1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Block multiqueue core code 4 * 5 * Copyright (C) 2013-2014 Jens Axboe 6 * Copyright (C) 2013-2014 Christoph Hellwig 7 */ 8 #include <linux/kernel.h> 9 #include <linux/module.h> 10 #include <linux/backing-dev.h> 11 #include <linux/bio.h> 12 #include <linux/blkdev.h> 13 #include <linux/blk-integrity.h> 14 #include <linux/kmemleak.h> 15 #include <linux/mm.h> 16 #include <linux/init.h> 17 #include <linux/slab.h> 18 #include <linux/workqueue.h> 19 #include <linux/smp.h> 20 #include <linux/interrupt.h> 21 #include <linux/llist.h> 22 #include <linux/cpu.h> 23 #include <linux/cache.h> 24 #include <linux/sched/sysctl.h> 25 #include <linux/sched/topology.h> 26 #include <linux/sched/signal.h> 27 #include <linux/delay.h> 28 #include <linux/crash_dump.h> 29 #include <linux/prefetch.h> 30 #include <linux/blk-crypto.h> 31 #include <linux/part_stat.h> 32 33 #include <trace/events/block.h> 34 35 #include <linux/t10-pi.h> 36 #include "blk.h" 37 #include "blk-mq.h" 38 #include "blk-mq-debugfs.h" 39 #include "blk-pm.h" 40 #include "blk-stat.h" 41 #include "blk-mq-sched.h" 42 #include "blk-rq-qos.h" 43 #include "blk-ioprio.h" 44 45 static DEFINE_PER_CPU(struct llist_head, blk_cpu_done); 46 static DEFINE_PER_CPU(call_single_data_t, blk_cpu_csd); 47 48 static void blk_mq_insert_request(struct request *rq, blk_insert_t flags); 49 static void blk_mq_request_bypass_insert(struct request *rq, 50 blk_insert_t flags); 51 static void blk_mq_try_issue_list_directly(struct blk_mq_hw_ctx *hctx, 52 struct list_head *list); 53 static int blk_hctx_poll(struct request_queue *q, struct blk_mq_hw_ctx *hctx, 54 struct io_comp_batch *iob, unsigned int flags); 55 56 /* 57 * Check if any of the ctx, dispatch list or elevator 58 * have pending work in this hardware queue. 59 */ 60 static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx) 61 { 62 return !list_empty_careful(&hctx->dispatch) || 63 sbitmap_any_bit_set(&hctx->ctx_map) || 64 blk_mq_sched_has_work(hctx); 65 } 66 67 /* 68 * Mark this ctx as having pending work in this hardware queue 69 */ 70 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx, 71 struct blk_mq_ctx *ctx) 72 { 73 const int bit = ctx->index_hw[hctx->type]; 74 75 if (!sbitmap_test_bit(&hctx->ctx_map, bit)) 76 sbitmap_set_bit(&hctx->ctx_map, bit); 77 } 78 79 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx, 80 struct blk_mq_ctx *ctx) 81 { 82 const int bit = ctx->index_hw[hctx->type]; 83 84 sbitmap_clear_bit(&hctx->ctx_map, bit); 85 } 86 87 struct mq_inflight { 88 struct block_device *part; 89 unsigned int inflight[2]; 90 }; 91 92 static bool blk_mq_check_inflight(struct request *rq, void *priv) 93 { 94 struct mq_inflight *mi = priv; 95 96 if (rq->part && blk_do_io_stat(rq) && 97 (!mi->part->bd_partno || rq->part == mi->part) && 98 blk_mq_rq_state(rq) == MQ_RQ_IN_FLIGHT) 99 mi->inflight[rq_data_dir(rq)]++; 100 101 return true; 102 } 103 104 unsigned int blk_mq_in_flight(struct request_queue *q, 105 struct block_device *part) 106 { 107 struct mq_inflight mi = { .part = part }; 108 109 blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi); 110 111 return mi.inflight[0] + mi.inflight[1]; 112 } 113 114 void blk_mq_in_flight_rw(struct request_queue *q, struct block_device *part, 115 unsigned int inflight[2]) 116 { 117 struct mq_inflight mi = { .part = part }; 118 119 blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi); 120 inflight[0] = mi.inflight[0]; 121 inflight[1] = mi.inflight[1]; 122 } 123 124 void blk_freeze_queue_start(struct request_queue *q) 125 { 126 mutex_lock(&q->mq_freeze_lock); 127 if (++q->mq_freeze_depth == 1) { 128 percpu_ref_kill(&q->q_usage_counter); 129 mutex_unlock(&q->mq_freeze_lock); 130 if (queue_is_mq(q)) 131 blk_mq_run_hw_queues(q, false); 132 } else { 133 mutex_unlock(&q->mq_freeze_lock); 134 } 135 } 136 EXPORT_SYMBOL_GPL(blk_freeze_queue_start); 137 138 void blk_mq_freeze_queue_wait(struct request_queue *q) 139 { 140 wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter)); 141 } 142 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait); 143 144 int blk_mq_freeze_queue_wait_timeout(struct request_queue *q, 145 unsigned long timeout) 146 { 147 return wait_event_timeout(q->mq_freeze_wq, 148 percpu_ref_is_zero(&q->q_usage_counter), 149 timeout); 150 } 151 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout); 152 153 /* 154 * Guarantee no request is in use, so we can change any data structure of 155 * the queue afterward. 156 */ 157 void blk_freeze_queue(struct request_queue *q) 158 { 159 /* 160 * In the !blk_mq case we are only calling this to kill the 161 * q_usage_counter, otherwise this increases the freeze depth 162 * and waits for it to return to zero. For this reason there is 163 * no blk_unfreeze_queue(), and blk_freeze_queue() is not 164 * exported to drivers as the only user for unfreeze is blk_mq. 165 */ 166 blk_freeze_queue_start(q); 167 blk_mq_freeze_queue_wait(q); 168 } 169 170 void blk_mq_freeze_queue(struct request_queue *q) 171 { 172 /* 173 * ...just an alias to keep freeze and unfreeze actions balanced 174 * in the blk_mq_* namespace 175 */ 176 blk_freeze_queue(q); 177 } 178 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue); 179 180 void __blk_mq_unfreeze_queue(struct request_queue *q, bool force_atomic) 181 { 182 mutex_lock(&q->mq_freeze_lock); 183 if (force_atomic) 184 q->q_usage_counter.data->force_atomic = true; 185 q->mq_freeze_depth--; 186 WARN_ON_ONCE(q->mq_freeze_depth < 0); 187 if (!q->mq_freeze_depth) { 188 percpu_ref_resurrect(&q->q_usage_counter); 189 wake_up_all(&q->mq_freeze_wq); 190 } 191 mutex_unlock(&q->mq_freeze_lock); 192 } 193 194 void blk_mq_unfreeze_queue(struct request_queue *q) 195 { 196 __blk_mq_unfreeze_queue(q, false); 197 } 198 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue); 199 200 /* 201 * FIXME: replace the scsi_internal_device_*block_nowait() calls in the 202 * mpt3sas driver such that this function can be removed. 203 */ 204 void blk_mq_quiesce_queue_nowait(struct request_queue *q) 205 { 206 unsigned long flags; 207 208 spin_lock_irqsave(&q->queue_lock, flags); 209 if (!q->quiesce_depth++) 210 blk_queue_flag_set(QUEUE_FLAG_QUIESCED, q); 211 spin_unlock_irqrestore(&q->queue_lock, flags); 212 } 213 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue_nowait); 214 215 /** 216 * blk_mq_wait_quiesce_done() - wait until in-progress quiesce is done 217 * @set: tag_set to wait on 218 * 219 * Note: it is driver's responsibility for making sure that quiesce has 220 * been started on or more of the request_queues of the tag_set. This 221 * function only waits for the quiesce on those request_queues that had 222 * the quiesce flag set using blk_mq_quiesce_queue_nowait. 223 */ 224 void blk_mq_wait_quiesce_done(struct blk_mq_tag_set *set) 225 { 226 if (set->flags & BLK_MQ_F_BLOCKING) 227 synchronize_srcu(set->srcu); 228 else 229 synchronize_rcu(); 230 } 231 EXPORT_SYMBOL_GPL(blk_mq_wait_quiesce_done); 232 233 /** 234 * blk_mq_quiesce_queue() - wait until all ongoing dispatches have finished 235 * @q: request queue. 236 * 237 * Note: this function does not prevent that the struct request end_io() 238 * callback function is invoked. Once this function is returned, we make 239 * sure no dispatch can happen until the queue is unquiesced via 240 * blk_mq_unquiesce_queue(). 241 */ 242 void blk_mq_quiesce_queue(struct request_queue *q) 243 { 244 blk_mq_quiesce_queue_nowait(q); 245 /* nothing to wait for non-mq queues */ 246 if (queue_is_mq(q)) 247 blk_mq_wait_quiesce_done(q->tag_set); 248 } 249 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue); 250 251 /* 252 * blk_mq_unquiesce_queue() - counterpart of blk_mq_quiesce_queue() 253 * @q: request queue. 254 * 255 * This function recovers queue into the state before quiescing 256 * which is done by blk_mq_quiesce_queue. 257 */ 258 void blk_mq_unquiesce_queue(struct request_queue *q) 259 { 260 unsigned long flags; 261 bool run_queue = false; 262 263 spin_lock_irqsave(&q->queue_lock, flags); 264 if (WARN_ON_ONCE(q->quiesce_depth <= 0)) { 265 ; 266 } else if (!--q->quiesce_depth) { 267 blk_queue_flag_clear(QUEUE_FLAG_QUIESCED, q); 268 run_queue = true; 269 } 270 spin_unlock_irqrestore(&q->queue_lock, flags); 271 272 /* dispatch requests which are inserted during quiescing */ 273 if (run_queue) 274 blk_mq_run_hw_queues(q, true); 275 } 276 EXPORT_SYMBOL_GPL(blk_mq_unquiesce_queue); 277 278 void blk_mq_quiesce_tagset(struct blk_mq_tag_set *set) 279 { 280 struct request_queue *q; 281 282 mutex_lock(&set->tag_list_lock); 283 list_for_each_entry(q, &set->tag_list, tag_set_list) { 284 if (!blk_queue_skip_tagset_quiesce(q)) 285 blk_mq_quiesce_queue_nowait(q); 286 } 287 blk_mq_wait_quiesce_done(set); 288 mutex_unlock(&set->tag_list_lock); 289 } 290 EXPORT_SYMBOL_GPL(blk_mq_quiesce_tagset); 291 292 void blk_mq_unquiesce_tagset(struct blk_mq_tag_set *set) 293 { 294 struct request_queue *q; 295 296 mutex_lock(&set->tag_list_lock); 297 list_for_each_entry(q, &set->tag_list, tag_set_list) { 298 if (!blk_queue_skip_tagset_quiesce(q)) 299 blk_mq_unquiesce_queue(q); 300 } 301 mutex_unlock(&set->tag_list_lock); 302 } 303 EXPORT_SYMBOL_GPL(blk_mq_unquiesce_tagset); 304 305 void blk_mq_wake_waiters(struct request_queue *q) 306 { 307 struct blk_mq_hw_ctx *hctx; 308 unsigned long i; 309 310 queue_for_each_hw_ctx(q, hctx, i) 311 if (blk_mq_hw_queue_mapped(hctx)) 312 blk_mq_tag_wakeup_all(hctx->tags, true); 313 } 314 315 void blk_rq_init(struct request_queue *q, struct request *rq) 316 { 317 memset(rq, 0, sizeof(*rq)); 318 319 INIT_LIST_HEAD(&rq->queuelist); 320 rq->q = q; 321 rq->__sector = (sector_t) -1; 322 INIT_HLIST_NODE(&rq->hash); 323 RB_CLEAR_NODE(&rq->rb_node); 324 rq->tag = BLK_MQ_NO_TAG; 325 rq->internal_tag = BLK_MQ_NO_TAG; 326 rq->start_time_ns = ktime_get_ns(); 327 rq->part = NULL; 328 blk_crypto_rq_set_defaults(rq); 329 } 330 EXPORT_SYMBOL(blk_rq_init); 331 332 /* Set start and alloc time when the allocated request is actually used */ 333 static inline void blk_mq_rq_time_init(struct request *rq, u64 alloc_time_ns) 334 { 335 if (blk_mq_need_time_stamp(rq)) 336 rq->start_time_ns = ktime_get_ns(); 337 else 338 rq->start_time_ns = 0; 339 340 #ifdef CONFIG_BLK_RQ_ALLOC_TIME 341 if (blk_queue_rq_alloc_time(rq->q)) 342 rq->alloc_time_ns = alloc_time_ns ?: rq->start_time_ns; 343 else 344 rq->alloc_time_ns = 0; 345 #endif 346 } 347 348 static struct request *blk_mq_rq_ctx_init(struct blk_mq_alloc_data *data, 349 struct blk_mq_tags *tags, unsigned int tag) 350 { 351 struct blk_mq_ctx *ctx = data->ctx; 352 struct blk_mq_hw_ctx *hctx = data->hctx; 353 struct request_queue *q = data->q; 354 struct request *rq = tags->static_rqs[tag]; 355 356 rq->q = q; 357 rq->mq_ctx = ctx; 358 rq->mq_hctx = hctx; 359 rq->cmd_flags = data->cmd_flags; 360 361 if (data->flags & BLK_MQ_REQ_PM) 362 data->rq_flags |= RQF_PM; 363 if (blk_queue_io_stat(q)) 364 data->rq_flags |= RQF_IO_STAT; 365 rq->rq_flags = data->rq_flags; 366 367 if (data->rq_flags & RQF_SCHED_TAGS) { 368 rq->tag = BLK_MQ_NO_TAG; 369 rq->internal_tag = tag; 370 } else { 371 rq->tag = tag; 372 rq->internal_tag = BLK_MQ_NO_TAG; 373 } 374 rq->timeout = 0; 375 376 rq->part = NULL; 377 rq->io_start_time_ns = 0; 378 rq->stats_sectors = 0; 379 rq->nr_phys_segments = 0; 380 #if defined(CONFIG_BLK_DEV_INTEGRITY) 381 rq->nr_integrity_segments = 0; 382 #endif 383 rq->end_io = NULL; 384 rq->end_io_data = NULL; 385 386 blk_crypto_rq_set_defaults(rq); 387 INIT_LIST_HEAD(&rq->queuelist); 388 /* tag was already set */ 389 WRITE_ONCE(rq->deadline, 0); 390 req_ref_set(rq, 1); 391 392 if (rq->rq_flags & RQF_USE_SCHED) { 393 struct elevator_queue *e = data->q->elevator; 394 395 INIT_HLIST_NODE(&rq->hash); 396 RB_CLEAR_NODE(&rq->rb_node); 397 398 if (e->type->ops.prepare_request) 399 e->type->ops.prepare_request(rq); 400 } 401 402 return rq; 403 } 404 405 static inline struct request * 406 __blk_mq_alloc_requests_batch(struct blk_mq_alloc_data *data) 407 { 408 unsigned int tag, tag_offset; 409 struct blk_mq_tags *tags; 410 struct request *rq; 411 unsigned long tag_mask; 412 int i, nr = 0; 413 414 tag_mask = blk_mq_get_tags(data, data->nr_tags, &tag_offset); 415 if (unlikely(!tag_mask)) 416 return NULL; 417 418 tags = blk_mq_tags_from_data(data); 419 for (i = 0; tag_mask; i++) { 420 if (!(tag_mask & (1UL << i))) 421 continue; 422 tag = tag_offset + i; 423 prefetch(tags->static_rqs[tag]); 424 tag_mask &= ~(1UL << i); 425 rq = blk_mq_rq_ctx_init(data, tags, tag); 426 rq_list_add(data->cached_rq, rq); 427 nr++; 428 } 429 /* caller already holds a reference, add for remainder */ 430 percpu_ref_get_many(&data->q->q_usage_counter, nr - 1); 431 data->nr_tags -= nr; 432 433 return rq_list_pop(data->cached_rq); 434 } 435 436 static struct request *__blk_mq_alloc_requests(struct blk_mq_alloc_data *data) 437 { 438 struct request_queue *q = data->q; 439 u64 alloc_time_ns = 0; 440 struct request *rq; 441 unsigned int tag; 442 443 /* alloc_time includes depth and tag waits */ 444 if (blk_queue_rq_alloc_time(q)) 445 alloc_time_ns = ktime_get_ns(); 446 447 if (data->cmd_flags & REQ_NOWAIT) 448 data->flags |= BLK_MQ_REQ_NOWAIT; 449 450 if (q->elevator) { 451 /* 452 * All requests use scheduler tags when an I/O scheduler is 453 * enabled for the queue. 454 */ 455 data->rq_flags |= RQF_SCHED_TAGS; 456 457 /* 458 * Flush/passthrough requests are special and go directly to the 459 * dispatch list. 460 */ 461 if ((data->cmd_flags & REQ_OP_MASK) != REQ_OP_FLUSH && 462 !blk_op_is_passthrough(data->cmd_flags)) { 463 struct elevator_mq_ops *ops = &q->elevator->type->ops; 464 465 WARN_ON_ONCE(data->flags & BLK_MQ_REQ_RESERVED); 466 467 data->rq_flags |= RQF_USE_SCHED; 468 if (ops->limit_depth) 469 ops->limit_depth(data->cmd_flags, data); 470 } 471 } 472 473 retry: 474 data->ctx = blk_mq_get_ctx(q); 475 data->hctx = blk_mq_map_queue(q, data->cmd_flags, data->ctx); 476 if (!(data->rq_flags & RQF_SCHED_TAGS)) 477 blk_mq_tag_busy(data->hctx); 478 479 if (data->flags & BLK_MQ_REQ_RESERVED) 480 data->rq_flags |= RQF_RESV; 481 482 /* 483 * Try batched alloc if we want more than 1 tag. 484 */ 485 if (data->nr_tags > 1) { 486 rq = __blk_mq_alloc_requests_batch(data); 487 if (rq) { 488 blk_mq_rq_time_init(rq, alloc_time_ns); 489 return rq; 490 } 491 data->nr_tags = 1; 492 } 493 494 /* 495 * Waiting allocations only fail because of an inactive hctx. In that 496 * case just retry the hctx assignment and tag allocation as CPU hotplug 497 * should have migrated us to an online CPU by now. 498 */ 499 tag = blk_mq_get_tag(data); 500 if (tag == BLK_MQ_NO_TAG) { 501 if (data->flags & BLK_MQ_REQ_NOWAIT) 502 return NULL; 503 /* 504 * Give up the CPU and sleep for a random short time to 505 * ensure that thread using a realtime scheduling class 506 * are migrated off the CPU, and thus off the hctx that 507 * is going away. 508 */ 509 msleep(3); 510 goto retry; 511 } 512 513 rq = blk_mq_rq_ctx_init(data, blk_mq_tags_from_data(data), tag); 514 blk_mq_rq_time_init(rq, alloc_time_ns); 515 return rq; 516 } 517 518 static struct request *blk_mq_rq_cache_fill(struct request_queue *q, 519 struct blk_plug *plug, 520 blk_opf_t opf, 521 blk_mq_req_flags_t flags) 522 { 523 struct blk_mq_alloc_data data = { 524 .q = q, 525 .flags = flags, 526 .cmd_flags = opf, 527 .nr_tags = plug->nr_ios, 528 .cached_rq = &plug->cached_rq, 529 }; 530 struct request *rq; 531 532 if (blk_queue_enter(q, flags)) 533 return NULL; 534 535 plug->nr_ios = 1; 536 537 rq = __blk_mq_alloc_requests(&data); 538 if (unlikely(!rq)) 539 blk_queue_exit(q); 540 return rq; 541 } 542 543 static struct request *blk_mq_alloc_cached_request(struct request_queue *q, 544 blk_opf_t opf, 545 blk_mq_req_flags_t flags) 546 { 547 struct blk_plug *plug = current->plug; 548 struct request *rq; 549 550 if (!plug) 551 return NULL; 552 553 if (rq_list_empty(plug->cached_rq)) { 554 if (plug->nr_ios == 1) 555 return NULL; 556 rq = blk_mq_rq_cache_fill(q, plug, opf, flags); 557 if (!rq) 558 return NULL; 559 } else { 560 rq = rq_list_peek(&plug->cached_rq); 561 if (!rq || rq->q != q) 562 return NULL; 563 564 if (blk_mq_get_hctx_type(opf) != rq->mq_hctx->type) 565 return NULL; 566 if (op_is_flush(rq->cmd_flags) != op_is_flush(opf)) 567 return NULL; 568 569 plug->cached_rq = rq_list_next(rq); 570 blk_mq_rq_time_init(rq, 0); 571 } 572 573 rq->cmd_flags = opf; 574 INIT_LIST_HEAD(&rq->queuelist); 575 return rq; 576 } 577 578 struct request *blk_mq_alloc_request(struct request_queue *q, blk_opf_t opf, 579 blk_mq_req_flags_t flags) 580 { 581 struct request *rq; 582 583 rq = blk_mq_alloc_cached_request(q, opf, flags); 584 if (!rq) { 585 struct blk_mq_alloc_data data = { 586 .q = q, 587 .flags = flags, 588 .cmd_flags = opf, 589 .nr_tags = 1, 590 }; 591 int ret; 592 593 ret = blk_queue_enter(q, flags); 594 if (ret) 595 return ERR_PTR(ret); 596 597 rq = __blk_mq_alloc_requests(&data); 598 if (!rq) 599 goto out_queue_exit; 600 } 601 rq->__data_len = 0; 602 rq->__sector = (sector_t) -1; 603 rq->bio = rq->biotail = NULL; 604 return rq; 605 out_queue_exit: 606 blk_queue_exit(q); 607 return ERR_PTR(-EWOULDBLOCK); 608 } 609 EXPORT_SYMBOL(blk_mq_alloc_request); 610 611 struct request *blk_mq_alloc_request_hctx(struct request_queue *q, 612 blk_opf_t opf, blk_mq_req_flags_t flags, unsigned int hctx_idx) 613 { 614 struct blk_mq_alloc_data data = { 615 .q = q, 616 .flags = flags, 617 .cmd_flags = opf, 618 .nr_tags = 1, 619 }; 620 u64 alloc_time_ns = 0; 621 struct request *rq; 622 unsigned int cpu; 623 unsigned int tag; 624 int ret; 625 626 /* alloc_time includes depth and tag waits */ 627 if (blk_queue_rq_alloc_time(q)) 628 alloc_time_ns = ktime_get_ns(); 629 630 /* 631 * If the tag allocator sleeps we could get an allocation for a 632 * different hardware context. No need to complicate the low level 633 * allocator for this for the rare use case of a command tied to 634 * a specific queue. 