xref: /linux/block/blk-mq-tag.c (revision ca853314e78b0a65c20b6a889a23c31f918d4aa2)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Tag allocation using scalable bitmaps. Uses active queue tracking to support
4  * fairer distribution of tags between multiple submitters when a shared tag map
5  * is used.
6  *
7  * Copyright (C) 2013-2014 Jens Axboe
8  */
9 #include <linux/kernel.h>
10 #include <linux/module.h>
11 
12 #include <linux/blk-mq.h>
13 #include <linux/delay.h>
14 #include "blk.h"
15 #include "blk-mq.h"
16 #include "blk-mq-tag.h"
17 
18 /*
19  * If a previously inactive queue goes active, bump the active user count.
20  * We need to do this before try to allocate driver tag, then even if fail
21  * to get tag when first time, the other shared-tag users could reserve
22  * budget for it.
23  */
24 bool __blk_mq_tag_busy(struct blk_mq_hw_ctx *hctx)
25 {
26 	if (blk_mq_is_sbitmap_shared(hctx->flags)) {
27 		struct request_queue *q = hctx->queue;
28 		struct blk_mq_tag_set *set = q->tag_set;
29 
30 		if (!test_bit(QUEUE_FLAG_HCTX_ACTIVE, &q->queue_flags) &&
31 		    !test_and_set_bit(QUEUE_FLAG_HCTX_ACTIVE, &q->queue_flags))
32 			atomic_inc(&set->active_queues_shared_sbitmap);
33 	} else {
34 		if (!test_bit(BLK_MQ_S_TAG_ACTIVE, &hctx->state) &&
35 		    !test_and_set_bit(BLK_MQ_S_TAG_ACTIVE, &hctx->state))
36 			atomic_inc(&hctx->tags->active_queues);
37 	}
38 
39 	return true;
40 }
41 
42 /*
43  * Wakeup all potentially sleeping on tags
44  */
45 void blk_mq_tag_wakeup_all(struct blk_mq_tags *tags, bool include_reserve)
46 {
47 	sbitmap_queue_wake_all(tags->bitmap_tags);
48 	if (include_reserve)
49 		sbitmap_queue_wake_all(tags->breserved_tags);
50 }
51 
52 /*
53  * If a previously busy queue goes inactive, potential waiters could now
54  * be allowed to queue. Wake them up and check.
55  */
56 void __blk_mq_tag_idle(struct blk_mq_hw_ctx *hctx)
57 {
58 	struct blk_mq_tags *tags = hctx->tags;
59 	struct request_queue *q = hctx->queue;
60 	struct blk_mq_tag_set *set = q->tag_set;
61 
62 	if (blk_mq_is_sbitmap_shared(hctx->flags)) {
63 		if (!test_and_clear_bit(QUEUE_FLAG_HCTX_ACTIVE,
64 					&q->queue_flags))
65 			return;
66 		atomic_dec(&set->active_queues_shared_sbitmap);
67 	} else {
68 		if (!test_and_clear_bit(BLK_MQ_S_TAG_ACTIVE, &hctx->state))
69 			return;
70 		atomic_dec(&tags->active_queues);
71 	}
72 
73 	blk_mq_tag_wakeup_all(tags, false);
74 }
75 
76 static int __blk_mq_get_tag(struct blk_mq_alloc_data *data,
77 			    struct sbitmap_queue *bt)
78 {
79 	if (!data->q->elevator && !(data->flags & BLK_MQ_REQ_RESERVED) &&
80 			!hctx_may_queue(data->hctx, bt))
81 		return BLK_MQ_NO_TAG;
82 
83 	if (data->shallow_depth)
84 		return __sbitmap_queue_get_shallow(bt, data->shallow_depth);
85 	else
86 		return __sbitmap_queue_get(bt);
87 }
88 
89 unsigned int blk_mq_get_tag(struct blk_mq_alloc_data *data)
90 {
91 	struct blk_mq_tags *tags = blk_mq_tags_from_data(data);
92 	struct sbitmap_queue *bt;
93 	struct sbq_wait_state *ws;
94 	DEFINE_SBQ_WAIT(wait);
95 	unsigned int tag_offset;
96 	int tag;
97 
98 	if (data->flags & BLK_MQ_REQ_RESERVED) {
99 		if (unlikely(!tags->nr_reserved_tags)) {
100 			WARN_ON_ONCE(1);
101 			return BLK_MQ_NO_TAG;
102 		}
103 		bt = tags->breserved_tags;
104 		tag_offset = 0;
105 	} else {
106 		bt = tags->bitmap_tags;
107 		tag_offset = tags->nr_reserved_tags;
108 	}
109 
110 	tag = __blk_mq_get_tag(data, bt);
111 	if (tag != BLK_MQ_NO_TAG)
112 		goto found_tag;
113 
114 	if (data->flags & BLK_MQ_REQ_NOWAIT)
115 		return BLK_MQ_NO_TAG;
116 
117 	ws = bt_wait_ptr(bt, data->hctx);
118 	do {
119 		struct sbitmap_queue *bt_prev;
120 
121 		/*
122 		 * We're out of tags on this hardware queue, kick any
123 		 * pending IO submits before going to sleep waiting for
124 		 * some to complete.
