1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Tag allocation using scalable bitmaps. Uses active queue tracking to support 4 * fairer distribution of tags between multiple submitters when a shared tag map 5 * is used. 6 * 7 * Copyright (C) 2013-2014 Jens Axboe 8 */ 9 #include <linux/kernel.h> 10 #include <linux/module.h> 11 12 #include <linux/delay.h> 13 #include "blk.h" 14 #include "blk-mq.h" 15 #include "blk-mq-sched.h" 16 17 /* 18 * Recalculate wakeup batch when tag is shared by hctx. 19 */ 20 static void blk_mq_update_wake_batch(struct blk_mq_tags *tags, 21 unsigned int users) 22 { 23 if (!users) 24 return; 25 26 sbitmap_queue_recalculate_wake_batch(&tags->bitmap_tags, 27 users); 28 sbitmap_queue_recalculate_wake_batch(&tags->breserved_tags, 29 users); 30 } 31 32 /* 33 * If a previously inactive queue goes active, bump the active user count. 34 * We need to do this before try to allocate driver tag, then even if fail 35 * to get tag when first time, the other shared-tag users could reserve 36 * budget for it. 37 */ 38 void __blk_mq_tag_busy(struct blk_mq_hw_ctx *hctx) 39 { 40 unsigned int users; 41 unsigned long flags; 42 struct blk_mq_tags *tags = hctx->tags; 43 44 /* 45 * calling test_bit() prior to test_and_set_bit() is intentional, 46 * it avoids dirtying the cacheline if the queue is already active. 47 */ 48 if (blk_mq_is_shared_tags(hctx->flags)) { 49 struct request_queue *q = hctx->queue; 50 51 if (test_bit(QUEUE_FLAG_HCTX_ACTIVE, &q->queue_flags) || 52 test_and_set_bit(QUEUE_FLAG_HCTX_ACTIVE, &q->queue_flags)) 53 return; 54 } else { 55 if (test_bit(BLK_MQ_S_TAG_ACTIVE, &hctx->state) || 56 test_and_set_bit(BLK_MQ_S_TAG_ACTIVE, &hctx->state)) 57 return; 58 } 59 60 spin_lock_irqsave(&tags->lock, flags); 61 users = tags->active_queues + 1; 62 WRITE_ONCE(tags->active_queues, users); 63 blk_mq_update_wake_batch(tags, users); 64 spin_unlock_irqrestore(&tags->lock, flags); 65 } 66 67 /* 68 * Wakeup all potentially sleeping on tags 69 */ 70 void blk_mq_tag_wakeup_all(struct blk_mq_tags *tags, bool include_reserve) 71 { 72 sbitmap_queue_wake_all(&tags->bitmap_tags); 73 if (include_reserve) 74 sbitmap_queue_wake_all(&tags->breserved_tags); 75 } 76 77 /* 78 * If a previously busy queue goes inactive, potential waiters could now 79 * be allowed to queue. Wake them up and check. 80 */ 81 void __blk_mq_tag_idle(struct blk_mq_hw_ctx *hctx) 82 { 83 struct blk_mq_tags *tags = hctx->tags; 84 unsigned int users; 85 86 if (blk_mq_is_shared_tags(hctx->flags)) { 87 struct request_queue *q = hctx->queue; 88 89 if (!test_and_clear_bit(QUEUE_FLAG_HCTX_ACTIVE, 90 &q->queue_flags)) 91 return; 92 } else { 93 if (!test_and_clear_bit(BLK_MQ_S_TAG_ACTIVE, &hctx->state)) 94 return; 95 } 96 97 spin_lock_irq(&tags->lock); 98 users = tags->active_queues - 1; 99 WRITE_ONCE(tags->active_queues, users); 100 blk_mq_update_wake_batch(tags, users); 101 spin_unlock_irq(&tags->lock); 102 103 blk_mq_tag_wakeup_all(tags, false); 104 } 105 106 static int __blk_mq_get_tag(struct blk_mq_alloc_data *data, 107 struct sbitmap_queue *bt) 108 { 109 if (!data->q->elevator && !