xref: /linux/block/blk-mq.c (revision 005438a8eef063495ac059d128eea71b58de50e5)
1 /*
2  * Block multiqueue core code
3  *
4  * Copyright (C) 2013-2014 Jens Axboe
5  * Copyright (C) 2013-2014 Christoph Hellwig
6  */
7 #include <linux/kernel.h>
8 #include <linux/module.h>
9 #include <linux/backing-dev.h>
10 #include <linux/bio.h>
11 #include <linux/blkdev.h>
12 #include <linux/mm.h>
13 #include <linux/init.h>
14 #include <linux/slab.h>
15 #include <linux/workqueue.h>
16 #include <linux/smp.h>
17 #include <linux/llist.h>
18 #include <linux/list_sort.h>
19 #include <linux/cpu.h>
20 #include <linux/cache.h>
21 #include <linux/sched/sysctl.h>
22 #include <linux/delay.h>
23 #include <linux/crash_dump.h>
24 
25 #include <trace/events/block.h>
26 
27 #include <linux/blk-mq.h>
28 #include "blk.h"
29 #include "blk-mq.h"
30 #include "blk-mq-tag.h"
31 
32 static DEFINE_MUTEX(all_q_mutex);
33 static LIST_HEAD(all_q_list);
34 
35 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx);
36 
37 /*
38  * Check if any of the ctx's have pending work in this hardware queue
39  */
40 static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
41 {
42 	unsigned int i;
43 
44 	for (i = 0; i < hctx->ctx_map.size; i++)
45 		if (hctx->ctx_map.map[i].word)
46 			return true;
47 
48 	return false;
49 }
50 
51 static inline struct blk_align_bitmap *get_bm(struct blk_mq_hw_ctx *hctx,
52 					      struct blk_mq_ctx *ctx)
53 {
54 	return &hctx->ctx_map.map[ctx->index_hw / hctx->ctx_map.bits_per_word];
55 }
56 
57 #define CTX_TO_BIT(hctx, ctx)	\
58 	((ctx)->index_hw & ((hctx)->ctx_map.bits_per_word - 1))
59 
60 /*
61  * Mark this ctx as having pending work in this hardware queue
62  */
63 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
64 				     struct blk_mq_ctx *ctx)
65 {
66 	struct blk_align_bitmap *bm = get_bm(hctx, ctx);
67 
68 	if (!test_bit(CTX_TO_BIT(hctx, ctx), &bm->word))
69 		set_bit(CTX_TO_BIT(hctx, ctx), &bm->word);
70 }
71 
72 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
73 				      struct blk_mq_ctx *ctx)
74 {
75 	struct blk_align_bitmap *bm = get_bm(hctx, ctx);
76 
77 	clear_bit(CTX_TO_BIT(hctx, ctx), &bm->word);
78 }
79 
80 static int blk_mq_queue_enter(struct request_queue *q, gfp_t gfp)
81 {
82 	while (true) {
83 		int ret;
84 
85 		if (percpu_ref_tryget_live(&q->mq_usage_counter))
86 			return 0;
87 
88 		if (!(gfp & __GFP_WAIT))
89 			return -EBUSY;
90 
91 		ret = wait_event_interruptible(q->mq_freeze_wq,
92 				!atomic_read(&q->mq_freeze_depth) ||
93 				blk_queue_dying(q));
94 		if (blk_queue_dying(q))
95 			return -ENODEV;
96 		if (ret)
97 			return ret;
98 	}
99 }
100 
101 static void blk_mq_queue_exit(struct request_queue *q)
102 {
103 	percpu_ref_put(&q->mq_usage_counter);
104 }
105 
106 static void blk_mq_usage_counter_release(struct percpu_ref *ref)
107 {
108 	struct request_queue *q =
109 		container_of(ref, struct request_queue, mq_usage_counter);
110 
111 	wake_up_all(&q->mq_freeze_wq);
112 }
113 
114 void blk_mq_freeze_queue_start(struct request_queue *q)
115 {
116 	int freeze_depth;
117 
118 	freeze_depth = atomic_inc_return(&q->mq_freeze_depth);
119 	if (freeze_depth == 1) {
120 		percpu_ref_kill(&q->mq_usage_counter);
121 		blk_mq_run_hw_queues(q, false);
122 	}
123 }
124 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_start);
125 
126 static void blk_mq_freeze_queue_wait(struct request_queue *q)
127 {
128 	wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->mq_usage_counter));
129 }
130 
131 /*
132  * Guarantee no request is in use, so we can change any data structure of
133  * the queue afterward.
134  */
135 void blk_mq_freeze_queue(struct request_queue *q)
136 {
137 	blk_mq_freeze_queue_start(q);
138 	blk_mq_freeze_queue_wait(q);
139 }
140 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
141 
142 void blk_mq_unfreeze_queue(struct request_queue *q)
143 {
144 	int freeze_depth;
145 
146 	freeze_depth = atomic_dec_return(&q->mq_freeze_depth);
147 	WARN_ON_ONCE(freeze_depth < 0);
148 	if (!freeze_depth) {
149 		percpu_ref_reinit(&q->mq_usage_counter);
150 		wake_up_all(&q->mq_freeze_wq);
151 	}
152 }
153 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
154 
155 void blk_mq_wake_waiters(struct request_queue *q)
156 {
157 	struct blk_mq_hw_ctx *hctx;
158 	unsigned int i;
159 
160 	queue_for_each_hw_ctx(q, hctx, i)
161 		if (blk_mq_hw_queue_mapped(hctx))
162 			blk_mq_tag_wakeup_all(hctx->tags, true);
163 
164 	/*
165 	 * If we are called because the queue has now been marked as
166 	 * dying, we need to ensure that processes currently waiting on
167 	 * the queue are notified as well.
168 	 */
169 	wake_up_all(&q->mq_freeze_wq);
170 }
171 
172 bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx)
173 {
174 	return blk_mq_has_free_tags(hctx->tags);
175 }
176 EXPORT_SYMBOL(blk_mq_can_queue);
177 
178 static void blk_mq_rq_ctx_init(struct request_queue *q, struct blk_mq_ctx *ctx,
179 			       struct request *rq, unsigned int rw_flags)
180 {
181 	if (blk_queue_io_stat(q))
182 		rw_flags |= REQ_IO_STAT;
183 
184 	INIT_LIST_HEAD(&rq->queuelist);
185 	/* csd/requeue_work/fifo_time is initialized before use */
186 	rq->q = q;
187 	rq->mq_ctx = ctx;
188 	rq->cmd_flags |= rw_flags;
189 	/* do not touch atomic flags, it needs atomic ops against the timer */
190 	rq->cpu = -1;
191 	INIT_HLIST_NODE(&rq->hash);
192 	RB_CLEAR_NODE(&rq->rb_node);
193 	rq->rq_disk = NULL;
194 	rq->part = NULL;
195 	rq->start_time = jiffies;
196 #ifdef CONFIG_BLK_CGROUP
197 	rq->rl = NULL;
198 	set_start_time_ns(rq);
199 	rq->io_start_time_ns = 0;
200 #endif
201 	rq->nr_phys_segments = 0;
202 #if defined(CONFIG_BLK_DEV_INTEGRITY)
203 	rq->nr_integrity_segments = 0;
204 #endif
205 	rq->special = NULL;
206 	/* tag was already set */
207 	rq->errors = 0;
208 
209 	rq->cmd = rq->__cmd;
210 
211 	rq->extra_len = 0;
212 	rq->sense_len = 0;
213 	rq->resid_len = 0;
214 	rq->sense = NULL;
215 
216 	INIT_LIST_HEAD(&rq->timeout_list);
217 	rq->timeout = 0;
218 
219 	rq->end_io = NULL;
220 	rq->end_io_data = NULL;
221 	rq->next_rq = NULL;
222 
223 	ctx->rq_dispatched[rw_is_sync(rw_flags)]++;
224 }
225 
226 static struct request *
227 __blk_mq_alloc_request(struct blk_mq_alloc_data *data, int rw)
228 {
229 	struct request *rq;
230 	unsigned int tag;
231 
232 	tag = blk_mq_get_tag(data);
233 	if (tag != BLK_MQ_TAG_FAIL) {
234 		rq = data->hctx->tags->rqs[tag];
235 
236 		if (blk_mq_tag_busy(data->hctx)) {
237 			rq->cmd_flags = REQ_MQ_INFLIGHT;
238 			atomic_inc(&data->hctx->nr_active);
239 		}
240 
241 		rq->tag = tag;
242 		blk_mq_rq_ctx_init(data->q, data->ctx, rq, rw);
243 		return rq;
244 	}
245 
246 	return NULL;
247 }
248 
249 struct request *blk_mq_alloc_request(struct request_queue *q, int rw, gfp_t gfp,
250 		bool reserved)
251 {
252 	struct blk_mq_ctx *ctx;
253 	struct blk_mq_hw_ctx *hctx;
254 	struct request *rq;
255 	struct blk_mq_alloc_data alloc_data;
256 	int ret;
257 
258 	ret = blk_mq_queue_enter(q, gfp);
259 	if (ret)
260 		return ERR_PTR(ret);
261 
262 	ctx = blk_mq_get_ctx(q);
263 	hctx = q->mq_ops->map_queue(q, ctx->cpu);
264 	blk_mq_set_alloc_data(&alloc_data, q, gfp & ~__GFP_WAIT,
265 			reserved, ctx, hctx);
266 
267 	rq = __blk_mq_alloc_request(&alloc_data, rw);
268 	if (!rq && (gfp & __GFP_WAIT)) {
269 		__blk_mq_run_hw_queue(hctx);
270 		blk_mq_put_ctx(ctx);
271 
272 		ctx = blk_mq_get_ctx(q);
273 		hctx = q->mq_ops->map_queue(q, ctx->cpu);
274 		blk_mq_set_alloc_data(&alloc_data, q, gfp, reserved, ctx,
275 				hctx);
276 		rq =  __blk_mq_alloc_request(&alloc_data, rw);
277 		ctx = alloc_data.ctx;
278 	}
279 	blk_mq_put_ctx(ctx);
280 	if (!rq) {
281 		blk_mq_queue_exit(q);
282 		return ERR_PTR(-EWOULDBLOCK);
283 	}
284 	return rq;
285 }
286 EXPORT_SYMBOL(blk_mq_alloc_request);
287 
288 static void __blk_mq_free_request(struct blk_mq_hw_ctx *hctx,
289 				  struct blk_mq_ctx *ctx, struct request *rq)
290 {
291 	const int tag = rq->tag;
292 	struct request_queue *q = rq->q;
293 
294 	if (rq->cmd_flags & REQ_MQ_INFLIGHT)
295 		atomic_dec(&hctx->nr_active);
296 	rq->cmd_flags = 0;
297 
298 	clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
299 	blk_mq_put_tag(hctx, tag, &ctx->last_tag);
300 	blk_mq_queue_exit(q);
301 }
302 
303 void blk_mq_free_hctx_request(struct blk_mq_hw_ctx *hctx, struct request *rq)
304 {
305 	struct blk_mq_ctx *ctx = rq->mq_ctx;
306 
307 	ctx->rq_completed[rq_is_sync(rq)]++;
308 	__blk_mq_free_request(hctx, ctx, rq);
309 
310 }
311 EXPORT_SYMBOL_GPL(blk_mq_free_hctx_request);