635 */ 636 if (WARN_ON_ONCE(!(flags & BLK_MQ_REQ_NOWAIT)) || 637 WARN_ON_ONCE(!(flags & BLK_MQ_REQ_RESERVED))) 638 return ERR_PTR(-EINVAL); 639 640 if (hctx_idx >= q->nr_hw_queues) 641 return ERR_PTR(-EIO); 642 643 ret = blk_queue_enter(q, flags); 644 if (ret) 645 return ERR_PTR(ret); 646 647 /* 648 * Check if the hardware context is actually mapped to anything. 649 * If not tell the caller that it should skip this queue. 650 */ 651 ret = -EXDEV; 652 data.hctx = xa_load(&q->hctx_table, hctx_idx); 653 if (!blk_mq_hw_queue_mapped(data.hctx)) 654 goto out_queue_exit; 655 cpu = cpumask_first_and(data.hctx->cpumask, cpu_online_mask); 656 if (cpu >= nr_cpu_ids) 657 goto out_queue_exit; 658 data.ctx = __blk_mq_get_ctx(q, cpu); 659 660 if (q->elevator) 661 data.rq_flags |= RQF_SCHED_TAGS; 662 else 663 blk_mq_tag_busy(data.hctx); 664 665 if (flags & BLK_MQ_REQ_RESERVED) 666 data.rq_flags |= RQF_RESV; 667 668 ret = -EWOULDBLOCK; 669 tag = blk_mq_get_tag(&data); 670 if (tag == BLK_MQ_NO_TAG) 671 goto out_queue_exit; 672 rq = blk_mq_rq_ctx_init(&data, blk_mq_tags_from_data(&data), tag); 673 blk_mq_rq_time_init(rq, alloc_time_ns); 674 rq->__data_len = 0; 675 rq->__sector = (sector_t) -1; 676 rq->bio = rq->biotail = NULL; 677 return rq; 678 679 out_queue_exit: 680 blk_queue_exit(q); 681 return ERR_PTR(ret); 682 } 683 EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx); 684 685 static void blk_mq_finish_request(struct request *rq) 686 { 687 struct request_queue *q = rq->q; 688 689 if (rq->rq_flags & RQF_USE_SCHED) { 690 q->elevator->type->ops.finish_request(rq); 691 /* 692 * For postflush request that may need to be 693 * completed twice, we should clear this flag 694 * to avoid double finish_request() on the rq. 695 */ 696 rq->rq_flags &= ~RQF_USE_SCHED; 697 } 698 } 699 700 static void __blk_mq_free_request(struct request *rq) 701 { 702 struct request_queue *q = rq->q; 703 struct blk_mq_ctx *ctx = rq->mq_ctx; 704 struct blk_mq_hw_ctx *hctx = rq->mq_hctx; 705 const int sched_tag = rq->internal_tag; 706 707 blk_crypto_free_request(rq); 708 blk_pm_mark_last_busy(rq); 709 rq->mq_hctx = NULL; 710 711 if (rq->rq_flags & RQF_MQ_INFLIGHT) 712 __blk_mq_dec_active_requests(hctx); 713 714 if (rq->tag != BLK_MQ_NO_TAG) 715 blk_mq_put_tag(hctx->tags, ctx, rq->tag); 716 if (sched_tag != BLK_MQ_NO_TAG) 717 blk_mq_put_tag(hctx->sched_tags, ctx, sched_tag); 718 blk_mq_sched_restart(hctx); 719 blk_queue_exit(q); 720 } 721 722 void blk_mq_free_request(struct request *rq) 723 { 724 struct request_queue *q = rq->q; 725 726 blk_mq_finish_request(rq); 727 728 if (unlikely(laptop_mode && !blk_rq_is_passthrough(rq))) 729 laptop_io_completion(q->disk->bdi); 730 731 rq_qos_done(q, rq); 732 733 WRITE_ONCE(rq->state, MQ_RQ_IDLE); 734 if (req_ref_put_and_test(rq)) 735 __blk_mq_free_request(rq); 736 } 737 EXPORT_SYMBOL_GPL(blk_mq_free_request); 738 739 void blk_mq_free_plug_rqs(struct blk_plug *plug) 740 { 741 struct request *rq; 742 743 while ((rq = rq_list_pop(&plug->cached_rq)) != NULL) 744 blk_mq_free_request(rq); 745 } 746 747 void blk_dump_rq_flags(struct request *rq, char *msg) 748 { 749 printk(KERN_INFO "%s: dev %s: flags=%llx\n", msg, 750 rq->q->disk ? rq->q->disk->disk_name : "?", 751 (__force unsigned long long) rq->cmd_flags); 752 753 printk(KERN_INFO " sector %llu, nr/cnr %u/%u\n", 754 (unsigned long long)blk_rq_pos(rq), 755 blk_rq_sectors(rq), blk_rq_cur_sectors(rq)); 756 printk(KERN_INFO " bio %p, biotail %p, len %u\n", 757 rq->bio, rq->biotail, blk_rq_bytes(rq)); 758 } 759 EXPORT_SYMBOL(blk_dump_rq_flags); 760 761 static void req_bio_endio(struct request *rq, struct bio *bio, 762 unsigned int nbytes, blk_status_t error) 763 { 764 if (unlikely(error)) { 765 bio->bi_status = error; 766 } else if (req_op(rq) == REQ_OP_ZONE_APPEND) { 767 /* 768 * Partial zone append completions cannot be supported as the 769 * BIO fragments may end up not being written sequentially. 770 */ 771 if (bio->bi_iter.bi_size != nbytes) 772 bio->bi_status = BLK_STS_IOERR; 773 else 774 bio->bi_iter.bi_sector = rq->__sector; 775 } 776 777 bio_advance(bio, nbytes); 778 779 if (unlikely(rq->rq_flags & RQF_QUIET)) 780 bio_set_flag(bio, BIO_QUIET); 781 /* don't actually finish bio if it's part of flush sequence */ 782 if (bio->bi_iter.bi_size == 0 && !(rq->rq_flags & RQF_FLUSH_SEQ)) 783 bio_endio(bio); 784 } 785 786 static void blk_account_io_completion(struct request *req, unsigned int bytes) 787 { 788 if (req->part && blk_do_io_stat(req)) { 789 const int sgrp = op_stat_group(req_op(req)); 790 791 part_stat_lock(); 792 part_stat_add(req->part, sectors[sgrp], bytes >> 9); 793 part_stat_unlock(); 794 } 795 } 796 797 static void blk_print_req_error(struct request *req, blk_status_t status) 798 { 799 printk_ratelimited(KERN_ERR 800 "%s error, dev %s, sector %llu op 0x%x:(%s) flags 0x%x " 801 "phys_seg %u prio class %u\n", 802 blk_status_to_str(status), 803 req->q->disk ? req->q->disk->disk_name : "?", 804 blk_rq_pos(req), (__force u32)req_op(req), 805 blk_op_str(req_op(req)), 806 (__force u32)(req->cmd_flags & ~REQ_OP_MASK), 807 req->nr_phys_segments, 808 IOPRIO_PRIO_CLASS(req->ioprio)); 809 } 810 811 /* 812 * Fully end IO on a request. Does not support partial completions, or 813 * errors. 814 */ 815 static void blk_complete_request(struct request *req) 816 { 817 const bool is_flush = (req->rq_flags & RQF_FLUSH_SEQ) != 0; 818 int total_bytes = blk_rq_bytes(req); 819 struct bio *bio = req->bio; 820 821 trace_block_rq_complete(req, BLK_STS_OK, total_bytes); 822 823 if (!bio) 824 return; 825 826 #ifdef CONFIG_BLK_DEV_INTEGRITY 827 if (blk_integrity_rq(req) && req_op(req) == REQ_OP_READ) 828 req->q->integrity.profile->complete_fn(req, total_bytes); 829 #endif 830 831 /* 832 * Upper layers may call blk_crypto_evict_key() anytime after the last 833 * bio_endio(). Therefore, the keyslot must be released before that. 834 */ 835 blk_crypto_rq_put_keyslot(req); 836 837 blk_account_io_completion(req, total_bytes); 838 839 do { 840 struct bio *next = bio->bi_next; 841 842 /* Completion has already been traced */ 843 bio_clear_flag(bio, BIO_TRACE_COMPLETION); 844 845 if (req_op(req) == REQ_OP_ZONE_APPEND) 846 bio->bi_iter.bi_sector = req->__sector; 847 848 if (!is_flush) 849 bio_endio(bio); 850 bio = next; 851 } while (bio); 852 853 /* 854 * Reset counters so that the request stacking driver 855 * can find how many bytes remain in the request 856 * later. 857 */ 858 if (!req->end_io) { 859 req->bio = NULL; 860 req->__data_len = 0; 861 } 862 } 863 864 /** 865 * blk_update_request - Complete multiple bytes without completing the request 866 * @req: the request being processed 867 * @error: block status code 868 * @nr_bytes: number of bytes to complete for @req 869 * 870 * Description: 871 * Ends I/O on a number of bytes attached to @req, but doesn't complete 872 * the request structure even if @req doesn't have leftover. 873 * If @req has leftover, sets it up for the next range of segments. 874 * 875 * Passing the result of blk_rq_bytes() as @nr_bytes guarantees 876 * %false return from this function. 877 * 878 * Note: 879 * The RQF_SPECIAL_PAYLOAD flag is ignored on purpose in this function 880 * except in the consistency check at the end of this function. 881 * 882 * Return: 883 * %false - this request doesn't have any more data 884 * %true - this request has more data 885 **/ 886 bool blk_update_request(struct request *req, blk_status_t error, 887 unsigned int nr_bytes) 888 { 889 int total_bytes; 890 891 trace_block_rq_complete(req, error, nr_bytes); 892 893 if (!req->bio) 894 return false; 895 896 #ifdef CONFIG_BLK_DEV_INTEGRITY 897 if (blk_integrity_rq(req) && req_op(req) == REQ_OP_READ && 898 error == BLK_STS_OK) 899 req->q->integrity.profile->complete_fn(req, nr_bytes); 900 #endif 901 902 /* 903 * Upper layers may call blk_crypto_evict_key() anytime after the last 904 * bio_endio(). Therefore, the keyslot must be released before that. 905 */ 906 if (blk_crypto_rq_has_keyslot(req) && nr_bytes >= blk_rq_bytes(req)) 907 __blk_crypto_rq_put_keyslot(req); 908 909 if (unlikely(error && !blk_rq_is_passthrough(req) && 910 !(req->rq_flags & RQF_QUIET)) && 911 !test_bit(GD_DEAD, &req->q->disk->state)) { 912 blk_print_req_error(req, error); 913 trace_block_rq_error(req, error, nr_bytes); 914 } 915 916 blk_account_io_completion(req, nr_bytes); 917 918 total_bytes = 0; 919 while (req->bio) { 920 struct bio *bio = req->bio; 921 unsigned bio_bytes = min(bio->bi_iter.bi_size, nr_bytes); 922 923 if (bio_bytes == bio->bi_iter.bi_size) 924 req->bio = bio->bi_next; 925 926 /* Completion has already been traced */ 927 bio_clear_flag(bio, BIO_TRACE_COMPLETION); 928 req_bio_endio(req, bio, bio_bytes, error); 929 930 total_bytes += bio_bytes; 931 nr_bytes -= bio_bytes; 932 933 if (!nr_bytes) 934 break; 935 } 936 937 /* 938 * completely done 939 */ 940 if (!req->bio) { 941 /* 942 * Reset counters so that the request stacking driver 943 * can find how many bytes remain in the request 944 * later. 945 */ 946 req->__data_len = 0; 947 return false; 948 } 949 950 req->__data_len -= total_bytes; 951 952 /* update sector only for requests with clear definition of sector */ 953 if (!blk_rq_is_passthrough(req)) 954 req->__sector += total_bytes >> 9; 955 956 /* mixed attributes always follow the first bio */ 957 if (req->rq_flags & RQF_MIXED_MERGE) { 958 req->cmd_flags &= ~REQ_FAILFAST_MASK; 959 req->cmd_flags |= req->bio->bi_opf & REQ_FAILFAST_MASK; 960 } 961 962 if (!(req->rq_flags & RQF_SPECIAL_PAYLOAD)) { 963 /* 964 * If total number of sectors is less than the first segment 965 * size, something has gone terribly wrong. 966 */ 967 if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) { 968 blk_dump_rq_flags(req, "request botched"); 969 req->__data_len = blk_rq_cur_bytes(req); 970 } 971 972 /* recalculate the number of segments */ 973 req->nr_phys_segments = blk_recalc_rq_segments(req); 974 } 975 976 return true; 977 } 978 EXPORT_SYMBOL_GPL(blk_update_request); 979 980 static inline void blk_account_io_done(struct request *req, u64 now) 981 { 982 trace_block_io_done(req); 983 984 /* 985 * Account IO completion. flush_rq isn't accounted as a 986 * normal IO on queueing nor completion. Accounting the 987 * containing request is enough. 988 */ 989 if (blk_do_io_stat(req) && req->part && 990 !(req->rq_flags & RQF_FLUSH_SEQ)) { 991 const int sgrp = op_stat_group(req_op(req)); 992 993 part_stat_lock(); 994 update_io_ticks(req->part, jiffies, true); 995 part_stat_inc(req->part, ios[sgrp]); 996 part_stat_add(req->part, nsecs[sgrp], now - req->start_time_ns); 997 part_stat_unlock(); 998 } 999 } 1000 1001 static inline void blk_account_io_start(struct request *req) 1002 { 1003 trace_block_io_start(req); 1004 1005 if (blk_do_io_stat(req)) { 1006 /* 1007 * All non-passthrough requests are created from a bio with one 1008 * exception: when a flush command that is part of a flush sequence 1009 * generated by the state machine in blk-flush.c is cloned onto the 1010 * lower device by dm-multipath we can get here without a bio. 1011 */ 1012 if (req->bio) 1013 req->part = req->bio->bi_bdev; 1014 else 1015 req->part = req->q->disk->part0; 1016 1017 part_stat_lock(); 1018 update_io_ticks(req->part, jiffies, false); 1019 part_stat_unlock(); 1020 } 1021 } 1022 1023 static inline void __blk_mq_end_request_acct(struct request *rq, u64 now) 1024 { 1025 if (rq->rq_flags & RQF_STATS) 1026 blk_stat_add(rq, now); 1027 1028 blk_mq_sched_completed_request(rq, now); 1029 blk_account_io_done(rq, now); 1030 } 1031 1032 inline void __blk_mq_end_request(struct request *rq, blk_status_t error) 1033 { 1034 if (blk_mq_need_time_stamp(rq)) 1035 __blk_mq_end_request_acct(rq, ktime_get_ns()); 1036 1037 blk_mq_finish_request(rq); 1038 1039 if (rq->end_io) { 1040 rq_qos_done(rq->q, rq); 1041 if (rq->end_io(rq, error) == RQ_END_IO_FREE) 1042 blk_mq_free_request(rq); 1043 } else { 1044 blk_mq_free_request(rq); 1045 } 1046 } 1047 EXPORT_SYMBOL(__blk_mq_end_request); 1048 1049 void blk_mq_end_request(struct request *rq, blk_status_t error) 1050 { 1051 if (blk_update_request(rq, error, blk_rq_bytes(rq))) 1052 BUG(); 1053 __blk_mq_end_request(rq, error); 1054 } 1055 EXPORT_SYMBOL(blk_mq_end_request); 1056 1057 #define TAG_COMP_BATCH 32 1058 1059 static inline void blk_mq_flush_tag_batch(struct blk_mq_hw_ctx *hctx, 1060 int *tag_array, int nr_tags) 1061 { 1062 struct request_queue *q = hctx->queue; 1063 1064 /* 1065 * All requests should have been marked as RQF_MQ_INFLIGHT, so 1066 * update hctx->nr_active in batch 1067 */ 1068 if (hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED) 1069 __blk_mq_sub_active_requests(hctx, nr_tags); 1070 1071 blk_mq_put_tags(hctx->tags, tag_array, nr_tags); 1072 percpu_ref_put_many(&q->q_usage_counter, nr_tags); 1073 } 1074 1075 void blk_mq_end_request_batch(struct io_comp_batch *iob) 1076 { 1077 int tags[TAG_COMP_BATCH], nr_tags = 0; 1078 struct blk_mq_hw_ctx *cur_hctx = NULL; 1079 struct request *rq; 1080 u64 now = 0; 1081 1082 if (iob->need_ts) 1083 now = ktime_get_ns(); 1084 1085 while ((rq = rq_list_pop(&iob->req_list)) != NULL) { 1086 prefetch(rq->bio); 1087 prefetch(rq->rq_next); 1088 1089 blk_complete_request(rq); 1090 if (iob->need_ts) 1091 __blk_mq_end_request_acct(rq, now); 1092 1093 blk_mq_finish_request(rq); 1094 1095 rq_qos_done(rq->q, rq); 1096 1097 /* 1098 * If end_io handler returns NONE, then it still has 1099 * ownership of the request. 1100 */ 1101 if (rq->end_io && rq->end_io(rq, 0) == RQ_END_IO_NONE) 1102 continue; 1103 1104 WRITE_ONCE(rq->state, MQ_RQ_IDLE); 1105 if (!req_ref_put_and_test(rq)) 1106 continue; 1107 1108 blk_crypto_free_request(rq); 1109 blk_pm_mark_last_busy(rq); 1110 1111 if (nr_tags == TAG_COMP_BATCH || cur_hctx != rq->mq_hctx) { 1112 if (cur_hctx) 1113 blk_mq_flush_tag_batch(cur_hctx, tags, nr_tags); 1114 nr_tags = 0; 1115 cur_hctx = rq->mq_hctx; 1116 } 1117 tags[nr_tags++] = rq->tag; 1118 } 1119 1120 if (nr_tags) 1121 blk_mq_flush_tag_batch(cur_hctx, tags, nr_tags); 1122 } 1123 EXPORT_SYMBOL_GPL(blk_mq_end_request_batch); 1124 1125 static void blk_complete_reqs(struct llist_head *list) 1126 { 1127 struct llist_node *entry = llist_reverse_order(llist_del_all(list)); 1128 struct request *rq, *next; 1129 1130 llist_for_each_entry_safe(rq, next, entry, ipi_list) 1131 rq->q->mq_ops->complete(rq); 1132 } 1133 1134 static __latent_entropy void blk_done_softirq(struct softirq_action *h) 1135 { 1136 blk_complete_reqs(this_cpu_ptr(&blk_cpu_done)); 1137 } 1138 1139 static int blk_softirq_cpu_dead(unsigned int cpu) 1140 { 1141 blk_complete_reqs(&per_cpu(blk_cpu_done, cpu)); 1142 return 0; 1143 } 1144 1145 static void __blk_mq_complete_request_remote(void *data) 1146 { 1147 __raise_softirq_irqoff(BLOCK_SOFTIRQ); 1148 } 1149 1150 static inline bool blk_mq_complete_need_ipi(struct request *rq) 1151 { 1152 int cpu = raw_smp_processor_id(); 1153 1154 if (!IS_ENABLED(CONFIG_SMP) || 1155 !test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags)) 1156 return false; 1157 /* 1158 * With force threaded interrupts enabled, raising softirq from an SMP 1159 * function call will always result in waking the ksoftirqd thread. 1160 * This is probably worse than completing the request on a different 1161 * cache domain. 1162 */ 1163 if (force_irqthreads()) 1164 return false; 1165 1166 /* same CPU or cache domain? Complete locally */ 1167 if (cpu == rq->mq_ctx->cpu || 1168 (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags) && 1169 cpus_share_cache(cpu, rq->mq_ctx->cpu))) 1170 return false; 1171 1172 /* don't try to IPI to an offline CPU */ 1173 return cpu_online(rq->mq_ctx->cpu); 1174 } 1175 1176 static void blk_mq_complete_send_ipi(struct request *rq) 1177 { 1178 unsigned int cpu; 1179 1180 cpu = rq->mq_ctx->cpu; 1181 if (llist_add(&rq->ipi_list, &per_cpu(blk_cpu_done, cpu))) 1182 smp_call_function_single_async(cpu, &per_cpu(blk_cpu_csd, cpu)); 1183 } 1184 1185 static void blk_mq_raise_softirq(struct request *rq) 1186 { 1187 struct llist_head *list; 1188 1189 preempt_disable(); 1190 list = this_cpu_ptr(&blk_cpu_done); 1191 if (llist_add(&rq->ipi_list, list)) 1192 raise_softirq(BLOCK_SOFTIRQ); 1193 preempt_enable(); 1194 } 1195 1196 bool blk_mq_complete_request_remote(struct request *rq) 1197 { 1198 WRITE_ONCE(rq->state, MQ_RQ_COMPLETE); 1199 1200 /* 1201 * For request which hctx has only one ctx mapping, 1202 * or a polled request, always complete locally, 1203 * it's pointless to redirect the completion. 1204 */ 1205 if ((rq->mq_hctx->nr_ctx == 1 && 1206 rq->mq_ctx->cpu == raw_smp_processor_id()) || 1207 rq->cmd_flags & REQ_POLLED) 1208 return false; 1209 1210 if (blk_mq_complete_need_ipi(rq)) { 1211 blk_mq_complete_send_ipi(rq); 1212 return true; 1213 } 1214 1215 if (rq->q->nr_hw_queues == 1) { 1216 blk_mq_raise_softirq(rq); 1217 return true; 1218 } 1219 return false; 1220 } 1221 EXPORT_SYMBOL_GPL(blk_mq_complete_request_remote); 1222 1223 /** 1224 * blk_mq_complete_request - end I/O on a request 1225 * @rq: the request being processed 1226 * 1227 * Description: 1228 * Complete a request by scheduling the ->complete_rq operation. 1229 **/ 1230 void blk_mq_complete_request(struct request *rq) 1231 { 1232 if (!blk_mq_complete_request_remote(rq)) 1233 rq->q->mq_ops->complete(rq); 1234 } 1235 EXPORT_SYMBOL(blk_mq_complete_request); 1236 1237 /** 1238 * blk_mq_start_request - Start processing a request 1239 * @rq: Pointer to request to be started 1240 * 1241 * Function used by device drivers to notify the block layer that a request 1242 * is going to be processed now, so blk layer can do proper initializations 1243 * such as starting the timeout timer. 