1 /* 2 * Block multiqueue core code 3 * 4 * Copyright (C) 2013-2014 Jens Axboe 5 * Copyright (C) 2013-2014 Christoph Hellwig 6 */ 7 #include <linux/kernel.h> 8 #include <linux/module.h> 9 #include <linux/backing-dev.h> 10 #include <linux/bio.h> 11 #include <linux/blkdev.h> 12 #include <linux/mm.h> 13 #include <linux/init.h> 14 #include <linux/slab.h> 15 #include <linux/workqueue.h> 16 #include <linux/smp.h> 17 #include <linux/llist.h> 18 #include <linux/list_sort.h> 19 #include <linux/cpu.h> 20 #include <linux/cache.h> 21 #include <linux/sched/sysctl.h> 22 #include <linux/delay.h> 23 #include <linux/crash_dump.h> 24 25 #include <trace/events/block.h> 26 27 #include <linux/blk-mq.h> 28 #include "blk.h" 29 #include "blk-mq.h" 30 #include "blk-mq-tag.h" 31 32 static DEFINE_MUTEX(all_q_mutex); 33 static LIST_HEAD(all_q_list); 34 35 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx); 36 37 /* 38 * Check if any of the ctx's have pending work in this hardware queue 39 */ 40 static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx) 41 { 42 unsigned int i; 43 44 for (i = 0; i < hctx->ctx_map.size; i++) 45 if (hctx->ctx_map.map[i].word) 46 return true; 47 48 return false; 49 } 50 51 static inline struct blk_align_bitmap *get_bm(struct blk_mq_hw_ctx *hctx, 52 struct blk_mq_ctx *ctx) 53 { 54 return &hctx->ctx_map.map[ctx->index_hw / hctx->ctx_map.bits_per_word]; 55 } 56 57 #define CTX_TO_BIT(hctx, ctx) \ 58 ((ctx)->index_hw & ((hctx)->ctx_map.bits_per_word - 1)) 59 60 /* 61 * Mark this ctx as having pending work in this hardware queue 62 */ 63 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx, 64 struct blk_mq_ctx *ctx) 65 { 66 struct blk_align_bitmap *bm = get_bm(hctx, ctx); 67 68 if (!test_bit(CTX_TO_BIT(hctx, ctx), &bm->word)) 69 set_bit(CTX_TO_BIT(hctx, ctx), &bm->word); 70 } 71 72 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx, 73 struct blk_mq_ctx *ctx) 74 { 75 struct blk_align_bitmap *bm = get_bm(hctx, ctx); 76 77 clear_bit(CTX_TO_BIT(hctx, ctx), &bm->word); 78 } 79 80 static int blk_mq_queue_enter(struct request_queue *q, gfp_t gfp) 81 { 82 while (true) { 83 int ret; 84 85 if (percpu_ref_tryget_live(&q->mq_usage_counter)) 86 return 0; 87 88 if (!(gfp & __GFP_WAIT)) 89 return -EBUSY; 90 91 ret = wait_event_interruptible(q->mq_freeze_wq, 92 !atomic_read(&q->mq_freeze_depth) || 93 blk_queue_dying(q)); 94 if (blk_queue_dying(q)) 95 return -ENODEV; 96 if (ret) 97 return ret; 98 } 99 } 100 101 static void blk_mq_queue_exit(struct request_queue *q) 102 { 103 percpu_ref_put(&q->mq_usage_counter); 104 } 105 106 static void blk_mq_usage_counter_release(struct percpu_ref *ref) 107 { 108 struct request_queue *q = 109 container_of(ref, struct request_queue, mq_usage_counter); 110 111 wake_up_all(&q->mq_freeze_wq); 112 } 113 114 void blk_mq_freeze_queue_start(struct request_queue *q) 115 { 116 int freeze_depth; 117 118 freeze_depth = atomic_inc_return(&q->mq_freeze_depth); 119 if (freeze_depth == 1) { 120 percpu_ref_kill(&q->mq_usage_counter); 121 blk_mq_run_hw_queues(q, false); 122 } 123 } 124 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_start); 125 126 static void blk_mq_freeze_queue_wait(struct request_queue *q) 127 { 128 wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->mq_usage_counter)); 129 } 130 131 /* 132 * Guarantee no request is in use, so we can change any data structure of 133 * the queue afterward. 134 */ 135 void blk_mq_freeze_queue(struct request_queue *q) 136 { 137 blk_mq_freeze_queue_start(q); 138 blk_mq_freeze_queue_wait(q); 139 } 140 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue); 141 142 void blk_mq_unfreeze_queue(struct request_queue *q) 143 { 144 int freeze_depth; 145 146 freeze_depth = atomic_dec_return(&q->mq_freeze_depth); 147 WARN_ON_ONCE(freeze_depth < 0); 148 if (!freeze_depth) { 149 percpu_ref_reinit(&q->mq_usage_counter); 150 wake_up_all(&q->mq_freeze_wq); 151 } 152 } 153 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue); 154 155 void blk_mq_wake_waiters(struct request_queue *q) 156 { 157 struct blk_mq_hw_ctx *hctx; 158 unsigned int i; 159 160 queue_for_each_hw_ctx(q, hctx, i) 161 if (blk_mq_hw_queue_mapped(hctx)) 162 blk_mq_tag_wakeup_all(hctx->tags, true); 163 164 /* 165 * If we are called because the queue has now been marked as 166 * dying, we need to ensure that processes currently waiting on 167 * the queue are notified as well. 168 */ 169 wake_up_all(&q->mq_freeze_wq); 170 } 171 172 bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx) 173 { 174 return blk_mq_has_free_tags(hctx->tags); 175 } 176 EXPORT_SYMBOL(blk_mq_can_queue); 177 178 static void blk_mq_rq_ctx_init(struct request_queue *q, struct blk_mq_ctx *ctx, 179 struct request *rq, unsigned int rw_flags) 180 { 181 if (blk_queue_io_stat(q)) 182 rw_flags |= REQ_IO_STAT; 183 184 INIT_LIST_HEAD(&rq->queuelist); 185 /* csd/requeue_work/fifo_time is initialized before use */ 186 rq->q = q; 187 rq->mq_ctx = ctx; 188 rq->cmd_flags |= rw_flags; 189 /* do not touch atomic flags, it needs atomic ops against the timer */ 190 rq->cpu = -1; 191 INIT_HLIST_NODE(&rq->hash); 192 RB_CLEAR_NODE(&rq->rb_node); 193 rq->rq_disk = NULL; 194 rq->part = NULL; 195 rq->start_time = jiffies; 196 #ifdef CONFIG_BLK_CGROUP 197 rq->rl = NULL; 198 set_start_time_ns(rq); 199 rq->io_start_time_ns = 0; 200 #endif 201 rq->nr_phys_segments = 0; 202 #if defined(CONFIG_BLK_DEV_INTEGRITY) 203 rq->nr_integrity_segments = 0; 204 #endif 205 rq->special = NULL; 206 /* tag was already set */ 207 rq->errors = 0; 208 209 rq->cmd = rq->__cmd; 210 211 rq->extra_len = 0; 212 rq->sense_len = 0; 213 rq->resid_len = 0; 214 rq->sense = NULL; 215 216 INIT_LIST_HEAD(&rq->timeout_list); 217 rq->timeout = 0; 218 219 rq->end_io = NULL; 220 rq->end_io_data = NULL; 221 rq->next_rq = NULL; 222 223 ctx->rq_dispatched[rw_is_sync(rw_flags)]++; 224 } 225 226 static struct request * 227 __blk_mq_alloc_request(struct blk_mq_alloc_data *data, int rw) 228 { 229 struct request *rq; 230 unsigned int tag; 231 232 tag = blk_mq_get_tag(data); 233 if (tag != BLK_MQ_TAG_FAIL) { 234 rq = data->hctx->tags->rqs[tag]; 235 236 if (blk_mq_tag_busy(data->hctx)) { 237 rq->cmd_flags = REQ_MQ_INFLIGHT; 238 atomic_inc(&data->hctx->nr_active); 239 } 240 241 rq->tag = tag; 242 blk_mq_rq_ctx_init(data->q, data->ctx, rq, rw); 243 return rq; 244 } 245 246 return NULL; 247 } 248 249 struct request *blk_mq_alloc_request(struct request_queue *q, int rw, gfp_t gfp, 250 bool reserved) 251 { 252 struct blk_mq_ctx *ctx; 253 struct blk_mq_hw_ctx *hctx; 254 struct request *rq; 255 struct blk_mq_alloc_data alloc_data; 256 int ret; 257 258 ret = blk_mq_queue_enter(q, gfp); 259 if (ret) 260 return ERR_PTR(ret); 261 262 ctx = blk_mq_get_ctx(q); 263 hctx = q->mq_ops->map_queue(q, ctx->cpu); 264 blk_mq_set_alloc_data(&alloc_data, q, gfp & ~__GFP_WAIT, 265 reserved, ctx, hctx); 266 267 rq = __blk_mq_alloc_request(&alloc_data, rw); 268 if (!rq && (gfp & __GFP_WAIT)) { 269 __blk_mq_run_hw_queue(hctx); 270 blk_mq_put_ctx(ctx); 271 272 ctx = blk_mq_get_ctx(q); 273 hctx = q->mq_ops->map_queue(q, ctx->cpu); 274 blk_mq_set_alloc_data(&alloc_data, q, gfp, reserved, ctx, 275 hctx); 276 rq = __blk_mq_alloc_request(&alloc_data, rw); 277 ctx = alloc_data.ctx; 278 } 279 blk_mq_put_ctx(ctx); 280 if (!rq) { 281 blk_mq_queue_exit(q); 282 return ERR_PTR(-EWOULDBLOCK); 283 } 284 return rq; 285 } 286 EXPORT_SYMBOL(blk_mq_alloc_request); 287 288 static void __blk_mq_free_request(struct blk_mq_hw_ctx *hctx, 289 struct blk_mq_ctx *ctx, struct request *rq) 290 { 291 const int tag = rq->tag; 292 struct request_queue *q = rq->q; 293 294 if (rq->cmd_flags & REQ_MQ_INFLIGHT) 295 atomic_dec(&hctx->nr_active); 296 rq->cmd_flags = 0; 297 298 clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags); 299 blk_mq_put_tag(hctx, tag, &ctx->last_tag); 300 