312 
313 void blk_mq_free_request(struct request *rq)
314 {
315 	struct blk_mq_hw_ctx *hctx;
316 	struct request_queue *q = rq->q;
317 
318 	hctx = q->mq_ops->map_queue(q, rq->mq_ctx->cpu);
319 	blk_mq_free_hctx_request(hctx, rq);
320 }
321 EXPORT_SYMBOL_GPL(blk_mq_free_request);
322 
323 inline void __blk_mq_end_request(struct request *rq, int error)
324 {
325 	blk_account_io_done(rq);
326 
327 	if (rq->end_io) {
328 		rq->end_io(rq, error);
329 	} else {
330 		if (unlikely(blk_bidi_rq(rq)))
331 			blk_mq_free_request(rq->next_rq);
332 		blk_mq_free_request(rq);
333 	}
334 }
335 EXPORT_SYMBOL(__blk_mq_end_request);
336 
337 void blk_mq_end_request(struct request *rq, int error)
338 {
339 	if (blk_update_request(rq, error, blk_rq_bytes(rq)))
340 		BUG();
341 	__blk_mq_end_request(rq, error);
342 }
343 EXPORT_SYMBOL(blk_mq_end_request);
344 
345 static void __blk_mq_complete_request_remote(void *data)
346 {
347 	struct request *rq = data;
348 
349 	rq->q->softirq_done_fn(rq);
350 }
351 
352 static void blk_mq_ipi_complete_request(struct request *rq)
353 {
354 	struct blk_mq_ctx *ctx = rq->mq_ctx;
355 	bool shared = false;
356 	int cpu;
357 
358 	if (!test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags)) {
359 		rq->q->softirq_done_fn(rq);
360 		return;
361 	}
362 
363 	cpu = get_cpu();
364 	if (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags))
365 		shared = cpus_share_cache(cpu, ctx->cpu);
366 
367 	if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) {
368 		rq->csd.func = __blk_mq_complete_request_remote;
369 		rq->csd.info = rq;
370 		rq->csd.flags = 0;
371 		smp_call_function_single_async(ctx->cpu, &rq->csd);
372 	} else {
373 		rq->q->softirq_done_fn(rq);
374 	}
375 	put_cpu();
376 }
377 
378 void __blk_mq_complete_request(struct request *rq)
379 {
380 	struct request_queue *q = rq->q;
381 
382 	if (!q->softirq_done_fn)
383 		blk_mq_end_request(rq, rq->errors);
384 	else
385 		blk_mq_ipi_complete_request(rq);
386 }
387 
388 /**
389  * blk_mq_complete_request - end I/O on a request
390  * @rq:		the request being processed
391  *
392  * Description:
393  *	Ends all I/O on a request. It does not handle partial completions.
394  *	The actual completion happens out-of-order, through a IPI handler.
395  **/
396 void blk_mq_complete_request(struct request *rq)
397 {
398 	struct request_queue *q = rq->q;
399 
400 	if (unlikely(blk_should_fake_timeout(q)))
401 		return;
402 	if (!blk_mark_rq_complete(rq))
403 		__blk_mq_complete_request(rq);
404 }
405 EXPORT_SYMBOL(blk_mq_complete_request);
406 
407 int blk_mq_request_started(struct request *rq)
408 {
409 	return test_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
410 }
411 EXPORT_SYMBOL_GPL(blk_mq_request_started);
412 
413 void blk_mq_start_request(struct request *rq)
414 {
415 	struct request_queue *q = rq->q;
416 
417 	trace_block_rq_issue(q, rq);
418 
419 	rq->resid_len = blk_rq_bytes(rq);
420 	if (unlikely(blk_bidi_rq(rq)))
421 		rq->next_rq->resid_len = blk_rq_bytes(rq->next_rq);
422 
423 	blk_add_timer(rq);
424 
425 	/*
426 	 * Ensure that ->deadline is visible before set the started
427 	 * flag and clear the completed flag.
428 	 */
429 	smp_mb__before_atomic();
430 
431 	/*
432 	 * Mark us as started and clear complete. Complete might have been
433 	 * set if requeue raced with timeout, which then marked it as
434 	 * complete. So be sure to clear complete again when we start
435 	 * the request, otherwise we'll ignore the completion event.
436 	 */
437 	if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
438 		set_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
439 	if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags))
440 		clear_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags);
441 
442 	if (q->dma_drain_size && blk_rq_bytes(rq)) {
443 		/*
444 		 * Make sure space for the drain appears.  We know we can do
445 		 * this because max_hw_segments has been adjusted to be one
446 		 * fewer than the device can handle.
447 		 */
448 		rq->nr_phys_segments++;
449 	}
450 }
451 EXPORT_SYMBOL(blk_mq_start_request);
452 
453 static void __blk_mq_requeue_request(struct request *rq)
454 {
455 	struct request_queue *q = rq->q;
456 
457 	trace_block_rq_requeue(q, rq);
458 
459 	if (test_and_clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) {
460 		if (q->dma_drain_size && blk_rq_bytes(rq))
461 			rq->nr_phys_segments--;
462 	}
463 }
464 
465 void blk_mq_requeue_request(struct request *rq)
466 {
467 	__blk_mq_requeue_request(rq);
468 
469 	BUG_ON(blk_queued_rq(rq));
470 	blk_mq_add_to_requeue_list(rq, true);
471 }
472 EXPORT_SYMBOL(blk_mq_requeue_request);
473 
474 static void blk_mq_requeue_work(struct work_struct *work)
475 {
476 	struct request_queue *q =
477 		container_of(work, struct request_queue, requeue_work);
478 	LIST_HEAD(rq_list);
479 	struct request *rq, *next;
480 	unsigned long flags;
481 
482 	spin_lock_irqsave(&q->requeue_lock, flags);
483 	list_splice_init(&q->requeue_list, &rq_list);
484 	spin_unlock_irqrestore(&q->requeue_lock, flags);
485 
486 	list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
487 		if (!(rq->cmd_flags & REQ_SOFTBARRIER))
488 			continue;
489 
490 		rq->cmd_flags &= ~REQ_SOFTBARRIER;
491 		list_del_init(&rq->queuelist);
492 		blk_mq_insert_request(rq, true, false, false);
493 	}
494 
495 	while (!list_empty(&rq_list)) {
496 		rq = list_entry(rq_list.next, struct request, queuelist);
497 		list_del_init(&rq->queuelist);
498 		blk_mq_insert_request(rq, false, false, false);
499 	}
500 
501 	/*
502 	 * Use the start variant of queue running here, so that running
503 	 * the requeue work will kick stopped queues.
504 	 */
505 	blk_mq_start_hw_queues(q);
506 }
507 
508 void blk_mq_add_to_requeue_list(struct request *rq, bool at_head)
509 {
510 	struct request_queue *q = rq->q;
511 	unsigned long flags;
512 
513 	/*
514 	 * We abuse this flag that is otherwise used by the I/O scheduler to
515 	 * request head insertation from the workqueue.
516 	 */
517 	BUG_ON(rq->cmd_flags & REQ_SOFTBARRIER);
518 
519 	spin_lock_irqsave(&q->requeue_lock, flags);
520 	if (at_head) {
521 		rq->cmd_flags |= REQ_SOFTBARRIER;
522 		list_add(&rq->queuelist, &q->requeue_list);
523 	} else {
524 		list_add_tail(&rq->queuelist, &q->requeue_list);
525 	}
526 	spin_unlock_irqrestore(&q->requeue_lock, flags);
527 }
528 EXPORT_SYMBOL(blk_mq_add_to_requeue_list);
529 
530 void blk_mq_cancel_requeue_work(struct request_queue *q)
531 {
532 	cancel_work_sync(&q->requeue_work);
533 }
534 EXPORT_SYMBOL_GPL(blk_mq_cancel_requeue_work);
535 
536 void blk_mq_kick_requeue_list(struct request_queue *q)
537 {
538 	kblockd_schedule_work(&q->requeue_work);
539 }
540 EXPORT_SYMBOL(blk_mq_kick_requeue_list);
541 
542 void blk_mq_abort_requeue_list(struct request_queue *q)
543 {
544 	unsigned long flags;
545 	LIST_HEAD(rq_list);
546 
547 	spin_lock_irqsave(&q->requeue_lock, flags);
548 	list_splice_init(&q->requeue_list, &rq_list);
549 	spin_unlock_irqrestore(&q->requeue_lock, flags);
550 
551 	while (!list_empty(&rq_list)) {
552 		struct request *rq;
553 
554 		rq = list_first_entry(&rq_list, struct request, queuelist);
555 		list_del_init(&rq->queuelist);
556 		rq->errors = -EIO;
557 		blk_mq_end_request(rq, rq->errors);
558 	}
559 }
560 EXPORT_SYMBOL(blk_mq_abort_requeue_list);
561 
562 static inline bool is_flush_request(struct request *rq,
563 		struct blk_flush_queue *fq, unsigned int tag)
564 {
565 	return ((rq->cmd_flags & REQ_FLUSH_SEQ) &&
566 			fq->flush_rq->tag == tag);
567 }
568 
569 struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
570 {
571 	struct request *rq = tags->rqs[tag];
572 	/* mq_ctx of flush rq is always cloned from the corresponding req */
573 	struct blk_flush_queue *fq = blk_get_flush_queue(rq->q, rq->mq_ctx);
574 
575 	if (!is_flush_request(rq, fq, tag))
576 		return rq;
577 
578 	return fq->flush_rq;
579 }
580 EXPORT_SYMBOL(blk_mq_tag_to_rq);
581 
582 struct blk_mq_timeout_data {
583 	unsigned long next;
584 	unsigned int next_set;
585 };
586 
587 void blk_mq_rq_timed_out(struct request *req, bool reserved)
588 {
589 	struct blk_mq_ops *ops = req->q->mq_ops;
590 	enum blk_eh_timer_return ret = BLK_EH_RESET_TIMER;
591 
592 	/*
593 	 * We know that complete is set at this point. If STARTED isn't set
594 	 * anymore, then the request isn't active and the "timeout" should
595 	 * just be ignored. This can happen due to the bitflag ordering.