(data->flags & BLK_MQ_REQ_RESERVED) && 110 !hctx_may_queue(data->hctx, bt)) 111 return BLK_MQ_NO_TAG; 112 113 if (data->shallow_depth) 114 return sbitmap_queue_get_shallow(bt, data->shallow_depth); 115 else 116 return __sbitmap_queue_get(bt); 117 } 118 119 unsigned long blk_mq_get_tags(struct blk_mq_alloc_data *data, int nr_tags, 120 unsigned int *offset) 121 { 122 struct blk_mq_tags *tags = blk_mq_tags_from_data(data); 123 struct sbitmap_queue *bt = &tags->bitmap_tags; 124 unsigned long ret; 125 126 if (data->shallow_depth ||data->flags & BLK_MQ_REQ_RESERVED || 127 data->hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED) 128 return 0; 129 ret = __sbitmap_queue_get_batch(bt, nr_tags, offset); 130 *offset += tags->nr_reserved_tags; 131 return ret; 132 } 133 134 unsigned int blk_mq_get_tag(struct blk_mq_alloc_data *data) 135 { 136 struct blk_mq_tags *tags = blk_mq_tags_from_data(data); 137 struct sbitmap_queue *bt; 138 struct sbq_wait_state *ws; 139 DEFINE_SBQ_WAIT(wait); 140 unsigned int tag_offset; 141 int tag; 142 143 if (data->flags & BLK_MQ_REQ_RESERVED) { 144 if (unlikely(!tags->nr_reserved_tags)) { 145 WARN_ON_ONCE(1); 146 return BLK_MQ_NO_TAG; 147 } 148 bt = &tags->breserved_tags; 149 tag_offset = 0; 150 } else { 151 bt = &tags->bitmap_tags; 152 tag_offset = tags->nr_reserved_tags; 153 } 154 155 tag = __blk_mq_get_tag(data, bt); 156 if (tag != BLK_MQ_NO_TAG) 157 goto found_tag; 158 159 if (data->flags & BLK_MQ_REQ_NOWAIT) 160 return BLK_MQ_NO_TAG; 161 162 ws = bt_wait_ptr(bt, data->hctx); 163 do { 164 struct sbitmap_queue *bt_prev; 165 166 /* 167 * We're out of tags on this hardware queue, kick any 168 * pending IO submits before going to sleep waiting for 169 * some to complete. 170 */ 171 blk_mq_run_hw_queue(data->hctx, false); 172 173 /* 174 * Retry tag allocation after running the hardware queue, 175 * as running the queue may also have found completions. 176 */ 177 tag = __blk_mq_get_tag(data, bt); 178 if (tag != BLK_MQ_NO_TAG) 179 break; 180 181 sbitmap_prepare_to_wait(bt, ws, &wait, TASK_UNINTERRUPTIBLE); 182 183 tag = __blk_mq_get_tag(data, bt); 184 if (tag != BLK_MQ_NO_TAG) 185 break; 186 187 bt_prev = bt; 188 io_schedule(); 189 190 sbitmap_finish_wait(bt, ws, &wait); 191 192 data->ctx = blk_mq_get_ctx(data->q); 193 data->hctx = blk_mq_map_queue(data->cmd_flags, data->ctx); 194 tags = blk_mq_tags_from_data(data); 195 if (data->flags & BLK_MQ_REQ_RESERVED) 196 bt = &tags->breserved_tags; 197 else 198 bt = &tags->bitmap_tags; 199 200 /* 201 * If destination hw queue is changed, fake wake up on 202 * previous queue for compensating the wake up miss, so 203 * other allocations on previous queue won't be starved. 204 */ 205 if (bt != bt_prev) 206 sbitmap_queue_wake_up(bt_prev, 1); 207 208 ws = bt_wait_ptr(bt, data->hctx); 209 } while (1); 210 211 sbitmap_finish_wait(bt, ws, &wait); 212 213 found_tag: 214 /* 215 * Give up this allocation if the hctx is inactive. The caller will 216 * retry on an active hctx. 217 */ 218 if (unlikely(test_bit(BLK_MQ_S_INACTIVE, &data->hctx->state))) { 219 blk_mq_put_tag(tags, data->ctx, tag + tag_offset); 220 return BLK_MQ_NO_TAG; 221 } 222 return tag + tag_offset; 223 } 224 225 void blk_mq_put_tag(struct blk_mq_tags *tags, struct blk_mq_ctx *ctx, 226 unsigned int tag) 227 { 228 if (!blk_mq_tag_is_reserved(tags, tag)) { 229 const int real_tag = tag - tags->nr_reserved_tags; 230 231 BUG_ON(real_tag >= tags->nr_tags); 232 sbitmap_queue_clear(&tags->bitmap_tags, real_tag, ctx->cpu); 233 } else { 234 sbitmap_queue_clear(&tags->breserved_tags, tag, ctx->cpu); 235 } 236 } 237 238 void blk_mq_put_tags(struct blk_mq_tags *tags, int *tag_array, int nr_tags) 239 { 240 