blk_mq_queue_exit(q); 301 } 302 303 void blk_mq_free_hctx_request(struct blk_mq_hw_ctx *hctx, struct request *rq) 304 { 305 struct blk_mq_ctx *ctx = rq->mq_ctx; 306 307 ctx->rq_completed[rq_is_sync(rq)]++; 308 __blk_mq_free_request(hctx, ctx, rq); 309 310 } 311 EXPORT_SYMBOL_GPL(blk_mq_free_hctx_request); 312 313 void blk_mq_free_request(struct request *rq) 314 { 315 struct blk_mq_hw_ctx *hctx; 316 struct request_queue *q = rq->q; 317 318 hctx = q->mq_ops->map_queue(q, rq->mq_ctx->cpu); 319 blk_mq_free_hctx_request(hctx, rq); 320 } 321 EXPORT_SYMBOL_GPL(blk_mq_free_request); 322 323 inline void __blk_mq_end_request(struct request *rq, int error) 324 { 325 blk_account_io_done(rq); 326 327 if (rq->end_io) { 328 rq->end_io(rq, error); 329 } else { 330 if (unlikely(blk_bidi_rq(rq))) 331 blk_mq_free_request(rq->next_rq); 332 blk_mq_free_request(rq); 333 } 334 } 335 EXPORT_SYMBOL(__blk_mq_end_request); 336 337 void blk_mq_end_request(struct request *rq, int error) 338 { 339 if (blk_update_request(rq, error, blk_rq_bytes(rq))) 340 BUG(); 341 __blk_mq_end_request(rq, error); 342 } 343 EXPORT_SYMBOL(blk_mq_end_request); 344 345 static void __blk_mq_complete_request_remote(void *data) 346 { 347 struct request *rq = data; 348 349 rq->q->softirq_done_fn(rq); 350 } 351 352 static void blk_mq_ipi_complete_request(struct request *rq) 353 { 354 struct blk_mq_ctx *ctx = rq->mq_ctx; 355 bool shared = false; 356 int cpu; 357 358 if (!test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags)) { 359 rq->q->softirq_done_fn(rq); 360 return; 361 } 362 363 cpu = get_cpu(); 364 if (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags)) 365 shared = cpus_share_cache(cpu, ctx->cpu); 366 367 if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) { 368 rq->csd.func = __blk_mq_complete_request_remote; 369 rq->csd.info = rq; 370 rq->csd.flags = 0; 371 smp_call_function_single_async(ctx->cpu, &rq->csd); 372 } else { 373 rq->q->softirq_done_fn(rq); 374 } 375 put_cpu(); 376 } 377 378 void __blk_mq_complete_request(struct request *rq) 379 { 380 struct request_queue *q = rq->q; 381 382 if (!q->softirq_done_fn) 383 blk_mq_end_request(rq, rq->errors); 384 else 385 blk_mq_ipi_complete_request(rq); 386 } 387 388 /** 389 * blk_mq_complete_request - end I/O on a request 390 * @rq: the request being processed 391 * 392 * Description: 393 * Ends all I/O on a request. It does not handle partial completions. 394 * The actual completion happens out-of-order, through a IPI handler. 395 **/ 396 void blk_mq_complete_request(struct request *rq) 397 { 398 struct request_queue *q = rq->q; 399 400 if (unlikely(blk_should_fake_timeout(q))) 401 return; 402 if (!blk_mark_rq_complete(rq)) 403 __blk_mq_complete_request(rq); 404 } 405 EXPORT_SYMBOL(blk_mq_complete_request); 406 407 int blk_mq_request_started(struct request *rq) 408 { 409 return test_bit(REQ_ATOM_STARTED, &rq->atomic_flags); 410 } 411 EXPORT_SYMBOL_GPL(blk_mq_request_started); 412 413 void blk_mq_start_request(struct request *rq) 414 { 415 struct request_queue *q = rq->q; 416 417 trace_block_rq_issue(q, rq); 418 419 rq->resid_len = blk_rq_bytes(rq); 420 if (unlikely(blk_bidi_rq(rq))) 421 rq->next_rq->resid_len = blk_rq_bytes(rq->next_rq); 422 423 blk_add_timer(rq); 424 425 /* 426 * Ensure that ->deadline is visible before set the started 427 * flag and clear the completed flag. 428 */ 429 smp_mb__before_atomic(); 430 431 /* 432 * Mark us as started and clear complete. Complete might have been 433 * set if requeue raced with timeout, which then marked it as 434 * complete. So be sure to clear complete again when we start 435 * the request, otherwise we'll ignore the completion event. 436 */ 437 if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) 438 set_bit(REQ_ATOM_STARTED, &rq->atomic_flags); 439 if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags)) 440 clear_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags); 441 442 if (q->dma_drain_size && blk_rq_bytes(rq)) { 443 /* 444 * Make sure space for the drain appears. We know we can do 445 * this because max_hw_segments has been adjusted to be one 446 * fewer than the device can handle. 447 */ 448 rq->nr_phys_segments++; 449 } 450 } 451 EXPORT_SYMBOL(blk_mq_start_request); 452 453 static void __blk_mq_requeue_request(struct request *rq) 454 { 455 struct request_queue *q = rq->q; 456 457 trace_block_rq_requeue(q, rq); 458 459 if (test_and_clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) { 460 if (q->dma_drain_size && blk_rq_bytes(rq)) 461 rq->nr_phys_segments--; 462 } 463 } 464 465 void blk_mq_requeue_request(struct request *rq) 466 { 467 __blk_mq_requeue_request(rq); 468 469 BUG_ON(blk_queued_rq(rq)); 470 blk_mq_add_to_requeue_list(rq, true); 471 } 472 EXPORT_SYMBOL(blk_mq_requeue_request); 473 474 static void blk_mq_requeue_work(struct work_struct *work) 475 { 476 struct request_queue *q = 477 container_of(work, struct request_queue, requeue_work); 478 LIST_HEAD(rq_list); 479 struct request *rq, *next; 480 unsigned long flags; 481 482 spin_lock_irqsave(&q->requeue_lock, flags); 483 list_splice_init(&q->requeue_list, &rq_list); 484 spin_unlock_irqrestore(&q->requeue_lock, flags); 485 486 list_for_each_entry_safe(rq, next, &rq_list, queuelist) { 487 if (!(rq->cmd_flags & REQ_SOFTBARRIER)) 488 continue; 489 490 rq->cmd_flags &= ~REQ_SOFTBARRIER; 491 list_del_init(&rq->queuelist); 492 blk_mq_insert_request(rq, true, false, false); 493 } 494 495 while (!list_empty(&rq_list)) { 496 rq = list_entry(rq_list.next, struct request, queuelist); 497 list_del_init(&rq->queuelist); 498 blk_mq_insert_request(rq, false, false, false); 499 } 500 501 /* 502 * Use the start variant of queue running here, so that running 503 * the requeue work will kick stopped queues. 504 */ 505 blk_mq_start_hw_queues(q); 506 } 507 508 void blk_mq_add_to_requeue_list(struct request *rq, bool at_head) 509 { 510 struct request_queue *q = rq->q; 511 unsigned long flags; 512 513 /* 514 * We abuse this flag that is otherwise used by the I/O scheduler to 515 * request head insertation from the workqueue. 516 */ 517 BUG_ON(rq->cmd_flags & REQ_SOFTBARRIER); 518 519 spin_lock_irqsave(&q->requeue_lock, flags); 520 if (at_head) { 521 rq->cmd_flags |= REQ_SOFTBARRIER; 522 list_add(&rq->queuelist, &q->requeue_list); 523 } else { 524 list_add_tail(&rq->queuelist, &q->requeue_list); 525 } 526 spin_unlock_irqrestore(&q->requeue_lock, flags); 527 } 528 EXPORT_SYMBOL(blk_mq_add_to_requeue_list); 529 530 void blk_mq_cancel_requeue_work(struct request_queue *q) 531 { 532 cancel_work_sync(&q->requeue_work); 533 } 534 EXPORT_SYMBOL_GPL(blk_mq_cancel_requeue_work); 535 536 void blk_mq_kick_requeue_list(struct request_queue *q) 537 { 538 kblockd_schedule_work(&q->requeue_work); 539 } 540 EXPORT_SYMBOL(blk_mq_kick_requeue_list); 541 542 void blk_mq_abort_requeue_list(struct request_queue *q) 543 { 544 unsigned long flags; 545 LIST_HEAD(rq_list); 546 547 spin_lock_irqsave(&q->requeue_lock, flags); 548 list_splice_init(&q->requeue_list, &rq_list); 549 spin_unlock_irqrestore(&q->requeue_lock, flags); 550 551 while (!list_empty(&rq_list)) { 552 struct request *rq; 553 554 rq = list_first_entry(&rq_list, struct request, queuelist); 555 list_del_init(&rq->queuelist); 556 rq->errors = -EIO; 557 blk_mq_end_request(rq, rq->errors); 558 } 559 } 560 EXPORT_SYMBOL(blk_mq_abort_requeue_list); 561 562 static inline bool is_flush_request(struct request *rq, 563 struct blk_flush_queue *fq, unsigned int tag) 564 { 565 return ((rq->cmd_flags & REQ_FLUSH_SEQ) && 566 fq->flush_rq->tag == tag); 567 } 568 569 struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag) 570 { 571 struct request *rq = tags->rqs[tag]; 572 /* mq_ctx of flush rq is always cloned from the corresponding req */ 573 struct blk_flush_queue *fq = blk_get_flush_queue(rq->q, rq->mq_ctx); 574 575 if (!is_flush_request(rq, fq, tag)) 576 return rq; 577 578 return fq->flush_rq; 579 } 580 EXPORT_SYMBOL(blk_mq_tag_to_rq); 581 582 struct blk_mq_timeout_data { 583 unsigned long next; 584 unsigned int next_set; 585 }; 586 587 void blk_mq_rq_timed_out(struct request *req, bool reserved) 588 { 589 struct blk_mq_ops *ops = req->q->mq_ops; 590 enum blk_eh_timer_return ret = BLK_EH_RESET_TIMER; 591 592 /* 593 * We know that complete is set at this point. If STARTED isn't set 594 * anymore, then the request isn't active and the "timeout" should 595 * just be ignored. This can happen due to the bitflag ordering. 