596 	 * Timeout first checks if STARTED is set, and if it is, assumes
597 	 * the request is active. But if we race with completion, then
598 	 * we both flags will get cleared. So check here again, and ignore
599 	 * a timeout event with a request that isn't active.
600 	 */
601 	if (!test_bit(REQ_ATOM_STARTED, &req->atomic_flags))
602 		return;
603 
604 	if (ops->timeout)
605 		ret = ops->timeout(req, reserved);
606 
607 	switch (ret) {
608 	case BLK_EH_HANDLED:
609 		__blk_mq_complete_request(req);
610 		break;
611 	case BLK_EH_RESET_TIMER:
612 		blk_add_timer(req);
613 		blk_clear_rq_complete(req);
614 		break;
615 	case BLK_EH_NOT_HANDLED:
616 		break;
617 	default:
618 		printk(KERN_ERR "block: bad eh return: %d\n", ret);
619 		break;
620 	}
621 }
622 
623 static void blk_mq_check_expired(struct blk_mq_hw_ctx *hctx,
624 		struct request *rq, void *priv, bool reserved)
625 {
626 	struct blk_mq_timeout_data *data = priv;
627 
628 	if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) {
629 		/*
630 		 * If a request wasn't started before the queue was
631 		 * marked dying, kill it here or it'll go unnoticed.
632 		 */
633 		if (unlikely(blk_queue_dying(rq->q))) {
634 			rq->errors = -EIO;
635 			blk_mq_complete_request(rq);
636 		}
637 		return;
638 	}
639 	if (rq->cmd_flags & REQ_NO_TIMEOUT)
640 		return;
641 
642 	if (time_after_eq(jiffies, rq->deadline)) {
643 		if (!blk_mark_rq_complete(rq))
644 			blk_mq_rq_timed_out(rq, reserved);
645 	} else if (!data->next_set || time_after(data->next, rq->deadline)) {
646 		data->next = rq->deadline;
647 		data->next_set = 1;
648 	}
649 }
650 
651 static void blk_mq_rq_timer(unsigned long priv)
652 {
653 	struct request_queue *q = (struct request_queue *)priv;
654 	struct blk_mq_timeout_data data = {
655 		.next		= 0,
656 		.next_set	= 0,
657 	};
658 	struct blk_mq_hw_ctx *hctx;
659 	int i;
660 
661 	queue_for_each_hw_ctx(q, hctx, i) {
662 		/*
663 		 * If not software queues are currently mapped to this
664 		 * hardware queue, there's nothing to check
665 		 */
666 		if (!blk_mq_hw_queue_mapped(hctx))
667 			continue;
668 
669 		blk_mq_tag_busy_iter(hctx, blk_mq_check_expired, &data);
670 	}
671 
672 	if (data.next_set) {
673 		data.next = blk_rq_timeout(round_jiffies_up(data.next));
674 		mod_timer(&q->timeout, data.next);
675 	} else {
676 		queue_for_each_hw_ctx(q, hctx, i) {
677 			/* the hctx may be unmapped, so check it here */
678 			if (blk_mq_hw_queue_mapped(hctx))
679 				blk_mq_tag_idle(hctx);
680 		}
681 	}
682 }
683 
684 /*
685  * Reverse check our software queue for entries that we could potentially
686  * merge with. Currently includes a hand-wavy stop count of 8, to not spend
687  * too much time checking for merges.
688  */
689 static bool blk_mq_attempt_merge(struct request_queue *q,
690 				 struct blk_mq_ctx *ctx, struct bio *bio)
691 {
692 	struct request *rq;
693 	int checked = 8;
694 
695 	list_for_each_entry_reverse(rq, &ctx->rq_list, queuelist) {
696 		int el_ret;
697 
698 		if (!checked--)
699 			break;
700 
701 		if (!blk_rq_merge_ok(rq, bio))
702 			continue;
703 
704 		el_ret = blk_try_merge(rq, bio);
705 		if (el_ret == ELEVATOR_BACK_MERGE) {
706 			if (bio_attempt_back_merge(q, rq, bio)) {
707 				ctx->rq_merged++;
708 				return true;
709 			}
710 			break;
711 		} else if (el_ret == ELEVATOR_FRONT_MERGE) {
712 			if (bio_attempt_front_merge(q, rq, bio)) {
713 				ctx->rq_merged++;
714 				return true;
715 			}
716 			break;
717 		}
718 	}
719 
720 	return false;
721 }
722 
723 /*
724  * Process software queues that have been marked busy, splicing them
725  * to the for-dispatch
726  */
727 static void flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
728 {
729 	struct blk_mq_ctx *ctx;
730 	int i;
731 
732 	for (i = 0; i < hctx->ctx_map.size; i++) {
733 		struct blk_align_bitmap *bm = &hctx->ctx_map.map[i];
734 		unsigned int off, bit;
735 
736 		if (!bm->word)
737 			continue;
738 
739 		bit = 0;
740 		off = i * hctx->ctx_map.bits_per_word;
741 		do {
742 			bit = find_next_bit(&bm->word, bm->depth, bit);
743 			if (bit >= bm->depth)
744 				break;
745 
746 			ctx = hctx->ctxs[bit + off];
747 			clear_bit(bit, &bm->word);
748 			spin_lock(&ctx->lock);
749 			list_splice_tail_init(&ctx->rq_list, list);
750 			spin_unlock(&ctx->lock);
751 
752 			bit++;
753 		} while (1);
754 	}
755 }
756 
757 /*
758  * Run this hardware queue, pulling any software queues mapped to it in.
759  * Note that this function currently has various problems around ordering
760  * of IO. In particular, we'd like FIFO behaviour on handling existing
761  * items on the hctx->dispatch list. Ignore that for now.
762  */
763 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
764 {
765 	struct request_queue *q = hctx->queue;
766 	struct request *rq;
767 	LIST_HEAD(rq_list);
768 	LIST_HEAD(driver_list);
769 	struct list_head *dptr;
770 	int queued;
771 
772 	WARN_ON(!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask));
773 
774 	if (unlikely(test_bit(BLK_MQ_S_STOPPED, &hctx->state)))
775 		return;
776 
777 	hctx->run++;
778 
779 	/*
780 	 * Touch any software queue that has pending entries.
781 	 */
782 	flush_busy_ctxs(hctx, &rq_list);
783 
784 	/*
785 	 * If we have previous entries on our dispatch list, grab them
786 	 * and stuff them at the front for more fair dispatch.
787 	 */
788 	if (!list_empty_careful(&hctx->dispatch)) {
789 		spin_lock(&hctx->lock);
790 		if (!list_empty(&hctx->dispatch))
791 			list_splice_init(&hctx->dispatch, &rq_list);
792 		spin_unlock(&hctx->lock);
793 	}
794 
795 	/*
796 	 * Start off with dptr being NULL, so we start the first request
797 	 * immediately, even if we have more pending.
798 	 */
799 	dptr = NULL;
800 
801 	/*
802 	 * Now process all the entries, sending them to the driver.
803 	 */
804 	queued = 0;
805 	while (!list_empty(&rq_list)) {
806 		struct blk_mq_queue_data bd;
807 		int ret;
808 
809 		rq = list_first_entry(&rq_list, struct request, queuelist);
810 		list_del_init(&rq->queuelist);
811 
812 		bd.rq = rq;
813 		bd.list = dptr;
814 		bd.last = list_empty(&rq_list);
815 
816 		ret = q->mq_ops->queue_rq(hctx, &bd);
817 		switch (ret) {
818 		case BLK_MQ_RQ_QUEUE_OK:
819 			queued++;
820 			continue;
821 		case BLK_MQ_RQ_QUEUE_BUSY:
822 			list_add(&rq->queuelist, &rq_list);
823 			__blk_mq_requeue_request(rq);
824 			break;
825 		default:
826 			pr_err("blk-mq: bad return on queue: %d\n", ret);
827 		case BLK_MQ_RQ_QUEUE_ERROR:
828 			rq->errors = -EIO;
829 			blk_mq_end_request(rq, rq->errors);
830 			break;
831 		}
832 
833 		if (ret == BLK_MQ_RQ_QUEUE_BUSY)
834 			break;
835 
836 		/*
837 		 * We've done the first request. If we have more than 1
838 		 * left in the list, set dptr to defer issue.
839 		 */
840 		if (!dptr && rq_list.next != rq_list.prev)
841 			dptr = &driver_list;
842 	}
843 
844 	if (!queued)
845 		hctx->dispatched[0]++;
846 	else if (queued < (1 << (BLK_MQ_MAX_DISPATCH_ORDER - 1)))
847 		hctx->dispatched[ilog2(queued) + 1]++;
848 
849 	/*
850 	 * Any items that need requeuing? Stuff them into hctx->dispatch,
851 	 * that is where we will continue on next queue run.
852 	 */
853 	if (!list_empty(&rq_list)) {
854 		spin_lock(&hctx->lock);
855 		list_splice(&rq_list, &hctx->dispatch);
856 		spin_unlock(&hctx->lock);
857 		/*
858 		 * the queue is expected stopped with BLK_MQ_RQ_QUEUE_BUSY, but
859 		 * it's possible the queue is stopped and restarted again
860 		 * before this. Queue restart will dispatch requests. And since
861 		 * requests in rq_list aren't added into hctx->dispatch yet,
862 		 * the requests in rq_list might get lost.
863 		 *
864 		 * blk_mq_run_hw_queue() already checks the STOPPED bit
865 		 **/
866 		blk_mq_run_hw_queue(hctx, true);
867 	}
868 }
869 
870 /*
871  * It'd be great if the workqueue API had a way to pass
872  * in a mask and had some smarts for more clever placement.
873  * For now we just round-robin here, switching for every
874  * BLK_MQ_CPU_WORK_BATCH queued items.