125 		 */
126 		blk_mq_run_hw_queue(data->hctx, false);
127 
128 		/*
129 		 * Retry tag allocation after running the hardware queue,
130 		 * as running the queue may also have found completions.
131 		 */
132 		tag = __blk_mq_get_tag(data, bt);
133 		if (tag != BLK_MQ_NO_TAG)
134 			break;
135 
136 		sbitmap_prepare_to_wait(bt, ws, &wait, TASK_UNINTERRUPTIBLE);
137 
138 		tag = __blk_mq_get_tag(data, bt);
139 		if (tag != BLK_MQ_NO_TAG)
140 			break;
141 
142 		bt_prev = bt;
143 		io_schedule();
144 
145 		sbitmap_finish_wait(bt, ws, &wait);
146 
147 		data->ctx = blk_mq_get_ctx(data->q);
148 		data->hctx = blk_mq_map_queue(data->q, data->cmd_flags,
149 						data->ctx);
150 		tags = blk_mq_tags_from_data(data);
151 		if (data->flags & BLK_MQ_REQ_RESERVED)
152 			bt = tags->breserved_tags;
153 		else
154 			bt = tags->bitmap_tags;
155 
156 		/*
157 		 * If destination hw queue is changed, fake wake up on
158 		 * previous queue for compensating the wake up miss, so
159 		 * other allocations on previous queue won't be starved.
160 		 */
161 		if (bt != bt_prev)
162 			sbitmap_queue_wake_up(bt_prev);
163 
164 		ws = bt_wait_ptr(bt, data->hctx);
165 	} while (1);
166 
167 	sbitmap_finish_wait(bt, ws, &wait);
168 
169 found_tag:
170 	/*
171 	 * Give up this allocation if the hctx is inactive.  The caller will
172 	 * retry on an active hctx.
173 	 */
174 	if (unlikely(test_bit(BLK_MQ_S_INACTIVE, &data->hctx->state))) {
175 		blk_mq_put_tag(tags, data->ctx, tag + tag_offset);
176 		return BLK_MQ_NO_TAG;
177 	}
178 	return tag + tag_offset;
179 }
180 
181 void blk_mq_put_tag(struct blk_mq_tags *tags, struct blk_mq_ctx *ctx,
182 		    unsigned int tag)
183 {
184 	if (!blk_mq_tag_is_reserved(tags, tag)) {
185 		const int real_tag = tag - tags->nr_reserved_tags;
186 
187 		BUG_ON(real_tag >= tags->nr_tags);
188 		sbitmap_queue_clear(tags->bitmap_tags, real_tag, ctx->cpu);
189 	} else {
190 		BUG_ON(tag >= tags->nr_reserved_tags);
191 		sbitmap_queue_clear(tags->breserved_tags, tag, ctx->cpu);
192 	}
193 }
194 
195 struct bt_iter_data {
196 	struct blk_mq_hw_ctx *hctx;
197 	busy_iter_fn *fn;
198 	void *data;
199 	bool reserved;
200 };
201 
202 static bool bt_iter(struct sbitmap *bitmap, unsigned int bitnr, void *data)
203 {
204 	struct bt_iter_data *iter_data = data;
205 	struct blk_mq_hw_ctx *hctx = iter_data->hctx;
206 	struct blk_mq_tags *tags = hctx->tags;
207 	bool reserved = iter_data->reserved;
208 	struct request *rq;
209 
210 	if (!reserved)
211 		bitnr += tags->nr_reserved_tags;
212 	rq = tags->rqs[bitnr];
213 
214 	/*
215 	 * We can hit rq == NULL here, because the tagging functions
216 	 * test and set the bit before assigning ->rqs[].