sbitmap_queue_clear_batch(&tags->bitmap_tags, tags->nr_reserved_tags, 241 tag_array, nr_tags); 242 } 243 244 struct bt_iter_data { 245 struct blk_mq_hw_ctx *hctx; 246 struct request_queue *q; 247 busy_tag_iter_fn *fn; 248 void *data; 249 bool reserved; 250 }; 251 252 static struct request *blk_mq_find_and_get_req(struct blk_mq_tags *tags, 253 unsigned int bitnr) 254 { 255 struct request *rq; 256 unsigned long flags; 257 258 spin_lock_irqsave(&tags->lock, flags); 259 rq = tags->rqs[bitnr]; 260 if (!rq || rq->tag != bitnr || !req_ref_inc_not_zero(rq)) 261 rq = NULL; 262 spin_unlock_irqrestore(&tags->lock, flags); 263 return rq; 264 } 265 266 static bool bt_iter(struct sbitmap *bitmap, unsigned int bitnr, void *data) 267 { 268 struct bt_iter_data *iter_data = data; 269 struct blk_mq_hw_ctx *hctx = iter_data->hctx; 270 struct request_queue *q = iter_data->q; 271 struct blk_mq_tag_set *set = q->tag_set; 272 struct blk_mq_tags *tags; 273 struct request *rq; 274 bool ret = true; 275 276 if (blk_mq_is_shared_tags(set->flags)) 277 tags = set->shared_tags; 278 else 279 tags = hctx->tags; 280 281 if (!iter_data->reserved) 282 bitnr += tags->nr_reserved_tags; 283 /* 284 * We can hit rq == NULL here, because the tagging functions 285 * test and set the bit before assigning ->rqs[]. 286 */ 287 rq = blk_mq_find_and_get_req(tags, bitnr); 288 if (!rq) 289 return true; 290 291 if (rq->q == q && (!hctx || rq->mq_hctx == hctx)) 292 ret = iter_data->fn(rq, iter_data->data); 293 blk_mq_put_rq_ref(rq); 294 return ret; 295 } 296 297 /** 298 * bt_for_each - iterate over the requests associated with a hardware queue 299 * @hctx: Hardware queue to examine. 300 * @q: Request queue to examine. 301 * @bt: sbitmap to examine. This is either the breserved_tags member 302 * or the bitmap_tags member of struct blk_mq_tags. 303 * @fn: Pointer to the function that will be called for each request 304 * associated with @hctx that has been assigned a driver tag. 305 * @fn will be called as follows: @fn(@hctx, rq, @data, @reserved) 306 * where rq is a pointer to a request. Return true to continue 307 * iterating tags, false to stop. 308 * @data: Will be passed as third argument to @fn. 309 * @reserved: Indicates whether @bt is the breserved_tags member or the 310 * bitmap_tags member of struct blk_mq_tags. 311 */ 312 static void bt_for_each(struct blk_mq_hw_ctx *hctx, struct request_queue *q, 313 struct sbitmap_queue *bt, busy_tag_iter_fn *fn, 314 void *data, bool reserved) 315 { 316 struct bt_iter_data iter_data = { 317 .hctx = hctx, 318 .fn = fn, 319 .data = data, 320 .reserved = reserved, 321 .q = q, 322 }; 323 324 sbitmap_for_each_set(&bt->sb, bt_iter, &iter_data); 325 } 326 327 struct bt_tags_iter_data { 328 struct blk_mq_tags *tags; 329 busy_tag_iter_fn *fn; 330 void *data; 331 unsigned int flags; 332 }; 333 334 #define BT_TAG_ITER_RESERVED (1 << 0) 335 #define BT_TAG_ITER_STARTED (1 << 1) 336 #define BT_TAG_ITER_STATIC_RQS (1 << 2) 337 338 static bool bt_tags_iter(struct sbitmap *bitmap, unsigned int bitnr, void *data) 339 { 340 struct bt_tags_iter_data *iter_data = data; 341 struct blk_mq_tags *tags = iter_data->tags; 342 struct request *rq; 343 bool ret = true; 344 bool iter_static_rqs = !!(iter_data->flags & BT_TAG_ITER_STATIC_RQS); 345 346 if (!(iter_data->flags & BT_TAG_ITER_RESERVED)) 347 bitnr += tags->nr_reserved_tags; 348 349 /* 350 * We can hit rq == NULL here, because the tagging functions 351 * test and set the bit before assigning ->rqs[]. 