596 * Timeout first checks if STARTED is set, and if it is, assumes 597 * the request is active. But if we race with completion, then 598 * we both flags will get cleared. So check here again, and ignore 599 * a timeout event with a request that isn't active. 600 */ 601 if (!test_bit(REQ_ATOM_STARTED, &req->atomic_flags)) 602 return; 603 604 if (ops->timeout) 605 ret = ops->timeout(req, reserved); 606 607 switch (ret) { 608 case BLK_EH_HANDLED: 609 __blk_mq_complete_request(req); 610 break; 611 case BLK_EH_RESET_TIMER: 612 blk_add_timer(req); 613 blk_clear_rq_complete(req); 614 break; 615 case BLK_EH_NOT_HANDLED: 616 break; 617 default: 618 printk(KERN_ERR "block: bad eh return: %d\n", ret); 619 break; 620 } 621 } 622 623 static void blk_mq_check_expired(struct blk_mq_hw_ctx *hctx, 624 struct request *rq, void *priv, bool reserved) 625 { 626 struct blk_mq_timeout_data *data = priv; 627 628 if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) { 629 /* 630 * If a request wasn't started before the queue was 631 * marked dying, kill it here or it'll go unnoticed. 632 */ 633 if (unlikely(blk_queue_dying(rq->q))) { 634 rq->errors = -EIO; 635 blk_mq_complete_request(rq); 636 } 637 return; 638 } 639 if (rq->cmd_flags & REQ_NO_TIMEOUT) 640 return; 641 642 if (time_after_eq(jiffies, rq->deadline)) { 643 if (!blk_mark_rq_complete(rq)) 644 blk_mq_rq_timed_out(rq, reserved); 645 } else if (!data->next_set || time_after(data->next, rq->deadline)) { 646 data->next = rq->deadline; 647 data->next_set = 1; 648 } 649 } 650 651 static void blk_mq_rq_timer(unsigned long priv) 652 { 653 struct request_queue *q = (struct request_queue *)priv; 654 struct blk_mq_timeout_data data = { 655 .next = 0, 656 .next_set = 0, 657 }; 658 struct blk_mq_hw_ctx *hctx; 659 int i; 660 661 queue_for_each_hw_ctx(q, hctx, i) { 662 /* 663 * If not software queues are currently mapped to this 664 * hardware queue, there's nothing to check 665 */ 666 if (!blk_mq_hw_queue_mapped(hctx)) 667 continue; 668 669 blk_mq_tag_busy_iter(hctx, blk_mq_check_expired, &data); 670 } 671 672 if (data.next_set) { 673 data.next = blk_rq_timeout(round_jiffies_up(data.next)); 674 mod_timer(&q->timeout, data.next); 675 } else { 676 queue_for_each_hw_ctx(q, hctx, i) { 677 /* the hctx may be unmapped, so check it here */ 678 if (blk_mq_hw_queue_mapped(hctx)) 679 blk_mq_tag_idle(hctx); 680 } 681 } 682 } 683 684 /* 685 * Reverse check our software queue for entries that we could potentially 686 * merge with. Currently includes a hand-wavy stop count of 8, to not spend 687 * too much time checking for merges. 688 */ 689 static bool blk_mq_attempt_merge(struct request_queue *q, 690 struct blk_mq_ctx *ctx, struct bio *bio) 691 { 692 struct request *rq; 693 int checked = 8; 694 695 list_for_each_entry_reverse(rq, &ctx->rq_list, queuelist) { 696 int el_ret; 697 698 if (!checked--) 699 break; 700 701 if (!blk_rq_merge_ok(rq, bio)) 702 continue; 703 704 el_ret = blk_try_merge(rq, bio); 705 if (el_ret == ELEVATOR_BACK_MERGE) { 706 if (bio_attempt_back_merge(q, rq, bio)) { 707 ctx->rq_merged++; 708 return true; 709 } 710 break; 711 } else if (el_ret == ELEVATOR_FRONT_MERGE) { 712 if (bio_attempt_front_merge(q, rq, bio)) { 713 ctx->rq_merged++; 714 return true; 715 } 716 break; 717 } 718 } 719 720 return false; 721 } 722 723 /* 724 * Process software queues that have been marked busy, splicing them 725 * to the for-dispatch 726 */ 727 static void flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list) 728 { 729 struct blk_mq_ctx *ctx; 730 int i; 731 732 for (i = 0; i < hctx->ctx_map.size; i++) { 733 struct blk_align_bitmap *bm = &hctx->ctx_map.map[i]; 734 unsigned int off, bit; 735 736 if (!bm->word) 737 continue; 738 739 bit = 0; 740 off = i * hctx->ctx_map.bits_per_word; 741 do { 742 bit = find_next_bit(&bm->word, bm->depth, bit); 743 if (bit >= bm->depth) 744 break; 745 746 ctx = hctx->ctxs[bit + off]; 747 clear_bit(bit, &bm->word); 748 spin_lock(&ctx->lock); 749 list_splice_tail_init(&ctx->rq_list, list); 750 spin_unlock(&ctx->lock); 751 752 bit++; 753 } while (1); 754 } 755 } 756 757 /* 758 * Run this hardware queue, pulling any software queues mapped to it in. 759 * Note that this function currently has various problems around ordering 760 * of IO. In particular, we'd like FIFO behaviour on handling existing 761 * items on the hctx->dispatch list. Ignore that for now. 762 */ 763 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx) 764 { 765 struct request_queue *q = hctx->queue; 766 struct request *rq; 767 LIST_HEAD(rq_list); 768 LIST_HEAD(driver_list); 769 struct list_head *dptr; 770 int queued; 771 772 WARN_ON(!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask)); 773 774 if (unlikely(test_bit(BLK_MQ_S_STOPPED, &hctx->state))) 775 return; 776 777 hctx->run++; 778 779 /* 780 * Touch any software queue that has pending entries. 781 */ 782 flush_busy_ctxs(hctx, &rq_list); 783 784 /* 785 * If we have previous entries on our dispatch list, grab them 786 * and stuff them at the front for more fair dispatch. 787 */ 788 if (!list_empty_careful(&hctx->dispatch)) { 789 spin_lock(&hctx->lock); 790 if (!list_empty(&hctx->dispatch)) 791 list_splice_init(&hctx->dispatch, &rq_list); 792 spin_unlock(&hctx->lock); 793 } 794 795 /* 796 * Start off with dptr being NULL, so we start the first request 797 * immediately, even if we have more pending. 798 */ 799 dptr = NULL; 800 801 /* 802 * Now process all the entries, sending them to the driver. 803 */ 804 queued = 0; 805 while (!list_empty(&rq_list)) { 806 struct blk_mq_queue_data bd; 807 int ret; 808 809 rq = list_first_entry(&rq_list, struct request, queuelist); 810 list_del_init(&rq->queuelist); 811 812 bd.rq = rq; 813 bd.list = dptr; 814 bd.last = list_empty(&rq_list); 815 816 ret = q->mq_ops->queue_rq(hctx, &bd); 817 switch (ret) { 818 case BLK_MQ_RQ_QUEUE_OK: 819 queued++; 820 continue; 821 case BLK_MQ_RQ_QUEUE_BUSY: 822 list_add(&rq->queuelist, &rq_list); 823 __blk_mq_requeue_request(rq); 824 break; 825 default: 826 pr_err("blk-mq: bad return on queue: %d\n", ret); 827 case BLK_MQ_RQ_QUEUE_ERROR: 828 rq->errors = -EIO; 829 blk_mq_end_request(rq, rq->errors); 830 break; 831 } 832 833 if (ret == BLK_MQ_RQ_QUEUE_BUSY) 834 break; 835 836 /* 837 * We've done the first request. If we have more than 1 838 * left in the list, set dptr to defer issue. 839 */ 840 if (!dptr && rq_list.next != rq_list.prev) 841 dptr = &driver_list; 842 } 843 844 if (!queued) 845 hctx->dispatched[0]++; 846 else if (queued < (1 << (BLK_MQ_MAX_DISPATCH_ORDER - 1))) 847 hctx->dispatched[ilog2(queued) + 1]++; 848 849 /* 850 * Any items that need requeuing? Stuff them into hctx->dispatch, 851 * that is where we will continue on next queue run. 852 */ 853 if (!list_empty(&rq_list)) { 854 spin_lock(&hctx->lock); 855 list_splice(&rq_list, &hctx->dispatch); 856 spin_unlock(&hctx->lock); 857 /* 858 * the queue is expected stopped with BLK_MQ_RQ_QUEUE_BUSY, but 859 * it's possible the queue is stopped and restarted again 860 * before this. Queue restart will dispatch requests. And since 861 * requests in rq_list aren't added into hctx->dispatch yet, 862 * the requests in rq_list might get lost. 863 * 864 * blk_mq_run_hw_queue() already checks the STOPPED bit 865 **/ 866 blk_mq_run_hw_queue(hctx, true); 867 } 868 } 869 870 /* 871 * It'd be great if the workqueue API had a way to pass 872 * in a mask and had some smarts for more clever placement. 