1244 */ 1245 void blk_mq_start_request(struct request *rq) 1246 { 1247 struct request_queue *q = rq->q; 1248 1249 trace_block_rq_issue(rq); 1250 1251 if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) { 1252 rq->io_start_time_ns = ktime_get_ns(); 1253 rq->stats_sectors = blk_rq_sectors(rq); 1254 rq->rq_flags |= RQF_STATS; 1255 rq_qos_issue(q, rq); 1256 } 1257 1258 WARN_ON_ONCE(blk_mq_rq_state(rq) != MQ_RQ_IDLE); 1259 1260 blk_add_timer(rq); 1261 WRITE_ONCE(rq->state, MQ_RQ_IN_FLIGHT); 1262 1263 #ifdef CONFIG_BLK_DEV_INTEGRITY 1264 if (blk_integrity_rq(rq) && req_op(rq) == REQ_OP_WRITE) 1265 q->integrity.profile->prepare_fn(rq); 1266 #endif 1267 if (rq->bio && rq->bio->bi_opf & REQ_POLLED) 1268 WRITE_ONCE(rq->bio->bi_cookie, rq->mq_hctx->queue_num); 1269 } 1270 EXPORT_SYMBOL(blk_mq_start_request); 1271 1272 /* 1273 * Allow 2x BLK_MAX_REQUEST_COUNT requests on plug queue for multiple 1274 * queues. This is important for md arrays to benefit from merging 1275 * requests. 1276 */ 1277 static inline unsigned short blk_plug_max_rq_count(struct blk_plug *plug) 1278 { 1279 if (plug->multiple_queues) 1280 return BLK_MAX_REQUEST_COUNT * 2; 1281 return BLK_MAX_REQUEST_COUNT; 1282 } 1283 1284 static void blk_add_rq_to_plug(struct blk_plug *plug, struct request *rq) 1285 { 1286 struct request *last = rq_list_peek(&plug->mq_list); 1287 1288 if (!plug->rq_count) { 1289 trace_block_plug(rq->q); 1290 } else if (plug->rq_count >= blk_plug_max_rq_count(plug) || 1291 (!blk_queue_nomerges(rq->q) && 1292 blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) { 1293 blk_mq_flush_plug_list(plug, false); 1294 last = NULL; 1295 trace_block_plug(rq->q); 1296 } 1297 1298 if (!plug->multiple_queues && last && last->q != rq->q) 1299 plug->multiple_queues = true; 1300 /* 1301 * Any request allocated from sched tags can't be issued to 1302 * ->queue_rqs() directly 1303 */ 1304 if (!plug->has_elevator && (rq->rq_flags & RQF_SCHED_TAGS)) 1305 plug->has_elevator = true; 1306 rq->rq_next = NULL; 1307 rq_list_add(&plug->mq_list, rq); 1308 plug->rq_count++; 1309 } 1310 1311 /** 1312 * blk_execute_rq_nowait - insert a request to I/O scheduler for execution 1313 * @rq: request to insert 1314 * @at_head: insert request at head or tail of queue 1315 * 1316 * Description: 1317 * Insert a fully prepared request at the back of the I/O scheduler queue 1318 * for execution. Don't wait for completion. 1319 * 1320 * Note: 1321 * This function will invoke @done directly if the queue is dead. 1322 */ 1323 void blk_execute_rq_nowait(struct request *rq, bool at_head) 1324 { 1325 struct blk_mq_hw_ctx *hctx = rq->mq_hctx; 1326 1327 WARN_ON(irqs_disabled()); 1328 WARN_ON(!blk_rq_is_passthrough(rq)); 1329 1330 blk_account_io_start(rq); 1331 1332 /* 1333 * As plugging can be enabled for passthrough requests on a zoned 1334 * device, directly accessing the plug instead of using blk_mq_plug() 1335 * should not have any consequences. 1336 */ 1337 if (current->plug && !at_head) { 1338 blk_add_rq_to_plug(current->plug, rq); 1339 return; 1340 } 1341 1342 blk_mq_insert_request(rq, at_head ? BLK_MQ_INSERT_AT_HEAD : 0); 1343 blk_mq_run_hw_queue(hctx, hctx->flags & BLK_MQ_F_BLOCKING); 1344 } 1345 EXPORT_SYMBOL_GPL(blk_execute_rq_nowait); 1346 1347 struct blk_rq_wait { 1348 struct completion done; 1349 blk_status_t ret; 1350 }; 1351 1352 static enum rq_end_io_ret blk_end_sync_rq(struct request *rq, blk_status_t ret) 1353 { 1354 struct blk_rq_wait *wait = rq->end_io_data; 1355 1356 wait->ret = ret; 1357 complete(&wait->done); 1358 return RQ_END_IO_NONE; 1359 } 1360 1361 bool blk_rq_is_poll(struct request *rq) 1362 { 1363 if (!rq->mq_hctx) 1364 return false; 1365 if (rq->mq_hctx->type != HCTX_TYPE_POLL) 1366 return false; 1367 return true; 1368 } 1369 EXPORT_SYMBOL_GPL(blk_rq_is_poll); 1370 1371 static void blk_rq_poll_completion(struct request *rq, struct completion *wait) 1372 { 1373 do { 1374 blk_hctx_poll(rq->q, rq->mq_hctx, NULL, 0); 1375 cond_resched(); 1376 } while (!completion_done(wait)); 1377 } 1378 1379 /** 1380 * blk_execute_rq - insert a request into queue for execution 1381 * @rq: request to insert 1382 * @at_head: insert request at head or tail of queue 1383 * 1384 * Description: 1385 * Insert a fully prepared request at the back of the I/O scheduler queue 1386 * for execution and wait for completion. 1387 * Return: The blk_status_t result provided to blk_mq_end_request(). 1388 */ 1389 blk_status_t blk_execute_rq(struct request *rq, bool at_head) 1390 { 1391 struct blk_mq_hw_ctx *hctx = rq->mq_hctx; 1392 struct blk_rq_wait wait = { 1393 .done = COMPLETION_INITIALIZER_ONSTACK(wait.done), 1394 }; 1395 1396 WARN_ON(irqs_disabled()); 1397 WARN_ON(!blk_rq_is_passthrough(rq)); 1398 1399 rq->end_io_data = &wait; 1400 rq->end_io = blk_end_sync_rq; 1401 1402 blk_account_io_start(rq); 1403 blk_mq_insert_request(rq, at_head ? BLK_MQ_INSERT_AT_HEAD : 0); 1404 blk_mq_run_hw_queue(hctx, false); 1405 1406 if (blk_rq_is_poll(rq)) { 1407 blk_rq_poll_completion(rq, &wait.done); 1408 } else { 1409 /* 1410 * Prevent hang_check timer from firing at us during very long 1411 * I/O 1412 */ 1413 unsigned long hang_check = sysctl_hung_task_timeout_secs; 1414 1415 if (hang_check) 1416 while (!wait_for_completion_io_timeout(&wait.done, 1417 hang_check * (HZ/2))) 1418 ; 1419 else 1420 wait_for_completion_io(&wait.done); 1421 } 1422 1423 return wait.ret; 1424 } 1425 EXPORT_SYMBOL(blk_execute_rq); 1426 1427 static void __blk_mq_requeue_request(struct request *rq) 1428 { 1429 struct request_queue *q = rq->q; 1430 1431 blk_mq_put_driver_tag(rq); 1432 1433 trace_block_rq_requeue(rq); 1434 rq_qos_requeue(q, rq); 1435 1436 if (blk_mq_request_started(rq)) { 1437 WRITE_ONCE(rq->state, MQ_RQ_IDLE); 1438 rq->rq_flags &= ~RQF_TIMED_OUT; 1439 } 1440 } 1441 1442 void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list) 1443 { 1444 struct request_queue *q = rq->q; 1445 unsigned long flags; 1446 1447 __blk_mq_requeue_request(rq); 1448 1449 /* this request will be re-inserted to io scheduler queue */ 1450 blk_mq_sched_requeue_request(rq); 1451 1452 spin_lock_irqsave(&q->requeue_lock, flags); 1453 list_add_tail(&rq->queuelist, &q->requeue_list); 1454 spin_unlock_irqrestore(&q->requeue_lock, flags); 1455 1456 if (kick_requeue_list) 1457 blk_mq_kick_requeue_list(q); 1458 } 1459 EXPORT_SYMBOL(blk_mq_requeue_request); 1460 1461 static void blk_mq_requeue_work(struct work_struct *work) 1462 { 1463 struct request_queue *q = 1464 container_of(work, struct request_queue, requeue_work.work); 1465 LIST_HEAD(rq_list); 1466 LIST_HEAD(flush_list); 1467 struct request *rq; 1468 1469 spin_lock_irq(&q->requeue_lock); 1470 list_splice_init(&q->requeue_list, &rq_list); 1471 list_splice_init(&q->flush_list, &flush_list); 1472 spin_unlock_irq(&q->requeue_lock); 1473 1474 while (!list_empty(&rq_list)) { 1475 rq = list_entry(rq_list.next, struct request, queuelist); 1476 /* 1477 * If RQF_DONTPREP ist set, the request has been started by the 1478 * driver already and might have driver-specific data allocated 1479 * already. Insert it into the hctx dispatch list to avoid 1480 * block layer merges for the request. 1481 */ 1482 if (rq->rq_flags & RQF_DONTPREP) { 1483 list_del_init(&rq->queuelist); 1484 blk_mq_request_bypass_insert(rq, 0); 1485 } else { 1486 list_del_init(&rq->queuelist); 1487 blk_mq_insert_request(rq, BLK_MQ_INSERT_AT_HEAD); 1488 } 1489 } 1490 1491 while (!list_empty(&flush_list)) { 1492 rq = list_entry(flush_list.next, struct request, queuelist); 1493 list_del_init(&rq->queuelist); 1494 blk_mq_insert_request(rq, 0); 1495 } 1496 1497 blk_mq_run_hw_queues(q, false); 1498 } 1499 1500 void blk_mq_kick_requeue_list(struct request_queue *q) 1501 { 1502 kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work, 0); 1503 } 1504 EXPORT_SYMBOL(blk_mq_kick_requeue_list); 1505 1506 void blk_mq_delay_kick_requeue_list(struct request_queue *q, 1507 unsigned long msecs) 1508 { 1509 kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work, 1510 msecs_to_jiffies(msecs)); 1511 } 1512 EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list); 1513 1514 static bool blk_mq_rq_inflight(struct request *rq, void *priv) 1515 { 1516 /* 1517 * If we find a request that isn't idle we know the queue is busy 1518 * as it's checked in the iter. 1519 * Return false to stop the iteration. 1520 */ 1521 if (blk_mq_request_started(rq)) { 1522 bool *busy = priv; 1523 1524 *busy = true; 1525 return false; 1526 } 1527 1528 return true; 1529 } 1530 1531 bool blk_mq_queue_inflight(struct request_queue *q) 1532 { 1533 bool busy = false; 1534 1535 blk_mq_queue_tag_busy_iter(q, blk_mq_rq_inflight, &busy); 1536 return busy; 1537 } 1538 EXPORT_SYMBOL_GPL(blk_mq_queue_inflight); 1539 1540 static void blk_mq_rq_timed_out(struct request *req) 1541 { 1542 req->rq_flags |= RQF_TIMED_OUT; 1543 if (req->q->mq_ops->timeout) { 1544 enum blk_eh_timer_return ret; 1545 1546 ret = req->q->mq_ops->timeout(req); 1547 if (ret == BLK_EH_DONE) 1548 return; 1549 WARN_ON_ONCE(ret != BLK_EH_RESET_TIMER); 1550 } 1551 1552 blk_add_timer(req); 1553 } 1554 1555 struct blk_expired_data { 1556 bool has_timedout_rq; 1557 unsigned long next; 1558 unsigned long timeout_start; 1559 }; 1560 1561 static bool blk_mq_req_expired(struct request *rq, struct blk_expired_data *expired) 1562 { 1563 unsigned long deadline; 1564 1565 if (blk_mq_rq_state(rq) != MQ_RQ_IN_FLIGHT) 1566 return false; 1567 if (rq->rq_flags & RQF_TIMED_OUT) 1568 return false; 1569 1570 deadline = READ_ONCE(rq->deadline); 1571 if (time_after_eq(expired->timeout_start, deadline)) 1572 return true; 1573 1574 if (expired->next == 0) 1575 expired->next = deadline; 1576 else if (time_after(expired->next, deadline)) 1577 expired->next = deadline; 1578 return false; 1579 } 1580 1581 void blk_mq_put_rq_ref(struct request *rq) 1582 { 1583 if (is_flush_rq(rq)) { 1584 if (rq->end_io(rq, 0) == RQ_END_IO_FREE) 1585 blk_mq_free_request(rq); 1586 } else if (req_ref_put_and_test(rq)) { 1587 __blk_mq_free_request(rq); 1588 } 1589 } 1590 1591 static bool blk_mq_check_expired(struct request *rq, void *priv) 1592 { 1593 struct blk_expired_data *expired = priv; 1594 1595 /* 1596 * blk_mq_queue_tag_busy_iter() has locked the request, so it cannot 1597 * be reallocated underneath the timeout handler's processing, then 1598 * the expire check is reliable. If the request is not expired, then 1599 * it was completed and reallocated as a new request after returning 1600 * from blk_mq_check_expired(). 1601 */ 1602 if (blk_mq_req_expired(rq, expired)) { 1603 expired->has_timedout_rq = true; 1604 return false; 1605 } 1606 return true; 1607 } 1608 1609 static bool blk_mq_handle_expired(struct request *rq, void *priv) 1610 { 1611 struct blk_expired_data *expired = priv; 1612 1613 if (blk_mq_req_expired(rq, expired)) 1614 blk_mq_rq_timed_out(rq); 1615 return true; 1616 } 1617 1618 static void blk_mq_timeout_work(struct work_struct *work) 1619 { 1620 struct request_queue *q = 1621 container_of(work, struct request_queue, timeout_work); 1622 struct blk_expired_data expired = { 1623 .timeout_start = jiffies, 1624 }; 1625 struct blk_mq_hw_ctx *hctx; 1626 unsigned long i; 1627 1628 /* A deadlock might occur if a request is stuck requiring a 1629 * timeout at the same time a queue freeze is waiting 1630 * completion, since the timeout code would not be able to 1631 * acquire the queue reference here. 1632 * 1633 * That's why we don't use blk_queue_enter here; instead, we use 1634 * percpu_ref_tryget directly, because we need to be able to 1635 * obtain a reference even in the short window between the queue 1636 * starting to freeze, by dropping the first reference in 1637 * blk_freeze_queue_start, and the moment the last request is 1638 * consumed, marked by the instant q_usage_counter reaches 1639 * zero. 1640 */ 1641 if (!percpu_ref_tryget(&q->q_usage_counter)) 1642 return; 1643 1644 /* check if there is any timed-out request */ 1645 blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &expired); 1646 if (expired.has_timedout_rq) { 1647 /* 1648 * Before walking tags, we must ensure any submit started 1649 * before the current time has finished. Since the submit 1650 * uses srcu or rcu, wait for a synchronization point to 1651 * ensure all running submits have finished 1652 */ 1653 blk_mq_wait_quiesce_done(q->tag_set); 1654 1655 expired.next = 0; 1656 blk_mq_queue_tag_busy_iter(q, blk_mq_handle_expired, &expired); 1657 } 1658 1659 if (expired.next != 0) { 1660 mod_timer(&q->timeout, expired.next); 1661 } else { 1662 /* 1663 * Request timeouts are handled as a forward rolling timer. If 1664 * we end up here it means that no requests are pending and 1665 * also that no request has been pending for a while. Mark 1666 * each hctx as idle. 1667 */ 1668 queue_for_each_hw_ctx(q, hctx, i) { 1669 /* the hctx may be unmapped, so check it here */ 1670 if (blk_mq_hw_queue_mapped(hctx)) 1671 blk_mq_tag_idle(hctx); 1672 } 1673 } 1674 blk_queue_exit(q); 1675 } 1676 1677 struct flush_busy_ctx_data { 1678 struct blk_mq_hw_ctx *hctx; 1679 struct list_head *list; 1680 }; 1681 1682 static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data) 1683 { 1684 struct flush_busy_ctx_data *flush_data = data; 1685 struct blk_mq_hw_ctx *hctx = flush_data->hctx; 1686 struct blk_mq_ctx *ctx = hctx->ctxs[bitnr]; 1687 enum hctx_type type = hctx->type; 1688 1689 spin_lock(&ctx->lock); 1690 list_splice_tail_init(&ctx->rq_lists[type], flush_data->list); 1691 sbitmap_clear_bit(sb, bitnr); 1692 spin_unlock(&ctx->lock); 1693 return true; 1694 } 1695 1696 /* 1697 * Process software queues that have been marked busy, splicing them 1698 * to the for-dispatch 1699 */ 1700 void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list) 1701 { 1702 struct flush_busy_ctx_data data = { 1703 .hctx = hctx, 1704 .list = list, 1705 }; 1706 1707 sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data); 1708 } 1709 EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs); 1710 1711 struct dispatch_rq_data { 1712 struct blk_mq_hw_ctx *hctx; 1713 struct request *rq; 1714 }; 1715 1716 static bool dispatch_rq_from_ctx(struct sbitmap *sb, unsigned int bitnr, 1717 void *data) 1718 { 1719 struct dispatch_rq_data *dispatch_data = data; 1720 struct blk_mq_hw_ctx *hctx = dispatch_data->hctx; 1721 struct blk_mq_ctx *ctx = hctx->ctxs[bitnr]; 1722 enum hctx_type type = hctx->type; 1723 1724 spin_lock(&ctx->lock); 1725 if (!list_empty(&ctx->rq_lists[type])) { 1726 dispatch_data->rq = list_entry_rq(ctx->rq_lists[type].next); 1727 list_del_init(&dispatch_data->rq->queuelist); 1728 if (list_empty(&ctx->rq_lists[type])) 1729 sbitmap_clear_bit(sb, bitnr); 1730 } 1731 spin_unlock(&ctx->lock); 1732 1733 return !dispatch_data->rq; 1734 } 1735 1736 struct request *blk_mq_dequeue_from_ctx(struct blk_mq_hw_ctx *hctx, 1737 struct blk_mq_ctx *start) 1738 { 1739 unsigned off = start ? start->index_hw[hctx->type] : 0; 1740 struct dispatch_rq_data data = { 1741 .hctx = hctx, 1742 .rq = NULL, 1743 }; 1744 1745 __sbitmap_for_each_set(&hctx->ctx_map, off, 1746 dispatch_rq_from_ctx, &data); 1747 1748 return data.rq; 1749 } 1750 1751 static bool __blk_mq_alloc_driver_tag(struct request *rq) 1752 { 1753 struct sbitmap_queue *bt = &rq->mq_hctx->tags->bitmap_tags; 1754 unsigned int tag_offset = rq->mq_hctx->tags->nr_reserved_tags; 1755 int tag; 1756 1757 blk_mq_tag_busy(rq->mq_hctx); 1758 1759 if (blk_mq_tag_is_reserved(rq->mq_hctx->sched_tags, rq->internal_tag)) { 1760 bt = &rq->mq_hctx->tags->breserved_tags; 1761 tag_offset = 0; 1762 } else { 1763 if (!hctx_may_queue(rq->mq_hctx, bt)) 1764 return false; 1765 } 1766 1767 tag = __sbitmap_queue_get(bt); 1768 if (tag == BLK_MQ_NO_TAG) 1769 return false; 1770 1771 rq->tag = tag + tag_offset; 1772 return true; 1773 } 1774 1775 bool __blk_mq_get_driver_tag(struct blk_mq_hw_ctx *hctx, struct request *rq) 1776 { 1777 if (rq->tag == BLK_MQ_NO_TAG && !__blk_mq_alloc_driver_tag(rq)) 1778 return false; 1779 1780 if ((hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED) && 1781 !(rq->rq_flags & RQF_MQ_INFLIGHT)) { 1782 rq->rq_flags |= RQF_MQ_INFLIGHT; 1783 __blk_mq_inc_active_requests(hctx); 1784 } 1785 hctx->tags->rqs[rq->tag] = rq; 1786 return true; 1787 } 1788 1789 static int blk_mq_dispatch_wake(wait_queue_entry_t *wait, unsigned mode, 1790 int flags, void *key) 1791 { 1792 struct blk_mq_hw_ctx *hctx; 1793 1794 hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait); 1795 1796 spin_lock(&hctx->dispatch_wait_lock); 1797 if (!list_empty(&wait->entry)) { 1798 struct sbitmap_queue *sbq; 1799 1800 list_del_init(&wait->entry); 1801 sbq = &hctx->tags->bitmap_tags; 1802 atomic_dec(&sbq->ws_active); 1803 } 1804 spin_unlock(&hctx->dispatch_wait_lock); 1805 1806 blk_mq_run_hw_queue(hctx, true); 1807 return 1; 1808 } 1809 1810 /* 1811 * Mark us waiting for a tag. For shared tags, this involves hooking us into 1812 * the tag wakeups. For non-shared tags, we can simply mark us needing a 1813 * restart. For both cases, take care to check the condition again after 1814 * marking us as waiting. 1815 */ 1816 static bool blk_mq_mark_tag_wait(struct blk_mq_hw_ctx *hctx, 1817 struct request *rq) 1818 { 1819 struct sbitmap_queue *sbq; 1820 struct wait_queue_head *wq; 1821 wait_queue_entry_t *wait; 1822 bool ret; 1823 1824 if (!(hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED) && 1825 !(blk_mq_is_shared_tags(hctx->flags))) { 1826 blk_mq_sched_mark_restart_hctx(hctx); 1827 1828 /* 1829 * It's possible that a tag was freed in the window between the 1830 * allocation failure and adding the hardware queue to the wait 1831 * queue. 