875  */
876 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
877 {
878 	if (hctx->queue->nr_hw_queues == 1)
879 		return WORK_CPU_UNBOUND;
880 
881 	if (--hctx->next_cpu_batch <= 0) {
882 		int cpu = hctx->next_cpu, next_cpu;
883 
884 		next_cpu = cpumask_next(hctx->next_cpu, hctx->cpumask);
885 		if (next_cpu >= nr_cpu_ids)
886 			next_cpu = cpumask_first(hctx->cpumask);
887 
888 		hctx->next_cpu = next_cpu;
889 		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
890 
891 		return cpu;
892 	}
893 
894 	return hctx->next_cpu;
895 }
896 
897 void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
898 {
899 	if (unlikely(test_bit(BLK_MQ_S_STOPPED, &hctx->state) ||
900 	    !blk_mq_hw_queue_mapped(hctx)))
901 		return;
902 
903 	if (!async) {
904 		int cpu = get_cpu();
905 		if (cpumask_test_cpu(cpu, hctx->cpumask)) {
906 			__blk_mq_run_hw_queue(hctx);
907 			put_cpu();
908 			return;
909 		}
910 
911 		put_cpu();
912 	}
913 
914 	kblockd_schedule_delayed_work_on(blk_mq_hctx_next_cpu(hctx),
915 			&hctx->run_work, 0);
916 }
917 
918 void blk_mq_run_hw_queues(struct request_queue *q, bool async)
919 {
920 	struct blk_mq_hw_ctx *hctx;
921 	int i;
922 
923 	queue_for_each_hw_ctx(q, hctx, i) {
924 		if ((!blk_mq_hctx_has_pending(hctx) &&
925 		    list_empty_careful(&hctx->dispatch)) ||
926 		    test_bit(BLK_MQ_S_STOPPED, &hctx->state))
927 			continue;
928 
929 		blk_mq_run_hw_queue(hctx, async);
930 	}
931 }
932 EXPORT_SYMBOL(blk_mq_run_hw_queues);
933 
934 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
935 {
936 	cancel_delayed_work(&hctx->run_work);
937 	cancel_delayed_work(&hctx->delay_work);
938 	set_bit(BLK_MQ_S_STOPPED, &hctx->state);
939 }
940 EXPORT_SYMBOL(blk_mq_stop_hw_queue);
941 
942 void blk_mq_stop_hw_queues(struct request_queue *q)
943 {
944 	struct blk_mq_hw_ctx *hctx;
945 	int i;
946 
947 	queue_for_each_hw_ctx(q, hctx, i)
948 		blk_mq_stop_hw_queue(hctx);
949 }
950 EXPORT_SYMBOL(blk_mq_stop_hw_queues);
951 
952 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
953 {
954 	clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
955 
956 	blk_mq_run_hw_queue(hctx, false);
957 }
958 EXPORT_SYMBOL(blk_mq_start_hw_queue);
959 
960 void blk_mq_start_hw_queues(struct request_queue *q)
961 {
962 	struct blk_mq_hw_ctx *hctx;
963 	int i;
964 
965 	queue_for_each_hw_ctx(q, hctx, i)
966 		blk_mq_start_hw_queue(hctx);
967 }
968 EXPORT_SYMBOL(blk_mq_start_hw_queues);
969 
970 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
971 {
972 	struct blk_mq_hw_ctx *hctx;
973 	int i;
974 
975 	queue_for_each_hw_ctx(q, hctx, i) {
976 		if (!test_bit(BLK_MQ_S_STOPPED, &hctx->state))
977 			continue;
978 
979 		clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
980 		blk_mq_run_hw_queue(hctx, async);
981 	}
982 }
983 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
984 
985 static void blk_mq_run_work_fn(struct work_struct *work)
986 {
987 	struct blk_mq_hw_ctx *hctx;
988 
989 	hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work);
990 
991 	__blk_mq_run_hw_queue(hctx);
992 }
993 
994 static void blk_mq_delay_work_fn(struct work_struct *work)
995 {
996 	struct blk_mq_hw_ctx *hctx;
997 
998 	hctx = container_of(work, struct blk_mq_hw_ctx, delay_work.work);
999 
1000 	if (test_and_clear_bit(BLK_MQ_S_STOPPED, &hctx->state))
1001 		__blk_mq_run_hw_queue(hctx);
1002 }
1003 
1004 void blk_mq_delay_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
1005 {
1006 	if (unlikely(!blk_mq_hw_queue_mapped(hctx)))
1007 		return;
1008 
1009 	kblockd_schedule_delayed_work_on(blk_mq_hctx_next_cpu(hctx),
1010 			&hctx->delay_work, msecs_to_jiffies(msecs));
1011 }
1012 EXPORT_SYMBOL(blk_mq_delay_queue);
1013 
1014 static void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx,
1015 				    struct request *rq, bool at_head)
1016 {
1017 	struct blk_mq_ctx *ctx = rq->mq_ctx;
1018 
1019 	trace_block_rq_insert(hctx->queue, rq);
1020 
1021 	if (at_head)
1022 		list_add(&rq->queuelist, &ctx->rq_list);
1023 	else
1024 		list_add_tail(&rq->queuelist, &ctx->rq_list);
1025 
1026 	blk_mq_hctx_mark_pending(hctx, ctx);
1027 }
1028 
1029 void blk_mq_insert_request(struct request *rq, bool at_head, bool run_queue,
1030 		bool async)
1031 {
1032 	struct request_queue *q = rq->q;
1033 	struct blk_mq_hw_ctx *hctx;
1034 	struct blk_mq_ctx *ctx = rq->mq_ctx, *current_ctx;
1035 
1036 	current_ctx = blk_mq_get_ctx(q);
1037 	if (!cpu_online(ctx->cpu))
1038 		rq->mq_ctx = ctx = current_ctx;
1039 
1040 	hctx = q->mq_ops->map_queue(q, ctx->cpu);
1041 
1042 	spin_lock(&ctx->lock);
1043 	__blk_mq_insert_request(hctx, rq, at_head);
1044 	spin_unlock(&ctx->lock);
1045 
1046 	if (run_queue)
1047 		blk_mq_run_hw_queue(hctx, async);
1048 
1049 	blk_mq_put_ctx(current_ctx);
1050 }
1051 
1052 static void blk_mq_insert_requests(struct request_queue *q,
1053 				     struct blk_mq_ctx *ctx,
1054 				     struct list_head *list,
1055 				     int depth,
1056 				     bool from_schedule)
1057 
1058 {
1059 	struct blk_mq_hw_ctx *hctx;
1060 	struct blk_mq_ctx *current_ctx;
1061 
1062 	trace_block_unplug(q, depth, !from_schedule);
1063 
1064 	current_ctx = blk_mq_get_ctx(q);
1065 
1066 	if (!cpu_online(ctx->cpu))
1067 		ctx = current_ctx;
1068 	hctx = q->mq_ops->map_queue(q, ctx->cpu);
1069 
1070 	/*
1071 	 * preemption doesn't flush plug list, so it's possible ctx->cpu is
1072 	 * offline now
1073 	 */
1074 	spin_lock(&ctx->lock);
1075 	while (!list_empty(list)) {
1076 		struct request *rq;
1077 
1078 		rq = list_first_entry(list, struct request, queuelist);
1079 		list_del_init(&rq->queuelist);
1080 		rq->mq_ctx = ctx;
1081 		__blk_mq_insert_request(hctx, rq, false);
1082 	}
1083 	spin_unlock(&ctx->lock);
1084 
1085 	blk_mq_run_hw_queue(hctx, from_schedule);
1086 	blk_mq_put_ctx(current_ctx);
1087 }
1088 
1089 static int plug_ctx_cmp(void *priv, struct list_head *a, struct list_head *b)
1090 {
1091 	struct request *rqa = container_of(a, struct request, queuelist);
1092 	struct request *rqb = container_of(b, struct request, queuelist);
1093 
1094 	return !(rqa->mq_ctx < rqb->mq_ctx ||
1095 		 (rqa->mq_ctx == rqb->mq_ctx &&
1096 		  blk_rq_pos(rqa) < blk_rq_pos(rqb)));
1097 }
1098 
1099 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
1100 {
1101 	struct blk_mq_ctx *this_ctx;
1102 	struct request_queue *this_q;
1103 	struct request *rq;
1104 	LIST_HEAD(list);
1105 	LIST_HEAD(ctx_list);
1106 	unsigned int depth;
1107 
1108 	list_splice_init(&plug->mq_list, &list);
1109 
1110 	list_sort(NULL, &list, plug_ctx_cmp);
1111 
1112 	this_q = NULL;
1113 	this_ctx = NULL;
1114 	depth = 0;
1115 
1116 	while (!list_empty(&list)) {
1117 		rq = list_entry_rq(list.next);
1118 		list_del_init(&rq->queuelist);
1119 		BUG_ON(!rq->q);
1120 		if (rq->mq_ctx != this_ctx) {
1121 			if (this_ctx) {
1122 				blk_mq_insert_requests(this_q, this_ctx,
1123 							&ctx_list, depth,
1124 							from_schedule);
1125 			}
1126 
1127 			this_ctx = rq->mq_ctx;
1128 			this_q = rq->q;
1129 			depth = 0;
1130 		}
1131 
1132 		depth++;
1133 		list_add_tail(&rq->queuelist, &ctx_list);
1134 	}
1135 
1136 	/*
1137 	 * If 'this_ctx' is set, we know we have entries to complete
1138 	 * on 'ctx_list'. Do those.