873 * For now we just round-robin here, switching for every 874 * BLK_MQ_CPU_WORK_BATCH queued items. 875 */ 876 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx) 877 { 878 if (hctx->queue->nr_hw_queues == 1) 879 return WORK_CPU_UNBOUND; 880 881 if (--hctx->next_cpu_batch <= 0) { 882 int cpu = hctx->next_cpu, next_cpu; 883 884 next_cpu = cpumask_next(hctx->next_cpu, hctx->cpumask); 885 if (next_cpu >= nr_cpu_ids) 886 next_cpu = cpumask_first(hctx->cpumask); 887 888 hctx->next_cpu = next_cpu; 889 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH; 890 891 return cpu; 892 } 893 894 return hctx->next_cpu; 895 } 896 897 void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async) 898 { 899 if (unlikely(test_bit(BLK_MQ_S_STOPPED, &hctx->state) || 900 !blk_mq_hw_queue_mapped(hctx))) 901 return; 902 903 if (!async) { 904 int cpu = get_cpu(); 905 if (cpumask_test_cpu(cpu, hctx->cpumask)) { 906 __blk_mq_run_hw_queue(hctx); 907 put_cpu(); 908 return; 909 } 910 911 put_cpu(); 912 } 913 914 kblockd_schedule_delayed_work_on(blk_mq_hctx_next_cpu(hctx), 915 &hctx->run_work, 0); 916 } 917 918 void blk_mq_run_hw_queues(struct request_queue *q, bool async) 919 { 920 struct blk_mq_hw_ctx *hctx; 921 int i; 922 923 queue_for_each_hw_ctx(q, hctx, i) { 924 if ((!blk_mq_hctx_has_pending(hctx) && 925 list_empty_careful(&hctx->dispatch)) || 926 test_bit(BLK_MQ_S_STOPPED, &hctx->state)) 927 continue; 928 929 blk_mq_run_hw_queue(hctx, async); 930 } 931 } 932 EXPORT_SYMBOL(blk_mq_run_hw_queues); 933 934 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx) 935 { 936 cancel_delayed_work(&hctx->run_work); 937 cancel_delayed_work(&hctx->delay_work); 938 set_bit(BLK_MQ_S_STOPPED, &hctx->state); 939 } 940 EXPORT_SYMBOL(blk_mq_stop_hw_queue); 941 942 void blk_mq_stop_hw_queues(struct request_queue *q) 943 { 944 struct blk_mq_hw_ctx *hctx; 945 int i; 946 947 queue_for_each_hw_ctx(q, hctx, i) 948 blk_mq_stop_hw_queue(hctx); 949 } 950 EXPORT_SYMBOL(blk_mq_stop_hw_queues); 951 952 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx) 953 { 954 clear_bit(BLK_MQ_S_STOPPED, &hctx->state); 955 956 blk_mq_run_hw_queue(hctx, false); 957 } 958 EXPORT_SYMBOL(blk_mq_start_hw_queue); 959 960 void blk_mq_start_hw_queues(struct request_queue *q) 961 { 962 struct blk_mq_hw_ctx *hctx; 963 int i; 964 965 queue_for_each_hw_ctx(q, hctx, i) 966 blk_mq_start_hw_queue(hctx); 967 } 968 EXPORT_SYMBOL(blk_mq_start_hw_queues); 969 970 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async) 971 { 972 struct blk_mq_hw_ctx *hctx; 973 int i; 974 975 queue_for_each_hw_ctx(q, hctx, i) { 976 if (!test_bit(BLK_MQ_S_STOPPED, &hctx->state)) 977 continue; 978 979 clear_bit(BLK_MQ_S_STOPPED, &hctx->state); 980 blk_mq_run_hw_queue(hctx, async); 981 } 982 } 983 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues); 984 985 static void blk_mq_run_work_fn(struct work_struct *work) 986 { 987 struct blk_mq_hw_ctx *hctx; 988 989 hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work); 990 991 __blk_mq_run_hw_queue(hctx); 992 } 993 994 static void blk_mq_delay_work_fn(struct work_struct *work) 995 { 996 struct blk_mq_hw_ctx *hctx; 997 998 hctx = container_of(work, struct blk_mq_hw_ctx, delay_work.work); 999 1000 if (test_and_clear_bit(BLK_MQ_S_STOPPED, &hctx->state)) 1001 __blk_mq_run_hw_queue(hctx); 1002 } 1003 1004 void blk_mq_delay_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs) 1005 { 1006 if (unlikely(!blk_mq_hw_queue_mapped(hctx))) 1007 return; 1008 1009 kblockd_schedule_delayed_work_on(blk_mq_hctx_next_cpu(hctx), 1010 &hctx->delay_work, msecs_to_jiffies(msecs)); 1011 } 1012 EXPORT_SYMBOL(blk_mq_delay_queue); 1013 1014 static void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, 1015 struct request *rq, bool at_head) 1016 { 1017 struct blk_mq_ctx *ctx = rq->mq_ctx; 1018 1019 trace_block_rq_insert(hctx->queue, rq); 1020 1021 if (at_head) 1022 list_add(&rq->queuelist, &ctx->rq_list); 1023 else 1024 list_add_tail(&rq->queuelist, &ctx->rq_list); 1025 1026 blk_mq_hctx_mark_pending(hctx, ctx); 1027 } 1028 1029 void blk_mq_insert_request(struct request *rq, bool at_head, bool run_queue, 1030 bool async) 1031 { 1032 struct request_queue *q = rq->q; 1033 struct blk_mq_hw_ctx *hctx; 1034 struct blk_mq_ctx *ctx = rq->mq_ctx, *current_ctx; 1035 1036 current_ctx = blk_mq_get_ctx(q); 1037 if (!cpu_online(ctx->cpu)) 1038 rq->mq_ctx = ctx = current_ctx; 1039 1040 hctx = q->mq_ops->map_queue(q, ctx->cpu); 1041 1042 spin_lock(&ctx->lock); 1043 __blk_mq_insert_request(hctx, rq, at_head); 1044 spin_unlock(&ctx->lock); 1045 1046 if (run_queue) 1047 blk_mq_run_hw_queue(hctx, async); 1048 1049 blk_mq_put_ctx(current_ctx); 1050 } 1051 1052 static void blk_mq_insert_requests(struct request_queue *q, 1053 struct blk_mq_ctx *ctx, 1054 struct list_head *list, 1055 int depth, 1056 bool from_schedule) 1057 1058 { 1059 struct blk_mq_hw_ctx *hctx; 1060 struct blk_mq_ctx *current_ctx; 1061 1062 trace_block_unplug(q, depth, !from_schedule); 1063 1064 current_ctx = blk_mq_get_ctx(q); 1065 1066 if (!cpu_online(ctx->cpu)) 1067 ctx = current_ctx; 1068 hctx = q->mq_ops->map_queue(q, ctx->cpu); 1069 1070 /* 1071 * preemption doesn't flush plug list, so it's possible ctx->cpu is 1072 * offline now 1073 */ 1074 spin_lock(&ctx->lock); 1075 while (!list_empty(list)) { 1076 struct request *rq; 1077 1078 rq = list_first_entry(list, struct request, queuelist); 1079 list_del_init(&rq->queuelist); 1080 rq->mq_ctx = ctx; 1081 __blk_mq_insert_request(hctx, rq, false); 1082 } 1083 spin_unlock(&ctx->lock); 1084 1085 blk_mq_run_hw_queue(hctx, from_schedule); 1086 blk_mq_put_ctx(current_ctx); 1087 } 1088 1089 static int plug_ctx_cmp(void *priv, struct list_head *a, struct list_head *b) 1090 { 1091 struct request *rqa = container_of(a, struct request, queuelist); 1092 struct request *rqb = container_of(b, struct request, queuelist); 1093 1094 return !(rqa->mq_ctx < rqb->mq_ctx || 1095 (rqa->mq_ctx == rqb->mq_ctx && 1096 blk_rq_pos(rqa) < blk_rq_pos(rqb))); 1097 } 1098 1099 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule) 1100 { 1101 struct blk_mq_ctx *this_ctx; 1102 struct request_queue *this_q; 1103 struct request *rq; 1104 LIST_HEAD(list); 1105 LIST_HEAD(ctx_list); 1106 unsigned int depth; 1107 1108 list_splice_init(&plug->mq_list, &list); 1109 1110 list_sort(NULL, &list, plug_ctx_cmp); 1111 1112 this_q = NULL; 1113 this_ctx = NULL; 1114 depth = 0; 1115 1116 while (!list_empty(&list)) { 1117 rq = list_entry_rq(list.next); 1118 list_del_init(&rq->queuelist); 1119 BUG_ON(!rq->q); 1120 if (rq->mq_ctx != this_ctx) { 1121 if (this_ctx) { 1122 blk_mq_insert_requests(this_q, this_ctx, 1123 &ctx_list, depth, 1124 from_schedule); 1125 } 1126 1127 this_ctx = rq->mq_ctx; 1128 this_q = rq->q; 1129 depth = 0; 1130 } 1131 1132 depth++; 1133 list_add_tail(&rq->queuelist, &ctx_list); 1134 } 1135 1136 /* 1137 * If 'this_ctx' is set, we know we have entries to complete 1138 * on 'ctx_list'. Do those. 