1832 * 1833 * Don't clear RESTART here, someone else could have set it. 1834 * At most this will cost an extra queue run. 1835 */ 1836 return blk_mq_get_driver_tag(rq); 1837 } 1838 1839 wait = &hctx->dispatch_wait; 1840 if (!list_empty_careful(&wait->entry)) 1841 return false; 1842 1843 if (blk_mq_tag_is_reserved(rq->mq_hctx->sched_tags, rq->internal_tag)) 1844 sbq = &hctx->tags->breserved_tags; 1845 else 1846 sbq = &hctx->tags->bitmap_tags; 1847 wq = &bt_wait_ptr(sbq, hctx)->wait; 1848 1849 spin_lock_irq(&wq->lock); 1850 spin_lock(&hctx->dispatch_wait_lock); 1851 if (!list_empty(&wait->entry)) { 1852 spin_unlock(&hctx->dispatch_wait_lock); 1853 spin_unlock_irq(&wq->lock); 1854 return false; 1855 } 1856 1857 atomic_inc(&sbq->ws_active); 1858 wait->flags &= ~WQ_FLAG_EXCLUSIVE; 1859 __add_wait_queue(wq, wait); 1860 1861 /* 1862 * It's possible that a tag was freed in the window between the 1863 * allocation failure and adding the hardware queue to the wait 1864 * queue. 1865 */ 1866 ret = blk_mq_get_driver_tag(rq); 1867 if (!ret) { 1868 spin_unlock(&hctx->dispatch_wait_lock); 1869 spin_unlock_irq(&wq->lock); 1870 return false; 1871 } 1872 1873 /* 1874 * We got a tag, remove ourselves from the wait queue to ensure 1875 * someone else gets the wakeup. 1876 */ 1877 list_del_init(&wait->entry); 1878 atomic_dec(&sbq->ws_active); 1879 spin_unlock(&hctx->dispatch_wait_lock); 1880 spin_unlock_irq(&wq->lock); 1881 1882 return true; 1883 } 1884 1885 #define BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT 8 1886 #define BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR 4 1887 /* 1888 * Update dispatch busy with the Exponential Weighted Moving Average(EWMA): 1889 * - EWMA is one simple way to compute running average value 1890 * - weight(7/8 and 1/8) is applied so that it can decrease exponentially 1891 * - take 4 as factor for avoiding to get too small(0) result, and this 1892 * factor doesn't matter because EWMA decreases exponentially 1893 */ 1894 static void blk_mq_update_dispatch_busy(struct blk_mq_hw_ctx *hctx, bool busy) 1895 { 1896 unsigned int ewma; 1897 1898 ewma = hctx->dispatch_busy; 1899 1900 if (!ewma && !busy) 1901 return; 1902 1903 ewma *= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT - 1; 1904 if (busy) 1905 ewma += 1 << BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR; 1906 ewma /= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT; 1907 1908 hctx->dispatch_busy = ewma; 1909 } 1910 1911 #define BLK_MQ_RESOURCE_DELAY 3 /* ms units */ 1912 1913 static void blk_mq_handle_dev_resource(struct request *rq, 1914 struct list_head *list) 1915 { 1916 list_add(&rq->queuelist, list); 1917 __blk_mq_requeue_request(rq); 1918 } 1919 1920 static void blk_mq_handle_zone_resource(struct request *rq, 1921 struct list_head *zone_list) 1922 { 1923 /* 1924 * If we end up here it is because we cannot dispatch a request to a 1925 * specific zone due to LLD level zone-write locking or other zone 1926 * related resource not being available. In this case, set the request 1927 * aside in zone_list for retrying it later. 1928 */ 1929 list_add(&rq->queuelist, zone_list); 1930 __blk_mq_requeue_request(rq); 1931 } 1932 1933 enum prep_dispatch { 1934 PREP_DISPATCH_OK, 1935 PREP_DISPATCH_NO_TAG, 1936 PREP_DISPATCH_NO_BUDGET, 1937 }; 1938 1939 static enum prep_dispatch blk_mq_prep_dispatch_rq(struct request *rq, 1940 bool need_budget) 1941 { 1942 struct blk_mq_hw_ctx *hctx = rq->mq_hctx; 1943 int budget_token = -1; 1944 1945 if (need_budget) { 1946 budget_token = blk_mq_get_dispatch_budget(rq->q); 1947 if (budget_token < 0) { 1948 blk_mq_put_driver_tag(rq); 1949 return PREP_DISPATCH_NO_BUDGET; 1950 } 1951 blk_mq_set_rq_budget_token(rq, budget_token); 1952 } 1953 1954 if (!blk_mq_get_driver_tag(rq)) { 1955 /* 1956 * The initial allocation attempt failed, so we need to 1957 * rerun the hardware queue when a tag is freed. The 1958 * waitqueue takes care of that. If the queue is run 1959 * before we add this entry back on the dispatch list, 1960 * we'll re-run it below. 1961 */ 1962 if (!blk_mq_mark_tag_wait(hctx, rq)) { 1963 /* 1964 * All budgets not got from this function will be put 1965 * together during handling partial dispatch 1966 */ 1967 if (need_budget) 1968 blk_mq_put_dispatch_budget(rq->q, budget_token); 1969 return PREP_DISPATCH_NO_TAG; 1970 } 1971 } 1972 1973 return PREP_DISPATCH_OK; 1974 } 1975 1976 /* release all allocated budgets before calling to blk_mq_dispatch_rq_list */ 1977 static void blk_mq_release_budgets(struct request_queue *q, 1978 struct list_head *list) 1979 { 1980 struct request *rq; 1981 1982 list_for_each_entry(rq, list, queuelist) { 1983 int budget_token = blk_mq_get_rq_budget_token(rq); 1984 1985 if (budget_token >= 0) 1986 blk_mq_put_dispatch_budget(q, budget_token); 1987 } 1988 } 1989 1990 /* 1991 * blk_mq_commit_rqs will notify driver using bd->last that there is no 1992 * more requests. (See comment in struct blk_mq_ops for commit_rqs for 1993 * details) 1994 * Attention, we should explicitly call this in unusual cases: 1995 * 1) did not queue everything initially scheduled to queue 1996 * 2) the last attempt to queue a request failed 1997 */ 1998 static void blk_mq_commit_rqs(struct blk_mq_hw_ctx *hctx, int queued, 1999 bool from_schedule) 2000 { 2001 if (hctx->queue->mq_ops->commit_rqs && queued) { 2002 trace_block_unplug(hctx->queue, queued, !from_schedule); 2003 hctx->queue->mq_ops->commit_rqs(hctx); 2004 } 2005 } 2006 2007 /* 2008 * Returns true if we did some work AND can potentially do more. 2009 */ 2010 bool blk_mq_dispatch_rq_list(struct blk_mq_hw_ctx *hctx, struct list_head *list, 2011 unsigned int nr_budgets) 2012 { 2013 enum prep_dispatch prep; 2014 struct request_queue *q = hctx->queue; 2015 struct request *rq; 2016 int queued; 2017 blk_status_t ret = BLK_STS_OK; 2018 LIST_HEAD(zone_list); 2019 bool needs_resource = false; 2020 2021 if (list_empty(list)) 2022 return false; 2023 2024 /* 2025 * Now process all the entries, sending them to the driver. 2026 */ 2027 queued = 0; 2028 do { 2029 struct blk_mq_queue_data bd; 2030 2031 rq = list_first_entry(list, struct request, queuelist); 2032 2033 WARN_ON_ONCE(hctx != rq->mq_hctx); 2034 prep = blk_mq_prep_dispatch_rq(rq, !nr_budgets); 2035 if (prep != PREP_DISPATCH_OK) 2036 break; 2037 2038 list_del_init(&rq->queuelist); 2039 2040 bd.rq = rq; 2041 bd.last = list_empty(list); 2042 2043 /* 2044 * once the request is queued to lld, no need to cover the 2045 * budget any more 2046 */ 2047 if (nr_budgets) 2048 nr_budgets--; 2049 ret = q->mq_ops->queue_rq(hctx, &bd); 2050 switch (ret) { 2051 case BLK_STS_OK: 2052 queued++; 2053 break; 2054 case BLK_STS_RESOURCE: 2055 needs_resource = true; 2056 fallthrough; 2057 case BLK_STS_DEV_RESOURCE: 2058 blk_mq_handle_dev_resource(rq, list); 2059 goto out; 2060 case BLK_STS_ZONE_RESOURCE: 2061 /* 2062 * Move the request to zone_list and keep going through 2063 * the dispatch list to find more requests the drive can 2064 * accept. 2065 */ 2066 blk_mq_handle_zone_resource(rq, &zone_list); 2067 needs_resource = true; 2068 break; 2069 default: 2070 blk_mq_end_request(rq, ret); 2071 } 2072 } while (!list_empty(list)); 2073 out: 2074 if (!list_empty(&zone_list)) 2075 list_splice_tail_init(&zone_list, list); 2076 2077 /* If we didn't flush the entire list, we could have told the driver 2078 * there was more coming, but that turned out to be a lie. 2079 */ 2080 if (!list_empty(list) || ret != BLK_STS_OK) 2081 blk_mq_commit_rqs(hctx, queued, false); 2082 2083 /* 2084 * Any items that need requeuing? Stuff them into hctx->dispatch, 2085 * that is where we will continue on next queue run. 2086 */ 2087 if (!list_empty(list)) { 2088 bool needs_restart; 2089 /* For non-shared tags, the RESTART check will suffice */ 2090 bool no_tag = prep == PREP_DISPATCH_NO_TAG && 2091 ((hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED) || 2092 blk_mq_is_shared_tags(hctx->flags)); 2093 2094 if (nr_budgets) 2095 blk_mq_release_budgets(q, list); 2096 2097 spin_lock(&hctx->lock); 2098 list_splice_tail_init(list, &hctx->dispatch); 2099 spin_unlock(&hctx->lock); 2100 2101 /* 2102 * Order adding requests to hctx->dispatch and checking 2103 * SCHED_RESTART flag. The pair of this smp_mb() is the one 2104 * in blk_mq_sched_restart(). Avoid restart code path to 2105 * miss the new added requests to hctx->dispatch, meantime 2106 * SCHED_RESTART is observed here. 2107 */ 2108 smp_mb(); 2109 2110 /* 2111 * If SCHED_RESTART was set by the caller of this function and 2112 * it is no longer set that means that it was cleared by another 2113 * thread and hence that a queue rerun is needed. 2114 * 2115 * If 'no_tag' is set, that means that we failed getting 2116 * a driver tag with an I/O scheduler attached. If our dispatch 2117 * waitqueue is no longer active, ensure that we run the queue 2118 * AFTER adding our entries back to the list. 2119 * 2120 * If no I/O scheduler has been configured it is possible that 2121 * the hardware queue got stopped and restarted before requests 2122 * were pushed back onto the dispatch list. Rerun the queue to 2123 * avoid starvation. Notes: 2124 * - blk_mq_run_hw_queue() checks whether or not a queue has 2125 * been stopped before rerunning a queue. 2126 * - Some but not all block drivers stop a queue before 2127 * returning BLK_STS_RESOURCE. Two exceptions are scsi-mq 2128 * and dm-rq. 2129 * 2130 * If driver returns BLK_STS_RESOURCE and SCHED_RESTART 2131 * bit is set, run queue after a delay to avoid IO stalls 2132 * that could otherwise occur if the queue is idle. We'll do 2133 * similar if we couldn't get budget or couldn't lock a zone 2134 * and SCHED_RESTART is set. 2135 */ 2136 needs_restart = blk_mq_sched_needs_restart(hctx); 2137 if (prep == PREP_DISPATCH_NO_BUDGET) 2138 needs_resource = true; 2139 if (!needs_restart || 2140 (no_tag && list_empty_careful(&hctx->dispatch_wait.entry))) 2141 blk_mq_run_hw_queue(hctx, true); 2142 else if (needs_resource) 2143 blk_mq_delay_run_hw_queue(hctx, BLK_MQ_RESOURCE_DELAY); 2144 2145 blk_mq_update_dispatch_busy(hctx, true); 2146 return false; 2147 } 2148 2149 blk_mq_update_dispatch_busy(hctx, false); 2150 return true; 2151 } 2152 2153 static inline int blk_mq_first_mapped_cpu(struct blk_mq_hw_ctx *hctx) 2154 { 2155 int cpu = cpumask_first_and(hctx->cpumask, cpu_online_mask); 2156 2157 if (cpu >= nr_cpu_ids) 2158 cpu = cpumask_first(hctx->cpumask); 2159 return cpu; 2160 } 2161 2162 /* 2163 * It'd be great if the workqueue API had a way to pass 2164 * in a mask and had some smarts for more clever placement. 2165 * For now we just round-robin here, switching for every 2166 * BLK_MQ_CPU_WORK_BATCH queued items. 2167 */ 2168 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx) 2169 { 2170 bool tried = false; 2171 int next_cpu = hctx->next_cpu; 2172 2173 if (hctx->queue->nr_hw_queues == 1) 2174 return WORK_CPU_UNBOUND; 2175 2176 if (--hctx->next_cpu_batch <= 0) { 2177 select_cpu: 2178 next_cpu = cpumask_next_and(next_cpu, hctx->cpumask, 2179 cpu_online_mask); 2180 if (next_cpu >= nr_cpu_ids) 2181 next_cpu = blk_mq_first_mapped_cpu(hctx); 2182 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH; 2183 } 2184 2185 /* 2186 * Do unbound schedule if we can't find a online CPU for this hctx, 2187 * and it should only happen in the path of handling CPU DEAD. 2188 */ 2189 if (!cpu_online(next_cpu)) { 2190 if (!tried) { 2191 tried = true; 2192 goto select_cpu; 2193 } 2194 2195 /* 2196 * Make sure to re-select CPU next time once after CPUs 2197 * in hctx->cpumask become online again. 2198 */ 2199 hctx->next_cpu = next_cpu; 2200 hctx->next_cpu_batch = 1; 2201 return WORK_CPU_UNBOUND; 2202 } 2203 2204 hctx->next_cpu = next_cpu; 2205 return next_cpu; 2206 } 2207 2208 /** 2209 * blk_mq_delay_run_hw_queue - Run a hardware queue asynchronously. 2210 * @hctx: Pointer to the hardware queue to run. 2211 * @msecs: Milliseconds of delay to wait before running the queue. 2212 * 2213 * Run a hardware queue asynchronously with a delay of @msecs. 2214 */ 2215 void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs) 2216 { 2217 if (unlikely(blk_mq_hctx_stopped(hctx))) 2218 return; 2219 kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx), &hctx->run_work, 2220 msecs_to_jiffies(msecs)); 2221 } 2222 EXPORT_SYMBOL(blk_mq_delay_run_hw_queue); 2223 2224 /** 2225 * blk_mq_run_hw_queue - Start to run a hardware queue. 2226 * @hctx: Pointer to the hardware queue to run. 2227 * @async: If we want to run the queue asynchronously. 2228 * 2229 * Check if the request queue is not in a quiesced state and if there are 2230 * pending requests to be sent. If this is true, run the queue to send requests 2231 * to hardware. 2232 */ 2233 void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async) 2234 { 2235 bool need_run; 2236 2237 /* 2238 * We can't run the queue inline with interrupts disabled. 2239 */ 2240 WARN_ON_ONCE(!async && in_interrupt()); 2241 2242 might_sleep_if(!async && hctx->flags & BLK_MQ_F_BLOCKING); 2243 2244 /* 2245 * When queue is quiesced, we may be switching io scheduler, or 2246 * updating nr_hw_queues, or other things, and we can't run queue 2247 * any more, even __blk_mq_hctx_has_pending() can't be called safely. 2248 * 2249 * And queue will be rerun in blk_mq_unquiesce_queue() if it is 2250 * quiesced. 2251 */ 2252 __blk_mq_run_dispatch_ops(hctx->queue, false, 2253 need_run = !blk_queue_quiesced(hctx->queue) && 2254 blk_mq_hctx_has_pending(hctx)); 2255 2256 if (!need_run) 2257 return; 2258 2259 if (async || !cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask)) { 2260 blk_mq_delay_run_hw_queue(hctx, 0); 2261 return; 2262 } 2263 2264 blk_mq_run_dispatch_ops(hctx->queue, 2265 blk_mq_sched_dispatch_requests(hctx)); 2266 } 2267 EXPORT_SYMBOL(blk_mq_run_hw_queue); 2268 2269 /* 2270 * Return prefered queue to dispatch from (if any) for non-mq aware IO 2271 * scheduler. 2272 */ 2273 static struct blk_mq_hw_ctx *blk_mq_get_sq_hctx(struct request_queue *q) 2274 { 2275 struct blk_mq_ctx *ctx = blk_mq_get_ctx(q); 2276 /* 2277 * If the IO scheduler does not respect hardware queues when 2278 * dispatching, we just don't bother with multiple HW queues and 2279 * dispatch from hctx for the current CPU since running multiple queues 2280 * just causes lock contention inside the scheduler and pointless cache 2281 * bouncing. 2282 */ 2283 struct blk_mq_hw_ctx *hctx = ctx->hctxs[HCTX_TYPE_DEFAULT]; 2284 2285 if (!blk_mq_hctx_stopped(hctx)) 2286 return hctx; 2287 return NULL; 2288 } 2289 2290 /** 2291 * blk_mq_run_hw_queues - Run all hardware queues in a request queue. 2292 * @q: Pointer to the request queue to run. 2293 * @async: If we want to run the queue asynchronously. 2294 */ 2295 void blk_mq_run_hw_queues(struct request_queue *q, bool async) 2296 { 2297 struct blk_mq_hw_ctx *hctx, *sq_hctx; 2298 unsigned long i; 2299 2300 sq_hctx = NULL; 2301 if (blk_queue_sq_sched(q)) 2302 sq_hctx = blk_mq_get_sq_hctx(q); 2303 queue_for_each_hw_ctx(q, hctx, i) { 2304 if (blk_mq_hctx_stopped(hctx)) 2305 continue; 2306 /* 2307 * Dispatch from this hctx either if there's no hctx preferred 2308 * by IO scheduler or if it has requests that bypass the 2309 * scheduler. 2310 */ 2311 if (!sq_hctx || sq_hctx == hctx || 2312 !list_empty_careful(&hctx->dispatch)) 2313 blk_mq_run_hw_queue(hctx, async); 2314 } 2315 } 2316 EXPORT_SYMBOL(blk_mq_run_hw_queues); 2317 2318 /** 2319 * blk_mq_delay_run_hw_queues - Run all hardware queues asynchronously. 2320 * @q: Pointer to the request queue to run. 2321 * @msecs: Milliseconds of delay to wait before running the queues. 2322 */ 2323 void blk_mq_delay_run_hw_queues(struct request_queue *q, unsigned long msecs) 2324 { 2325 struct blk_mq_hw_ctx *hctx, *sq_hctx; 2326 unsigned long i; 2327 2328 sq_hctx = NULL; 2329 if (blk_queue_sq_sched(q)) 2330 sq_hctx = blk_mq_get_sq_hctx(q); 2331 queue_for_each_hw_ctx(q, hctx, i) { 2332 if (blk_mq_hctx_stopped(hctx)) 2333 continue; 2334 /* 2335 * If there is already a run_work pending, leave the 2336 * pending delay untouched. Otherwise, a hctx can stall 2337 * if another hctx is re-delaying the other's work 2338 * before the work executes. 2339 */ 2340 if (delayed_work_pending(&hctx->run_work)) 2341 continue; 2342 /* 2343 * Dispatch from this hctx either if there's no hctx preferred 2344 * by IO scheduler or if it has requests that bypass the 2345 * scheduler. 2346 */ 2347 if (!sq_hctx || sq_hctx == hctx || 2348 !list_empty_careful(&hctx->dispatch)) 2349 blk_mq_delay_run_hw_queue(hctx, msecs); 2350 } 2351 } 2352 EXPORT_SYMBOL(blk_mq_delay_run_hw_queues); 2353 2354 /* 2355 * This function is often used for pausing .queue_rq() by driver when 2356 * there isn't enough resource or some conditions aren't satisfied, and 2357 * BLK_STS_RESOURCE is usually returned. 2358 * 2359 * We do not guarantee that dispatch can be drained or blocked 2360 * after blk_mq_stop_hw_queue() returns. Please use 2361 * blk_mq_quiesce_queue() for that requirement. 2362 */ 2363 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx) 2364 { 2365 cancel_delayed_work(&hctx->run_work); 2366 2367 set_bit(BLK_MQ_S_STOPPED, &hctx->state); 2368 } 2369 EXPORT_SYMBOL(blk_mq_stop_hw_queue); 2370 2371 /* 2372 * This function is often used for pausing .queue_rq() by driver when 2373 * there isn't enough resource or some conditions aren't satisfied, and 2374 * BLK_STS_RESOURCE is usually returned. 2375 * 2376 * We do not guarantee that dispatch can be drained or blocked 2377 * after blk_mq_stop_hw_queues() returns. Please use 2378 * blk_mq_quiesce_queue() for that requirement. 