217 	 */
218 	if (rq && rq->q == hctx->queue && rq->mq_hctx == hctx)
219 		return iter_data->fn(hctx, rq, iter_data->data, reserved);
220 	return true;
221 }
222 
223 /**
224  * bt_for_each - iterate over the requests associated with a hardware queue
225  * @hctx:	Hardware queue to examine.
226  * @bt:		sbitmap to examine. This is either the breserved_tags member
227  *		or the bitmap_tags member of struct blk_mq_tags.
228  * @fn:		Pointer to the function that will be called for each request
229  *		associated with @hctx that has been assigned a driver tag.
230  *		@fn will be called as follows: @fn(@hctx, rq, @data, @reserved)
231  *		where rq is a pointer to a request. Return true to continue
232  *		iterating tags, false to stop.
233  * @data:	Will be passed as third argument to @fn.
234  * @reserved:	Indicates whether @bt is the breserved_tags member or the
235  *		bitmap_tags member of struct blk_mq_tags.
236  */
237 static void bt_for_each(struct blk_mq_hw_ctx *hctx, struct sbitmap_queue *bt,
238 			busy_iter_fn *fn, void *data, bool reserved)
239 {
240 	struct bt_iter_data iter_data = {
241 		.hctx = hctx,
242 		.fn = fn,
243 		.data = data,
244 		.reserved = reserved,
245 	};
246 
247 	sbitmap_for_each_set(&bt->sb, bt_iter, &iter_data);
248 }
249 
250 struct bt_tags_iter_data {
251 	struct blk_mq_tags *tags;
252 	busy_tag_iter_fn *fn;
253 	void *data;
254 	unsigned int flags;
255 };
256 
257 #define BT_TAG_ITER_RESERVED		(1 << 0)
258 #define BT_TAG_ITER_STARTED		(1 << 1)
259 #define BT_TAG_ITER_STATIC_RQS		(1 << 2)
260 
261 static bool bt_tags_iter(struct sbitmap *bitmap, unsigned int bitnr, void *data)
262 {
263 	struct bt_tags_iter_data *iter_data = data;
264 	struct blk_mq_tags *tags = iter_data->tags;
265 	bool reserved = iter_data->flags & BT_TAG_ITER_RESERVED;
266 	struct request *rq;
267 
268 	if (!reserved)
269 		bitnr += tags->nr_reserved_tags;
270 
271 	/*
272 	 * We can hit rq == NULL here, because the tagging functions
273 	 * test and set the bit before assigning ->rqs[].
274 	 */
275 	if (iter_data->flags & BT_TAG_ITER_STATIC_RQS)
276 		rq = tags->static_rqs[bitnr];
277 	else
278 		rq = tags->rqs[bitnr];
279 	if (!rq)
280 		return true;
281 	if ((iter_data->flags & BT_TAG_ITER_STARTED) &&
282 	    !blk_mq_request_started(rq))
283 		return true;
284 	return iter_data->fn(rq, iter_data->data, reserved);
285 }
286 
287 /**
288  * bt_tags_for_each - iterate over the requests in a tag map
289  * @tags:	Tag map to iterate over.
290  * @bt:		sbitmap to examine. This is either the breserved_tags member
291  *		or the bitmap_tags member of struct blk_mq_tags.
292  * @fn:		Pointer to the function that will be called for each started
293  *		request. @fn will be called as follows: @fn(rq, @data,
294  *		@reserved) where rq is a pointer to a request. Return true
295  *		to continue iterating tags, false to stop.
296  * @data:	Will be passed as second argument to @fn.