1139 	 */
1140 	if (this_ctx) {
1141 		blk_mq_insert_requests(this_q, this_ctx, &ctx_list, depth,
1142 				       from_schedule);
1143 	}
1144 }
1145 
1146 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio)
1147 {
1148 	init_request_from_bio(rq, bio);
1149 
1150 	if (blk_do_io_stat(rq))
1151 		blk_account_io_start(rq, 1);
1152 }
1153 
1154 static inline bool hctx_allow_merges(struct blk_mq_hw_ctx *hctx)
1155 {
1156 	return (hctx->flags & BLK_MQ_F_SHOULD_MERGE) &&
1157 		!blk_queue_nomerges(hctx->queue);
1158 }
1159 
1160 static inline bool blk_mq_merge_queue_io(struct blk_mq_hw_ctx *hctx,
1161 					 struct blk_mq_ctx *ctx,
1162 					 struct request *rq, struct bio *bio)
1163 {
1164 	if (!hctx_allow_merges(hctx)) {
1165 		blk_mq_bio_to_request(rq, bio);
1166 		spin_lock(&ctx->lock);
1167 insert_rq:
1168 		__blk_mq_insert_request(hctx, rq, false);
1169 		spin_unlock(&ctx->lock);
1170 		return false;
1171 	} else {
1172 		struct request_queue *q = hctx->queue;
1173 
1174 		spin_lock(&ctx->lock);
1175 		if (!blk_mq_attempt_merge(q, ctx, bio)) {
1176 			blk_mq_bio_to_request(rq, bio);
1177 			goto insert_rq;
1178 		}
1179 
1180 		spin_unlock(&ctx->lock);
1181 		__blk_mq_free_request(hctx, ctx, rq);
1182 		return true;
1183 	}
1184 }
1185 
1186 struct blk_map_ctx {
1187 	struct blk_mq_hw_ctx *hctx;
1188 	struct blk_mq_ctx *ctx;
1189 };
1190 
1191 static struct request *blk_mq_map_request(struct request_queue *q,
1192 					  struct bio *bio,
1193 					  struct blk_map_ctx *data)
1194 {
1195 	struct blk_mq_hw_ctx *hctx;
1196 	struct blk_mq_ctx *ctx;
1197 	struct request *rq;
1198 	int rw = bio_data_dir(bio);
1199 	struct blk_mq_alloc_data alloc_data;
1200 
1201 	if (unlikely(blk_mq_queue_enter(q, GFP_KERNEL))) {
1202 		bio_endio(bio, -EIO);
1203 		return NULL;
1204 	}
1205 
1206 	ctx = blk_mq_get_ctx(q);
1207 	hctx = q->mq_ops->map_queue(q, ctx->cpu);
1208 
1209 	if (rw_is_sync(bio->bi_rw))
1210 		rw |= REQ_SYNC;
1211 
1212 	trace_block_getrq(q, bio, rw);
1213 	blk_mq_set_alloc_data(&alloc_data, q, GFP_ATOMIC, false, ctx,
1214 			hctx);
1215 	rq = __blk_mq_alloc_request(&alloc_data, rw);
1216 	if (unlikely(!rq)) {
1217 		__blk_mq_run_hw_queue(hctx);
1218 		blk_mq_put_ctx(ctx);
1219 		trace_block_sleeprq(q, bio, rw);
1220 
1221 		ctx = blk_mq_get_ctx(q);
1222 		hctx = q->mq_ops->map_queue(q, ctx->cpu);
1223 		blk_mq_set_alloc_data(&alloc_data, q,
1224 				__GFP_WAIT|GFP_ATOMIC, false, ctx, hctx);
1225 		rq = __blk_mq_alloc_request(&alloc_data, rw);
1226 		ctx = alloc_data.ctx;
1227 		hctx = alloc_data.hctx;
1228 	}
1229 
1230 	hctx->queued++;
1231 	data->hctx = hctx;
1232 	data->ctx = ctx;
1233 	return rq;
1234 }
1235 
1236 static int blk_mq_direct_issue_request(struct request *rq)
1237 {
1238 	int ret;
1239 	struct request_queue *q = rq->q;
1240 	struct blk_mq_hw_ctx *hctx = q->mq_ops->map_queue(q,
1241 			rq->mq_ctx->cpu);
1242 	struct blk_mq_queue_data bd = {
1243 		.rq = rq,
1244 		.list = NULL,
1245 		.last = 1
1246 	};
1247 
1248 	/*
1249 	 * For OK queue, we are done. For error, kill it. Any other
1250 	 * error (busy), just add it to our list as we previously
1251 	 * would have done
1252 	 */
1253 	ret = q->mq_ops->queue_rq(hctx, &bd);
1254 	if (ret == BLK_MQ_RQ_QUEUE_OK)
1255 		return 0;
1256 	else {
1257 		__blk_mq_requeue_request(rq);
1258 
1259 		if (ret == BLK_MQ_RQ_QUEUE_ERROR) {
1260 			rq->errors = -EIO;
1261 			blk_mq_end_request(rq, rq->errors);
1262 			return 0;
1263 		}
1264 		return -1;
1265 	}
1266 }
1267 
1268 /*
1269  * Multiple hardware queue variant. This will not use per-process plugs,
1270  * but will attempt to bypass the hctx queueing if we can go straight to
1271  * hardware for SYNC IO.
1272  */
1273 static void blk_mq_make_request(struct request_queue *q, struct bio *bio)
1274 {
1275 	const int is_sync = rw_is_sync(bio->bi_rw);
1276 	const int is_flush_fua = bio->bi_rw & (REQ_FLUSH | REQ_FUA);
1277 	struct blk_map_ctx data;
1278 	struct request *rq;
1279 	unsigned int request_count = 0;
1280 	struct blk_plug *plug;
1281 	struct request *same_queue_rq = NULL;
1282 
1283 	blk_queue_bounce(q, &bio);
1284 
1285 	if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
1286 		bio_endio(bio, -EIO);
1287 		return;
1288 	}
1289 
1290 	if (!is_flush_fua && !blk_queue_nomerges(q) &&
1291 	    blk_attempt_plug_merge(q, bio, &request_count, &same_queue_rq))
1292 		return;
1293 
1294 	rq = blk_mq_map_request(q, bio, &data);
1295 	if (unlikely(!rq))
1296 		return;
1297 
1298 	if (unlikely(is_flush_fua)) {
1299 		blk_mq_bio_to_request(rq, bio);
1300 		blk_insert_flush(rq);
1301 		goto run_queue;
1302 	}
1303 
1304 	plug = current->plug;
1305 	/*
1306 	 * If the driver supports defer issued based on 'last', then
1307 	 * queue it up like normal since we can potentially save some
1308 	 * CPU this way.
1309 	 */
1310 	if (((plug && !blk_queue_nomerges(q)) || is_sync) &&
1311 	    !(data.hctx->flags & BLK_MQ_F_DEFER_ISSUE)) {
1312 		struct request *old_rq = NULL;
1313 
1314 		blk_mq_bio_to_request(rq, bio);
1315 
1316 		/*
1317 		 * we do limited pluging. If bio can be merged, do merge.
1318 		 * Otherwise the existing request in the plug list will be
1319 		 * issued. So the plug list will have one request at most
1320 		 */
1321 		if (plug) {
1322 			/*
1323 			 * The plug list might get flushed before this. If that
1324 			 * happens, same_queue_rq is invalid and plug list is empty
1325 			 **/
1326 			if (same_queue_rq && !list_empty(&plug->mq_list)) {
1327 				old_rq = same_queue_rq;
1328 				list_del_init(&old_rq->queuelist);
1329 			}
1330 			list_add_tail(&rq->queuelist, &plug->mq_list);
1331 		} else /* is_sync */
1332 			old_rq = rq;
1333 		blk_mq_put_ctx(data.ctx);
1334 		if (!old_rq)
1335 			return;
1336 		if (!blk_mq_direct_issue_request(old_rq))
1337 			return;
1338 		blk_mq_insert_request(old_rq, false, true, true);
1339 		return;
1340 	}
1341 
1342 	if (!blk_mq_merge_queue_io(data.hctx, data.ctx, rq, bio)) {
1343 		/*
1344 		 * For a SYNC request, send it to the hardware immediately. For
1345 		 * an ASYNC request, just ensure that we run it later on. The
1346 		 * latter allows for merging opportunities and more efficient
1347 		 * dispatching.
1348 		 */
1349 run_queue:
1350 		blk_mq_run_hw_queue(data.hctx, !is_sync || is_flush_fua);
1351 	}
1352 	blk_mq_put_ctx(data.ctx);
1353 }
1354 
1355 /*
1356  * Single hardware queue variant. This will attempt to use any per-process
1357  * plug for merging and IO deferral.
1358  */
1359 static void blk_sq_make_request(struct request_queue *q, struct bio *bio)
1360 {
1361 	const int is_sync = rw_is_sync(bio->bi_rw);
1362 	const int is_flush_fua = bio->bi_rw & (REQ_FLUSH | REQ_FUA);
1363 	struct blk_plug *plug;
1364 	unsigned int request_count = 0;
1365 	struct blk_map_ctx data;
1366 	struct request *rq;
1367 
1368 	blk_queue_bounce(q, &bio);
1369 
1370 	if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
1371 		bio_endio(bio, -EIO);
1372 		return;
1373 	}
1374 
1375 	if (!is_flush_fua && !blk_queue_nomerges(q) &&
1376 	    blk_attempt_plug_merge(q, bio, &request_count, NULL))
1377 		return;
1378 
1379 	rq = blk_mq_map_request(q, bio, &data);
1380 	if (unlikely(!rq))
1381 		return;
1382 
1383 	if (unlikely(is_flush_fua)) {
1384 		blk_mq_bio_to_request(rq, bio);
1385 		blk_insert_flush(rq);
1386 		goto run_queue;
1387 	}
1388 
1389 	/*
1390 	 * A task plug currently exists. Since this is completely lockless,
1391 	 * utilize that to temporarily store requests until the task is
1392 	 * either done or scheduled away.
1393 	 */
1394 	plug = current->plug;
1395 	if (plug) {
1396 		blk_mq_bio_to_request(rq, bio);
1397 		if (list_empty(&plug->mq_list))
1398 			trace_block_plug(q);
1399 		else if (request_count >= BLK_MAX_REQUEST_COUNT) {
1400 			blk_flush_plug_list(plug, false);
1401 			trace_block_plug(q);
1402 		}
1403 		list_add_tail(&rq->queuelist, &plug->mq_list);
1404 		blk_mq_put_ctx(data.ctx);
1405 		return;
1406 	}
1407 
1408 	if (!blk_mq_merge_queue_io(data.hctx, data.ctx, rq, bio)) {
1409 		/*
1410 		 * For a SYNC request, send it to the hardware immediately. For
1411 		 * an ASYNC request, just ensure that we run it later on. The
1412 		 * latter allows for merging opportunities and more efficient
1413 		 * dispatching.
1414 		 */
1415 run_queue:
1416 		blk_mq_run_hw_queue(data.hctx, !is_sync || is_flush_fua);
1417 	}
1418 
1419 	blk_mq_put_ctx(data.ctx);
1420 }
1421 
1422 /*
1423  * Default mapping to a software queue, since we use one per CPU.