2379 */ 2380 void blk_mq_stop_hw_queues(struct request_queue *q) 2381 { 2382 struct blk_mq_hw_ctx *hctx; 2383 unsigned long i; 2384 2385 queue_for_each_hw_ctx(q, hctx, i) 2386 blk_mq_stop_hw_queue(hctx); 2387 } 2388 EXPORT_SYMBOL(blk_mq_stop_hw_queues); 2389 2390 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx) 2391 { 2392 clear_bit(BLK_MQ_S_STOPPED, &hctx->state); 2393 2394 blk_mq_run_hw_queue(hctx, hctx->flags & BLK_MQ_F_BLOCKING); 2395 } 2396 EXPORT_SYMBOL(blk_mq_start_hw_queue); 2397 2398 void blk_mq_start_hw_queues(struct request_queue *q) 2399 { 2400 struct blk_mq_hw_ctx *hctx; 2401 unsigned long i; 2402 2403 queue_for_each_hw_ctx(q, hctx, i) 2404 blk_mq_start_hw_queue(hctx); 2405 } 2406 EXPORT_SYMBOL(blk_mq_start_hw_queues); 2407 2408 void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async) 2409 { 2410 if (!blk_mq_hctx_stopped(hctx)) 2411 return; 2412 2413 clear_bit(BLK_MQ_S_STOPPED, &hctx->state); 2414 blk_mq_run_hw_queue(hctx, async); 2415 } 2416 EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue); 2417 2418 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async) 2419 { 2420 struct blk_mq_hw_ctx *hctx; 2421 unsigned long i; 2422 2423 queue_for_each_hw_ctx(q, hctx, i) 2424 blk_mq_start_stopped_hw_queue(hctx, async || 2425 (hctx->flags & BLK_MQ_F_BLOCKING)); 2426 } 2427 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues); 2428 2429 static void blk_mq_run_work_fn(struct work_struct *work) 2430 { 2431 struct blk_mq_hw_ctx *hctx = 2432 container_of(work, struct blk_mq_hw_ctx, run_work.work); 2433 2434 blk_mq_run_dispatch_ops(hctx->queue, 2435 blk_mq_sched_dispatch_requests(hctx)); 2436 } 2437 2438 /** 2439 * blk_mq_request_bypass_insert - Insert a request at dispatch list. 2440 * @rq: Pointer to request to be inserted. 2441 * @flags: BLK_MQ_INSERT_* 2442 * 2443 * Should only be used carefully, when the caller knows we want to 2444 * bypass a potential IO scheduler on the target device. 2445 */ 2446 static void blk_mq_request_bypass_insert(struct request *rq, blk_insert_t flags) 2447 { 2448 struct blk_mq_hw_ctx *hctx = rq->mq_hctx; 2449 2450 spin_lock(&hctx->lock); 2451 if (flags & BLK_MQ_INSERT_AT_HEAD) 2452 list_add(&rq->queuelist, &hctx->dispatch); 2453 else 2454 list_add_tail(&rq->queuelist, &hctx->dispatch); 2455 spin_unlock(&hctx->lock); 2456 } 2457 2458 static void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, 2459 struct blk_mq_ctx *ctx, struct list_head *list, 2460 bool run_queue_async) 2461 { 2462 struct request *rq; 2463 enum hctx_type type = hctx->type; 2464 2465 /* 2466 * Try to issue requests directly if the hw queue isn't busy to save an 2467 * extra enqueue & dequeue to the sw queue. 2468 */ 2469 if (!hctx->dispatch_busy && !run_queue_async) { 2470 blk_mq_run_dispatch_ops(hctx->queue, 2471 blk_mq_try_issue_list_directly(hctx, list)); 2472 if (list_empty(list)) 2473 goto out; 2474 } 2475 2476 /* 2477 * preemption doesn't flush plug list, so it's possible ctx->cpu is 2478 * offline now 2479 */ 2480 list_for_each_entry(rq, list, queuelist) { 2481 BUG_ON(rq->mq_ctx != ctx); 2482 trace_block_rq_insert(rq); 2483 if (rq->cmd_flags & REQ_NOWAIT) 2484 run_queue_async = true; 2485 } 2486 2487 spin_lock(&ctx->lock); 2488 list_splice_tail_init(list, &ctx->rq_lists[type]); 2489 blk_mq_hctx_mark_pending(hctx, ctx); 2490 spin_unlock(&ctx->lock); 2491 out: 2492 blk_mq_run_hw_queue(hctx, run_queue_async); 2493 } 2494 2495 static void blk_mq_insert_request(struct request *rq, blk_insert_t flags) 2496 { 2497 struct request_queue *q = rq->q; 2498 struct blk_mq_ctx *ctx = rq->mq_ctx; 2499 struct blk_mq_hw_ctx *hctx = rq->mq_hctx; 2500 2501 if (blk_rq_is_passthrough(rq)) { 2502 /* 2503 * Passthrough request have to be added to hctx->dispatch 2504 * directly. The device may be in a situation where it can't 2505 * handle FS request, and always returns BLK_STS_RESOURCE for 2506 * them, which gets them added to hctx->dispatch. 2507 * 2508 * If a passthrough request is required to unblock the queues, 2509 * and it is added to the scheduler queue, there is no chance to 2510 * dispatch it given we prioritize requests in hctx->dispatch. 2511 */ 2512 blk_mq_request_bypass_insert(rq, flags); 2513 } else if (req_op(rq) == REQ_OP_FLUSH) { 2514 /* 2515 * Firstly normal IO request is inserted to scheduler queue or 2516 * sw queue, meantime we add flush request to dispatch queue( 2517 * hctx->dispatch) directly and there is at most one in-flight 2518 * flush request for each hw queue, so it doesn't matter to add 2519 * flush request to tail or front of the dispatch queue. 2520 * 2521 * Secondly in case of NCQ, flush request belongs to non-NCQ 2522 * command, and queueing it will fail when there is any 2523 * in-flight normal IO request(NCQ command). When adding flush 2524 * rq to the front of hctx->dispatch, it is easier to introduce 2525 * extra time to flush rq's latency because of S_SCHED_RESTART 2526 * compared with adding to the tail of dispatch queue, then 2527 * chance of flush merge is increased, and less flush requests 2528 * will be issued to controller. It is observed that ~10% time 2529 * is saved in blktests block/004 on disk attached to AHCI/NCQ 2530 * drive when adding flush rq to the front of hctx->dispatch. 2531 * 2532 * Simply queue flush rq to the front of hctx->dispatch so that 2533 * intensive flush workloads can benefit in case of NCQ HW. 2534 */ 2535 blk_mq_request_bypass_insert(rq, BLK_MQ_INSERT_AT_HEAD); 2536 } else if (q->elevator) { 2537 LIST_HEAD(list); 2538 2539 WARN_ON_ONCE(rq->tag != BLK_MQ_NO_TAG); 2540 2541 list_add(&rq->queuelist, &list); 2542 q->elevator->type->ops.insert_requests(hctx, &list, flags); 2543 } else { 2544 trace_block_rq_insert(rq); 2545 2546 spin_lock(&ctx->lock); 2547 if (flags & BLK_MQ_INSERT_AT_HEAD) 2548 list_add(&rq->queuelist, &ctx->rq_lists[hctx->type]); 2549 else 2550 list_add_tail(&rq->queuelist, 2551 &ctx->rq_lists[hctx->type]); 2552 blk_mq_hctx_mark_pending(hctx, ctx); 2553 spin_unlock(&ctx->lock); 2554 } 2555 } 2556 2557 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio, 2558 unsigned int nr_segs) 2559 { 2560 int err; 2561 2562 if (bio->bi_opf & REQ_RAHEAD) 2563 rq->cmd_flags |= REQ_FAILFAST_MASK; 2564 2565 rq->__sector = bio->bi_iter.bi_sector; 2566 blk_rq_bio_prep(rq, bio, nr_segs); 2567 2568 /* This can't fail, since GFP_NOIO includes __GFP_DIRECT_RECLAIM. */ 2569 err = blk_crypto_rq_bio_prep(rq, bio, GFP_NOIO); 2570 WARN_ON_ONCE(err); 2571 2572 blk_account_io_start(rq); 2573 } 2574 2575 static blk_status_t __blk_mq_issue_directly(struct blk_mq_hw_ctx *hctx, 2576 struct request *rq, bool last) 2577 { 2578 struct request_queue *q = rq->q; 2579 struct blk_mq_queue_data bd = { 2580 .rq = rq, 2581 .last = last, 2582 }; 2583 blk_status_t ret; 2584 2585 /* 2586 * For OK queue, we are done. For error, caller may kill it. 2587 * Any other error (busy), just add it to our list as we 2588 * previously would have done. 2589 */ 2590 ret = q->mq_ops->queue_rq(hctx, &bd); 2591 switch (ret) { 2592 case BLK_STS_OK: 2593 blk_mq_update_dispatch_busy(hctx, false); 2594 break; 2595 case BLK_STS_RESOURCE: 2596 case BLK_STS_DEV_RESOURCE: 2597 blk_mq_update_dispatch_busy(hctx, true); 2598 __blk_mq_requeue_request(rq); 2599 break; 2600 default: 2601 blk_mq_update_dispatch_busy(hctx, false); 2602 break; 2603 } 2604 2605 return ret; 2606 } 2607 2608 static bool blk_mq_get_budget_and_tag(struct request *rq) 2609 { 2610 int budget_token; 2611 2612 budget_token = blk_mq_get_dispatch_budget(rq->q); 2613 if (budget_token < 0) 2614 return false; 2615 blk_mq_set_rq_budget_token(rq, budget_token); 2616 if (!blk_mq_get_driver_tag(rq)) { 2617 blk_mq_put_dispatch_budget(rq->q, budget_token); 2618 return false; 2619 } 2620 return true; 2621 } 2622 2623 /** 2624 * blk_mq_try_issue_directly - Try to send a request directly to device driver. 2625 * @hctx: Pointer of the associated hardware queue. 2626 * @rq: Pointer to request to be sent. 2627 * 2628 * If the device has enough resources to accept a new request now, send the 2629 * request directly to device driver. Else, insert at hctx->dispatch queue, so 2630 * we can try send it another time in the future. Requests inserted at this 2631 * queue have higher priority. 2632 */ 2633 static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx, 2634 struct request *rq) 2635 { 2636 blk_status_t ret; 2637 2638 if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(rq->q)) { 2639 blk_mq_insert_request(rq, 0); 2640 return; 2641 } 2642 2643 if ((rq->rq_flags & RQF_USE_SCHED) || !blk_mq_get_budget_and_tag(rq)) { 2644 blk_mq_insert_request(rq, 0); 2645 blk_mq_run_hw_queue(hctx, rq->cmd_flags & REQ_NOWAIT); 2646 return; 2647 } 2648 2649 ret = __blk_mq_issue_directly(hctx, rq, true); 2650 switch (ret) { 2651 case BLK_STS_OK: 2652 break; 2653 case BLK_STS_RESOURCE: 2654 case BLK_STS_DEV_RESOURCE: 2655 blk_mq_request_bypass_insert(rq, 0); 2656 blk_mq_run_hw_queue(hctx, false); 2657 break; 2658 default: 2659 blk_mq_end_request(rq, ret); 2660 break; 2661 } 2662 } 2663 2664 static blk_status_t blk_mq_request_issue_directly(struct request *rq, bool last) 2665 { 2666 struct blk_mq_hw_ctx *hctx = rq->mq_hctx; 2667 2668 if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(rq->q)) { 2669 blk_mq_insert_request(rq, 0); 2670 return BLK_STS_OK; 2671 } 2672 2673 if (!blk_mq_get_budget_and_tag(rq)) 2674 return BLK_STS_RESOURCE; 2675 return __blk_mq_issue_directly(hctx, rq, last); 2676 } 2677 2678 static void blk_mq_plug_issue_direct(struct blk_plug *plug) 2679 { 2680 struct blk_mq_hw_ctx *hctx = NULL; 2681 struct request *rq; 2682 int queued = 0; 2683 blk_status_t ret = BLK_STS_OK; 2684 2685 while ((rq = rq_list_pop(&plug->mq_list))) { 2686 bool last = rq_list_empty(plug->mq_list); 2687 2688 if (hctx != rq->mq_hctx) { 2689 if (hctx) { 2690 blk_mq_commit_rqs(hctx, queued, false); 2691 queued = 0; 2692 } 2693 hctx = rq->mq_hctx; 2694 } 2695 2696 ret = blk_mq_request_issue_directly(rq, last); 2697 switch (ret) { 2698 case BLK_STS_OK: 2699 queued++; 2700 break; 2701 case BLK_STS_RESOURCE: 2702 case BLK_STS_DEV_RESOURCE: 2703 blk_mq_request_bypass_insert(rq, 0); 2704 blk_mq_run_hw_queue(hctx, false); 2705 goto out; 2706 default: 2707 blk_mq_end_request(rq, ret); 2708 break; 2709 } 2710 } 2711 2712 out: 2713 if (ret != BLK_STS_OK) 2714 blk_mq_commit_rqs(hctx, queued, false); 2715 } 2716 2717 static void __blk_mq_flush_plug_list(struct request_queue *q, 2718 struct blk_plug *plug) 2719 { 2720 if (blk_queue_quiesced(q)) 2721 return; 2722 q->mq_ops->queue_rqs(&plug->mq_list); 2723 } 2724 2725 static void blk_mq_dispatch_plug_list(struct blk_plug *plug, bool from_sched) 2726 { 2727 struct blk_mq_hw_ctx *this_hctx = NULL; 2728 struct blk_mq_ctx *this_ctx = NULL; 2729 struct request *requeue_list = NULL; 2730 struct request **requeue_lastp = &requeue_list; 2731 unsigned int depth = 0; 2732 bool is_passthrough = false; 2733 LIST_HEAD(list); 2734 2735 do { 2736 struct request *rq = rq_list_pop(&plug->mq_list); 2737 2738 if (!this_hctx) { 2739 this_hctx = rq->mq_hctx; 2740 this_ctx = rq->mq_ctx; 2741 is_passthrough = blk_rq_is_passthrough(rq); 2742 } else if (this_hctx != rq->mq_hctx || this_ctx != rq->mq_ctx || 2743 is_passthrough != blk_rq_is_passthrough(rq)) { 2744 rq_list_add_tail(&requeue_lastp, rq); 2745 continue; 2746 } 2747 list_add(&rq->queuelist, &list); 2748 depth++; 2749 } while (!rq_list_empty(plug->mq_list)); 2750 2751 plug->mq_list = requeue_list; 2752 trace_block_unplug(this_hctx->queue, depth, !from_sched); 2753 2754 percpu_ref_get(&this_hctx->queue->q_usage_counter); 2755 /* passthrough requests should never be issued to the I/O scheduler */ 2756 if (is_passthrough) { 2757 spin_lock(&this_hctx->lock); 2758 list_splice_tail_init(&list, &this_hctx->dispatch); 2759 spin_unlock(&this_hctx->lock); 2760 blk_mq_run_hw_queue(this_hctx, from_sched); 2761 } else if (this_hctx->queue->elevator) { 2762 this_hctx->queue->elevator->type->ops.insert_requests(this_hctx, 2763 &list, 0); 2764 blk_mq_run_hw_queue(this_hctx, from_sched); 2765 } else { 2766 blk_mq_insert_requests(this_hctx, this_ctx, &list, from_sched); 2767 } 2768 percpu_ref_put(&this_hctx->queue->q_usage_counter); 2769 } 2770 2771 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule) 2772 { 2773 struct request *rq; 2774 2775 /* 2776 * We may have been called recursively midway through handling 2777 * plug->mq_list via a schedule() in the driver's queue_rq() callback. 2778 * To avoid mq_list changing under our feet, clear rq_count early and 2779 * bail out specifically if rq_count is 0 rather than checking 2780 * whether the mq_list is empty. 2781 */ 2782 if (plug->rq_count == 0) 2783 return; 2784 plug->rq_count = 0; 2785 2786 if (!plug->multiple_queues && !plug->has_elevator && !from_schedule) { 2787 struct request_queue *q; 2788 2789 rq = rq_list_peek(&plug->mq_list); 2790 q = rq->q; 2791 2792 /* 2793 * Peek first request and see if we have a ->queue_rqs() hook. 2794 * If we do, we can dispatch the whole plug list in one go. We 2795 * already know at this point that all requests belong to the 2796 * same queue, caller must ensure that's the case. 2797 * 2798 * Since we pass off the full list to the driver at this point, 2799 * we do not increment the active request count for the queue. 2800 * Bypass shared tags for now because of that. 2801 */ 2802 if (q->mq_ops->queue_rqs && 2803 !(rq->mq_hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED)) { 2804 blk_mq_run_dispatch_ops(q, 2805 __blk_mq_flush_plug_list(q, plug)); 2806 if (rq_list_empty(plug->mq_list)) 2807 return; 2808 } 2809 2810 blk_mq_run_dispatch_ops(q, 2811 blk_mq_plug_issue_direct(plug)); 2812 if (rq_list_empty(plug->mq_list)) 2813 return; 2814 } 2815 2816 do { 2817 blk_mq_dispatch_plug_list(plug, from_schedule); 2818 } while (!rq_list_empty(plug->mq_list)); 2819 } 2820 2821 static void blk_mq_try_issue_list_directly(struct blk_mq_hw_ctx *hctx, 2822 struct list_head *list) 2823 { 2824 int queued = 0; 2825 blk_status_t ret = BLK_STS_OK; 2826 2827 while (!list_empty(list)) { 2828 struct request *rq = list_first_entry(list, struct request, 2829 queuelist); 2830 2831 list_del_init(&rq->queuelist); 2832 ret = blk_mq_request_issue_directly(rq, list_empty(list)); 2833 switch (ret) { 2834 case BLK_STS_OK: 2835 queued++; 2836 break; 2837 case BLK_STS_RESOURCE: 2838 case BLK_STS_DEV_RESOURCE: 2839 blk_mq_request_bypass_insert(rq, 0); 2840 if (list_empty(list)) 2841 blk_mq_run_hw_queue(hctx, false); 2842 goto out; 2843 default: 2844 blk_mq_end_request(rq, ret); 2845 break; 2846 } 2847 } 2848 2849 out: 2850 if (ret != BLK_STS_OK) 2851 blk_mq_commit_rqs(hctx, queued, false); 2852 } 2853 2854 static bool blk_mq_attempt_bio_merge(struct request_queue *q, 2855 struct bio *bio, unsigned int nr_segs) 2856 { 2857 if (!blk_queue_nomerges(q) && bio_mergeable(bio)) { 2858 if (blk_attempt_plug_merge(q, bio, nr_segs)) 2859 return true; 2860 if (blk_mq_sched_bio_merge(q, bio, nr_segs)) 2861 return true; 2862 } 2863 return false; 2864 } 2865 2866 static struct request *blk_mq_get_new_requests(struct request_queue *q, 2867 struct blk_plug *plug, 2868 struct bio *bio, 2869 unsigned int nsegs) 2870 { 2871 struct blk_mq_alloc_data data = { 2872 .q = q, 2873 .nr_tags = 1, 2874 .cmd_flags = bio->bi_opf, 2875 }; 2876 struct request *rq; 2877 2878 if (unlikely(bio_queue_enter(bio))) 2879 return NULL; 2880 2881 if (blk_mq_attempt_bio_merge(q, bio, nsegs)) 2882 goto queue_exit; 2883 2884 rq_qos_throttle(q, bio); 2885 2886 if (plug) { 2887 data.nr_tags = plug->nr_ios; 2888 plug->nr_ios = 1; 2889 data.cached_rq = &plug->cached_rq; 2890 } 2891 2892 rq = __blk_mq_alloc_requests(&data); 2893 if (rq) 2894 return rq; 2895 rq_qos_cleanup(q, bio); 2896 if (bio->bi_opf & REQ_NOWAIT) 2897 bio_wouldblock_error(bio); 2898 queue_exit: 2899 blk_queue_exit(q); 2900 return NULL; 2901 } 2902 2903 static inline struct request *blk_mq_get_cached_request(struct request_queue *q, 2904 struct blk_plug *plug, struct bio **bio, unsigned int nsegs) 2905 { 2906 struct request *rq; 2907 enum hctx_type type, hctx_type; 2908 2909 if (!plug) 2910 return NULL; 2911 rq = rq_list_peek(&plug->cached_rq); 2912 if (!rq || rq->q != q) 2913 return NULL; 2914 2915 if (blk_mq_attempt_bio_merge(q, *bio, nsegs)) { 2916 *bio = NULL; 2917 return NULL; 2918 } 2919 2920 type = blk_mq_get_hctx_type((*bio)->bi_opf); 2921 hctx_type = rq->mq_hctx->type; 2922 if (type != hctx_type && 2923 !(type == HCTX_TYPE_READ && hctx_type == HCTX_TYPE_DEFAULT)) 2924 return NULL; 2925 if (op_is_flush(rq->cmd_flags) != op_is_flush((*bio)->bi_opf)) 2926 return NULL; 2927 2928 /* 2929 * If any qos ->throttle() end up blocking, we will have flushed the 2930 * plug and hence killed the cached_rq list as well. Pop this entry 2931 * before we throttle. 2932 */ 2933 plug->cached_rq = rq_list_next(rq); 2934 rq_qos_throttle(q, *bio); 2935 2936 blk_mq_rq_time_init(rq, 0); 2937 rq->cmd_flags = (*bio)->bi_opf; 2938 INIT_LIST_HEAD(&rq->queuelist); 2939 return rq; 2940 } 2941 2942 static void bio_set_ioprio(struct bio *bio) 2943 { 2944 /* Nobody set ioprio so far? Initialize it based on task's nice value */ 2945 if (IOPRIO_PRIO_CLASS(bio->bi_ioprio) == IOPRIO_CLASS_NONE) 2946 bio->bi_ioprio = get_current_ioprio(); 2947 blkcg_set_ioprio(bio); 2948 } 2949 2950 /** 2951 * blk_mq_submit_bio - Create and send a request to block device. 2952 * @bio: Bio pointer. 2953 * 2954 * Builds up a request structure from @q and @bio and send to the device. The 2955 * request may not be queued directly to hardware if: 2956 * * This request can be merged with another one 2957 * * We want to place request at plug queue for possible future merging 2958 * * There is an IO scheduler active at this queue 2959 * 2960 * It will not queue the request if there is an error with the bio, or at the 2961 * request creation. 