297  * @flags:	BT_TAG_ITER_*
298  */
299 static void bt_tags_for_each(struct blk_mq_tags *tags, struct sbitmap_queue *bt,
300 			     busy_tag_iter_fn *fn, void *data, unsigned int flags)
301 {
302 	struct bt_tags_iter_data iter_data = {
303 		.tags = tags,
304 		.fn = fn,
305 		.data = data,
306 		.flags = flags,
307 	};
308 
309 	if (tags->rqs)
310 		sbitmap_for_each_set(&bt->sb, bt_tags_iter, &iter_data);
311 }
312 
313 static void __blk_mq_all_tag_iter(struct blk_mq_tags *tags,
314 		busy_tag_iter_fn *fn, void *priv, unsigned int flags)
315 {
316 	WARN_ON_ONCE(flags & BT_TAG_ITER_RESERVED);
317 
318 	if (tags->nr_reserved_tags)
319 		bt_tags_for_each(tags, tags->breserved_tags, fn, priv,
320 				 flags | BT_TAG_ITER_RESERVED);
321 	bt_tags_for_each(tags, tags->bitmap_tags, fn, priv, flags);
322 }
323 
324 /**
325  * blk_mq_all_tag_iter - iterate over all requests in a tag map
326  * @tags:	Tag map to iterate over.
327  * @fn:		Pointer to the function that will be called for each
328  *		request. @fn will be called as follows: @fn(rq, @priv,
329  *		reserved) where rq is a pointer to a request. 'reserved'
330  *		indicates whether or not @rq is a reserved request. Return
331  *		true to continue iterating tags, false to stop.
332  * @priv:	Will be passed as second argument to @fn.
333  *
334  * Caller has to pass the tag map from which requests are allocated.
335  */
336 void blk_mq_all_tag_iter(struct blk_mq_tags *tags, busy_tag_iter_fn *fn,
337 		void *priv)
338 {
339 	__blk_mq_all_tag_iter(tags, fn, priv, BT_TAG_ITER_STATIC_RQS);
340 }
341 
342 /**
343  * blk_mq_tagset_busy_iter - iterate over all started requests in a tag set
344  * @tagset:	Tag set to iterate over.
345  * @fn:		Pointer to the function that will be called for each started
346  *		request. @fn will be called as follows: @fn(rq, @priv,
347  *		reserved) where rq is a pointer to a request. 'reserved'
348  *		indicates whether or not @rq is a reserved request. Return
349  *		true to continue iterating tags, false to stop.
350  * @priv:	Will be passed as second argument to @fn.
351  */
352 void blk_mq_tagset_busy_iter(struct blk_mq_tag_set *tagset,
353 		busy_tag_iter_fn *fn, void *priv)
354 {
355 	int i;
356 
357 	for (i = 0; i < tagset->nr_hw_queues; i++) {
358 		if (tagset->tags && tagset->tags[i])
359 			__blk_mq_all_tag_iter(tagset->tags[i], fn, priv,
360 					      BT_TAG_ITER_STARTED);
361 	}
362 }
363 EXPORT_SYMBOL(blk_mq_tagset_busy_iter);
364 
365 static bool blk_mq_tagset_count_completed_rqs(struct request *rq,
366 		void *data, bool reserved)
367 {
368 	unsigned *count = data;
369 
370 	if (blk_mq_request_completed(rq))
371 		(*count)++;
372 	return true;
373 }
374 
375 /**
376  * blk_mq_tagset_wait_completed_request - wait until all completed req's
377  * complete funtion is run
378  * @tagset:	Tag set to drain completed request
379  *
380  * Note: This function has to be run after all IO queues are shutdown
381  */
382 void blk_mq_tagset_wait_completed_request(struct blk_mq_tag_set *tagset)
383 {
384 	while (true) {
385 		unsigned count = 0;
386 
387 		blk_mq_tagset_busy_iter(tagset,
388 				blk_mq_tagset_count_completed_rqs, &count);
389 		if (!count)
390 			break;
391 		msleep(5);
392 	}
393 }
394 EXPORT_SYMBOL(blk_mq_tagset_wait_completed_request);
395 
396 /**
397  * blk_mq_queue_tag_busy_iter - iterate over all requests with a driver tag
398  * @q:		Request queue to examine.
399  * @fn:		Pointer to the function that will be called for each request
400  *		on @q. @fn will be called as follows: @fn(hctx, rq, @priv,
401  *		reserved) where rq is a pointer to a request and hctx points
402  *		to the hardware queue associated with the request. 'reserved'
403  *		indicates whether or not @rq is a reserved request.
404  * @priv:	Will be passed as third argument to @fn.
405  *
406  * Note: if @q->tag_set is shared with other request queues then @fn will be
407  * called for all requests on all queues that share that tag set and not only
408  * for requests associated with @q.