352 */ 353 if (iter_static_rqs) 354 rq = tags->static_rqs[bitnr]; 355 else 356 rq = blk_mq_find_and_get_req(tags, bitnr); 357 if (!rq) 358 return true; 359 360 if (!(iter_data->flags & BT_TAG_ITER_STARTED) || 361 blk_mq_request_started(rq)) 362 ret = iter_data->fn(rq, iter_data->data); 363 if (!iter_static_rqs) 364 blk_mq_put_rq_ref(rq); 365 return ret; 366 } 367 368 /** 369 * bt_tags_for_each - iterate over the requests in a tag map 370 * @tags: Tag map to iterate over. 371 * @bt: sbitmap to examine. This is either the breserved_tags member 372 * or the bitmap_tags member of struct blk_mq_tags. 373 * @fn: Pointer to the function that will be called for each started 374 * request. @fn will be called as follows: @fn(rq, @data, 375 * @reserved) where rq is a pointer to a request. Return true 376 * to continue iterating tags, false to stop. 377 * @data: Will be passed as second argument to @fn. 378 * @flags: BT_TAG_ITER_* 379 */ 380 static void bt_tags_for_each(struct blk_mq_tags *tags, struct sbitmap_queue *bt, 381 busy_tag_iter_fn *fn, void *data, unsigned int flags) 382 { 383 struct bt_tags_iter_data iter_data = { 384 .tags = tags, 385 .fn = fn, 386 .data = data, 387 .flags = flags, 388 }; 389 390 if (tags->rqs) 391 sbitmap_for_each_set(&bt->sb, bt_tags_iter, &iter_data); 392 } 393 394 static void __blk_mq_all_tag_iter(struct blk_mq_tags *tags, 395 busy_tag_iter_fn *fn, void *priv, unsigned int flags) 396 { 397 WARN_ON_ONCE(flags & BT_TAG_ITER_RESERVED); 398 399 if (tags->nr_reserved_tags) 400 bt_tags_for_each(tags, &tags->breserved_tags, fn, priv, 401 flags | BT_TAG_ITER_RESERVED); 402 bt_tags_for_each(tags, &tags->bitmap_tags, fn, priv, flags); 403 } 404 405 /** 406 * blk_mq_all_tag_iter - iterate over all requests in a tag map 407 * @tags: Tag map to iterate over. 408 * @fn: Pointer to the function that will be called for each 409 * request. @fn will be called as follows: @fn(rq, @priv, 410 * reserved) where rq is a pointer to a request. 'reserved' 411 * indicates whether or not @rq is a reserved request. Return 412 * true to continue iterating tags, false to stop. 413 * @priv: Will be passed as second argument to @fn. 414 * 415 * Caller has to pass the tag map from which requests are allocated. 416 */ 417 void blk_mq_all_tag_iter(struct blk_mq_tags *tags, busy_tag_iter_fn *fn, 418 void *priv) 419 { 420 __blk_mq_all_tag_iter(tags, fn, priv, BT_TAG_ITER_STATIC_RQS); 421 } 422 423 /** 424 * blk_mq_tagset_busy_iter - iterate over all started requests in a tag set 425 * @tagset: Tag set to iterate over. 426 * @fn: Pointer to the function that will be called for each started 427 * request. @fn will be called as follows: @fn(rq, @priv, 428 * reserved) where rq is a pointer to a request. 'reserved' 429 * indicates whether or not @rq is a reserved request. Return 430 * true to continue iterating tags, false to stop. 431 * @priv: Will be passed as second argument to @fn. 432 * 433 * We grab one request reference before calling @fn and release it after 434 * @fn returns. 435 */ 436 void blk_mq_tagset_busy_iter(struct blk_mq_tag_set *tagset, 437 busy_tag_iter_fn *fn, void *priv) 438 { 439 unsigned int flags = tagset->flags; 440 int i, nr_tags; 441 442 nr_tags = blk_mq_is_shared_tags(flags) ? 