1424  */
1425 struct blk_mq_hw_ctx *blk_mq_map_queue(struct request_queue *q, const int cpu)
1426 {
1427 	return q->queue_hw_ctx[q->mq_map[cpu]];
1428 }
1429 EXPORT_SYMBOL(blk_mq_map_queue);
1430 
1431 static void blk_mq_free_rq_map(struct blk_mq_tag_set *set,
1432 		struct blk_mq_tags *tags, unsigned int hctx_idx)
1433 {
1434 	struct page *page;
1435 
1436 	if (tags->rqs && set->ops->exit_request) {
1437 		int i;
1438 
1439 		for (i = 0; i < tags->nr_tags; i++) {
1440 			if (!tags->rqs[i])
1441 				continue;
1442 			set->ops->exit_request(set->driver_data, tags->rqs[i],
1443 						hctx_idx, i);
1444 			tags->rqs[i] = NULL;
1445 		}
1446 	}
1447 
1448 	while (!list_empty(&tags->page_list)) {
1449 		page = list_first_entry(&tags->page_list, struct page, lru);
1450 		list_del_init(&page->lru);
1451 		__free_pages(page, page->private);
1452 	}
1453 
1454 	kfree(tags->rqs);
1455 
1456 	blk_mq_free_tags(tags);
1457 }
1458 
1459 static size_t order_to_size(unsigned int order)
1460 {
1461 	return (size_t)PAGE_SIZE << order;
1462 }
1463 
1464 static struct blk_mq_tags *blk_mq_init_rq_map(struct blk_mq_tag_set *set,
1465 		unsigned int hctx_idx)
1466 {
1467 	struct blk_mq_tags *tags;
1468 	unsigned int i, j, entries_per_page, max_order = 4;
1469 	size_t rq_size, left;
1470 
1471 	tags = blk_mq_init_tags(set->queue_depth, set->reserved_tags,
1472 				set->numa_node,
1473 				BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
1474 	if (!tags)
1475 		return NULL;
1476 
1477 	INIT_LIST_HEAD(&tags->page_list);
1478 
1479 	tags->rqs = kzalloc_node(set->queue_depth * sizeof(struct request *),
1480 				 GFP_KERNEL | __GFP_NOWARN | __GFP_NORETRY,
1481 				 set->numa_node);
1482 	if (!tags->rqs) {
1483 		blk_mq_free_tags(tags);
1484 		return NULL;
1485 	}
1486 
1487 	/*
1488 	 * rq_size is the size of the request plus driver payload, rounded
1489 	 * to the cacheline size
1490 	 */
1491 	rq_size = round_up(sizeof(struct request) + set->cmd_size,
1492 				cache_line_size());
1493 	left = rq_size * set->queue_depth;
1494 
1495 	for (i = 0; i < set->queue_depth; ) {
1496 		int this_order = max_order;
1497 		struct page *page;
1498 		int to_do;
1499 		void *p;
1500 
1501 		while (left < order_to_size(this_order - 1) && this_order)
1502 			this_order--;
1503 
1504 		do {
1505 			page = alloc_pages_node(set->numa_node,
1506 				GFP_KERNEL | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
1507 				this_order);
1508 			if (page)
1509 				break;
1510 			if (!this_order--)
1511 				break;
1512 			if (order_to_size(this_order) < rq_size)
1513 				break;
1514 		} while (1);
1515 
1516 		if (!page)
1517 			goto fail;
1518 
1519 		page->private = this_order;
1520 		list_add_tail(&page->lru, &tags->page_list);
1521 
1522 		p = page_address(page);
1523 		entries_per_page = order_to_size(this_order) / rq_size;
1524 		to_do = min(entries_per_page, set->queue_depth - i);
1525 		left -= to_do * rq_size;
1526 		for (j = 0; j < to_do; j++) {
1527 			tags->rqs[i] = p;
1528 			if (set->ops->init_request) {
1529 				if (set->ops->init_request(set->driver_data,
1530 						tags->rqs[i], hctx_idx, i,
1531 						set->numa_node)) {
1532 					tags->rqs[i] = NULL;
1533 					goto fail;
1534 				}
1535 			}
1536 
1537 			p += rq_size;
1538 			i++;
1539 		}
1540 	}
1541 	return tags;
1542 
1543 fail:
1544 	blk_mq_free_rq_map(set, tags, hctx_idx);
1545 	return NULL;
1546 }
1547 
1548 static void blk_mq_free_bitmap(struct blk_mq_ctxmap *bitmap)
1549 {
1550 	kfree(bitmap->map);
1551 }
1552 
1553 static int blk_mq_alloc_bitmap(struct blk_mq_ctxmap *bitmap, int node)
1554 {
1555 	unsigned int bpw = 8, total, num_maps, i;
1556 
1557 	bitmap->bits_per_word = bpw;
1558 
1559 	num_maps = ALIGN(nr_cpu_ids, bpw) / bpw;
1560 	bitmap->map = kzalloc_node(num_maps * sizeof(struct blk_align_bitmap),
1561 					GFP_KERNEL, node);
1562 	if (!bitmap->map)
1563 		return -ENOMEM;
1564 
1565 	total = nr_cpu_ids;
1566 	for (i = 0; i < num_maps; i++) {
1567 		bitmap->map[i].depth = min(total, bitmap->bits_per_word);
1568 		total -= bitmap->map[i].depth;
1569 	}
1570 
1571 	return 0;
1572 }
1573 
1574 static int blk_mq_hctx_cpu_offline(struct blk_mq_hw_ctx *hctx, int cpu)
1575 {
1576 	struct request_queue *q = hctx->queue;
1577 	struct blk_mq_ctx *ctx;
1578 	LIST_HEAD(tmp);
1579 
1580 	/*
1581 	 * Move ctx entries to new CPU, if this one is going away.
1582 	 */
1583 	ctx = __blk_mq_get_ctx(q, cpu);
1584 
1585 	spin_lock(&ctx->lock);
1586 	if (!list_empty(&ctx->rq_list)) {
1587 		list_splice_init(&ctx->rq_list, &tmp);
1588 		blk_mq_hctx_clear_pending(hctx, ctx);
1589 	}
1590 	spin_unlock(&ctx->lock);
1591 
1592 	if (list_empty(&tmp))
1593 		return NOTIFY_OK;
1594 
1595 	ctx = blk_mq_get_ctx(q);
1596 	spin_lock(&ctx->lock);
1597 
1598 	while (!list_empty(&tmp)) {
1599 		struct request *rq;
1600 
1601 		rq = list_first_entry(&tmp, struct request, queuelist);
1602 		rq->mq_ctx = ctx;
1603 		list_move_tail(&rq->queuelist, &ctx->rq_list);
1604 	}
1605 
1606 	hctx = q->mq_ops->map_queue(q, ctx->cpu);
1607 	blk_mq_hctx_mark_pending(hctx, ctx);
1608 
1609 	spin_unlock(&ctx->lock);
1610 
1611 	blk_mq_run_hw_queue(hctx, true);
1612 	blk_mq_put_ctx(ctx);
1613 	return NOTIFY_OK;
1614 }
1615 
1616 static int blk_mq_hctx_notify(void *data, unsigned long action,
1617 			      unsigned int cpu)
1618 {
1619 	struct blk_mq_hw_ctx *hctx = data;
1620 
1621 	if (action == CPU_DEAD || action == CPU_DEAD_FROZEN)
1622 		return blk_mq_hctx_cpu_offline(hctx, cpu);
1623 
1624 	/*
1625 	 * In case of CPU online, tags may be reallocated
1626 	 * in blk_mq_map_swqueue() after mapping is updated.
1627 	 */
1628 
1629 	return NOTIFY_OK;
1630 }
1631 
1632 /* hctx->ctxs will be freed in queue's release handler */
1633 static void blk_mq_exit_hctx(struct request_queue *q,
1634 		struct blk_mq_tag_set *set,
1635 		struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
1636 {
1637 	unsigned flush_start_tag = set->queue_depth;
1638 
1639 	blk_mq_tag_idle(hctx);
1640 
1641 	if (set->ops->exit_request)
1642 		set->ops->exit_request(set->driver_data,
1643 				       hctx->fq->flush_rq, hctx_idx,
1644 				       flush_start_tag + hctx_idx);
1645 
1646 	if (set->ops->exit_hctx)
1647 		set->ops->exit_hctx(hctx, hctx_idx);
1648 
1649 	blk_mq_unregister_cpu_notifier(&hctx->cpu_notifier);
1650 	blk_free_flush_queue(hctx->fq);
1651 	blk_mq_free_bitmap(&hctx->ctx_map);
1652 }
1653 
1654 static void blk_mq_exit_hw_queues(struct request_queue *q,
1655 		struct blk_mq_tag_set *set, int nr_queue)
1656 {
1657 	struct blk_mq_hw_ctx *hctx;
1658 	unsigned int i;
1659 
1660 	queue_for_each_hw_ctx(q, hctx, i) {
1661 		if (i == nr_queue)
1662 			break;
1663 		blk_mq_exit_hctx(q, set, hctx, i);
1664 	}
1665 }
1666 
1667 static void blk_mq_free_hw_queues(struct request_queue *q,
1668 		struct blk_mq_tag_set *set)
1669 {
1670 	struct blk_mq_hw_ctx *hctx;
1671 	unsigned int i;
1672 
1673 	queue_for_each_hw_ctx(q, hctx, i)
1674 		free_cpumask_var(hctx->cpumask);
1675 }
1676 
1677 static int blk_mq_init_hctx(struct request_queue *q,
1678 		struct blk_mq_tag_set *set,
1679 		struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
1680 {
1681 	int node;
1682 	unsigned flush_start_tag = set->queue_depth;
1683 
1684 	node = hctx->numa_node;
1685 	if (node == NUMA_NO_NODE)
1686 		node = hctx->numa_node = set->numa_node;
1687 
1688 	INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
1689 	INIT_DELAYED_WORK(&hctx->delay_work, blk_mq_delay_work_fn);
1690 	spin_lock_init(&hctx->lock);
1691 	INIT_LIST_HEAD(&hctx->dispatch);
1692 	hctx->queue = q;
1693 	hctx->queue_num = hctx_idx;
1694 	hctx->flags = set->flags;
1695 
1696 	blk_mq_init_cpu_notifier(&hctx->cpu_notifier,
1697 					blk_mq_hctx_notify, hctx);
1698 	blk_mq_register_cpu_notifier(&hctx->cpu_notifier);
1699 
1700 	hctx->tags = set->tags[hctx_idx];
1701 
1702 	/*
1703 	 * Allocate space for all possible cpus to avoid allocation at
1704 	 * runtime
1705 	 */
1706 	hctx->ctxs = kmalloc_node(nr_cpu_ids * sizeof(void *),
1707 					GFP_KERNEL, node);
1708 	if (!hctx->ctxs)
1709 		goto unregister_cpu_notifier;
1710 
1711 	if (blk_mq_alloc_bitmap(&hctx->ctx_map, node))
1712 		goto free_ctxs;
1713 
1714 	hctx->nr_ctx = 0;
1715 
1716 	if (set->ops->init_hctx &&
1717 	    set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
1718 		goto free_bitmap;
1719 
1720 	hctx->fq = blk_alloc_flush_queue(q, hctx->numa_node, set->cmd_size);
1721 	if (!hctx->fq)
1722 		goto exit_hctx;
1723 
1724 	if (set->ops->init_request &&