2962 */ 2963 void blk_mq_submit_bio(struct bio *bio) 2964 { 2965 struct request_queue *q = bdev_get_queue(bio->bi_bdev); 2966 struct blk_plug *plug = blk_mq_plug(bio); 2967 const int is_sync = op_is_sync(bio->bi_opf); 2968 struct blk_mq_hw_ctx *hctx; 2969 struct request *rq; 2970 unsigned int nr_segs = 1; 2971 blk_status_t ret; 2972 2973 bio = blk_queue_bounce(bio, q); 2974 if (bio_may_exceed_limits(bio, &q->limits)) { 2975 bio = __bio_split_to_limits(bio, &q->limits, &nr_segs); 2976 if (!bio) 2977 return; 2978 } 2979 2980 if (!bio_integrity_prep(bio)) 2981 return; 2982 2983 bio_set_ioprio(bio); 2984 2985 rq = blk_mq_get_cached_request(q, plug, &bio, nr_segs); 2986 if (!rq) { 2987 if (!bio) 2988 return; 2989 rq = blk_mq_get_new_requests(q, plug, bio, nr_segs); 2990 if (unlikely(!rq)) 2991 return; 2992 } 2993 2994 trace_block_getrq(bio); 2995 2996 rq_qos_track(q, rq, bio); 2997 2998 blk_mq_bio_to_request(rq, bio, nr_segs); 2999 3000 ret = blk_crypto_rq_get_keyslot(rq); 3001 if (ret != BLK_STS_OK) { 3002 bio->bi_status = ret; 3003 bio_endio(bio); 3004 blk_mq_free_request(rq); 3005 return; 3006 } 3007 3008 if (op_is_flush(bio->bi_opf) && blk_insert_flush(rq)) 3009 return; 3010 3011 if (plug) { 3012 blk_add_rq_to_plug(plug, rq); 3013 return; 3014 } 3015 3016 hctx = rq->mq_hctx; 3017 if ((rq->rq_flags & RQF_USE_SCHED) || 3018 (hctx->dispatch_busy && (q->nr_hw_queues == 1 || !is_sync))) { 3019 blk_mq_insert_request(rq, 0); 3020 blk_mq_run_hw_queue(hctx, true); 3021 } else { 3022 blk_mq_run_dispatch_ops(q, blk_mq_try_issue_directly(hctx, rq)); 3023 } 3024 } 3025 3026 #ifdef CONFIG_BLK_MQ_STACKING 3027 /** 3028 * blk_insert_cloned_request - Helper for stacking drivers to submit a request 3029 * @rq: the request being queued 3030 */ 3031 blk_status_t blk_insert_cloned_request(struct request *rq) 3032 { 3033 struct request_queue *q = rq->q; 3034 unsigned int max_sectors = blk_queue_get_max_sectors(q, req_op(rq)); 3035 unsigned int max_segments = blk_rq_get_max_segments(rq); 3036 blk_status_t ret; 3037 3038 if (blk_rq_sectors(rq) > max_sectors) { 3039 /* 3040 * SCSI device does not have a good way to return if 3041 * Write Same/Zero is actually supported. If a device rejects 3042 * a non-read/write command (discard, write same,etc.) the 3043 * low-level device driver will set the relevant queue limit to 3044 * 0 to prevent blk-lib from issuing more of the offending 3045 * operations. Commands queued prior to the queue limit being 3046 * reset need to be completed with BLK_STS_NOTSUPP to avoid I/O 3047 * errors being propagated to upper layers. 3048 */ 3049 if (max_sectors == 0) 3050 return BLK_STS_NOTSUPP; 3051 3052 printk(KERN_ERR "%s: over max size limit. (%u > %u)\n", 3053 __func__, blk_rq_sectors(rq), max_sectors); 3054 return BLK_STS_IOERR; 3055 } 3056 3057 /* 3058 * The queue settings related to segment counting may differ from the 3059 * original queue. 3060 */ 3061 rq->nr_phys_segments = blk_recalc_rq_segments(rq); 3062 if (rq->nr_phys_segments > max_segments) { 3063 printk(KERN_ERR "%s: over max segments limit. (%u > %u)\n", 3064 __func__, rq->nr_phys_segments, max_segments); 3065 return BLK_STS_IOERR; 3066 } 3067 3068 if (q->disk && should_fail_request(q->disk->part0, blk_rq_bytes(rq))) 3069 return BLK_STS_IOERR; 3070 3071 ret = blk_crypto_rq_get_keyslot(rq); 3072 if (ret != BLK_STS_OK) 3073 return ret; 3074 3075 blk_account_io_start(rq); 3076 3077 /* 3078 * Since we have a scheduler attached on the top device, 3079 * bypass a potential scheduler on the bottom device for 3080 * insert. 3081 */ 3082 blk_mq_run_dispatch_ops(q, 3083 ret = blk_mq_request_issue_directly(rq, true)); 3084 if (ret) 3085 blk_account_io_done(rq, ktime_get_ns()); 3086 return ret; 3087 } 3088 EXPORT_SYMBOL_GPL(blk_insert_cloned_request); 3089 3090 /** 3091 * blk_rq_unprep_clone - Helper function to free all bios in a cloned request 3092 * @rq: the clone request to be cleaned up 3093 * 3094 * Description: 3095 * Free all bios in @rq for a cloned request. 3096 */ 3097 void blk_rq_unprep_clone(struct request *rq) 3098 { 3099 struct bio *bio; 3100 3101 while ((bio = rq->bio) != NULL) { 3102 rq->bio = bio->bi_next; 3103 3104 bio_put(bio); 3105 } 3106 } 3107 EXPORT_SYMBOL_GPL(blk_rq_unprep_clone); 3108 3109 /** 3110 * blk_rq_prep_clone - Helper function to setup clone request 3111 * @rq: the request to be setup 3112 * @rq_src: original request to be cloned 3113 * @bs: bio_set that bios for clone are allocated from 3114 * @gfp_mask: memory allocation mask for bio 3115 * @bio_ctr: setup function to be called for each clone bio. 3116 * Returns %0 for success, non %0 for failure. 3117 * @data: private data to be passed to @bio_ctr 3118 * 3119 * Description: 3120 * Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq. 3121 * Also, pages which the original bios are pointing to are not copied 3122 * and the cloned bios just point same pages. 3123 * So cloned bios must be completed before original bios, which means 3124 * the caller must complete @rq before @rq_src. 3125 */ 3126 int blk_rq_prep_clone(struct request *rq, struct request *rq_src, 3127 struct bio_set *bs, gfp_t gfp_mask, 3128 int (*bio_ctr)(struct bio *, struct bio *, void *), 3129 void *data) 3130 { 3131 struct bio *bio, *bio_src; 3132 3133 if (!bs) 3134 bs = &fs_bio_set; 3135 3136 __rq_for_each_bio(bio_src, rq_src) { 3137 bio = bio_alloc_clone(rq->q->disk->part0, bio_src, gfp_mask, 3138 bs); 3139 if (!bio) 3140 goto free_and_out; 3141 3142 if (bio_ctr && bio_ctr(bio, bio_src, data)) 3143 goto free_and_out; 3144 3145 if (rq->bio) { 3146 rq->biotail->bi_next = bio; 3147 rq->biotail = bio; 3148 } else { 3149 rq->bio = rq->biotail = bio; 3150 } 3151 bio = NULL; 3152 } 3153 3154 /* Copy attributes of the original request to the clone request. */ 3155 rq->__sector = blk_rq_pos(rq_src); 3156 rq->__data_len = blk_rq_bytes(rq_src); 3157 if (rq_src->rq_flags & RQF_SPECIAL_PAYLOAD) { 3158 rq->rq_flags |= RQF_SPECIAL_PAYLOAD; 3159 rq->special_vec = rq_src->special_vec; 3160 } 3161 rq->nr_phys_segments = rq_src->nr_phys_segments; 3162 rq->ioprio = rq_src->ioprio; 3163 3164 if (rq->bio && blk_crypto_rq_bio_prep(rq, rq->bio, gfp_mask) < 0) 3165 goto free_and_out; 3166 3167 return 0; 3168 3169 free_and_out: 3170 if (bio) 3171 bio_put(bio); 3172 blk_rq_unprep_clone(rq); 3173 3174 return -ENOMEM; 3175 } 3176 EXPORT_SYMBOL_GPL(blk_rq_prep_clone); 3177 #endif /* CONFIG_BLK_MQ_STACKING */ 3178 3179 /* 3180 * Steal bios from a request and add them to a bio list. 3181 * The request must not have been partially completed before. 3182 */ 3183 void blk_steal_bios(struct bio_list *list, struct request *rq) 3184 { 3185 if (rq->bio) { 3186 if (list->tail) 3187 list->tail->bi_next = rq->bio; 3188 else 3189 list->head = rq->bio; 3190 list->tail = rq->biotail; 3191 3192 rq->bio = NULL; 3193 rq->biotail = NULL; 3194 } 3195 3196 rq->__data_len = 0; 3197 } 3198 EXPORT_SYMBOL_GPL(blk_steal_bios); 3199 3200 static size_t order_to_size(unsigned int order) 3201 { 3202 return (size_t)PAGE_SIZE << order; 3203 } 3204 3205 /* called before freeing request pool in @tags */ 3206 static void blk_mq_clear_rq_mapping(struct blk_mq_tags *drv_tags, 3207 struct blk_mq_tags *tags) 3208 { 3209 struct page *page; 3210 unsigned long flags; 3211 3212 /* 3213 * There is no need to clear mapping if driver tags is not initialized 3214 * or the mapping belongs to the driver tags. 3215 */ 3216 if (!drv_tags || drv_tags == tags) 3217 return; 3218 3219 list_for_each_entry(page, &tags->page_list, lru) { 3220 unsigned long start = (unsigned long)page_address(page); 3221 unsigned long end = start + order_to_size(page->private); 3222 int i; 3223 3224 for (i = 0; i < drv_tags->nr_tags; i++) { 3225 struct request *rq = drv_tags->rqs[i]; 3226 unsigned long rq_addr = (unsigned long)rq; 3227 3228 if (rq_addr >= start && rq_addr < end) { 3229 WARN_ON_ONCE(req_ref_read(rq) != 0); 3230 cmpxchg(&drv_tags->rqs[i], rq, NULL); 3231 } 3232 } 3233 } 3234 3235 /* 3236 * Wait until all pending iteration is done. 3237 * 3238 * Request reference is cleared and it is guaranteed to be observed 3239 * after the ->lock is released. 3240 */ 3241 spin_lock_irqsave(&drv_tags->lock, flags); 3242 spin_unlock_irqrestore(&drv_tags->lock, flags); 3243 } 3244 3245 void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags, 3246 unsigned int hctx_idx) 3247 { 3248 struct blk_mq_tags *drv_tags; 3249 struct page *page; 3250 3251 if (list_empty(&tags->page_list)) 3252 return; 3253 3254 if (blk_mq_is_shared_tags(set->flags)) 3255 drv_tags = set->shared_tags; 3256 else 3257 drv_tags = set->tags[hctx_idx]; 3258 3259 if (tags->static_rqs && set->ops->exit_request) { 3260 int i; 3261 3262 for (i = 0; i < tags->nr_tags; i++) { 3263 struct request *rq = tags->static_rqs[i]; 3264 3265 if (!rq) 3266 continue; 3267 set->ops->exit_request(set, rq, hctx_idx); 3268 tags->static_rqs[i] = NULL; 3269 } 3270 } 3271 3272 blk_mq_clear_rq_mapping(drv_tags, tags); 3273 3274 while (!list_empty(&tags->page_list)) { 3275 page = list_first_entry(&tags->page_list, struct page, lru); 3276 list_del_init(&page->lru); 3277 /* 3278 * Remove kmemleak object previously allocated in 3279 * blk_mq_alloc_rqs(). 3280 */ 3281 kmemleak_free(page_address(page)); 3282 __free_pages(page, page->private); 3283 } 3284 } 3285 3286 void blk_mq_free_rq_map(struct blk_mq_tags *tags) 3287 { 3288 kfree(tags->rqs); 3289 tags->rqs = NULL; 3290 kfree(tags->static_rqs); 3291 tags->static_rqs = NULL; 3292 3293 blk_mq_free_tags(tags); 3294 } 3295 3296 static enum hctx_type hctx_idx_to_type(struct blk_mq_tag_set *set, 3297 unsigned int hctx_idx) 3298 { 3299 int i; 3300 3301 for (i = 0; i < set->nr_maps; i++) { 3302 unsigned int start = set->map[i].queue_offset; 3303 unsigned int end = start + set->map[i].nr_queues; 3304 3305 if (hctx_idx >= start && hctx_idx < end) 3306 break; 3307 } 3308 3309 if (i >= set->nr_maps) 3310 i = HCTX_TYPE_DEFAULT; 3311 3312 return i; 3313 } 3314 3315 static int blk_mq_get_hctx_node(struct blk_mq_tag_set *set, 3316 unsigned int hctx_idx) 3317 { 3318 enum hctx_type type = hctx_idx_to_type(set, hctx_idx); 3319 3320 return blk_mq_hw_queue_to_node(&set->map[type], hctx_idx); 3321 } 3322 3323 static struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set, 3324 unsigned int hctx_idx, 3325 unsigned int nr_tags, 3326 unsigned int reserved_tags) 3327 { 3328 int node = blk_mq_get_hctx_node(set, hctx_idx); 3329 struct blk_mq_tags *tags; 3330 3331 if (node == NUMA_NO_NODE) 3332 node = set->numa_node; 3333 3334 tags = blk_mq_init_tags(nr_tags, reserved_tags, node, 3335 BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags)); 3336 if (!tags) 3337 return NULL; 3338 3339 tags->rqs = kcalloc_node(nr_tags, sizeof(struct request *), 3340 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY, 3341 node); 3342 if (!tags->rqs) 3343 goto err_free_tags; 3344 3345 tags->static_rqs = kcalloc_node(nr_tags, sizeof(struct request *), 3346 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY, 3347 node); 3348 if (!tags->static_rqs) 3349 goto err_free_rqs; 3350 3351 return tags; 3352 3353 err_free_rqs: 3354 kfree(tags->rqs); 3355 err_free_tags: 3356 blk_mq_free_tags(tags); 3357 return NULL; 3358 } 3359 3360 static int blk_mq_init_request(struct blk_mq_tag_set *set, struct request *rq, 3361 unsigned int hctx_idx, int node) 3362 { 3363 int ret; 3364 3365 if (set->ops->init_request) { 3366 ret = set->ops->init_request(set, rq, hctx_idx, node); 3367 if (ret) 3368 return ret; 3369 } 3370 3371 WRITE_ONCE(rq->state, MQ_RQ_IDLE); 3372 return 0; 3373 } 3374 3375 static int blk_mq_alloc_rqs(struct blk_mq_tag_set *set, 3376 struct blk_mq_tags *tags, 3377 unsigned int hctx_idx, unsigned int depth) 3378 { 3379 unsigned int i, j, entries_per_page, max_order = 4; 3380 int node = blk_mq_get_hctx_node(set, hctx_idx); 3381 size_t rq_size, left; 3382 3383 if (node == NUMA_NO_NODE) 3384 node = set->numa_node; 3385 3386 INIT_LIST_HEAD(&tags->page_list); 3387 3388 /* 3389 * rq_size is the size of the request plus driver payload, rounded 3390 * to the cacheline size 3391 */ 3392 rq_size = round_up(sizeof(struct request) + set->cmd_size, 3393 cache_line_size()); 3394 left = rq_size * depth; 3395 3396 for (i = 0; i < depth; ) { 3397 int this_order = max_order; 3398 struct page *page; 3399 int to_do; 3400 void *p; 3401 3402 while (this_order && left < order_to_size(this_order - 1)) 3403 this_order--; 3404 3405 do { 3406 page = alloc_pages_node(node, 3407 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO, 3408 this_order); 3409 if (page) 3410 break; 3411 if (!this_order--) 3412 break; 3413 if (order_to_size(this_order) < rq_size) 3414 break; 3415 } while (1); 3416 3417 if (!page) 3418 goto fail; 3419 3420 page->private = this_order; 3421 list_add_tail(&page->lru, &tags->page_list); 3422 3423 p = page_address(page); 3424 /* 3425 * Allow kmemleak to scan these pages as they contain pointers 3426 * to additional allocations like via ops->init_request(). 3427 */ 3428 kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO); 3429 entries_per_page = order_to_size(this_order) / rq_size; 3430 to_do = min(entries_per_page, depth - i); 3431 left -= to_do * rq_size; 3432 for (j = 0; j < to_do; j++) { 3433 struct request *rq = p; 3434 3435 tags->static_rqs[i] = rq; 3436 if (blk_mq_init_request(set, rq, hctx_idx, node)) { 3437 tags->static_rqs[i] = NULL; 3438 goto fail; 3439 } 3440 3441 p += rq_size; 3442 i++; 3443 } 3444 } 3445 return 0; 3446 3447 fail: 3448 blk_mq_free_rqs(set, tags, hctx_idx); 3449 return -ENOMEM; 3450 } 3451 3452 struct rq_iter_data { 3453 struct blk_mq_hw_ctx *hctx; 3454 bool has_rq; 3455 }; 3456 3457 static bool blk_mq_has_request(struct request *rq, void *data) 3458 { 3459 struct rq_iter_data *iter_data = data; 3460 3461 if (rq->mq_hctx != iter_data->hctx) 3462 return true; 3463 iter_data->has_rq = true; 3464 return false; 3465 } 3466 3467 static bool blk_mq_hctx_has_requests(struct blk_mq_hw_ctx *hctx) 3468 { 3469 struct blk_mq_tags *tags = hctx->sched_tags ? 3470 hctx->sched_tags : hctx->tags; 3471 struct rq_iter_data data = { 3472 .hctx = hctx, 3473 }; 3474 3475 blk_mq_all_tag_iter(tags, blk_mq_has_request, &data); 3476 return data.has_rq; 3477 } 3478 3479 static inline bool blk_mq_last_cpu_in_hctx(unsigned int cpu, 3480 struct blk_mq_hw_ctx *hctx) 3481 { 3482 if (cpumask_first_and(hctx->cpumask, cpu_online_mask) != cpu) 3483 return false; 3484 if (cpumask_next_and(cpu, hctx->cpumask, cpu_online_mask) < nr_cpu_ids) 3485 return false; 3486 return true; 3487 } 3488 3489 static int blk_mq_hctx_notify_offline(unsigned int cpu, struct hlist_node *node) 3490 { 3491 struct blk_mq_hw_ctx *hctx = hlist_entry_safe(node, 3492 struct blk_mq_hw_ctx, cpuhp_online); 3493 3494 if (!cpumask_test_cpu(cpu, hctx->cpumask) || 3495 !blk_mq_last_cpu_in_hctx(cpu, hctx)) 3496 return 0; 3497 3498 /* 3499 * Prevent new request from being allocated on the current hctx. 3500 * 3501 * The smp_mb__after_atomic() Pairs with the implied barrier in 3502 * test_and_set_bit_lock in sbitmap_get(). Ensures the inactive flag is 3503 * seen once we return from the tag allocator. 3504 */ 3505 set_bit(BLK_MQ_S_INACTIVE, &hctx->state); 3506 smp_mb__after_atomic(); 3507 3508 /* 3509 * Try to grab a reference to the queue and wait for any outstanding 3510 * requests. If we could not grab a reference the queue has been 3511 * frozen and there are no requests. 3512 */ 3513 if (percpu_ref_tryget(&hctx->queue->q_usage_counter)) { 3514 while (blk_mq_hctx_has_requests(hctx)) 3515 msleep(5); 3516 percpu_ref_put(&hctx->queue->q_usage_counter); 3517 } 3518 3519 return 0; 3520 } 3521 3522 static int blk_mq_hctx_notify_online(unsigned int cpu, struct hlist_node *node) 3523 { 3524 struct blk_mq_hw_ctx *hctx = hlist_entry_safe(node, 3525 struct blk_mq_hw_ctx, cpuhp_online); 3526 3527 if (cpumask_test_cpu(cpu, hctx->cpumask)) 3528 clear_bit(BLK_MQ_S_INACTIVE, &hctx->state); 3529 return 0; 3530 } 3531 3532 /* 3533 * 'cpu' is going away. splice any existing rq_list entries from this 3534 * software queue to the hw queue dispatch list, and ensure that it 3535 * gets run. 3536 */ 3537 static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node) 3538 { 3539 struct blk_mq_hw_ctx *hctx; 3540 struct blk_mq_ctx *ctx; 3541 LIST_HEAD(tmp); 3542 enum hctx_type type; 3543 3544 hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead); 3545 if (!cpumask_test_cpu(cpu, hctx->cpumask)) 3546 return 0; 3547 3548 ctx = __blk_mq_get_ctx(hctx->queue, cpu); 3549 type = hctx->type; 3550 3551 spin_lock(&ctx->lock); 3552 if (!list_empty(&ctx->rq_lists[type])) { 3553 list_splice_init(&ctx->rq_lists[type], &tmp); 3554 blk_mq_hctx_clear_pending(hctx, ctx); 3555 } 3556 spin_unlock(&ctx->lock); 3557 3558 if (list_empty(&tmp)) 3559 return 0; 3560 3561 spin_lock(&hctx->lock); 3562 list_splice_tail_init(&tmp, &hctx->dispatch); 3563 spin_unlock(&hctx->lock); 3564 3565 blk_mq_run_hw_queue(hctx, true); 3566 return 0; 3567 } 3568 3569 static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx) 3570 { 3571 if (!(hctx->flags & BLK_MQ_F_STACKING)) 3572 cpuhp_state_remove_instance_nocalls(CPUHP_AP_BLK_MQ_ONLINE, 3573 &hctx->cpuhp_online); 3574 cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD, 3575 &hctx->cpuhp_dead); 3576 } 3577 3578 /* 3579 * Before freeing hw queue, clearing the flush request reference in 3580 * tags->rqs[] for avoiding potential UAF. 3581 */ 3582 static void blk_mq_clear_flush_rq_mapping(struct blk_mq_tags *tags, 3583 unsigned int queue_depth, struct request *flush_rq) 3584 { 3585 int i; 3586 unsigned long flags; 3587 3588 /* The hw queue may not be mapped yet */ 3589 if (!tags) 3590 return; 3591 3592 WARN_ON_ONCE(req_ref_read(flush_rq) != 0); 3593 3594 for (i = 0; i < queue_depth; i++) 3595 cmpxchg(&tags->rqs[i], flush_rq, NULL); 3596 3597 /* 3598 * Wait until all pending iteration is done. 3599 * 3600 * Request reference is cleared and it is guaranteed to be observed 3601 * after the ->lock is released. 