409  */
410 void blk_mq_queue_tag_busy_iter(struct request_queue *q, busy_iter_fn *fn,
411 		void *priv)
412 {
413 	struct blk_mq_hw_ctx *hctx;
414 	int i;
415 
416 	/*
417 	 * __blk_mq_update_nr_hw_queues() updates nr_hw_queues and queue_hw_ctx
418 	 * while the queue is frozen. So we can use q_usage_counter to avoid
419 	 * racing with it.
420 	 */
421 	if (!percpu_ref_tryget(&q->q_usage_counter))
422 		return;
423 
424 	queue_for_each_hw_ctx(q, hctx, i) {
425 		struct blk_mq_tags *tags = hctx->tags;
426 
427 		/*
428 		 * If no software queues are currently mapped to this
429 		 * hardware queue, there's nothing to check
430 		 */
431 		if (!blk_mq_hw_queue_mapped(hctx))
432 			continue;
433 
434 		if (tags->nr_reserved_tags)
435 			bt_for_each(hctx, tags->breserved_tags, fn, priv, true);
436 		bt_for_each(hctx, tags->bitmap_tags, fn, priv, false);
437 	}
438 	blk_queue_exit(q);
439 }
440 
441 static int bt_alloc(struct sbitmap_queue *bt, unsigned int depth,
442 		    bool round_robin, int node)
443 {
444 	return sbitmap_queue_init_node(bt, depth, -1, round_robin, GFP_KERNEL,
445 				       node);
446 }
447 
448 static int blk_mq_init_bitmap_tags(struct blk_mq_tags *tags,
449 				   int node, int alloc_policy)
450 {
451 	unsigned int depth = tags->nr_tags - tags->nr_reserved_tags;
452 	bool round_robin = alloc_policy == BLK_TAG_ALLOC_RR;
453 
454 	if (bt_alloc(&tags->__bitmap_tags, depth, round_robin, node))
455 		return -ENOMEM;
456 	if (bt_alloc(&tags->__breserved_tags, tags->nr_reserved_tags,
457 		     round_robin, node))
458 		goto free_bitmap_tags;
459 
460 	tags->bitmap_tags = &tags->__bitmap_tags;
461 	tags->breserved_tags = &tags->__breserved_tags;
462 
463 	return 0;
464 free_bitmap_tags:
465 	sbitmap_queue_free(&tags->__bitmap_tags);
466 	return -ENOMEM;
467 }
468 
469 int blk_mq_init_shared_sbitmap(struct blk_mq_tag_set *set, unsigned int flags)
470 {
471 	unsigned int depth = set->queue_depth - set->reserved_tags;
472 	int alloc_policy = BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags);
473 	bool round_robin = alloc_policy == BLK_TAG_ALLOC_RR;
474 	int i, node = set->numa_node;
475 
476 	if (bt_alloc(&set->__bitmap_tags, depth, round_robin, node))
477 		return -ENOMEM;
478 	if (bt_alloc(&set->__breserved_tags, set->reserved_tags,
479 		     round_robin, node))
480 		goto free_bitmap_tags;
481 
482 	for (i = 0; i < set->nr_hw_queues; i++) {
483 		struct blk_mq_tags *tags = set->tags[i];
484 
485 		tags->bitmap_tags = &set->__bitmap_tags;
486 		tags->breserved_tags = &set->__breserved_tags;
487 	}
488 
489 	return 0;
490 free_bitmap_tags:
491 	sbitmap_queue_free(&set->__bitmap_tags);
492 	return -ENOMEM;
493 }
494 
495 void blk_mq_exit_shared_sbitmap(struct blk_mq_tag_set *set)
496 {
497 	sbitmap_queue_free(&set->__bitmap_tags);
498 	sbitmap_queue_free(&set->__breserved_tags);
499 }
500 
501 struct blk_mq_tags *blk_mq_init_tags(unsigned int total_tags,
502 				     unsigned int reserved_tags,
503 				     int node, unsigned int flags)
504 {
505 	int alloc_policy = BLK_MQ_FLAG_TO_ALLOC_POLICY(flags);
506 	struct blk_mq_tags *tags;
507 
508 	if (total_tags > BLK_MQ_TAG_MAX) {
509 		pr_err("blk-mq: tag depth too large\n");
510 		return NULL;
511 	}
