blk_mq_free_tag_set); 4552 4553 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr) 4554 { 4555 struct blk_mq_tag_set *set = q->tag_set; 4556 struct blk_mq_hw_ctx *hctx; 4557 int ret; 4558 unsigned long i; 4559 4560 if (!set) 4561 return -EINVAL; 4562 4563 if (q->nr_requests == nr) 4564 return 0; 4565 4566 blk_mq_freeze_queue(q); 4567 blk_mq_quiesce_queue(q); 4568 4569 ret = 0; 4570 queue_for_each_hw_ctx(q, hctx, i) { 4571 if (!hctx->tags) 4572 continue; 4573 /* 4574 * If we're using an MQ scheduler, just update the scheduler 4575 * queue depth. This is similar to what the old code would do. 4576 */ 4577 if (hctx->sched_tags) { 4578 ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags, 4579 nr, true); 4580 } else { 4581 ret = blk_mq_tag_update_depth(hctx, &hctx->tags, nr, 4582 false); 4583 } 4584 if (ret) 4585 break; 4586 if (q->elevator && q->elevator->type->ops.depth_updated) 4587 q->elevator->type->ops.depth_updated(hctx); 4588 } 4589 if (!ret) { 4590 q->nr_requests = nr; 4591 if (blk_mq_is_shared_tags(set->flags)) { 4592 if (q->elevator) 4593 blk_mq_tag_update_sched_shared_tags(q); 4594 else 4595 blk_mq_tag_resize_shared_tags(set, nr); 4596 } 4597 } 4598 4599 blk_mq_unquiesce_queue(q); 4600 blk_mq_unfreeze_queue(q); 4601 4602 return ret; 4603 } 4604 4605 /* 4606 * request_queue and elevator_type pair. 4607 * It is just used by __blk_mq_update_nr_hw_queues to cache 4608 * the elevator_type associated with a request_queue. 4609 */ 4610 struct blk_mq_qe_pair { 4611 struct list_head node; 4612 struct request_queue *q; 4613 struct elevator_type *type; 4614 }; 4615 4616 /* 4617 * Cache the elevator_type in qe pair list and switch the 4618 * io scheduler to 'none' 4619 */ 4620 static bool blk_mq_elv_switch_none(struct list_head *head, 4621 struct request_queue *q) 4622 { 4623 struct blk_mq_qe_pair *qe; 4624 4625 if (!q->elevator) 4626 return true; 4627 4628 qe = kmalloc(sizeof(*qe), GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY); 4629 if (!qe) 4630 return false; 4631 4632 /* q->elevator needs protection from ->sysfs_lock */ 4633 mutex_lock(&q->sysfs_lock); 4634 4635 INIT_LIST_HEAD(&qe->node); 4636 qe->q = q; 4637 qe->type = q->elevator->type; 4638 /* keep a reference to the elevator module as we'll switch back */ 4639 __elevator_get(qe->type); 4640 list_add(&qe->node, head); 4641 elevator_disable(q); 4642 mutex_unlock(&q->sysfs_lock); 4643 4644 return true; 4645 } 4646 4647 static struct blk_mq_qe_pair *blk_lookup_qe_pair(struct list_head *head, 4648 struct request_queue *q) 4649 { 4650 struct blk_mq_qe_pair *qe; 4651 4652 list_for_each_entry(qe, head, node) 4653 if (qe->q == q) 4654 return qe; 4655 4656 return NULL; 4657 } 4658 4659 static void blk_mq_elv_switch_back(struct list_head *head, 4660 struct request_queue *q) 4661 { 4662 struct blk_mq_qe_pair *qe; 4663 struct elevator_type *t; 4664 4665 qe = blk_lookup_qe_pair(head, q); 4666 if (!qe) 4667 return; 4668 t = qe->type; 4669 list_del(&qe->node); 4670 kfree(qe); 4671 4672 mutex_lock(&q->sysfs_lock); 4673 elevator_switch(q, t); 4674 /* drop the reference acquired in blk_mq_elv_switch_none */ 4675 elevator_put(t); 4676 mutex_unlock(&q->sysfs_lock); 4677 } 4678 4679 static void __blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, 4680 int nr_hw_queues) 4681 { 4682 struct request_queue *q; 4683 LIST_HEAD(head); 4684 int prev_nr_hw_queues; 4685 4686 lockdep_assert_held(&set->tag_list_lock); 4687 4688 if (set->nr_maps == 1 && nr_hw_queues > nr_cpu_ids) 4689 nr_hw_queues = nr_cpu_ids; 4690 if (nr_hw_queues < 1) 4691 return; 4692 if (set->nr_maps == 1 && nr_hw_queues == set->nr_hw_queues) 4693 return; 4694 4695 list_for_each_entry(q, &set->tag_list, tag_set_list) 4696 blk_mq_freeze_queue(q); 4697 /* 4698 * Switch IO scheduler to 'none', cleaning up the data associated 4699 * with the previous scheduler. We will switch back once we are done 4700 * updating the new sw to hw queue mappings. 