3602 */ 3603 spin_lock_irqsave(&tags->lock, flags); 3604 spin_unlock_irqrestore(&tags->lock, flags); 3605 } 3606 3607 /* hctx->ctxs will be freed in queue's release handler */ 3608 static void blk_mq_exit_hctx(struct request_queue *q, 3609 struct blk_mq_tag_set *set, 3610 struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx) 3611 { 3612 struct request *flush_rq = hctx->fq->flush_rq; 3613 3614 if (blk_mq_hw_queue_mapped(hctx)) 3615 blk_mq_tag_idle(hctx); 3616 3617 if (blk_queue_init_done(q)) 3618 blk_mq_clear_flush_rq_mapping(set->tags[hctx_idx], 3619 set->queue_depth, flush_rq); 3620 if (set->ops->exit_request) 3621 set->ops->exit_request(set, flush_rq, hctx_idx); 3622 3623 if (set->ops->exit_hctx) 3624 set->ops->exit_hctx(hctx, hctx_idx); 3625 3626 blk_mq_remove_cpuhp(hctx); 3627 3628 xa_erase(&q->hctx_table, hctx_idx); 3629 3630 spin_lock(&q->unused_hctx_lock); 3631 list_add(&hctx->hctx_list, &q->unused_hctx_list); 3632 spin_unlock(&q->unused_hctx_lock); 3633 } 3634 3635 static void blk_mq_exit_hw_queues(struct request_queue *q, 3636 struct blk_mq_tag_set *set, int nr_queue) 3637 { 3638 struct blk_mq_hw_ctx *hctx; 3639 unsigned long i; 3640 3641 queue_for_each_hw_ctx(q, hctx, i) { 3642 if (i == nr_queue) 3643 break; 3644 blk_mq_exit_hctx(q, set, hctx, i); 3645 } 3646 } 3647 3648 static int blk_mq_init_hctx(struct request_queue *q, 3649 struct blk_mq_tag_set *set, 3650 struct blk_mq_hw_ctx *hctx, unsigned hctx_idx) 3651 { 3652 hctx->queue_num = hctx_idx; 3653 3654 if (!(hctx->flags & BLK_MQ_F_STACKING)) 3655 cpuhp_state_add_instance_nocalls(CPUHP_AP_BLK_MQ_ONLINE, 3656 &hctx->cpuhp_online); 3657 cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead); 3658 3659 hctx->tags = set->tags[hctx_idx]; 3660 3661 if (set->ops->init_hctx && 3662 set->ops->init_hctx(hctx, set->driver_data, hctx_idx)) 3663 goto unregister_cpu_notifier; 3664 3665 if (blk_mq_init_request(set, hctx->fq->flush_rq, hctx_idx, 3666 hctx->numa_node)) 3667 goto exit_hctx; 3668 3669 if (xa_insert(&q->hctx_table, hctx_idx, hctx, GFP_KERNEL)) 3670 goto exit_flush_rq; 3671 3672 return 0; 3673 3674 exit_flush_rq: 3675 if (set->ops->exit_request) 3676 set->ops->exit_request(set, hctx->fq->flush_rq, hctx_idx); 3677 exit_hctx: 3678 if (set->ops->exit_hctx) 3679 set->ops->exit_hctx(hctx, hctx_idx); 3680 unregister_cpu_notifier: 3681 blk_mq_remove_cpuhp(hctx); 3682 return -1; 3683 } 3684 3685 static struct blk_mq_hw_ctx * 3686 blk_mq_alloc_hctx(struct request_queue *q, struct blk_mq_tag_set *set, 3687 int node) 3688 { 3689 struct blk_mq_hw_ctx *hctx; 3690 gfp_t gfp = GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY; 3691 3692 hctx = kzalloc_node(sizeof(struct blk_mq_hw_ctx), gfp, node); 3693 if (!hctx) 3694 goto fail_alloc_hctx; 3695 3696 if (!zalloc_cpumask_var_node(&hctx->cpumask, gfp, node)) 3697 goto free_hctx; 3698 3699 atomic_set(&hctx->nr_active, 0); 3700 if (node == NUMA_NO_NODE) 3701 node = set->numa_node; 3702 hctx->numa_node = node; 3703 3704 INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn); 3705 spin_lock_init(&hctx->lock); 3706 INIT_LIST_HEAD(&hctx->dispatch); 3707 hctx->queue = q; 3708 hctx->flags = set->flags & ~BLK_MQ_F_TAG_QUEUE_SHARED; 3709 3710 INIT_LIST_HEAD(&hctx->hctx_list); 3711 3712 /* 3713 * Allocate space for all possible cpus to avoid allocation at 3714 * runtime 3715 */ 3716 hctx->ctxs = kmalloc_array_node(nr_cpu_ids, sizeof(void *), 3717 gfp, node); 3718 if (!hctx->ctxs) 3719 goto free_cpumask; 3720 3721 if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8), 3722 gfp, node, false, false)) 3723 goto free_ctxs; 3724 hctx->nr_ctx = 0; 3725 3726 spin_lock_init(&hctx->dispatch_wait_lock); 3727 init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake); 3728 INIT_LIST_HEAD(&hctx->dispatch_wait.entry); 3729 3730 hctx->fq = blk_alloc_flush_queue(hctx->numa_node, set->cmd_size, gfp); 3731 if (!hctx->fq) 3732 goto free_bitmap; 3733 3734 blk_mq_hctx_kobj_init(hctx); 3735 3736 return hctx; 3737 3738 free_bitmap: 3739 sbitmap_free(&hctx->ctx_map); 3740 free_ctxs: 3741 kfree(hctx->ctxs); 3742 free_cpumask: 3743 free_cpumask_var(hctx->cpumask); 3744 free_hctx: 3745 kfree(hctx); 3746 fail_alloc_hctx: 3747 return NULL; 3748 } 3749 3750 static void blk_mq_init_cpu_queues(struct request_queue *q, 3751 unsigned int nr_hw_queues) 3752 { 3753 struct blk_mq_tag_set *set = q->tag_set; 3754 unsigned int i, j; 3755 3756 for_each_possible_cpu(i) { 3757 struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i); 3758 struct blk_mq_hw_ctx *hctx; 3759 int k; 3760 3761 __ctx->cpu = i; 3762 spin_lock_init(&__ctx->lock); 3763 for (k = HCTX_TYPE_DEFAULT; k < HCTX_MAX_TYPES; k++) 3764 INIT_LIST_HEAD(&__ctx->rq_lists[k]); 3765 3766 __ctx->queue = q; 3767 3768 /* 3769 * Set local node, IFF we have more than one hw queue. If 3770 * not, we remain on the home node of the device 3771 */ 3772 for (j = 0; j < set->nr_maps; j++) { 3773 hctx = blk_mq_map_queue_type(q, j, i); 3774 if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE) 3775 hctx->numa_node = cpu_to_node(i); 3776 } 3777 } 3778 } 3779 3780 struct blk_mq_tags *blk_mq_alloc_map_and_rqs(struct blk_mq_tag_set *set, 3781 unsigned int hctx_idx, 3782 unsigned int depth) 3783 { 3784 struct blk_mq_tags *tags; 3785 int ret; 3786 3787 tags = blk_mq_alloc_rq_map(set, hctx_idx, depth, set->reserved_tags); 3788 if (!tags) 3789 return NULL; 3790 3791 ret = blk_mq_alloc_rqs(set, tags, hctx_idx, depth); 3792 if (ret) { 3793 blk_mq_free_rq_map(tags); 3794 return NULL; 3795 } 3796 3797 return tags; 3798 } 3799 3800 static bool __blk_mq_alloc_map_and_rqs(struct blk_mq_tag_set *set, 3801 int hctx_idx) 3802 { 3803 if (blk_mq_is_shared_tags(set->flags)) { 3804 set->tags[hctx_idx] = set->shared_tags; 3805 3806 return true; 3807 } 3808 3809 set->tags[hctx_idx] = blk_mq_alloc_map_and_rqs(set, hctx_idx, 3810 set->queue_depth); 3811 3812 return set->tags[hctx_idx]; 3813 } 3814 3815 void blk_mq_free_map_and_rqs(struct blk_mq_tag_set *set, 3816 struct blk_mq_tags *tags, 3817 unsigned int hctx_idx) 3818 { 3819 if (tags) { 3820 blk_mq_free_rqs(set, tags, hctx_idx); 3821 blk_mq_free_rq_map(tags); 3822 } 3823 } 3824 3825 static void __blk_mq_free_map_and_rqs(struct blk_mq_tag_set *set, 3826 unsigned int hctx_idx) 3827 { 3828 if (!blk_mq_is_shared_tags(set->flags)) 3829 blk_mq_free_map_and_rqs(set, set->tags[hctx_idx], hctx_idx); 3830 3831 set->tags[hctx_idx] = NULL; 3832 } 3833 3834 static void blk_mq_map_swqueue(struct request_queue *q) 3835 { 3836 unsigned int j, hctx_idx; 3837 unsigned long i; 3838 struct blk_mq_hw_ctx *hctx; 3839 struct blk_mq_ctx *ctx; 3840 struct blk_mq_tag_set *set = q->tag_set; 3841 3842 queue_for_each_hw_ctx(q, hctx, i) { 3843 cpumask_clear(hctx->cpumask); 3844 hctx->nr_ctx = 0; 3845 hctx->dispatch_from = NULL; 3846 } 3847 3848 /* 3849 * Map software to hardware queues. 3850 * 3851 * If the cpu isn't present, the cpu is mapped to first hctx. 3852 */ 3853 for_each_possible_cpu(i) { 3854 3855 ctx = per_cpu_ptr(q->queue_ctx, i); 3856 for (j = 0; j < set->nr_maps; j++) { 3857 if (!set->map[j].nr_queues) { 3858 ctx->hctxs[j] = blk_mq_map_queue_type(q, 3859 HCTX_TYPE_DEFAULT, i); 3860 continue; 3861 } 3862 hctx_idx = set->map[j].mq_map[i]; 3863 /* unmapped hw queue can be remapped after CPU topo changed */ 3864 if (!set->tags[hctx_idx] && 3865 !__blk_mq_alloc_map_and_rqs(set, hctx_idx)) { 3866 /* 3867 * If tags initialization fail for some hctx, 3868 * that hctx won't be brought online. In this 3869 * case, remap the current ctx to hctx[0] which 3870 * is guaranteed to always have tags allocated 3871 */ 3872 set->map[j].mq_map[i] = 0; 3873 } 3874 3875 hctx = blk_mq_map_queue_type(q, j, i); 3876 ctx->hctxs[j] = hctx; 3877 /* 3878 * If the CPU is already set in the mask, then we've 3879 * mapped this one already. This can happen if 3880 * devices share queues across queue maps. 3881 */ 3882 if (cpumask_test_cpu(i, hctx->cpumask)) 3883 continue; 3884 3885 cpumask_set_cpu(i, hctx->cpumask); 3886 hctx->type = j; 3887 ctx->index_hw[hctx->type] = hctx->nr_ctx; 3888 hctx->ctxs[hctx->nr_ctx++] = ctx; 3889 3890 /* 3891 * If the nr_ctx type overflows, we have exceeded the 3892 * amount of sw queues we can support. 3893 */ 3894 BUG_ON(!hctx->nr_ctx); 3895 } 3896 3897 for (; j < HCTX_MAX_TYPES; j++) 3898 ctx->hctxs[j] = blk_mq_map_queue_type(q, 3899 HCTX_TYPE_DEFAULT, i); 3900 } 3901 3902 queue_for_each_hw_ctx(q, hctx, i) { 3903 /* 3904 * If no software queues are mapped to this hardware queue, 3905 * disable it and free the request entries. 3906 */ 3907 if (!hctx->nr_ctx) { 3908 /* Never unmap queue 0. We need it as a 3909 * fallback in case of a new remap fails 3910 * allocation 3911 */ 3912 if (i) 3913 __blk_mq_free_map_and_rqs(set, i); 3914 3915 hctx->tags = NULL; 3916 continue; 3917 } 3918 3919 hctx->tags = set->tags[i]; 3920 WARN_ON(!hctx->tags); 3921 3922 /* 3923 * Set the map size to the number of mapped software queues. 3924 * This is more accurate and more efficient than looping 3925 * over all possibly mapped software queues. 3926 */ 3927 sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx); 3928 3929 /* 3930 * Initialize batch roundrobin counts 3931 */ 3932 hctx->next_cpu = blk_mq_first_mapped_cpu(hctx); 3933 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH; 3934 } 3935 } 3936 3937 /* 3938 * Caller needs to ensure that we're either frozen/quiesced, or that 3939 * the queue isn't live yet. 3940 */ 3941 static void queue_set_hctx_shared(struct request_queue *q, bool shared) 3942 { 3943 struct blk_mq_hw_ctx *hctx; 3944 unsigned long i; 3945 3946 queue_for_each_hw_ctx(q, hctx, i) { 3947 if (shared) { 3948 hctx->flags |= BLK_MQ_F_TAG_QUEUE_SHARED; 3949 } else { 3950 blk_mq_tag_idle(hctx); 3951 hctx->flags &= ~BLK_MQ_F_TAG_QUEUE_SHARED; 3952 } 3953 } 3954 } 3955 3956 static void blk_mq_update_tag_set_shared(struct blk_mq_tag_set *set, 3957 bool shared) 3958 { 3959 struct request_queue *q; 3960 3961 lockdep_assert_held(&set->tag_list_lock); 3962 3963 list_for_each_entry(q, &set->tag_list, tag_set_list) { 3964 blk_mq_freeze_queue(q); 3965 queue_set_hctx_shared(q, shared); 3966 blk_mq_unfreeze_queue(q); 3967 } 3968 } 3969 3970 static void blk_mq_del_queue_tag_set(struct request_queue *q) 3971 { 3972 struct blk_mq_tag_set *set = q->tag_set; 3973 3974 mutex_lock(&set->tag_list_lock); 3975 list_del(&q->tag_set_list); 3976 if (list_is_singular(&set->tag_list)) { 3977 /* just transitioned to unshared */ 3978 set->flags &= ~BLK_MQ_F_TAG_QUEUE_SHARED; 3979 /* update existing queue */ 3980 blk_mq_update_tag_set_shared(set, false); 3981 } 3982 mutex_unlock(&set->tag_list_lock); 3983 INIT_LIST_HEAD(&q->tag_set_list); 3984 } 3985 3986 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set, 3987 struct request_queue *q) 3988 { 3989 mutex_lock(&set->tag_list_lock); 3990 3991 /* 3992 * Check to see if we're transitioning to shared (from 1 to 2 queues). 3993 */ 3994 if (!list_empty(&set->tag_list) && 3995 !(set->flags & BLK_MQ_F_TAG_QUEUE_SHARED)) { 3996 set->flags |= BLK_MQ_F_TAG_QUEUE_SHARED; 3997 /* update existing queue */ 3998 blk_mq_update_tag_set_shared(set, true); 3999 } 4000 if (set->flags & BLK_MQ_F_TAG_QUEUE_SHARED) 4001 queue_set_hctx_shared(q, true); 4002 list_add_tail(&q->tag_set_list, &set->tag_list); 4003 4004 mutex_unlock(&set->tag_list_lock); 4005 } 4006 4007 /* All allocations will be freed in release handler of q->mq_kobj */ 4008 static int blk_mq_alloc_ctxs(struct request_queue *q) 4009 { 4010 struct blk_mq_ctxs *ctxs; 4011 int cpu; 4012 4013 ctxs = kzalloc(sizeof(*ctxs), GFP_KERNEL); 4014 if (!ctxs) 4015 return -ENOMEM; 4016 4017 ctxs->queue_ctx = alloc_percpu(struct blk_mq_ctx); 4018 if (!ctxs->queue_ctx) 4019 goto fail; 4020 4021 for_each_possible_cpu(cpu) { 4022 struct blk_mq_ctx *ctx = per_cpu_ptr(ctxs->queue_ctx, cpu); 4023 ctx->ctxs = ctxs; 4024 } 4025 4026 q->mq_kobj = &ctxs->kobj; 4027 q->queue_ctx = ctxs->queue_ctx; 4028 4029 return 0; 4030 fail: 4031 kfree(ctxs); 4032 return -ENOMEM; 4033 } 4034 4035 /* 4036 * It is the actual release handler for mq, but we do it from 4037 * request queue's release handler for avoiding use-after-free 4038 * and headache because q->mq_kobj shouldn't have been introduced, 4039 * but we can't group ctx/kctx kobj without it. 4040 */ 4041 void blk_mq_release(struct request_queue *q) 4042 { 4043 struct blk_mq_hw_ctx *hctx, *next; 4044 unsigned long i; 4045 4046 queue_for_each_hw_ctx(q, hctx, i) 4047 WARN_ON_ONCE(hctx && list_empty(&hctx->hctx_list)); 4048 4049 /* all hctx are in .unused_hctx_list now */ 4050 list_for_each_entry_safe(hctx, next, &q->unused_hctx_list, hctx_list) { 4051 list_del_init(&hctx->hctx_list); 4052 kobject_put(&hctx->kobj); 4053 } 4054 4055 xa_destroy(&q->hctx_table); 4056 4057 /* 4058 * release .mq_kobj and sw queue's kobject now because 4059 * both share lifetime with request queue. 4060 */ 4061 blk_mq_sysfs_deinit(q); 4062 } 4063 4064 static struct request_queue *blk_mq_init_queue_data(struct blk_mq_tag_set *set, 4065 void *queuedata) 4066 { 4067 struct request_queue *q; 4068 int ret; 4069 4070 q = blk_alloc_queue(set->numa_node); 4071 if (!q) 4072 return ERR_PTR(-ENOMEM); 4073 q->queuedata = queuedata; 4074 ret = blk_mq_init_allocated_queue(set, q); 4075 if (ret) { 4076 blk_put_queue(q); 4077 return ERR_PTR(ret); 4078 } 4079 return q; 4080 } 4081 4082 struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set) 4083 { 4084 return blk_mq_init_queue_data(set, NULL); 4085 } 4086 EXPORT_SYMBOL(blk_mq_init_queue); 4087 4088 /** 4089 * blk_mq_destroy_queue - shutdown a request queue 4090 * @q: request queue to shutdown 4091 * 4092 * This shuts down a request queue allocated by blk_mq_init_queue(). All future 4093 * requests will be failed with -ENODEV. The caller is responsible for dropping 4094 * the reference from blk_mq_init_queue() by calling blk_put_queue(). 4095 * 4096 * Context: can sleep 4097 */ 4098 void blk_mq_destroy_queue(struct request_queue *q) 4099 { 4100 WARN_ON_ONCE(!queue_is_mq(q)); 4101 WARN_ON_ONCE(blk_queue_registered(q)); 4102 4103 might_sleep(); 4104 4105 blk_queue_flag_set(QUEUE_FLAG_DYING, q); 4106 blk_queue_start_drain(q); 4107 blk_mq_freeze_queue_wait(q); 4108 4109 blk_sync_queue(q); 4110 blk_mq_cancel_work_sync(q); 4111 blk_mq_exit_queue(q); 4112 } 4113 EXPORT_SYMBOL(blk_mq_destroy_queue); 4114 4115 struct gendisk *__blk_mq_alloc_disk(struct blk_mq_tag_set *set, void *queuedata, 4116 struct lock_class_key *lkclass) 4117 { 4118 struct request_queue *q; 4119 struct gendisk *disk; 4120 4121 q = blk_mq_init_queue_data(set, queuedata); 4122 if (IS_ERR(q)) 4123 return ERR_CAST(q); 4124 4125 disk = __alloc_disk_node(q, set->numa_node, lkclass); 4126 if (!disk) { 4127 blk_mq_destroy_queue(q); 4128 blk_put_queue(q); 4129 return ERR_PTR(-ENOMEM); 4130 } 4131 set_bit(GD_OWNS_QUEUE, &disk->state); 4132 return disk; 4133 } 4134 EXPORT_SYMBOL(__blk_mq_alloc_disk); 4135 4136 struct gendisk *blk_mq_alloc_disk_for_queue(struct request_queue *q, 4137 struct lock_class_key *lkclass) 4138 { 4139 struct gendisk *disk; 4140 4141 if (!blk_get_queue(q)) 4142 return NULL; 4143 disk = __alloc_disk_node(q, NUMA_NO_NODE, lkclass); 4144 if (!disk) 4145 blk_put_queue(q); 4146 return disk; 4147 } 4148 EXPORT_SYMBOL(blk_mq_alloc_disk_for_queue); 4149 4150 static struct blk_mq_hw_ctx *blk_mq_alloc_and_init_hctx( 4151 struct blk_mq_tag_set *set, struct request_queue *q, 4152 int hctx_idx, int node) 4153 { 4154 struct blk_mq_hw_ctx *hctx = NULL, *tmp; 4155 4156 /* reuse dead hctx first */ 4157 spin_lock(&q->unused_hctx_lock); 4158 list_for_each_entry(tmp, &q->unused_hctx_list, hctx_list) { 4159 if (tmp->numa_node == node) { 4160 hctx = tmp; 4161 break; 4162 } 4163 } 4164 if (hctx) 4165 list_del_init(&hctx->hctx_list); 4166 spin_unlock(&q->unused_hctx_lock); 4167 4168 if (!hctx) 4169 hctx = blk_mq_alloc_hctx(q, set, node); 4170 if (!hctx) 4171 goto fail; 4172 4173 if (blk_mq_init_hctx(q, set, hctx, hctx_idx)) 4174 goto free_hctx; 4175 4176 return hctx; 4177 4178 free_hctx: 4179 kobject_put(&hctx->kobj); 4180 fail: 4181 return NULL; 4182 } 4183 4184 static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set, 4185 struct request_queue *q) 4186 { 4187 struct blk_mq_hw_ctx *hctx; 4188 unsigned long i, j; 4189 4190 /* protect against switching io scheduler */ 4191 mutex_lock(&q->sysfs_lock); 4192 for (i = 0; i < set->nr_hw_queues; i++) { 4193 int old_node; 4194 int node = blk_mq_get_hctx_node(set, i); 4195 struct blk_mq_hw_ctx *old_hctx = xa_load(&q->hctx_table, i); 4196 4197 if (old_hctx) { 4198 old_node = old_hctx->numa_node; 4199 blk_mq_exit_hctx(q, set, old_hctx, i); 4200 } 4201 4202 if (!blk_mq_alloc_and_init_hctx(set, q, i, node)) { 4203 if (!old_hctx) 4204 break; 4205 pr_warn("Allocate new hctx on node %d fails, fallback to previous one on node %d\n", 4206 node, old_node); 4207 hctx = blk_mq_alloc_and_init_hctx(set, q, i, old_node); 4208 WARN_ON_ONCE(!hctx); 4209 } 4210 } 4211 /* 4212 * Increasing nr_hw_queues fails. Free the newly allocated 4213 * hctxs and keep the previous q->nr_hw_queues. 