1139 */ 1140 if (this_ctx) { 1141 blk_mq_insert_requests(this_q, this_ctx, &ctx_list, depth, 1142 from_schedule); 1143 } 1144 } 1145 1146 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio) 1147 { 1148 init_request_from_bio(rq, bio); 1149 1150 if (blk_do_io_stat(rq)) 1151 blk_account_io_start(rq, 1); 1152 } 1153 1154 static inline bool hctx_allow_merges(struct blk_mq_hw_ctx *hctx) 1155 { 1156 return (hctx->flags & BLK_MQ_F_SHOULD_MERGE) && 1157 !blk_queue_nomerges(hctx->queue); 1158 } 1159 1160 static inline bool blk_mq_merge_queue_io(struct blk_mq_hw_ctx *hctx, 1161 struct blk_mq_ctx *ctx, 1162 struct request *rq, struct bio *bio) 1163 { 1164 if (!hctx_allow_merges(hctx)) { 1165 blk_mq_bio_to_request(rq, bio); 1166 spin_lock(&ctx->lock); 1167 insert_rq: 1168 __blk_mq_insert_request(hctx, rq, false); 1169 spin_unlock(&ctx->lock); 1170 return false; 1171 } else { 1172 struct request_queue *q = hctx->queue; 1173 1174 spin_lock(&ctx->lock); 1175 if (!blk_mq_attempt_merge(q, ctx, bio)) { 1176 blk_mq_bio_to_request(rq, bio); 1177 goto insert_rq; 1178 } 1179 1180 spin_unlock(&ctx->lock); 1181 __blk_mq_free_request(hctx, ctx, rq); 1182 return true; 1183 } 1184 } 1185 1186 struct blk_map_ctx { 1187 struct blk_mq_hw_ctx *hctx; 1188 struct blk_mq_ctx *ctx; 1189 }; 1190 1191 static struct request *blk_mq_map_request(struct request_queue *q, 1192 struct bio *bio, 1193 struct blk_map_ctx *data) 1194 { 1195 struct blk_mq_hw_ctx *hctx; 1196 struct blk_mq_ctx *ctx; 1197 struct request *rq; 1198 int rw = bio_data_dir(bio); 1199 struct blk_mq_alloc_data alloc_data; 1200 1201 if (unlikely(blk_mq_queue_enter(q, GFP_KERNEL))) { 1202 bio_endio(bio, -EIO); 1203 return NULL; 1204 } 1205 1206 ctx = blk_mq_get_ctx(q); 1207 hctx = q->mq_ops->map_queue(q, ctx->cpu); 1208 1209 if (rw_is_sync(bio->bi_rw)) 1210 rw |= REQ_SYNC; 1211 1212 trace_block_getrq(q, bio, rw); 1213 blk_mq_set_alloc_data(&alloc_data, q, GFP_ATOMIC, false, ctx, 1214 hctx); 1215 rq = __blk_mq_alloc_request(&alloc_data, rw); 1216 if (unlikely(!rq)) { 1217 __blk_mq_run_hw_queue(hctx); 1218 blk_mq_put_ctx(ctx); 1219 trace_block_sleeprq(q, bio, rw); 1220 1221 ctx = blk_mq_get_ctx(q); 1222 hctx = q->mq_ops->map_queue(q, ctx->cpu); 1223 blk_mq_set_alloc_data(&alloc_data, q, 1224 __GFP_WAIT|GFP_ATOMIC, false, ctx, hctx); 1225 rq = __blk_mq_alloc_request(&alloc_data, rw); 1226 ctx = alloc_data.ctx; 1227 hctx = alloc_data.hctx; 1228 } 1229 1230 hctx->queued++; 1231 data->hctx = hctx; 1232 data->ctx = ctx; 1233 return rq; 1234 } 1235 1236 static int blk_mq_direct_issue_request(struct request *rq) 1237 { 1238 int ret; 1239 struct request_queue *q = rq->q; 1240 struct blk_mq_hw_ctx *hctx = q->mq_ops->map_queue(q, 1241 rq->mq_ctx->cpu); 1242 struct blk_mq_queue_data bd = { 1243 .rq = rq, 1244 .list = NULL, 1245 .last = 1 1246 }; 1247 1248 /* 1249 * For OK queue, we are done. For error, kill it. Any other 1250 * error (busy), just add it to our list as we previously 1251 * would have done 1252 */ 1253 ret = q->mq_ops->queue_rq(hctx, &bd); 1254 if (ret == BLK_MQ_RQ_QUEUE_OK) 1255 return 0; 1256 else { 1257 __blk_mq_requeue_request(rq); 1258 1259 if (ret == BLK_MQ_RQ_QUEUE_ERROR) { 1260 rq->errors = -EIO; 1261 blk_mq_end_request(rq, rq->errors); 1262 return 0; 1263 } 1264 return -1; 1265 } 1266 } 1267 1268 /* 1269 * Multiple hardware queue variant. This will not use per-process plugs, 1270 * but will attempt to bypass the hctx queueing if we can go straight to 1271 * hardware for SYNC IO. 1272 */ 1273 static void blk_mq_make_request(struct request_queue *q, struct bio *bio) 1274 { 1275 const int is_sync = rw_is_sync(bio->bi_rw); 1276 const int is_flush_fua = bio->bi_rw & (REQ_FLUSH | REQ_FUA); 1277 struct blk_map_ctx data; 1278 struct request *rq; 1279 unsigned int request_count = 0; 1280 struct blk_plug *plug; 1281 struct request *same_queue_rq = NULL; 1282 1283 blk_queue_bounce(q, &bio); 1284 1285 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) { 1286 bio_endio(bio, -EIO); 1287 return; 1288 } 1289 1290 if (!is_flush_fua && !blk_queue_nomerges(q) && 1291 blk_attempt_plug_merge(q, bio, &request_count, &same_queue_rq)) 1292 return; 1293 1294 rq = blk_mq_map_request(q, bio, &data); 1295 if (unlikely(!rq)) 1296 return; 1297 1298 if (unlikely(is_flush_fua)) { 1299 blk_mq_bio_to_request(rq, bio); 1300 blk_insert_flush(rq); 1301 goto run_queue; 1302 } 1303 1304 plug = current->plug; 1305 /* 1306 * If the driver supports defer issued based on 'last', then 1307 * queue it up like normal since we can potentially save some 1308 * CPU this way. 1309 */ 1310 if (((plug && !blk_queue_nomerges(q)) || is_sync) && 1311 !(data.hctx->flags & BLK_MQ_F_DEFER_ISSUE)) { 1312 struct request *old_rq = NULL; 1313 1314 blk_mq_bio_to_request(rq, bio); 1315 1316 /* 1317 * we do limited pluging. If bio can be merged, do merge. 1318 * Otherwise the existing request in the plug list will be 1319 * issued. So the plug list will have one request at most 1320 */ 1321 if (plug) { 1322 /* 1323 * The plug list might get flushed before this. If that 1324 * happens, same_queue_rq is invalid and plug list is empty 1325 **/ 1326 if (same_queue_rq && !list_empty(&plug->mq_list)) { 1327 old_rq = same_queue_rq; 1328 list_del_init(&old_rq->queuelist); 1329 } 1330 list_add_tail(&rq->queuelist, &plug->mq_list); 1331 } else /* is_sync */ 1332 old_rq = rq; 1333 blk_mq_put_ctx(data.ctx); 1334 if (!old_rq) 1335 return; 1336 if (!blk_mq_direct_issue_request(old_rq)) 1337 return; 1338 blk_mq_insert_request(old_rq, false, true, true); 1339 return; 1340 } 1341 1342 if (!blk_mq_merge_queue_io(data.hctx, data.ctx, rq, bio)) { 1343 /* 1344 * For a SYNC request, send it to the hardware immediately. For 1345 * an ASYNC request, just ensure that we run it later on. The 1346 * latter allows for merging opportunities and more efficient 1347 * dispatching. 1348 */ 1349 run_queue: 1350 blk_mq_run_hw_queue(data.hctx, !is_sync || is_flush_fua); 1351 } 1352 blk_mq_put_ctx(data.ctx); 1353 } 1354 1355 /* 1356 * Single hardware queue variant. This will attempt to use any per-process 1357 * plug for merging and IO deferral. 1358 */ 1359 static void blk_sq_make_request(struct request_queue *q, struct bio *bio) 1360 { 1361 const int is_sync = rw_is_sync(bio->bi_rw); 1362 const int is_flush_fua = bio->bi_rw & (REQ_FLUSH | REQ_FUA); 1363 struct blk_plug *plug; 1364 unsigned int request_count = 0; 1365 struct blk_map_ctx data; 1366 struct request *rq; 1367 1368 blk_queue_bounce(q, &bio); 1369 1370 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) { 1371 bio_endio(bio, -EIO); 1372 return; 1373 } 1374 1375 if (!is_flush_fua && !blk_queue_nomerges(q) && 1376 blk_attempt_plug_merge(q, bio, &request_count, NULL)) 1377 return; 1378 1379 rq = blk_mq_map_request(q, bio, &data); 1380 if (unlikely(!rq)) 1381 return; 1382 1383 if (unlikely(is_flush_fua)) { 1384 blk_mq_bio_to_request(rq, bio); 1385 blk_insert_flush(rq); 1386 goto run_queue; 1387 } 1388 1389 /* 1390 * A task plug currently exists. Since this is completely lockless, 1391 * utilize that to temporarily store requests until the task is 1392 * either done or scheduled away. 1393 */ 1394 plug = current->plug; 1395 if (plug) { 1396 blk_mq_bio_to_request(rq, bio); 1397 if (list_empty(&plug->mq_list)) 1398 trace_block_plug(q); 1399 else if (request_count >= BLK_MAX_REQUEST_COUNT) { 1400 blk_flush_plug_list(plug, false); 1401 trace_block_plug(q); 1402 } 1403 list_add_tail(&rq->queuelist, &plug->mq_list); 1404 blk_mq_put_ctx(data.ctx); 1405 return; 1406 } 1407 1408 if (!blk_mq_merge_queue_io(data.hctx, data.ctx, rq, bio)) { 1409 /* 1410 * For a SYNC request, send it to the hardware immediately. For 1411 * an ASYNC request, just ensure that we run it later on. The 1412 * latter allows for merging opportunities and more efficient 1413 * dispatching. 