4701 */ 4702 list_for_each_entry(q, &set->tag_list, tag_set_list) 4703 if (!blk_mq_elv_switch_none(&head, q)) 4704 goto switch_back; 4705 4706 list_for_each_entry(q, &set->tag_list, tag_set_list) { 4707 blk_mq_debugfs_unregister_hctxs(q); 4708 blk_mq_sysfs_unregister_hctxs(q); 4709 } 4710 4711 prev_nr_hw_queues = set->nr_hw_queues; 4712 if (blk_mq_realloc_tag_set_tags(set, nr_hw_queues) < 0) 4713 goto reregister; 4714 4715 fallback: 4716 blk_mq_update_queue_map(set); 4717 list_for_each_entry(q, &set->tag_list, tag_set_list) { 4718 blk_mq_realloc_hw_ctxs(set, q); 4719 blk_mq_update_poll_flag(q); 4720 if (q->nr_hw_queues != set->nr_hw_queues) { 4721 int i = prev_nr_hw_queues; 4722 4723 pr_warn("Increasing nr_hw_queues to %d fails, fallback to %d\n", 4724 nr_hw_queues, prev_nr_hw_queues); 4725 for (; i < set->nr_hw_queues; i++) 4726 __blk_mq_free_map_and_rqs(set, i); 4727 4728 set->nr_hw_queues = prev_nr_hw_queues; 4729 blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]); 4730 goto fallback; 4731 } 4732 blk_mq_map_swqueue(q); 4733 } 4734 4735 reregister: 4736 list_for_each_entry(q, &set->tag_list, tag_set_list) { 4737 blk_mq_sysfs_register_hctxs(q); 4738 blk_mq_debugfs_register_hctxs(q); 4739 } 4740 4741 switch_back: 4742 list_for_each_entry(q, &set->tag_list, tag_set_list) 4743 blk_mq_elv_switch_back(&head, q); 4744 4745 list_for_each_entry(q, &set->tag_list, tag_set_list) 4746 blk_mq_unfreeze_queue(q); 4747 } 4748 4749 void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues) 4750 { 4751 mutex_lock(&set->tag_list_lock); 4752 __blk_mq_update_nr_hw_queues(set, nr_hw_queues); 4753 mutex_unlock(&set->tag_list_lock); 4754 } 4755 EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues); 4756 4757 /* Enable polling stats and return whether they were already enabled. */ 4758 static bool blk_poll_stats_enable(struct request_queue *q) 4759 { 4760 if (q->poll_stat) 4761 return true; 4762 4763 return blk_stats_alloc_enable(q); 4764 } 4765 4766 static void blk_mq_poll_stats_start(struct request_queue *q) 4767 { 4768 /* 4769 * We don't arm the callback if polling stats are not enabled or the 4770 * callback is already active. 4771 */ 4772 if (!q->poll_stat || blk_stat_is_active(q->poll_cb)) 4773 return; 4774 4775 blk_stat_activate_msecs(q->poll_cb, 100); 4776 } 4777 4778 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb) 4779 { 4780 struct request_queue *q = cb->data; 4781 int bucket; 4782 4783 for (bucket = 0; bucket < BLK_MQ_POLL_STATS_BKTS; bucket++) { 4784 if (cb->stat[bucket].nr_samples) 4785 q->poll_stat[bucket] = cb->stat[bucket]; 4786 } 4787 } 4788 4789 static unsigned long blk_mq_poll_nsecs(struct request_queue *q, 4790 struct request *rq) 4791 { 4792 unsigned long ret = 0; 4793 int bucket; 4794 4795 /* 4796 * If stats collection isn't on, don't sleep but turn it on for 4797 * future users 4798 */ 4799 if (!blk_poll_stats_enable(q)) 4800 return 0; 4801 4802 /* 4803 * As an optimistic guess, use half of the mean service time 4804 * for this type of request. We can (and should) make this smarter. 4805 * For instance, if the completion latencies are tight, we can 4806 * get closer than just half the mean. This is especially 4807 * important on devices where the completion latencies are longer 4808 * than ~10 usec. We do use the stats for the relevant IO size 4809 * if available which does lead to better estimates. 