1725 	    set->ops->init_request(set->driver_data,
1726 				   hctx->fq->flush_rq, hctx_idx,
1727 				   flush_start_tag + hctx_idx, node))
1728 		goto free_fq;
1729 
1730 	return 0;
1731 
1732  free_fq:
1733 	kfree(hctx->fq);
1734  exit_hctx:
1735 	if (set->ops->exit_hctx)
1736 		set->ops->exit_hctx(hctx, hctx_idx);
1737  free_bitmap:
1738 	blk_mq_free_bitmap(&hctx->ctx_map);
1739  free_ctxs:
1740 	kfree(hctx->ctxs);
1741  unregister_cpu_notifier:
1742 	blk_mq_unregister_cpu_notifier(&hctx->cpu_notifier);
1743 
1744 	return -1;
1745 }
1746 
1747 static int blk_mq_init_hw_queues(struct request_queue *q,
1748 		struct blk_mq_tag_set *set)
1749 {
1750 	struct blk_mq_hw_ctx *hctx;
1751 	unsigned int i;
1752 
1753 	/*
1754 	 * Initialize hardware queues
1755 	 */
1756 	queue_for_each_hw_ctx(q, hctx, i) {
1757 		if (blk_mq_init_hctx(q, set, hctx, i))
1758 			break;
1759 	}
1760 
1761 	if (i == q->nr_hw_queues)
1762 		return 0;
1763 
1764 	/*
1765 	 * Init failed
1766 	 */
1767 	blk_mq_exit_hw_queues(q, set, i);
1768 
1769 	return 1;
1770 }
1771 
1772 static void blk_mq_init_cpu_queues(struct request_queue *q,
1773 				   unsigned int nr_hw_queues)
1774 {
1775 	unsigned int i;
1776 
1777 	for_each_possible_cpu(i) {
1778 		struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
1779 		struct blk_mq_hw_ctx *hctx;
1780 
1781 		memset(__ctx, 0, sizeof(*__ctx));
1782 		__ctx->cpu = i;
1783 		spin_lock_init(&__ctx->lock);
1784 		INIT_LIST_HEAD(&__ctx->rq_list);
1785 		__ctx->queue = q;
1786 
1787 		/* If the cpu isn't online, the cpu is mapped to first hctx */
1788 		if (!cpu_online(i))
1789 			continue;
1790 
1791 		hctx = q->mq_ops->map_queue(q, i);
1792 
1793 		/*
1794 		 * Set local node, IFF we have more than one hw queue. If
1795 		 * not, we remain on the home node of the device
1796 		 */
1797 		if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
1798 			hctx->numa_node = cpu_to_node(i);
1799 	}
1800 }
1801 
1802 static void blk_mq_map_swqueue(struct request_queue *q)
1803 {
1804 	unsigned int i;
1805 	struct blk_mq_hw_ctx *hctx;
1806 	struct blk_mq_ctx *ctx;
1807 	struct blk_mq_tag_set *set = q->tag_set;
1808 
1809 	queue_for_each_hw_ctx(q, hctx, i) {
1810 		cpumask_clear(hctx->cpumask);
1811 		hctx->nr_ctx = 0;
1812 	}
1813 
1814 	/*
1815 	 * Map software to hardware queues
1816 	 */
1817 	queue_for_each_ctx(q, ctx, i) {
1818 		/* If the cpu isn't online, the cpu is mapped to first hctx */
1819 		if (!cpu_online(i))
1820 			continue;
1821 
1822 		hctx = q->mq_ops->map_queue(q, i);
1823 		cpumask_set_cpu(i, hctx->cpumask);
1824 		cpumask_set_cpu(i, hctx->tags->cpumask);
1825 		ctx->index_hw = hctx->nr_ctx;
1826 		hctx->ctxs[hctx->nr_ctx++] = ctx;
1827 	}
1828 
1829 	queue_for_each_hw_ctx(q, hctx, i) {
1830 		struct blk_mq_ctxmap *map = &hctx->ctx_map;
1831 
1832 		/*
1833 		 * If no software queues are mapped to this hardware queue,
1834 		 * disable it and free the request entries.
1835 		 */
1836 		if (!hctx->nr_ctx) {
1837 			if (set->tags[i]) {
1838 				blk_mq_free_rq_map(set, set->tags[i], i);
1839 				set->tags[i] = NULL;
1840 			}
1841 			hctx->tags = NULL;
1842 			continue;
1843 		}
1844 
1845 		/* unmapped hw queue can be remapped after CPU topo changed */
1846 		if (!set->tags[i])
1847 			set->tags[i] = blk_mq_init_rq_map(set, i);
1848 		hctx->tags = set->tags[i];
1849 		WARN_ON(!hctx->tags);
1850 
1851 		/*
1852 		 * Set the map size to the number of mapped software queues.
1853 		 * This is more accurate and more efficient than looping
1854 		 * over all possibly mapped software queues.
1855 		 */
1856 		map->size = DIV_ROUND_UP(hctx->nr_ctx, map->bits_per_word);
1857 
1858 		/*
1859 		 * Initialize batch roundrobin counts
1860 		 */
1861 		hctx->next_cpu = cpumask_first(hctx->cpumask);
1862 		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
1863 	}
1864 }
1865 
1866 static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set)
1867 {
1868 	struct blk_mq_hw_ctx *hctx;
1869 	struct request_queue *q;
1870 	bool shared;
1871 	int i;
1872 
1873 	if (set->tag_list.next == set->tag_list.prev)
1874 		shared = false;
1875 	else
1876 		shared = true;
1877 
1878 	list_for_each_entry(q, &set->tag_list, tag_set_list) {
1879 		blk_mq_freeze_queue(q);
1880 
1881 		queue_for_each_hw_ctx(q, hctx, i) {
1882 			if (shared)
1883 				hctx->flags |= BLK_MQ_F_TAG_SHARED;
1884 			else
1885 				hctx->flags &= ~BLK_MQ_F_TAG_SHARED;
1886 		}
1887 		blk_mq_unfreeze_queue(q);
1888 	}
1889 }
1890 
1891 static void blk_mq_del_queue_tag_set(struct request_queue *q)
1892 {
1893 	struct blk_mq_tag_set *set = q->tag_set;
1894 
1895 	mutex_lock(&set->tag_list_lock);
1896 	list_del_init(&q->tag_set_list);
1897 	blk_mq_update_tag_set_depth(set);
1898 	mutex_unlock(&set->tag_list_lock);
1899 }
1900 
1901 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
1902 				     struct request_queue *q)
1903 {
1904 	q->tag_set = set;
1905 
1906 	mutex_lock(&set->tag_list_lock);
1907 	list_add_tail(&q->tag_set_list, &set->tag_list);
1908 	blk_mq_update_tag_set_depth(set);
1909 	mutex_unlock(&set->tag_list_lock);
1910 }
1911 
1912 /*
1913  * It is the actual release handler for mq, but we do it from
1914  * request queue's release handler for avoiding use-after-free
1915  * and headache because q->mq_kobj shouldn't have been introduced,
1916  * but we can't group ctx/kctx kobj without it.
1917  */
1918 void blk_mq_release(struct request_queue *q)
1919 {
1920 	struct blk_mq_hw_ctx *hctx;
1921 	unsigned int i;
1922 
1923 	/* hctx kobj stays in hctx */
1924 	queue_for_each_hw_ctx(q, hctx, i) {
1925 		if (!hctx)
1926 			continue;
1927 		kfree(hctx->ctxs);
1928 		kfree(hctx);
1929 	}
1930 
1931 	kfree(q->queue_hw_ctx);
1932 
1933 	/* ctx kobj stays in queue_ctx */
1934 	free_percpu(q->queue_ctx);
1935 }
1936 
1937 struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
1938 {
1939 	struct request_queue *uninit_q, *q;
1940 
1941 	uninit_q = blk_alloc_queue_node(GFP_KERNEL, set->numa_node);
1942 	if (!uninit_q)
1943 		return ERR_PTR(-ENOMEM);
1944 
1945 	q = blk_mq_init_allocated_queue(set, uninit_q);
1946 	if (IS_ERR(q))
1947 		blk_cleanup_queue(uninit_q);
1948 
1949 	return q;
1950 }
1951 EXPORT_SYMBOL(blk_mq_init_queue);
1952 
1953 struct request_queue *blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
1954 						  struct request_queue *q)
1955 {
1956 	struct blk_mq_hw_ctx **hctxs;
1957 	struct blk_mq_ctx __percpu *ctx;
1958 	unsigned int *map;
1959 	int i;
1960 
1961 	ctx = alloc_percpu(struct blk_mq_ctx);
1962 	if (!ctx)
1963 		return ERR_PTR(-ENOMEM);
1964 
1965 	hctxs = kmalloc_node(set->nr_hw_queues * sizeof(*hctxs), GFP_KERNEL,
1966 			set->numa_node);
1967 
1968 	if (!hctxs)
1969 		goto err_percpu;
1970 
1971 	map = blk_mq_make_queue_map(set);
1972 	if (!map)
1973 		goto err_map;
1974 
1975 	for (i = 0; i < set->nr_hw_queues; i++) {
1976 		int node = blk_mq_hw_queue_to_node(map, i);
1977 
1978 		hctxs[i] = kzalloc_node(sizeof(struct blk_mq_hw_ctx),
1979 					GFP_KERNEL, node);
1980 		if (!hctxs[i])
1981 			goto err_hctxs;
1982 
1983 		if (!zalloc_cpumask_var_node(&hctxs[i]->cpumask, GFP_KERNEL,
1984 						node))
1985 			goto err_hctxs;
1986 
1987 		atomic_set(&hctxs[i]->nr_active, 0);
1988 		hctxs[i]->numa_node = node;
1989 		hctxs[i]->queue_num = i;
1990 	}
1991 
1992 	/*
1993 	 * Init percpu_ref in atomic mode so that it's faster to shutdown.
1994 	 * See blk_register_queue() for details.
1995 	 */
1996 	if (percpu_ref_init(&q->mq_usage_counter, blk_mq_usage_counter_release,
1997 			    PERCPU_REF_INIT_ATOMIC, GFP_KERNEL))
1998 		goto err_hctxs;
1999 
2000 	setup_timer(&q->timeout, blk_mq_rq_timer, (unsigned long) q);
2001 	blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30000);
2002 
2003 	q->nr_queues = nr_cpu_ids;
2004 	q->nr_hw_queues = set->nr_hw_queues;
2005 	q->mq_map = map;
2006 
2007 	q->queue_ctx = ctx;
2008 	q->queue_hw_ctx = hctxs;
2009 
2010 	q->mq_ops = set->ops;
2011 	q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
2012 
2013 	if (!(set->flags & BLK_MQ_F_SG_MERGE))
2014 		q->queue_flags |= 1 << QUEUE_FLAG_NO_SG_MERGE;
2015 
2016 	q->sg_reserved_size = INT_MAX;
2017 
2018 	INIT_WORK(&q->requeue_work, blk_mq_requeue_work);
2019 	INIT_LIST_HEAD(&q->requeue_list);
2020 	spin_lock_init(&q->requeue_lock);
2021 
2022 	if (q->nr_hw_queues > 1)
2023 		blk_queue_make_request(q, blk_mq_make_request);
2024 	else
2025 		blk_queue_make_request(q, blk_sq_make_request);
2026 
2027 	/*
2028 	 * Do this after blk_queue_make_request() overrides it...