1414 */ 1415 run_queue: 1416 blk_mq_run_hw_queue(data.hctx, !is_sync || is_flush_fua); 1417 } 1418 1419 blk_mq_put_ctx(data.ctx); 1420 } 1421 1422 /* 1423 * Default mapping to a software queue, since we use one per CPU. 1424 */ 1425 struct blk_mq_hw_ctx *blk_mq_map_queue(struct request_queue *q, const int cpu) 1426 { 1427 return q->queue_hw_ctx[q->mq_map[cpu]]; 1428 } 1429 EXPORT_SYMBOL(blk_mq_map_queue); 1430 1431 static void blk_mq_free_rq_map(struct blk_mq_tag_set *set, 1432 struct blk_mq_tags *tags, unsigned int hctx_idx) 1433 { 1434 struct page *page; 1435 1436 if (tags->rqs && set->ops->exit_request) { 1437 int i; 1438 1439 for (i = 0; i < tags->nr_tags; i++) { 1440 if (!tags->rqs[i]) 1441 continue; 1442 set->ops->exit_request(set->driver_data, tags->rqs[i], 1443 hctx_idx, i); 1444 tags->rqs[i] = NULL; 1445 } 1446 } 1447 1448 while (!list_empty(&tags->page_list)) { 1449 page = list_first_entry(&tags->page_list, struct page, lru); 1450 list_del_init(&page->lru); 1451 __free_pages(page, page->private); 1452 } 1453 1454 kfree(tags->rqs); 1455 1456 blk_mq_free_tags(tags); 1457 } 1458 1459 static size_t order_to_size(unsigned int order) 1460 { 1461 return (size_t)PAGE_SIZE << order; 1462 } 1463 1464 static struct blk_mq_tags *blk_mq_init_rq_map(struct blk_mq_tag_set *set, 1465 unsigned int hctx_idx) 1466 { 1467 struct blk_mq_tags *tags; 1468 unsigned int i, j, entries_per_page, max_order = 4; 1469 size_t rq_size, left; 1470 1471 tags = blk_mq_init_tags(set->queue_depth, set->reserved_tags, 1472 set->numa_node, 1473 BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags)); 1474 if (!tags) 1475 return NULL; 1476 1477 INIT_LIST_HEAD(&tags->page_list); 1478 1479 tags->rqs = kzalloc_node(set->queue_depth * sizeof(struct request *), 1480 GFP_KERNEL | __GFP_NOWARN | __GFP_NORETRY, 1481 set->numa_node); 1482 if (!tags->rqs) { 1483 blk_mq_free_tags(tags); 1484 return NULL; 1485 } 1486 1487 /* 1488 * rq_size is the size of the request plus driver payload, rounded 1489 * to the cacheline size 1490 */ 1491 rq_size = round_up(sizeof(struct request) + set->cmd_size, 1492 cache_line_size()); 1493 left = rq_size * set->queue_depth; 1494 1495 for (i = 0; i < set->queue_depth; ) { 1496 int this_order = max_order; 1497 struct page *page; 1498 int to_do; 1499 void *p; 1500 1501 while (left < order_to_size(this_order - 1) && this_order) 1502 this_order--; 1503 1504 do { 1505 page = alloc_pages_node(set->numa_node, 1506 GFP_KERNEL | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO, 1507 this_order); 1508 if (page) 1509 break; 1510 if (!this_order--) 1511 break; 1512 if (order_to_size(this_order) < rq_size) 1513 break; 1514 } while (1); 1515 1516 if (!page) 1517 goto fail; 1518 1519 page->private = this_order; 1520 list_add_tail(&page->lru, &tags->page_list); 1521 1522 p = page_address(page); 1523 entries_per_page = order_to_size(this_order) / rq_size; 1524 to_do = min(entries_per_page, set->queue_depth - i); 1525 left -= to_do * rq_size; 1526 for (j = 0; j < to_do; j++) { 1527 tags->rqs[i] = p; 1528 if (set->ops->init_request) { 1529 if (set->ops->init_request(set->driver_data, 1530 tags->rqs[i], hctx_idx, i, 1531 set->numa_node)) { 1532 tags->rqs[i] = NULL; 1533 goto fail; 1534 } 1535 } 1536 1537 p += rq_size; 1538 i++; 1539 } 1540 } 1541 return tags; 1542 1543 fail: 1544 blk_mq_free_rq_map(set, tags, hctx_idx); 1545 return NULL; 1546 } 1547 1548 static void blk_mq_free_bitmap(struct blk_mq_ctxmap *bitmap) 1549 { 1550 kfree(bitmap->map); 1551 } 1552 1553 static int blk_mq_alloc_bitmap(struct blk_mq_ctxmap *bitmap, int node) 1554 { 1555 unsigned int bpw = 8, total, num_maps, i; 1556 1557 bitmap->bits_per_word = bpw; 1558 1559 num_maps = ALIGN(nr_cpu_ids, bpw) / bpw; 1560 bitmap->map = kzalloc_node(num_maps * sizeof(struct blk_align_bitmap), 1561 GFP_KERNEL, node); 1562 if (!bitmap->map) 1563 return -ENOMEM; 1564 1565 total = nr_cpu_ids; 1566 for (i = 0; i < num_maps; i++) { 1567 bitmap->map[i].depth = min(total, bitmap->bits_per_word); 1568 total -= bitmap->map[i].depth; 1569 } 1570 1571 return 0; 1572 } 1573 1574 static int blk_mq_hctx_cpu_offline(struct blk_mq_hw_ctx *hctx, int cpu) 1575 { 1576 struct request_queue *q = hctx->queue; 1577 struct blk_mq_ctx *ctx; 1578 LIST_HEAD(tmp); 1579 1580 /* 1581 * Move ctx entries to new CPU, if this one is going away. 1582 */ 1583 ctx = __blk_mq_get_ctx(q, cpu); 1584 1585 spin_lock(&ctx->lock); 1586 if (!list_empty(&ctx->rq_list)) { 1587 list_splice_init(&ctx->rq_list, &tmp); 1588 blk_mq_hctx_clear_pending(hctx, ctx); 1589 } 1590 spin_unlock(&ctx->lock); 1591 1592 if (list_empty(&tmp)) 1593 return NOTIFY_OK; 1594 1595 ctx = blk_mq_get_ctx(q); 1596 spin_lock(&ctx->lock); 1597 1598 while (!list_empty(&tmp)) { 1599 struct request *rq; 1600 1601 rq = list_first_entry(&tmp, struct request, queuelist); 1602 rq->mq_ctx = ctx; 1603 list_move_tail(&rq->queuelist, &ctx->rq_list); 1604 } 1605 1606 hctx = q->mq_ops->map_queue(q, ctx->cpu); 1607 blk_mq_hctx_mark_pending(hctx, ctx); 1608 1609 spin_unlock(&ctx->lock); 1610 1611 blk_mq_run_hw_queue(hctx, true); 1612 blk_mq_put_ctx(ctx); 1613 return NOTIFY_OK; 1614 } 1615 1616 static int blk_mq_hctx_notify(void *data, unsigned long action, 1617 unsigned int cpu) 1618 { 1619 struct blk_mq_hw_ctx *hctx = data; 1620 1621 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) 1622 return blk_mq_hctx_cpu_offline(hctx, cpu); 1623 1624 /* 1625 * In case of CPU online, tags may be reallocated 1626 * in blk_mq_map_swqueue() after mapping is updated. 1627 */ 1628 1629 return NOTIFY_OK; 1630 } 1631 1632 /* hctx->ctxs will be freed in queue's release handler */ 1633 static void blk_mq_exit_hctx(struct request_queue *q, 1634 struct blk_mq_tag_set *set, 1635 struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx) 1636 { 1637 unsigned flush_start_tag = set->queue_depth; 1638 1639 blk_mq_tag_idle(hctx); 1640 1641 if (set->ops->exit_request) 1642 set->ops->exit_request(set->driver_data, 1643 hctx->fq->flush_rq, hctx_idx, 1644 flush_start_tag + hctx_idx); 1645 1646 if (set->ops->exit_hctx) 1647 set->ops->exit_hctx(hctx, hctx_idx); 1648 1649 blk_mq_unregister_cpu_notifier(&hctx->cpu_notifier); 1650 blk_free_flush_queue(hctx->fq); 1651 blk_mq_free_bitmap(&hctx->ctx_map); 1652 } 1653 1654 static void blk_mq_exit_hw_queues(struct request_queue *q, 1655 struct blk_mq_tag_set *set, int nr_queue) 1656 { 1657 struct blk_mq_hw_ctx *hctx; 1658 unsigned int i; 1659 1660 queue_for_each_hw_ctx(q, hctx, i) { 1661 if (i == nr_queue) 1662 break; 1663 blk_mq_exit_hctx(q, set, hctx, i); 1664 } 1665 } 1666 1667 static void blk_mq_free_hw_queues(struct request_queue *q, 1668 struct blk_mq_tag_set *set) 1669 { 1670 struct blk_mq_hw_ctx *hctx; 1671 unsigned int i; 1672 1673 queue_for_each_hw_ctx(q, hctx, i) 1674 free_cpumask_var(hctx->cpumask); 1675 } 1676 1677 static int blk_mq_init_hctx(struct request_queue *q, 1678 struct blk_mq_tag_set *set, 1679 struct blk_mq_hw_ctx *hctx, unsigned hctx_idx) 1680 { 1681 int node; 1682 unsigned flush_start_tag = set->queue_depth; 1683 1684 node = hctx->numa_node; 1685 if (node == NUMA_NO_NODE) 1686 node = hctx->numa_node = set->numa_node; 1687 1688 INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn); 1689 INIT_DELAYED_WORK(&hctx->delay_work, blk_mq_delay_work_fn); 1690 spin_lock_init(&hctx->lock); 1691 INIT_LIST_HEAD(&hctx->dispatch); 1692 hctx->queue = q; 1693 hctx->queue_num = hctx_idx; 1694 hctx->flags = set->flags; 1695 1696 blk_mq_init_cpu_notifier(&hctx->cpu_notifier, 1697 blk_mq_hctx_notify, hctx); 1698 blk_mq_register_cpu_notifier(&hctx->cpu_notifier); 1699 1700 hctx->tags = set->tags[hctx_idx]; 1701 1702 /* 1703 * Allocate space for all possible cpus to avoid allocation at 1704 * runtime 1705 */ 1706 hctx->ctxs = kmalloc_node(nr_cpu_ids * sizeof(void *), 1707 GFP_KERNEL, node); 1708 if (!hctx->ctxs) 1709 goto unregister_cpu_notifier; 1710 1711 if (blk_mq_alloc_bitmap(&hctx->ctx_map, node)) 1712 goto free_ctxs; 1713 1714 hctx->nr_ctx = 0; 1715 1716 if (set->ops->init_hctx && 1717 set->ops->init_hctx(hctx, set->driver_data, hctx_idx)) 1718 goto free_bitmap; 1719 1720 hctx->fq = blk_alloc_flush_queue(q, hctx->numa_node, set->cmd_size); 1721 if (!hctx->fq) 1722 goto exit_hctx; 1723 1724 if (set->ops->init_request && 1725 set->ops->init_request(set->driver_data, 1726 hctx->fq->flush_rq, hctx_idx, 1727 flush_start_tag + hctx_idx, node)) 1728 