1 : tagset->nr_hw_queues; 443 444 for (i = 0; i < nr_tags; i++) { 445 if (tagset->tags && tagset->tags[i]) 446 __blk_mq_all_tag_iter(tagset->tags[i], fn, priv, 447 BT_TAG_ITER_STARTED); 448 } 449 } 450 EXPORT_SYMBOL(blk_mq_tagset_busy_iter); 451 452 static bool blk_mq_tagset_count_completed_rqs(struct request *rq, void *data) 453 { 454 unsigned *count = data; 455 456 if (blk_mq_request_completed(rq)) 457 (*count)++; 458 return true; 459 } 460 461 /** 462 * blk_mq_tagset_wait_completed_request - Wait until all scheduled request 463 * completions have finished. 464 * @tagset: Tag set to drain completed request 465 * 466 * Note: This function has to be run after all IO queues are shutdown 467 */ 468 void blk_mq_tagset_wait_completed_request(struct blk_mq_tag_set *tagset) 469 { 470 while (true) { 471 unsigned count = 0; 472 473 blk_mq_tagset_busy_iter(tagset, 474 blk_mq_tagset_count_completed_rqs, &count); 475 if (!count) 476 break; 477 msleep(5); 478 } 479 } 480 EXPORT_SYMBOL(blk_mq_tagset_wait_completed_request); 481 482 /** 483 * blk_mq_queue_tag_busy_iter - iterate over all requests with a driver tag 484 * @q: Request queue to examine. 485 * @fn: Pointer to the function that will be called for each request 486 * on @q. @fn will be called as follows: @fn(hctx, rq, @priv, 487 * reserved) where rq is a pointer to a request and hctx points 488 * to the hardware queue associated with the request. 'reserved' 489 * indicates whether or not @rq is a reserved request. 490 * @priv: Will be passed as third argument to @fn. 491 * 492 * Note: if @q->tag_set is shared with other request queues then @fn will be 493 * called for all requests on all queues that share that tag set and not only 494 * for requests associated with @q. 495 */ 496 void blk_mq_queue_tag_busy_iter(struct request_queue *q, busy_tag_iter_fn *fn, 497 void *priv) 498 { 499 /* 500 * __blk_mq_update_nr_hw_queues() updates nr_hw_queues and hctx_table 501 * while the queue is frozen. So we can use q_usage_counter to avoid 502 * racing with it. 503 */ 504 if (!percpu_ref_tryget(&q->q_usage_counter)) 505 return; 506 507 if (blk_mq_is_shared_tags(q->tag_set->flags)) { 508 struct blk_mq_tags *tags = q->tag_set->shared_tags; 509 struct sbitmap_queue *bresv = &tags->breserved_tags; 510 struct sbitmap_queue *btags = &tags->bitmap_tags; 511 512 if (tags->nr_reserved_tags) 513 bt_for_each(NULL, q, bresv, fn, priv, true); 514 bt_for_each(NULL, q, btags, fn, priv, false); 515 } else { 516 struct blk_mq_hw_ctx *hctx; 517 unsigned long i; 518 519 queue_for_each_hw_ctx(q, hctx, i) { 520 struct blk_mq_tags *tags = hctx->tags; 521 struct sbitmap_queue *bresv = &tags->breserved_tags; 522 struct sbitmap_queue *btags = &tags->bitmap_tags; 523 524 /* 525 * If no software queues are currently mapped to this 526 * hardware queue, there's nothing to check 527 */ 528 if (!blk_mq_hw_queue_mapped(hctx)) 529 continue; 530 531 if (tags->nr_reserved_tags) 532 bt_for_each(hctx, q, bresv, fn, priv, true); 533 bt_for_each(hctx, q, btags, fn, priv, false); 534 } 535 } 536 blk_queue_exit(q); 537 } 538 539 static int bt_alloc(struct sbitmap_queue *bt, unsigned int depth, 540 bool round_robin, int node) 541 { 542 return sbitmap_queue_init_node(bt, depth, -1, round_robin, GFP_KERNEL, 543 node); 544 } 545 546 struct blk_mq_tags *blk_mq_init_tags(unsigned int total_tags, 547 unsigned int reserved_tags, unsigned int flags, int node) 548 { 549 unsigned int depth = total_tags - reserved_tags; 550 bool round_robin = flags & BLK_MQ_F_TAG_RR; 551 struct blk_mq_tags *tags; 552 553 if (total_tags > BLK_MQ_TAG_MAX) { 554 pr_err("blk-mq: tag depth too large\n"); 555 return NULL; 556 } 557 558 tags = kzalloc_node(sizeof(*tags), GFP_KERNEL, node); 559 if (!tags) 560 return NULL; 561 562 tags->nr_tags = total_tags; 563 tags->nr_reserved_tags = reserved_tags; 564 spin_lock_init(&tags->lock); 565 if (bt_alloc(&tags->bitmap_tags, depth, round_robin, node)) 566 goto out_free_tags; 567 if (bt_alloc(&tags->breserved_tags, reserved_tags, round_robin, node)) 568 goto out_free_bitmap_tags; 569 570 return tags; 571 572 out_free_bitmap_tags: 573 sbitmap_queue_free(&tags->bitmap_tags); 574 out_free_tags: 575 kfree(tags); 576 return NULL; 577 } 578 579 void blk_mq_free_tags(struct blk_mq_tags *tags) 580 { 581 sbitmap_queue_free(&tags->bitmap_tags); 582 sbitmap_queue_free(&tags->breserved_tags); 583 kfree(tags); 584 } 585 586 int blk_mq_tag_update_depth(struct blk_mq_hw_ctx *hctx, 587 struct blk_mq_tags **tagsptr, unsigned int tdepth, 588 bool can_grow) 589 { 590 struct blk_mq_tags *tags = *tagsptr; 591 592 if (tdepth <= tags->nr_reserved_tags) 593 return -EINVAL; 594 595 /* 596 * If we are allowed to grow beyond the original size, allocate 597 * a new set of tags before freeing the old one. 598 */ 599 if (tdepth > tags->nr_tags) { 600 struct blk_mq_tag_set *set = hctx->queue->tag_set; 601 struct blk_mq_tags *new; 602 603 if (!can_grow) 604 return -EINVAL; 605 606 /* 607 * We need some sort of upper limit, set it high enough that 608 * no valid use cases should require more. 609 */ 610 if (tdepth > MAX_SCHED_RQ) 611 return -EINVAL; 612 613 /* 614 * Only the sbitmap needs resizing since we allocated the max 615 * initially. 616 */ 617 if (blk_mq_is_shared_tags(set->flags)) 618 return 0; 619 620 new = blk_mq_alloc_map_and_rqs(set, hctx->queue_num, tdepth); 621 if (!new) 622 return -ENOMEM; 623 624 blk_mq_free_map_and_rqs(set, *tagsptr, hctx->queue_num); 625 *tagsptr = new; 626 } else { 627 /* 628 * Don't need (or can't) update reserved tags here, they 629 * remain static and should never need resizing. 630 */ 631 sbitmap_queue_resize(&tags->bitmap_tags, 632 tdepth - tags->nr_reserved_tags); 633 } 634 635 return 0; 636 } 637 638 void blk_mq_tag_resize_shared_tags(struct blk_mq_tag_set *set, unsigned int size) 639 { 640 struct blk_mq_tags *tags = set->shared_tags; 641 642 sbitmap_queue_resize(&tags->bitmap_tags, size - set->reserved_tags); 643 } 644 645 void blk_mq_tag_update_sched_shared_tags(struct request_queue *q) 646 { 647 sbitmap_queue_resize(&q->sched_shared_tags->bitmap_tags, 648 q->nr_requests - q->tag_set->reserved_tags); 649 } 650 651 /** 652 * blk_mq_unique_tag() - return a tag that is unique queue-wide 653 * @rq: request for which to compute a unique tag 654 * 655 * The tag field in struct request is unique per hardware queue but not over 656 * all hardware queues. Hence this function that returns a tag with the 657 * hardware context index in the upper bits and the per hardware queue tag in 658 * the lower bits. 659 * 660 * Note: When called for a request that is queued on a non-multiqueue request 661 * queue, the hardware context index is set to zero. 662 */ 663 u32 blk_mq_unique_tag(struct request *rq) 664 { 665 return (rq->mq_hctx->queue_num << BLK_MQ_UNIQUE_TAG_BITS) | 666 (rq->tag & BLK_MQ_UNIQUE_TAG_MASK); 667 } 668 EXPORT_SYMBOL(blk_mq_unique_tag); 669