512 
513 	tags = kzalloc_node(sizeof(*tags), GFP_KERNEL, node);
514 	if (!tags)
515 		return NULL;
516 
517 	tags->nr_tags = total_tags;
518 	tags->nr_reserved_tags = reserved_tags;
519 
520 	if (flags & BLK_MQ_F_TAG_HCTX_SHARED)
521 		return tags;
522 
523 	if (blk_mq_init_bitmap_tags(tags, node, alloc_policy) < 0) {
524 		kfree(tags);
525 		return NULL;
526 	}
527 	return tags;
528 }
529 
530 void blk_mq_free_tags(struct blk_mq_tags *tags, unsigned int flags)
531 {
532 	if (!(flags & BLK_MQ_F_TAG_HCTX_SHARED)) {
533 		sbitmap_queue_free(tags->bitmap_tags);
534 		sbitmap_queue_free(tags->breserved_tags);
535 	}
536 	kfree(tags);
537 }
538 
539 int blk_mq_tag_update_depth(struct blk_mq_hw_ctx *hctx,
540 			    struct blk_mq_tags **tagsptr, unsigned int tdepth,
541 			    bool can_grow)
542 {
543 	struct blk_mq_tags *tags = *tagsptr;
544 
545 	if (tdepth <= tags->nr_reserved_tags)
546 		return -EINVAL;
547 
548 	/*
549 	 * If we are allowed to grow beyond the original size, allocate
550 	 * a new set of tags before freeing the old one.
551 	 */
552 	if (tdepth > tags->nr_tags) {
553 		struct blk_mq_tag_set *set = hctx->queue->tag_set;
554 		/* Only sched tags can grow, so clear HCTX_SHARED flag  */
555 		unsigned int flags = set->flags & ~BLK_MQ_F_TAG_HCTX_SHARED;
556 		struct blk_mq_tags *new;
557 		bool ret;
558 
559 		if (!can_grow)
560 			return -EINVAL;
561 
562 		/*
563 		 * We need some sort of upper limit, set it high enough that
564 		 * no valid use cases should require more.
565 		 */
566 		if (tdepth > 16 * BLKDEV_MAX_RQ)
567 			return -EINVAL;
568 
569 		new = blk_mq_alloc_rq_map(set, hctx->queue_num, tdepth,
570 				tags->nr_reserved_tags, flags);
571 		if (!new)
572 			return -ENOMEM;
573 		ret = blk_mq_alloc_rqs(set, new, hctx->queue_num, tdepth);
574 		if (ret) {
575 			blk_mq_free_rq_map(new, flags);
576 			return -ENOMEM;
577 		}
578 
579 		blk_mq_free_rqs(set, *tagsptr, hctx->queue_num);
580 		blk_mq_free_rq_map(*tagsptr, flags);
581 		*tagsptr = new;
582 	} else {
583 		/*
584 		 * Don't need (or can't) update reserved tags here, they
585 		 * remain static and should never need resizing.
586 		 */
587 		sbitmap_queue_resize(tags->bitmap_tags,
588 				tdepth - tags->nr_reserved_tags);
589 	}
590 
591 	return 0;
592 }
593 
594 void blk_mq_tag_resize_shared_sbitmap(struct blk_mq_tag_set *set, unsigned int size)
595 {
596 	sbitmap_queue_resize(&set->__bitmap_tags, size - set->reserved_tags);
597 }
598 
599 /**
600  * blk_mq_unique_tag() - return a tag that is unique queue-wide
601  * @rq: request for which to compute a unique tag
602  *
603  * The tag field in struct request is unique per hardware queue but not over
604  * all hardware queues. Hence this function that returns a tag with the
605  * hardware context index in the upper bits and the per hardware queue tag in
606  * the lower bits.
607  *
608  * Note: When called for a request that is queued on a non-multiqueue request
609  * queue, the hardware context index is set to zero.
610  */
611 u32 blk_mq_unique_tag(struct request *rq)
612 {
613 	return (rq->mq_hctx->queue_num << BLK_MQ_UNIQUE_TAG_BITS) |
614 		(rq->tag & BLK_MQ_UNIQUE_TAG_MASK);
615 }
616 EXPORT_SYMBOL(blk_mq_unique_tag);
617