goto free_fq; 1729 1730 return 0; 1731 1732 free_fq: 1733 kfree(hctx->fq); 1734 exit_hctx: 1735 if (set->ops->exit_hctx) 1736 set->ops->exit_hctx(hctx, hctx_idx); 1737 free_bitmap: 1738 blk_mq_free_bitmap(&hctx->ctx_map); 1739 free_ctxs: 1740 kfree(hctx->ctxs); 1741 unregister_cpu_notifier: 1742 blk_mq_unregister_cpu_notifier(&hctx->cpu_notifier); 1743 1744 return -1; 1745 } 1746 1747 static int blk_mq_init_hw_queues(struct request_queue *q, 1748 struct blk_mq_tag_set *set) 1749 { 1750 struct blk_mq_hw_ctx *hctx; 1751 unsigned int i; 1752 1753 /* 1754 * Initialize hardware queues 1755 */ 1756 queue_for_each_hw_ctx(q, hctx, i) { 1757 if (blk_mq_init_hctx(q, set, hctx, i)) 1758 break; 1759 } 1760 1761 if (i == q->nr_hw_queues) 1762 return 0; 1763 1764 /* 1765 * Init failed 1766 */ 1767 blk_mq_exit_hw_queues(q, set, i); 1768 1769 return 1; 1770 } 1771 1772 static void blk_mq_init_cpu_queues(struct request_queue *q, 1773 unsigned int nr_hw_queues) 1774 { 1775 unsigned int i; 1776 1777 for_each_possible_cpu(i) { 1778 struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i); 1779 struct blk_mq_hw_ctx *hctx; 1780 1781 memset(__ctx, 0, sizeof(*__ctx)); 1782 __ctx->cpu = i; 1783 spin_lock_init(&__ctx->lock); 1784 INIT_LIST_HEAD(&__ctx->rq_list); 1785 __ctx->queue = q; 1786 1787 /* If the cpu isn't online, the cpu is mapped to first hctx */ 1788 if (!cpu_online(i)) 1789 continue; 1790 1791 hctx = q->mq_ops->map_queue(q, i); 1792 1793 /* 1794 * Set local node, IFF we have more than one hw queue. If 1795 * not, we remain on the home node of the device 1796 */ 1797 if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE) 1798 hctx->numa_node = cpu_to_node(i); 1799 } 1800 } 1801 1802 static void blk_mq_map_swqueue(struct request_queue *q) 1803 { 1804 unsigned int i; 1805 struct blk_mq_hw_ctx *hctx; 1806 struct blk_mq_ctx *ctx; 1807 struct blk_mq_tag_set *set = q->tag_set; 1808 1809 queue_for_each_hw_ctx(q, hctx, i) { 1810 cpumask_clear(hctx->cpumask); 1811 hctx->nr_ctx = 0; 1812 } 1813 1814 /* 1815 * Map software to hardware queues 1816 */ 1817 queue_for_each_ctx(q, ctx, i) { 1818 /* If the cpu isn't online, the cpu is mapped to first hctx */ 1819 if (!cpu_online(i)) 1820 continue; 1821 1822 hctx = q->mq_ops->map_queue(q, i); 1823 cpumask_set_cpu(i, hctx->cpumask); 1824 cpumask_set_cpu(i, hctx->tags->cpumask); 1825 ctx->index_hw = hctx->nr_ctx; 1826 hctx->ctxs[hctx->nr_ctx++] = ctx; 1827 } 1828 1829 queue_for_each_hw_ctx(q, hctx, i) { 1830 struct blk_mq_ctxmap *map = &hctx->ctx_map; 1831 1832 /* 1833 * If no software queues are mapped to this hardware queue, 1834 * disable it and free the request entries. 1835 */ 1836 if (!hctx->nr_ctx) { 1837 if (set->tags[i]) { 1838 blk_mq_free_rq_map(set, set->tags[i], i); 1839 set->tags[i] = NULL; 1840 } 1841 hctx->tags = NULL; 1842 continue; 1843 } 1844 1845 /* unmapped hw queue can be remapped after CPU topo changed */ 1846 if (!set->tags[i]) 1847 set->tags[i] = blk_mq_init_rq_map(set, i); 1848 hctx->tags = set->tags[i]; 1849 WARN_ON(!hctx->tags); 1850 1851 /* 1852 * Set the map size to the number of mapped software queues. 1853 * This is more accurate and more efficient than looping 1854 * over all possibly mapped software queues. 1855 */ 1856 map->size = DIV_ROUND_UP(hctx->nr_ctx, map->bits_per_word); 1857 1858 /* 1859 * Initialize batch roundrobin counts 1860 */ 1861 hctx->next_cpu = cpumask_first(hctx->cpumask); 1862 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH; 1863 } 1864 } 1865 1866 static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set) 1867 { 1868 struct blk_mq_hw_ctx *hctx; 1869 struct request_queue *q; 1870 bool shared; 1871 int i; 1872 1873 if (set->tag_list.next == set->tag_list.prev) 1874 shared = false; 1875 else 1876 shared = true; 1877 1878 list_for_each_entry(q, &set->tag_list, tag_set_list) { 1879 blk_mq_freeze_queue(q); 1880 1881 queue_for_each_hw_ctx(q, hctx, i) { 1882 if (shared) 1883 hctx->flags |= BLK_MQ_F_TAG_SHARED; 1884 else 1885 hctx->flags &= ~BLK_MQ_F_TAG_SHARED; 1886 } 1887 blk_mq_unfreeze_queue(q); 1888 } 1889 } 1890 1891 static void blk_mq_del_queue_tag_set(struct request_queue *q) 1892 { 1893 struct blk_mq_tag_set *set = q->tag_set; 1894 1895 mutex_lock(&set->tag_list_lock); 1896 list_del_init(&q->tag_set_list); 1897 blk_mq_update_tag_set_depth(set); 1898 mutex_unlock(&set->tag_list_lock); 1899 } 1900 1901 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set, 1902 struct request_queue *q) 1903 { 1904 q->tag_set = set; 1905 1906 mutex_lock(&set->tag_list_lock); 1907 list_add_tail(&q->tag_set_list, &set->tag_list); 1908 blk_mq_update_tag_set_depth(set); 1909 mutex_unlock(&set->tag_list_lock); 1910 } 1911 1912 /* 1913 * It is the actual release handler for mq, but we do it from 1914 * request queue's release handler for avoiding use-after-free 1915 * and headache because q->mq_kobj shouldn't have been introduced, 1916 * but we can't group ctx/kctx kobj without it. 1917 */ 1918 void blk_mq_release(struct request_queue *q) 1919 { 1920 struct blk_mq_hw_ctx *hctx; 1921 unsigned int i; 1922 1923 /* hctx kobj stays in hctx */ 1924 queue_for_each_hw_ctx(q, hctx, i) { 1925 if (!hctx) 1926 continue; 1927 kfree(hctx->ctxs); 1928 kfree(hctx); 1929 } 1930 1931 kfree(q->queue_hw_ctx); 1932 1933 /* ctx kobj stays in queue_ctx */ 1934 free_percpu(q->queue_ctx); 1935 } 1936 1937 struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set) 1938 { 1939 struct request_queue *uninit_q, *q; 1940 1941 uninit_q = blk_alloc_queue_node(GFP_KERNEL, set->numa_node); 1942 if (!uninit_q) 1943 return ERR_PTR(-ENOMEM); 1944 1945 q = blk_mq_init_allocated_queue(set, uninit_q); 1946 if (IS_ERR(q)) 1947 blk_cleanup_queue(uninit_q); 1948 1949 return q; 1950 } 1951 EXPORT_SYMBOL(blk_mq_init_queue); 1952 1953 struct request_queue *blk_mq_init_allocated_queue(struct blk_mq_tag_set *set, 1954 struct request_queue *q) 1955 { 1956 struct blk_mq_hw_ctx **hctxs; 1957 struct blk_mq_ctx __percpu *ctx; 1958 unsigned int *map; 1959 int i; 1960 1961 ctx = alloc_percpu(struct blk_mq_ctx); 1962 if (!ctx) 1963 return ERR_PTR(-ENOMEM); 1964 1965 hctxs = kmalloc_node(set->nr_hw_queues * sizeof(*hctxs), GFP_KERNEL, 1966 set->numa_node); 1967 1968 if (!hctxs) 1969 goto err_percpu; 1970 1971 map = blk_mq_make_queue_map(set); 1972 if (!map) 1973 goto err_map; 1974 1975 for (i = 0; i < set->nr_hw_queues; i++) { 1976 int node = blk_mq_hw_queue_to_node(map, i); 1977 1978 hctxs[i] = kzalloc_node(sizeof(struct blk_mq_hw_ctx), 1979 GFP_KERNEL, node); 1980 if (!hctxs[i]) 1981 goto err_hctxs; 1982 1983 if (!zalloc_cpumask_var_node(&hctxs[i]->cpumask, GFP_KERNEL, 1984 node)) 1985 goto err_hctxs; 1986 1987 atomic_set(&hctxs[i]->nr_active, 0); 1988 hctxs[i]->numa_node = node; 1989 hctxs[i]->queue_num = i; 1990 } 1991 1992 /* 1993 * Init percpu_ref in atomic mode so that it's faster to shutdown. 1994 * See blk_register_queue() for details. 1995 */ 1996 if (percpu_ref_init(&q->mq_usage_counter, blk_mq_usage_counter_release, 1997 PERCPU_REF_INIT_ATOMIC, GFP_KERNEL)) 1998 goto err_hctxs; 1999 2000 setup_timer(&q->timeout, blk_mq_rq_timer, (unsigned long) q); 2001 blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30000); 2002 2003 q->nr_queues = nr_cpu_ids; 2004 q->nr_hw_queues = set->nr_hw_queues; 2005 q->mq_map = map; 2006 2007 q->queue_ctx = ctx; 2008 q->queue_hw_ctx = hctxs; 2009 2010 q->mq_ops = set->ops; 2011 q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT; 2012 2013 if (!