2029 	 */
2030 	q->nr_requests = set->queue_depth;
2031 
2032 	if (set->ops->complete)
2033 		blk_queue_softirq_done(q, set->ops->complete);
2034 
2035 	blk_mq_init_cpu_queues(q, set->nr_hw_queues);
2036 
2037 	if (blk_mq_init_hw_queues(q, set))
2038 		goto err_hctxs;
2039 
2040 	mutex_lock(&all_q_mutex);
2041 	list_add_tail(&q->all_q_node, &all_q_list);
2042 	mutex_unlock(&all_q_mutex);
2043 
2044 	blk_mq_add_queue_tag_set(set, q);
2045 
2046 	blk_mq_map_swqueue(q);
2047 
2048 	return q;
2049 
2050 err_hctxs:
2051 	kfree(map);
2052 	for (i = 0; i < set->nr_hw_queues; i++) {
2053 		if (!hctxs[i])
2054 			break;
2055 		free_cpumask_var(hctxs[i]->cpumask);
2056 		kfree(hctxs[i]);
2057 	}
2058 err_map:
2059 	kfree(hctxs);
2060 err_percpu:
2061 	free_percpu(ctx);
2062 	return ERR_PTR(-ENOMEM);
2063 }
2064 EXPORT_SYMBOL(blk_mq_init_allocated_queue);
2065 
2066 void blk_mq_free_queue(struct request_queue *q)
2067 {
2068 	struct blk_mq_tag_set	*set = q->tag_set;
2069 
2070 	blk_mq_del_queue_tag_set(q);
2071 
2072 	blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
2073 	blk_mq_free_hw_queues(q, set);
2074 
2075 	percpu_ref_exit(&q->mq_usage_counter);
2076 
2077 	kfree(q->mq_map);
2078 
2079 	q->mq_map = NULL;
2080 
2081 	mutex_lock(&all_q_mutex);
2082 	list_del_init(&q->all_q_node);
2083 	mutex_unlock(&all_q_mutex);
2084 }
2085 
2086 /* Basically redo blk_mq_init_queue with queue frozen */
2087 static void blk_mq_queue_reinit(struct request_queue *q)
2088 {
2089 	WARN_ON_ONCE(!atomic_read(&q->mq_freeze_depth));
2090 
2091 	blk_mq_sysfs_unregister(q);
2092 
2093 	blk_mq_update_queue_map(q->mq_map, q->nr_hw_queues);
2094 
2095 	/*
2096 	 * redo blk_mq_init_cpu_queues and blk_mq_init_hw_queues. FIXME: maybe
2097 	 * we should change hctx numa_node according to new topology (this
2098 	 * involves free and re-allocate memory, worthy doing?)
2099 	 */
2100 
2101 	blk_mq_map_swqueue(q);
2102 
2103 	blk_mq_sysfs_register(q);
2104 }
2105 
2106 static int blk_mq_queue_reinit_notify(struct notifier_block *nb,
2107 				      unsigned long action, void *hcpu)
2108 {
2109 	struct request_queue *q;
2110 
2111 	/*
2112 	 * Before new mappings are established, hotadded cpu might already
2113 	 * start handling requests. This doesn't break anything as we map
2114 	 * offline CPUs to first hardware queue. We will re-init the queue
2115 	 * below to get optimal settings.
2116 	 */
2117 	if (action != CPU_DEAD && action != CPU_DEAD_FROZEN &&
2118 	    action != CPU_ONLINE && action != CPU_ONLINE_FROZEN)
2119 		return NOTIFY_OK;
2120 
2121 	mutex_lock(&all_q_mutex);
2122 
2123 	/*
2124 	 * We need to freeze and reinit all existing queues.  Freezing
2125 	 * involves synchronous wait for an RCU grace period and doing it
2126 	 * one by one may take a long time.  Start freezing all queues in
2127 	 * one swoop and then wait for the completions so that freezing can
2128 	 * take place in parallel.
2129 	 */
2130 	list_for_each_entry(q, &all_q_list, all_q_node)
2131 		blk_mq_freeze_queue_start(q);
2132 	list_for_each_entry(q, &all_q_list, all_q_node) {
2133 		blk_mq_freeze_queue_wait(q);
2134 
2135 		/*
2136 		 * timeout handler can't touch hw queue during the
2137 		 * reinitialization
2138 		 */
2139 		del_timer_sync(&q->timeout);
2140 	}
2141 
2142 	list_for_each_entry(q, &all_q_list, all_q_node)
2143 		blk_mq_queue_reinit(q);
2144 
2145 	list_for_each_entry(q, &all_q_list, all_q_node)
2146 		blk_mq_unfreeze_queue(q);
2147 
2148 	mutex_unlock(&all_q_mutex);
2149 	return NOTIFY_OK;
2150 }
2151 
2152 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2153 {
2154 	int i;
2155 
2156 	for (i = 0; i < set->nr_hw_queues; i++) {
2157 		set->tags[i] = blk_mq_init_rq_map(set, i);
2158 		if (!set->tags[i])
2159 			goto out_unwind;
2160 	}
2161 
2162 	return 0;
2163 
2164 out_unwind:
2165 	while (--i >= 0)
2166 		blk_mq_free_rq_map(set, set->tags[i], i);
2167 
2168 	return -ENOMEM;
2169 }
2170 
2171 /*
2172  * Allocate the request maps associated with this tag_set. Note that this
2173  * may reduce the depth asked for, if memory is tight. set->queue_depth
2174  * will be updated to reflect the allocated depth.
2175  */
2176 static int blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2177 {
2178 	unsigned int depth;
2179 	int err;
2180 
2181 	depth = set->queue_depth;
2182 	do {
2183 		err = __blk_mq_alloc_rq_maps(set);
2184 		if (!err)
2185 			break;
2186 
2187 		set->queue_depth >>= 1;
2188 		if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
2189 			err = -ENOMEM;
2190 			break;
2191 		}
2192 	} while (set->queue_depth);
2193 
2194 	if (!set->queue_depth || err) {
2195 		pr_err("blk-mq: failed to allocate request map\n");
2196 		return -ENOMEM;
2197 	}
2198 
2199 	if (depth != set->queue_depth)
2200 		pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
2201 						depth, set->queue_depth);
2202 
2203 	return 0;
2204 }
2205 
2206 struct cpumask *blk_mq_tags_cpumask(struct blk_mq_tags *tags)
2207 {
2208 	return tags->cpumask;
2209 }
2210 EXPORT_SYMBOL_GPL(blk_mq_tags_cpumask);
2211 
2212 /*
2213  * Alloc a tag set to be associated with one or more request queues.
2214  * May fail with EINVAL for various error conditions. May adjust the
2215  * requested depth down, if if it too large. In that case, the set
2216  * value will be stored in set->queue_depth.
2217  */
2218 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
2219 {
2220 	BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);
2221 
2222 	if (!set->nr_hw_queues)
2223 		return -EINVAL;
2224 	if (!set->queue_depth)
2225 		return -EINVAL;
2226 	if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
2227 		return -EINVAL;
2228 
2229 	if (!set->ops->queue_rq || !set->ops->map_queue)
2230 		return -EINVAL;
2231 
2232 	if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
2233 		pr_info("blk-mq: reduced tag depth to %u\n",
2234 			BLK_MQ_MAX_DEPTH);
2235 		set->queue_depth = BLK_MQ_MAX_DEPTH;
2236 	}
2237 
2238 	/*
2239 	 * If a crashdump is active, then we are potentially in a very
2240 	 * memory constrained environment. Limit us to 1 queue and
2241 	 * 64 tags to prevent using too much memory.
2242 	 */
2243 	if (is_kdump_kernel()) {
2244 		set->nr_hw_queues = 1;
2245 		set->queue_depth = min(64U, set->queue_depth);
2246 	}
2247 
2248 	set->tags = kmalloc_node(set->nr_hw_queues *
2249 				 sizeof(struct blk_mq_tags *),
2250 				 GFP_KERNEL, set->numa_node);
2251 	if (!set->tags)
2252 		return -ENOMEM;
2253 
2254 	if (blk_mq_alloc_rq_maps(set))
2255 		goto enomem;
2256 
2257 	mutex_init(&set->tag_list_lock);
2258 	INIT_LIST_HEAD(&set->tag_list);
2259 
2260 	return 0;
2261 enomem:
2262 	kfree(set->tags);
2263 	set->tags = NULL;
2264 	return -ENOMEM;
2265 }
2266 EXPORT_SYMBOL(blk_mq_alloc_tag_set);
2267 
2268 void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
2269 {
2270 	int i;
2271 
2272 	for (i = 0; i < set->nr_hw_queues; i++) {
2273 		if (set->tags[i]) {
2274 			blk_mq_free_rq_map(set, set->tags[i], i);
2275 			free_cpumask_var(set->tags[i]->cpumask);
2276 		}
2277 	}
2278 
2279 	kfree(set->tags);
2280 	set->tags = NULL;
2281 }
2282 EXPORT_SYMBOL(blk_mq_free_tag_set);
2283 
2284 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
2285 {
2286 	struct blk_mq_tag_set *set = q->tag_set;
2287 	struct blk_mq_hw_ctx *hctx;
2288 	int i, ret;
2289 
2290 	if (!set || nr > set->queue_depth)
2291 		return -EINVAL;
2292 
2293 	ret = 0;
2294 	queue_for_each_hw_ctx(q, hctx, i) {
2295 		ret = blk_mq_tag_update_depth(hctx->tags, nr);
2296 		if (ret)
2297 			break;
2298 	}
2299 
2300 	if (!ret)
2301 		q->nr_requests = nr;
2302 
2303 	return ret;
2304 }
2305 
2306 void blk_mq_disable_hotplug(void)
2307 {
2308 	mutex_lock(&all_q_mutex);
2309 }
2310 
2311 void blk_mq_enable_hotplug(void)
2312 {
2313 	mutex_unlock(&all_q_mutex);
2314 }
2315 
2316 static int __init blk_mq_init(void)
2317 {
2318 	blk_mq_cpu_init();
2319 
2320 	hotcpu_notifier(blk_mq_queue_reinit_notify, 0);
2321 
2322 	return 0;
2323 }
2324 subsys_initcall(blk_mq_init);
2325