4810 */ 4811 bucket = blk_mq_poll_stats_bkt(rq); 4812 if (bucket < 0) 4813 return ret; 4814 4815 if (q->poll_stat[bucket].nr_samples) 4816 ret = (q->poll_stat[bucket].mean + 1) / 2; 4817 4818 return ret; 4819 } 4820 4821 static bool blk_mq_poll_hybrid(struct request_queue *q, blk_qc_t qc) 4822 { 4823 struct blk_mq_hw_ctx *hctx = blk_qc_to_hctx(q, qc); 4824 struct request *rq = blk_qc_to_rq(hctx, qc); 4825 struct hrtimer_sleeper hs; 4826 enum hrtimer_mode mode; 4827 unsigned int nsecs; 4828 ktime_t kt; 4829 4830 /* 4831 * If a request has completed on queue that uses an I/O scheduler, we 4832 * won't get back a request from blk_qc_to_rq. 4833 */ 4834 if (!rq || (rq->rq_flags & RQF_MQ_POLL_SLEPT)) 4835 return false; 4836 4837 /* 4838 * If we get here, hybrid polling is enabled. Hence poll_nsec can be: 4839 * 4840 * 0: use half of prev avg 4841 * >0: use this specific value 4842 */ 4843 if (q->poll_nsec > 0) 4844 nsecs = q->poll_nsec; 4845 else 4846 nsecs = blk_mq_poll_nsecs(q, rq); 4847 4848 if (!nsecs) 4849 return false; 4850 4851 rq->rq_flags |= RQF_MQ_POLL_SLEPT; 4852 4853 /* 4854 * This will be replaced with the stats tracking code, using 4855 * 'avg_completion_time / 2' as the pre-sleep target. 4856 */ 4857 kt = nsecs; 4858 4859 mode = HRTIMER_MODE_REL; 4860 hrtimer_init_sleeper_on_stack(&hs, CLOCK_MONOTONIC, mode); 4861 hrtimer_set_expires(&hs.timer, kt); 4862 4863 do { 4864 if (blk_mq_rq_state(rq) == MQ_RQ_COMPLETE) 4865 break; 4866 set_current_state(TASK_UNINTERRUPTIBLE); 4867 hrtimer_sleeper_start_expires(&hs, mode); 4868 if (hs.task) 4869 io_schedule(); 4870 hrtimer_cancel(&hs.timer); 4871 mode = HRTIMER_MODE_ABS; 4872 } while (hs.task && !signal_pending(current)); 4873 4874 __set_current_state(TASK_RUNNING); 4875 destroy_hrtimer_on_stack(&hs.timer); 4876 4877 /* 4878 * If we sleep, have the caller restart the poll loop to reset the 4879 * state. Like for the other success return cases, the caller is 4880 * responsible for checking if the IO completed. If the IO isn't 4881 * complete, we'll get called again and will go straight to the busy 4882 * poll loop. 4883 */ 4884 return true; 4885 } 4886 4887 static int blk_mq_poll_classic(struct request_queue *q, blk_qc_t cookie, 4888 struct io_comp_batch *iob, unsigned int flags) 4889 { 4890 struct blk_mq_hw_ctx *hctx = blk_qc_to_hctx(q, cookie); 4891 long state = get_current_state(); 4892 int ret; 4893 4894 do { 4895 ret = q->mq_ops->poll(hctx, iob); 4896 if (ret > 0) { 4897 __set_current_state(TASK_RUNNING); 4898 return ret; 4899 } 4900 4901 if (signal_pending_state(state, current)) 4902 __set_current_state(TASK_RUNNING); 4903 if (task_is_running(current)) 4904 return 1; 4905 4906 if (ret < 0 || (flags & BLK_POLL_ONESHOT)) 4907 break; 4908 cpu_relax(); 4909 } while (!need_resched()); 4910 4911 __set_current_state(TASK_RUNNING); 4912 return 0; 4913 } 4914 4915 int blk_mq_poll(struct request_queue *q, blk_qc_t cookie, struct io_comp_batch *iob, 4916 unsigned int flags) 4917 { 4918 if (!(flags & BLK_POLL_NOSLEEP) && 4919 q->poll_nsec != BLK_MQ_POLL_CLASSIC) { 4920 if (blk_mq_poll_hybrid(q, cookie)) 4921 return 1; 4922 } 4923 return blk_mq_poll_classic(q, cookie, iob, flags); 4924 } 4925 4926 unsigned int blk_mq_rq_cpu(struct request *rq) 4927 { 4928 return rq->mq_ctx->cpu; 4929 } 4930 EXPORT_SYMBOL(blk_mq_rq_cpu); 4931 4932 void blk_mq_cancel_work_sync(struct request_queue *q) 4933 { 4934 struct blk_mq_hw_ctx *hctx; 4935 unsigned long i; 4936 4937 cancel_delayed_work_sync(&q->requeue_work); 4938 4939 queue_for_each_hw_ctx(q, hctx, i) 4940 cancel_delayed_work_sync(&hctx->run_work); 4941 } 4942 4943 static int __init blk_mq_init(void) 4944 { 4945 int i; 4946 4947 for_each_possible_cpu(i) 4948 init_llist_head(&per_cpu(blk_cpu_done, i)); 4949 open_softirq(BLOCK_SOFTIRQ, blk_done_softirq); 4950 4951 cpuhp_setup_state_nocalls(CPUHP_BLOCK_SOFTIRQ_DEAD, 4952 "block/softirq:dead", NULL, 4953 blk_softirq_cpu_dead); 4954 cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL, 4955 blk_mq_hctx_notify_dead); 4956 cpuhp_setup_state_multi(CPUHP_AP_BLK_MQ_ONLINE, "block/mq:online", 4957 blk_mq_hctx_notify_online, 4958 blk_mq_hctx_notify_offline); 4959 return 0; 4960 } 4961 subsys_initcall(blk_mq_init); 4962