(set->flags & BLK_MQ_F_SG_MERGE)) 2014 q->queue_flags |= 1 << QUEUE_FLAG_NO_SG_MERGE; 2015 2016 q->sg_reserved_size = INT_MAX; 2017 2018 INIT_WORK(&q->requeue_work, blk_mq_requeue_work); 2019 INIT_LIST_HEAD(&q->requeue_list); 2020 spin_lock_init(&q->requeue_lock); 2021 2022 if (q->nr_hw_queues > 1) 2023 blk_queue_make_request(q, blk_mq_make_request); 2024 else 2025 blk_queue_make_request(q, blk_sq_make_request); 2026 2027 /* 2028 * Do this after blk_queue_make_request() overrides it... 2029 */ 2030 q->nr_requests = set->queue_depth; 2031 2032 if (set->ops->complete) 2033 blk_queue_softirq_done(q, set->ops->complete); 2034 2035 blk_mq_init_cpu_queues(q, set->nr_hw_queues); 2036 2037 if (blk_mq_init_hw_queues(q, set)) 2038 goto err_hctxs; 2039 2040 mutex_lock(&all_q_mutex); 2041 list_add_tail(&q->all_q_node, &all_q_list); 2042 mutex_unlock(&all_q_mutex); 2043 2044 blk_mq_add_queue_tag_set(set, q); 2045 2046 blk_mq_map_swqueue(q); 2047 2048 return q; 2049 2050 err_hctxs: 2051 kfree(map); 2052 for (i = 0; i < set->nr_hw_queues; i++) { 2053 if (!hctxs[i]) 2054 break; 2055 free_cpumask_var(hctxs[i]->cpumask); 2056 kfree(hctxs[i]); 2057 } 2058 err_map: 2059 kfree(hctxs); 2060 err_percpu: 2061 free_percpu(ctx); 2062 return ERR_PTR(-ENOMEM); 2063 } 2064 EXPORT_SYMBOL(blk_mq_init_allocated_queue); 2065 2066 void blk_mq_free_queue(struct request_queue *q) 2067 { 2068 struct blk_mq_tag_set *set = q->tag_set; 2069 2070 blk_mq_del_queue_tag_set(q); 2071 2072 blk_mq_exit_hw_queues(q, set, set->nr_hw_queues); 2073 blk_mq_free_hw_queues(q, set); 2074 2075 percpu_ref_exit(&q->mq_usage_counter); 2076 2077 kfree(q->mq_map); 2078 2079 q->mq_map = NULL; 2080 2081 mutex_lock(&all_q_mutex); 2082 list_del_init(&q->all_q_node); 2083 mutex_unlock(&all_q_mutex); 2084 } 2085 2086 /* Basically redo blk_mq_init_queue with queue frozen */ 2087 static void blk_mq_queue_reinit(struct request_queue *q) 2088 { 2089 WARN_ON_ONCE(!atomic_read(&q->mq_freeze_depth)); 2090 2091 blk_mq_sysfs_unregister(q); 2092 2093 blk_mq_update_queue_map(q->mq_map, q->nr_hw_queues); 2094 2095 /* 2096 * redo blk_mq_init_cpu_queues and blk_mq_init_hw_queues. FIXME: maybe 2097 * we should change hctx numa_node according to new topology (this 2098 * involves free and re-allocate memory, worthy doing?) 2099 */ 2100 2101 blk_mq_map_swqueue(q); 2102 2103 blk_mq_sysfs_register(q); 2104 } 2105 2106 static int blk_mq_queue_reinit_notify(struct notifier_block *nb, 2107 unsigned long action, void *hcpu) 2108 { 2109 struct request_queue *q; 2110 2111 /* 2112 * Before new mappings are established, hotadded cpu might already 2113 * start handling requests. This doesn't break anything as we map 2114 * offline CPUs to first hardware queue. We will re-init the queue 2115 * below to get optimal settings. 2116 */ 2117 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN && 2118 action != CPU_ONLINE && action != CPU_ONLINE_FROZEN) 2119 return NOTIFY_OK; 2120 2121 mutex_lock(&all_q_mutex); 2122 2123 /* 2124 * We need to freeze and reinit all existing queues. Freezing 2125 * involves synchronous wait for an RCU grace period and doing it 2126 * one by one may take a long time. Start freezing all queues in 2127 * one swoop and then wait for the completions so that freezing can 2128 * take place in parallel. 2129 */ 2130 list_for_each_entry(q, &all_q_list, all_q_node) 2131 blk_mq_freeze_queue_start(q); 2132 list_for_each_entry(q, &all_q_list, all_q_node) { 2133 blk_mq_freeze_queue_wait(q); 2134 2135 /* 2136 * timeout handler can't touch hw queue during the 2137 * reinitialization 2138 */ 2139 del_timer_sync(&q->timeout); 2140 } 2141 2142 list_for_each_entry(q, &all_q_list, all_q_node) 2143 blk_mq_queue_reinit(q); 2144 2145 list_for_each_entry(q, &all_q_list, all_q_node) 2146 blk_mq_unfreeze_queue(q); 2147 2148 mutex_unlock(&all_q_mutex); 2149 return NOTIFY_OK; 2150 } 2151 2152 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set) 2153 { 2154 int i; 2155 2156 for (i = 0; i < set->nr_hw_queues; i++) { 2157 set->tags[i] = blk_mq_init_rq_map(set, i); 2158 if (!set->tags[i]) 2159 goto out_unwind; 2160 } 2161 2162 return 0; 2163 2164 out_unwind: 2165 while (--i >= 0) 2166 blk_mq_free_rq_map(set, set->tags[i], i); 2167 2168 return -ENOMEM; 2169 } 2170 2171 /* 2172 * Allocate the request maps associated with this tag_set. Note that this 2173 * may reduce the depth asked for, if memory is tight. set->queue_depth 2174 * will be updated to reflect the allocated depth. 2175 */ 2176 static int blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set) 2177 { 2178 unsigned int depth; 2179 int err; 2180 2181 depth = set->queue_depth; 2182 do { 2183 err = __blk_mq_alloc_rq_maps(set); 2184 if (!err) 2185 break; 2186 2187 set->queue_depth >>= 1; 2188 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) { 2189 err = -ENOMEM; 2190 break; 2191 } 2192 } while (set->queue_depth); 2193 2194 if (!set->queue_depth || err) { 2195 pr_err("blk-mq: failed to allocate request map\n"); 2196 return -ENOMEM; 2197 } 2198 2199 if (depth != set->queue_depth) 2200 pr_info("blk-mq: reduced tag depth (%u -> %u)\n", 2201 depth, set->queue_depth); 2202 2203 return 0; 2204 } 2205 2206 struct cpumask *blk_mq_tags_cpumask(struct blk_mq_tags *tags) 2207 { 2208 return tags->cpumask; 2209 } 2210 EXPORT_SYMBOL_GPL(blk_mq_tags_cpumask); 2211 2212 /* 2213 * Alloc a tag set to be associated with one or more request queues. 2214 * May fail with EINVAL for various error conditions. May adjust the 2215 * requested depth down, if if it too large. In that case, the set 2216 * value will be stored in set->queue_depth. 2217 */ 2218 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set) 2219 { 2220 BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS); 2221 2222 if (!set->nr_hw_queues) 2223 return -EINVAL; 2224 if (!set->queue_depth) 2225 return -EINVAL; 2226 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) 2227 return -EINVAL; 2228 2229 if (!set->ops->queue_rq || !set->ops->map_queue) 2230 return -EINVAL; 2231 2232 if (set->queue_depth > BLK_MQ_MAX_DEPTH) { 2233 pr_info("blk-mq: reduced tag depth to %u\n", 2234 BLK_MQ_MAX_DEPTH); 2235 set->queue_depth = BLK_MQ_MAX_DEPTH; 2236 } 2237 2238 /* 2239 * If a crashdump is active, then we are potentially in a very 2240 * memory constrained environment. Limit us to 1 queue and 2241 * 64 tags to prevent using too much memory. 2242 */ 2243 if (is_kdump_kernel()) { 2244 set->nr_hw_queues = 1; 2245 set->queue_depth = min(64U, set->queue_depth); 2246 } 2247 2248 set->tags = kmalloc_node(set->nr_hw_queues * 2249 sizeof(struct blk_mq_tags *), 2250 GFP_KERNEL, set->numa_node); 2251 if (!set->tags) 2252 return -ENOMEM; 2253 2254 if (blk_mq_alloc_rq_maps(set)) 2255 goto enomem; 2256 2257 mutex_init(&set->tag_list_lock); 2258 INIT_LIST_HEAD(&set->tag_list); 2259 2260 return 0; 2261 enomem: 2262 kfree(set->tags); 2263 set->tags = NULL; 2264 return -ENOMEM; 2265 } 2266 EXPORT_SYMBOL(blk_mq_alloc_tag_set); 2267 2268 void blk_mq_free_tag_set(struct blk_mq_tag_set *set) 2269 { 2270 int i; 2271 2272 for (i = 0; i < set->nr_hw_queues; i++) { 2273 if (set->tags[i]) { 2274 blk_mq_free_rq_map(set, set->tags[i], i); 2275 free_cpumask_var(set->tags[i]->cpumask); 2276 } 2277 } 2278 2279 kfree(set->tags); 2280 set->tags = NULL; 2281 } 2282 EXPORT_SYMBOL(blk_mq_free_tag_set); 2283 2284 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr) 2285 { 2286 struct blk_mq_tag_set *set = q->tag_set; 2287 struct blk_mq_hw_ctx *hctx; 2288 int i, ret; 2289 2290 if (!set || nr > set->queue_depth) 2291 return -EINVAL; 2292 2293 ret = 0; 2294 queue_for_each_hw_ctx(q, hctx, i) { 2295 ret = blk_mq_tag_update_depth(hctx->tags, nr); 2296 if (ret) 2297 break; 2298 } 2299 2300 if (!ret) 2301 q->nr_requests = nr; 2302 2303 return ret; 2304 } 2305 2306 void blk_mq_disable_hotplug(void) 2307 { 2308 mutex_lock(&all_q_mutex); 2309 } 2310 2311 void blk_mq_enable_hotplug(void) 2312 { 2313 mutex_unlock(&all_q_mutex); 2314 } 2315 2316 static int __init blk_mq_init(void) 2317 { 2318 blk_mq_cpu_init(); 2319 2320 hotcpu_notifier(blk_mq_queue_reinit_notify, 0); 2321 2322 return 0; 2323 } 2324 subsys_initcall(blk_mq_init); 2325