4214 */ 4215 if (i != set->nr_hw_queues) { 4216 j = q->nr_hw_queues; 4217 } else { 4218 j = i; 4219 q->nr_hw_queues = set->nr_hw_queues; 4220 } 4221 4222 xa_for_each_start(&q->hctx_table, j, hctx, j) 4223 blk_mq_exit_hctx(q, set, hctx, j); 4224 mutex_unlock(&q->sysfs_lock); 4225 } 4226 4227 static void blk_mq_update_poll_flag(struct request_queue *q) 4228 { 4229 struct blk_mq_tag_set *set = q->tag_set; 4230 4231 if (set->nr_maps > HCTX_TYPE_POLL && 4232 set->map[HCTX_TYPE_POLL].nr_queues) 4233 blk_queue_flag_set(QUEUE_FLAG_POLL, q); 4234 else 4235 blk_queue_flag_clear(QUEUE_FLAG_POLL, q); 4236 } 4237 4238 int blk_mq_init_allocated_queue(struct blk_mq_tag_set *set, 4239 struct request_queue *q) 4240 { 4241 /* mark the queue as mq asap */ 4242 q->mq_ops = set->ops; 4243 4244 if (blk_mq_alloc_ctxs(q)) 4245 goto err_exit; 4246 4247 /* init q->mq_kobj and sw queues' kobjects */ 4248 blk_mq_sysfs_init(q); 4249 4250 INIT_LIST_HEAD(&q->unused_hctx_list); 4251 spin_lock_init(&q->unused_hctx_lock); 4252 4253 xa_init(&q->hctx_table); 4254 4255 blk_mq_realloc_hw_ctxs(set, q); 4256 if (!q->nr_hw_queues) 4257 goto err_hctxs; 4258 4259 INIT_WORK(&q->timeout_work, blk_mq_timeout_work); 4260 blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ); 4261 4262 q->tag_set = set; 4263 4264 q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT; 4265 blk_mq_update_poll_flag(q); 4266 4267 INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work); 4268 INIT_LIST_HEAD(&q->flush_list); 4269 INIT_LIST_HEAD(&q->requeue_list); 4270 spin_lock_init(&q->requeue_lock); 4271 4272 q->nr_requests = set->queue_depth; 4273 4274 blk_mq_init_cpu_queues(q, set->nr_hw_queues); 4275 blk_mq_add_queue_tag_set(set, q); 4276 blk_mq_map_swqueue(q); 4277 return 0; 4278 4279 err_hctxs: 4280 blk_mq_release(q); 4281 err_exit: 4282 q->mq_ops = NULL; 4283 return -ENOMEM; 4284 } 4285 EXPORT_SYMBOL(blk_mq_init_allocated_queue); 4286 4287 /* tags can _not_ be used after returning from blk_mq_exit_queue */ 4288 void blk_mq_exit_queue(struct request_queue *q) 4289 { 4290 struct blk_mq_tag_set *set = q->tag_set; 4291 4292 /* Checks hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED. */ 4293 blk_mq_exit_hw_queues(q, set, set->nr_hw_queues); 4294 /* May clear BLK_MQ_F_TAG_QUEUE_SHARED in hctx->flags. */ 4295 blk_mq_del_queue_tag_set(q); 4296 } 4297 4298 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set) 4299 { 4300 int i; 4301 4302 if (blk_mq_is_shared_tags(set->flags)) { 4303 set->shared_tags = blk_mq_alloc_map_and_rqs(set, 4304 BLK_MQ_NO_HCTX_IDX, 4305 set->queue_depth); 4306 if (!set->shared_tags) 4307 return -ENOMEM; 4308 } 4309 4310 for (i = 0; i < set->nr_hw_queues; i++) { 4311 if (!__blk_mq_alloc_map_and_rqs(set, i)) 4312 goto out_unwind; 4313 cond_resched(); 4314 } 4315 4316 return 0; 4317 4318 out_unwind: 4319 while (--i >= 0) 4320 __blk_mq_free_map_and_rqs(set, i); 4321 4322 if (blk_mq_is_shared_tags(set->flags)) { 4323 blk_mq_free_map_and_rqs(set, set->shared_tags, 4324 BLK_MQ_NO_HCTX_IDX); 4325 } 4326 4327 return -ENOMEM; 4328 } 4329 4330 /* 4331 * Allocate the request maps associated with this tag_set. Note that this 4332 * may reduce the depth asked for, if memory is tight. set->queue_depth 4333 * will be updated to reflect the allocated depth. 4334 */ 4335 static int blk_mq_alloc_set_map_and_rqs(struct blk_mq_tag_set *set) 4336 { 4337 unsigned int depth; 4338 int err; 4339 4340 depth = set->queue_depth; 4341 do { 4342 err = __blk_mq_alloc_rq_maps(set); 4343 if (!err) 4344 break; 4345 4346 set->queue_depth >>= 1; 4347 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) { 4348 err = -ENOMEM; 4349 break; 4350 } 4351 } while (set->queue_depth); 4352 4353 if (!set->queue_depth || err) { 4354 pr_err("blk-mq: failed to allocate request map\n"); 4355 return -ENOMEM; 4356 } 4357 4358 if (depth != set->queue_depth) 4359 pr_info("blk-mq: reduced tag depth (%u -> %u)\n", 4360 depth, set->queue_depth); 4361 4362 return 0; 4363 } 4364 4365 static void blk_mq_update_queue_map(struct blk_mq_tag_set *set) 4366 { 4367 /* 4368 * blk_mq_map_queues() and multiple .map_queues() implementations 4369 * expect that set->map[HCTX_TYPE_DEFAULT].nr_queues is set to the 4370 * number of hardware queues. 4371 */ 4372 if (set->nr_maps == 1) 4373 set->map[HCTX_TYPE_DEFAULT].nr_queues = set->nr_hw_queues; 4374 4375 if (set->ops->map_queues && !is_kdump_kernel()) { 4376 int i; 4377 4378 /* 4379 * transport .map_queues is usually done in the following 4380 * way: 4381 * 4382 * for (queue = 0; queue < set->nr_hw_queues; queue++) { 4383 * mask = get_cpu_mask(queue) 4384 * for_each_cpu(cpu, mask) 4385 * set->map[x].mq_map[cpu] = queue; 4386 * } 4387 * 4388 * When we need to remap, the table has to be cleared for 4389 * killing stale mapping since one CPU may not be mapped 4390 * to any hw queue. 4391 */ 4392 for (i = 0; i < set->nr_maps; i++) 4393 blk_mq_clear_mq_map(&set->map[i]); 4394 4395 set->ops->map_queues(set); 4396 } else { 4397 BUG_ON(set->nr_maps > 1); 4398 blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]); 4399 } 4400 } 4401 4402 static int blk_mq_realloc_tag_set_tags(struct blk_mq_tag_set *set, 4403 int new_nr_hw_queues) 4404 { 4405 struct blk_mq_tags **new_tags; 4406 int i; 4407 4408 if (set->nr_hw_queues >= new_nr_hw_queues) { 4409 for (i = new_nr_hw_queues; i < set->nr_hw_queues; i++) 4410 __blk_mq_free_map_and_rqs(set, i); 4411 goto done; 4412 } 4413 4414 new_tags = kcalloc_node(new_nr_hw_queues, sizeof(struct blk_mq_tags *), 4415 GFP_KERNEL, set->numa_node); 4416 if (!new_tags) 4417 return -ENOMEM; 4418 4419 if (set->tags) 4420 memcpy(new_tags, set->tags, set->nr_hw_queues * 4421 sizeof(*set->tags)); 4422 kfree(set->tags); 4423 set->tags = new_tags; 4424 4425 for (i = set->nr_hw_queues; i < new_nr_hw_queues; i++) { 4426 if (!__blk_mq_alloc_map_and_rqs(set, i)) { 4427 while (--i >= set->nr_hw_queues) 4428 __blk_mq_free_map_and_rqs(set, i); 4429 return -ENOMEM; 4430 } 4431 cond_resched(); 4432 } 4433 4434 done: 4435 set->nr_hw_queues = new_nr_hw_queues; 4436 return 0; 4437 } 4438 4439 /* 4440 * Alloc a tag set to be associated with one or more request queues. 4441 * May fail with EINVAL for various error conditions. May adjust the 4442 * requested depth down, if it's too large. In that case, the set 4443 * value will be stored in set->queue_depth. 4444 */ 4445 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set) 4446 { 4447 int i, ret; 4448 4449 BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS); 4450 4451 if (!set->nr_hw_queues) 4452 return -EINVAL; 4453 if (!set->queue_depth) 4454 return -EINVAL; 4455 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) 4456 return -EINVAL; 4457 4458 if (!set->ops->queue_rq) 4459 return -EINVAL; 4460 4461 if (!set->ops->get_budget ^ !set->ops->put_budget) 4462 return -EINVAL; 4463 4464 if (set->queue_depth > BLK_MQ_MAX_DEPTH) { 4465 pr_info("blk-mq: reduced tag depth to %u\n", 4466 BLK_MQ_MAX_DEPTH); 4467 set->queue_depth = BLK_MQ_MAX_DEPTH; 4468 } 4469 4470 if (!set->nr_maps) 4471 set->nr_maps = 1; 4472 else if (set->nr_maps > HCTX_MAX_TYPES) 4473 return -EINVAL; 4474 4475 /* 4476 * If a crashdump is active, then we are potentially in a very 4477 * memory constrained environment. Limit us to 1 queue and 4478 * 64 tags to prevent using too much memory. 4479 */ 4480 if (is_kdump_kernel()) { 4481 set->nr_hw_queues = 1; 4482 set->nr_maps = 1; 4483 set->queue_depth = min(64U, set->queue_depth); 4484 } 4485 /* 4486 * There is no use for more h/w queues than cpus if we just have 4487 * a single map 4488 */ 4489 if (set->nr_maps == 1 && set->nr_hw_queues > nr_cpu_ids) 4490 set->nr_hw_queues = nr_cpu_ids; 4491 4492 if (set->flags & BLK_MQ_F_BLOCKING) { 4493 set->srcu = kmalloc(sizeof(*set->srcu), GFP_KERNEL); 4494 if (!set->srcu) 4495 return -ENOMEM; 4496 ret = init_srcu_struct(set->srcu); 4497 if (ret) 4498 goto out_free_srcu; 4499 } 4500 4501 ret = -ENOMEM; 4502 set->tags = kcalloc_node(set->nr_hw_queues, 4503 sizeof(struct blk_mq_tags *), GFP_KERNEL, 4504 set->numa_node); 4505 if (!set->tags) 4506 goto out_cleanup_srcu; 4507 4508 for (i = 0; i < set->nr_maps; i++) { 4509 set->map[i].mq_map = kcalloc_node(nr_cpu_ids, 4510 sizeof(set->map[i].mq_map[0]), 4511 GFP_KERNEL, set->numa_node); 4512 if (!set->map[i].mq_map) 4513 goto out_free_mq_map; 4514 set->map[i].nr_queues = is_kdump_kernel() ? 1 : set->nr_hw_queues; 4515 } 4516 4517 blk_mq_update_queue_map(set); 4518 4519 ret = blk_mq_alloc_set_map_and_rqs(set); 4520 if (ret) 4521 goto out_free_mq_map; 4522 4523 mutex_init(&set->tag_list_lock); 4524 INIT_LIST_HEAD(&set->tag_list); 4525 4526 return 0; 4527 4528 out_free_mq_map: 4529 for (i = 0; i < set->nr_maps; i++) { 4530 kfree(set->map[i].mq_map); 4531 set->map[i].mq_map = NULL; 4532 } 4533 kfree(set->tags); 4534 set->tags = NULL; 4535 out_cleanup_srcu: 4536 if (set->flags & BLK_MQ_F_BLOCKING) 4537 cleanup_srcu_struct(set->srcu); 4538 out_free_srcu: 4539 if (set->flags & BLK_MQ_F_BLOCKING) 4540 kfree(set->srcu); 4541 return ret; 4542 } 4543 EXPORT_SYMBOL(blk_mq_alloc_tag_set); 4544 4545 /* allocate and initialize a tagset for a simple single-queue device */ 4546 int blk_mq_alloc_sq_tag_set(struct blk_mq_tag_set *set, 4547 const struct blk_mq_ops *ops, unsigned int queue_depth, 4548 unsigned int set_flags) 4549 { 4550 memset(set, 0, sizeof(*set)); 4551 set->ops = ops; 4552 set->nr_hw_queues = 1; 4553 set->nr_maps = 1; 4554 set->queue_depth = queue_depth; 4555 set->numa_node = NUMA_NO_NODE; 4556 set->flags = set_flags; 4557 return blk_mq_alloc_tag_set(set); 4558 } 4559 EXPORT_SYMBOL_GPL(blk_mq_alloc_sq_tag_set); 4560 4561 void blk_mq_free_tag_set(struct blk_mq_tag_set *set) 4562 { 4563 int i, j; 4564 4565 for (i = 0; i < set->nr_hw_queues; i++) 4566 __blk_mq_free_map_and_rqs(set, i); 4567 4568 if (blk_mq_is_shared_tags(set->flags)) { 4569 blk_mq_free_map_and_rqs(set, set->shared_tags, 4570 BLK_MQ_NO_HCTX_IDX); 4571 } 4572 4573 for (j = 0; j < set->nr_maps; j++) { 4574 kfree(set->map[j].mq_map); 4575 set->map[j].mq_map = NULL; 4576 } 4577 4578 kfree(set->tags); 4579 set->tags = NULL; 4580 if (set->flags & BLK_MQ_F_BLOCKING) { 4581 cleanup_srcu_struct(set->srcu); 4582 kfree(set->srcu); 4583 } 4584 } 4585 EXPORT_SYMBOL(blk_mq_free_tag_set); 4586 4587 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr) 4588 { 4589 struct blk_mq_tag_set *set = q->tag_set; 4590 struct blk_mq_hw_ctx *hctx; 4591 int ret; 4592 unsigned long i; 4593 4594 if (!set) 4595 return -EINVAL; 4596 4597 if (q->nr_requests == nr) 4598 return 0; 4599 4600 blk_mq_freeze_queue(q); 4601 blk_mq_quiesce_queue(q); 4602 4603 ret = 0; 4604 queue_for_each_hw_ctx(q, hctx, i) { 4605 if (!hctx->tags) 4606 continue; 4607 /* 4608 * If we're using an MQ scheduler, just update the scheduler 4609 * queue depth. This is similar to what the old code would do. 4610 */ 4611 if (hctx->sched_tags) { 4612 ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags, 4613 nr, true); 4614 } else { 4615 ret = blk_mq_tag_update_depth(hctx, &hctx->tags, nr, 4616 false); 4617 } 4618 if (ret) 4619 break; 4620 if (q->elevator && q->elevator->type->ops.depth_updated) 4621 q->elevator->type->ops.depth_updated(hctx); 4622 } 4623 if (!ret) { 4624 q->nr_requests = nr; 4625 if (blk_mq_is_shared_tags(set->flags)) { 4626 if (q->elevator) 4627 blk_mq_tag_update_sched_shared_tags(q); 4628 else 4629 blk_mq_tag_resize_shared_tags(set, nr); 4630 } 4631 } 4632 4633 blk_mq_unquiesce_queue(q); 4634 blk_mq_unfreeze_queue(q); 4635 4636 return ret; 4637 } 4638 4639 /* 4640 * request_queue and elevator_type pair. 4641 * It is just used by __blk_mq_update_nr_hw_queues to cache 4642 * the elevator_type associated with a request_queue. 4643 */ 4644 struct blk_mq_qe_pair { 4645 struct list_head node; 4646 struct request_queue *q; 4647 struct elevator_type *type; 4648 }; 4649 4650 /* 4651 * Cache the elevator_type in qe pair list and switch the 4652 * io scheduler to 'none' 4653 */ 4654 static bool blk_mq_elv_switch_none(struct list_head *head, 4655 struct request_queue *q) 4656 { 4657 struct blk_mq_qe_pair *qe; 4658 4659 qe = kmalloc(sizeof(*qe), GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY); 4660 if (!qe) 4661 return false; 4662 4663 /* q->elevator needs protection from ->sysfs_lock */ 4664 mutex_lock(&q->sysfs_lock); 4665 4666 /* the check has to be done with holding sysfs_lock */ 4667 if (!q->elevator) { 4668 kfree(qe); 4669 goto unlock; 4670 } 4671 4672 INIT_LIST_HEAD(&qe->node); 4673 qe->q = q; 4674 qe->type = q->elevator->type; 4675 /* keep a reference to the elevator module as we'll switch back */ 4676 __elevator_get(qe->type); 4677 list_add(&qe->node, head); 4678 elevator_disable(q); 4679 unlock: 4680 mutex_unlock(&q->sysfs_lock); 4681 4682 return true; 4683 } 4684 4685 static struct blk_mq_qe_pair *blk_lookup_qe_pair(struct list_head *head, 4686 struct request_queue *q) 4687 { 4688 struct blk_mq_qe_pair *qe; 4689 4690 list_for_each_entry(qe, head, node) 4691 if (qe->q == q) 4692 return qe; 4693 4694 return NULL; 4695 } 4696 4697 static void blk_mq_elv_switch_back(struct list_head *head, 4698 struct request_queue *q) 4699 { 4700 struct blk_mq_qe_pair *qe; 4701 struct elevator_type *t; 4702 4703 qe = blk_lookup_qe_pair(head, q); 4704 if (!qe) 4705 return; 4706 t = qe->type; 4707 list_del(&qe->node); 4708 kfree(qe); 4709 4710 mutex_lock(&q->sysfs_lock); 4711 elevator_switch(q, t); 4712 /* drop the reference acquired in blk_mq_elv_switch_none */ 4713 elevator_put(t); 4714 mutex_unlock(&q->sysfs_lock); 4715 } 4716 4717 static void __blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, 4718 int nr_hw_queues) 4719 { 4720 struct request_queue *q; 4721 LIST_HEAD(head); 4722 int prev_nr_hw_queues; 4723 4724 lockdep_assert_held(&set->tag_list_lock); 4725 4726 if (set->nr_maps == 1 && nr_hw_queues > nr_cpu_ids) 4727 nr_hw_queues = nr_cpu_ids; 4728 if (nr_hw_queues < 1) 4729 return; 4730 if (set->nr_maps == 1 && nr_hw_queues == set->nr_hw_queues) 4731 return; 4732 4733 list_for_each_entry(q, &set->tag_list, tag_set_list) 4734 blk_mq_freeze_queue(q); 4735 /* 4736 * Switch IO scheduler to 'none', cleaning up the data associated 4737 * with the previous scheduler. We will switch back once we are done 4738 * updating the new sw to hw queue mappings. 4739 */ 4740 list_for_each_entry(q, &set->tag_list, tag_set_list) 4741 if (!blk_mq_elv_switch_none(&head, q)) 4742 goto switch_back; 4743 4744 list_for_each_entry(q, &set->tag_list, tag_set_list) { 4745 blk_mq_debugfs_unregister_hctxs(q); 4746 blk_mq_sysfs_unregister_hctxs(q); 4747 } 4748 4749 prev_nr_hw_queues = set->nr_hw_queues; 4750 if (blk_mq_realloc_tag_set_tags(set, nr_hw_queues) < 0) 4751 goto reregister; 4752 4753 fallback: 4754 blk_mq_update_queue_map(set); 4755 list_for_each_entry(q, &set->tag_list, tag_set_list) { 4756 blk_mq_realloc_hw_ctxs(set, q); 4757 blk_mq_update_poll_flag(q); 4758 if (q->nr_hw_queues != set->nr_hw_queues) { 4759 int i = prev_nr_hw_queues; 4760 4761 pr_warn("Increasing nr_hw_queues to %d fails, fallback to %d\n", 4762 nr_hw_queues, prev_nr_hw_queues); 4763 for (; i < set->nr_hw_queues; i++) 4764 __blk_mq_free_map_and_rqs(set, i); 4765 4766 set->nr_hw_queues = prev_nr_hw_queues; 4767 goto fallback; 4768 } 4769 blk_mq_map_swqueue(q); 4770 } 4771 4772 reregister: 4773 list_for_each_entry(q, &set->tag_list, tag_set_list) { 4774 blk_mq_sysfs_register_hctxs(q); 4775 blk_mq_debugfs_register_hctxs(q); 4776 } 4777 4778 switch_back: 4779 list_for_each_entry(q, &set->tag_list, tag_set_list) 4780 blk_mq_elv_switch_back(&head, q); 4781 4782 list_for_each_entry(q, &set->tag_list, tag_set_list) 4783 blk_mq_unfreeze_queue(q); 4784 } 4785 4786 void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues) 4787 { 4788 mutex_lock(&set->tag_list_lock); 4789 __blk_mq_update_nr_hw_queues(set, nr_hw_queues); 4790 mutex_unlock(&set->tag_list_lock); 4791 } 4792 EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues); 4793 4794 static int blk_hctx_poll(struct request_queue *q, struct blk_mq_hw_ctx *hctx, 4795 struct io_comp_batch *iob, unsigned int flags) 4796 { 4797 long state = get_current_state(); 4798 int ret; 4799 4800 do { 4801 ret = q->mq_ops->poll(hctx, iob); 4802 if (ret > 0) { 4803 __set_current_state(TASK_RUNNING); 4804 return ret; 4805 } 4806 4807 if (signal_pending_state(state, current)) 4808 __set_current_state(TASK_RUNNING); 4809 if (task_is_running(current)) 4810 return 1; 4811 4812 if (ret < 0 || (flags & BLK_POLL_ONESHOT)) 4813 break; 4814 cpu_relax(); 4815 } while (!need_resched()); 4816 4817 __set_current_state(TASK_RUNNING); 4818 return 0; 4819 } 4820 4821 int blk_mq_poll(struct request_queue *q, blk_qc_t cookie, 4822 struct io_comp_batch *iob, unsigned int flags) 4823 { 4824 struct blk_mq_hw_ctx *hctx = xa_load(&q->hctx_table, cookie); 4825 4826 return blk_hctx_poll(q, hctx, iob, flags); 4827 } 4828 4829 int blk_rq_poll(struct request *rq, struct io_comp_batch *iob, 4830 unsigned int poll_flags) 4831 { 4832 struct request_queue *q = rq->q; 4833 int ret; 4834 4835 if (!blk_rq_is_poll(rq)) 4836 return 0; 4837 if (!percpu_ref_tryget(&q->q_usage_counter)) 4838 return 0; 4839 4840 ret = blk_hctx_poll(q, rq->mq_hctx, iob, poll_flags); 4841 blk_queue_exit(q); 4842 4843 return ret; 4844 } 4845 EXPORT_SYMBOL_GPL(blk_rq_poll); 4846 4847 unsigned int blk_mq_rq_cpu(struct request *rq) 4848 { 4849 return rq->mq_ctx->cpu; 4850 } 4851 EXPORT_SYMBOL(blk_mq_rq_cpu); 4852 4853 void blk_mq_cancel_work_sync(struct request_queue *q) 4854 { 4855 struct blk_mq_hw_ctx *hctx; 4856 unsigned long i; 4857 4858 cancel_delayed_work_sync(&q->requeue_work); 4859 4860 queue_for_each_hw_ctx(q, hctx, i) 4861 cancel_delayed_work_sync(&hctx->run_work); 4862 } 4863 4864 static int __init blk_mq_init(void) 4865 { 4866 int i; 4867 4868 for_each_possible_cpu(i) 4869 init_llist_head(&per_cpu(blk_cpu_done, i)); 4870 for_each_possible_cpu(i) 4871 INIT_CSD(&per_cpu(blk_cpu_csd, i), 4872 __blk_mq_complete_request_remote, NULL); 4873 open_softirq(BLOCK_SOFTIRQ, blk_done_softirq); 4874 4875 cpuhp_setup_state_nocalls(CPUHP_BLOCK_SOFTIRQ_DEAD, 4876 "block/softirq:dead", NULL, 4877 blk_softirq_cpu_dead); 4878 cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL, 4879 blk_mq_hctx_notify_dead); 4880 cpuhp_setup_state_multi(CPUHP_AP_BLK_MQ_ONLINE, "block/mq:online", 4881 blk_mq_hctx_notify_online, 4882 blk_mq_hctx_notify_offline); 4883 return 0; 4884 } 4885 subsys_initcall(blk_mq_init); 4886