xref: /linux/block/blk-mq-tag.c (revision b615879dbfea6cf1236acbc3f2fb25ae84e07071)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Tag allocation using scalable bitmaps. Uses active queue tracking to support
4  * fairer distribution of tags between multiple submitters when a shared tag map
5  * is used.
6  *
7  * Copyright (C) 2013-2014 Jens Axboe
8  */
9 #include <linux/kernel.h>
10 #include <linux/module.h>
11 #include <linux/slab.h>
12 #include <linux/mm.h>
13 #include <linux/kmemleak.h>
14 
15 #include <linux/delay.h>
16 #include "blk.h"
17 #include "blk-mq.h"
18 #include "blk-mq-sched.h"
19 
20 /*
21  * Recalculate wakeup batch when tag is shared by hctx.
22  */
23 static void blk_mq_update_wake_batch(struct blk_mq_tags *tags,
24 		unsigned int users)
25 {
26 	if (!users)
27 		return;
28 
29 	sbitmap_queue_recalculate_wake_batch(&tags->bitmap_tags,
30 			users);
31 	sbitmap_queue_recalculate_wake_batch(&tags->breserved_tags,
32 			users);
33 }
34 
35 /*
36  * If a previously inactive queue goes active, bump the active user count.
37  * We need to do this before try to allocate driver tag, then even if fail
38  * to get tag when first time, the other shared-tag users could reserve
39  * budget for it.
40  */
41 void __blk_mq_tag_busy(struct blk_mq_hw_ctx *hctx)
42 {
43 	unsigned int users;
44 	unsigned long flags;
45 	struct blk_mq_tags *tags = hctx->tags;
46 
47 	/*
48 	 * calling test_bit() prior to test_and_set_bit() is intentional,
49 	 * it avoids dirtying the cacheline if the queue is already active.
50 	 */
51 	if (blk_mq_is_shared_tags(hctx->flags)) {
52 		struct request_queue *q = hctx->queue;
53 
54 		if (test_bit(QUEUE_FLAG_HCTX_ACTIVE, &q->queue_flags) ||
55 		    test_and_set_bit(QUEUE_FLAG_HCTX_ACTIVE, &q->queue_flags))
56 			return;
57 	} else {
58 		if (test_bit(BLK_MQ_S_TAG_ACTIVE, &hctx->state) ||
59 		    test_and_set_bit(BLK_MQ_S_TAG_ACTIVE, &hctx->state))
60 			return;
61 	}
62 
63 	spin_lock_irqsave(&tags->lock, flags);
64 	users = tags->active_queues + 1;
65 	WRITE_ONCE(tags->active_queues, users);
66 	blk_mq_update_wake_batch(tags, users);
67 	spin_unlock_irqrestore(&tags->lock, flags);
68 }
69 
70 /*
71  * Wakeup all potentially sleeping on tags
72  */
73 void blk_mq_tag_wakeup_all(struct blk_mq_tags *tags, bool include_reserve)
74 {
75 	sbitmap_queue_wake_all(&tags->bitmap_tags);
76 	if (include_reserve)
77 		sbitmap_queue_wake_all(&tags->breserved_tags);
78 }
79 
80 /*
81  * If a previously busy queue goes inactive, potential waiters could now
82  * be allowed to queue. Wake them up and check.
83  */
84 void __blk_mq_tag_idle(struct blk_mq_hw_ctx *hctx)
85 {
86 	struct blk_mq_tags *tags = hctx->tags;
87 	unsigned int users;
88 
89 	if (blk_mq_is_shared_tags(hctx->flags)) {
90 		struct request_queue *q = hctx->queue;
91 
92 		if (!test_and_clear_bit(QUEUE_FLAG_HCTX_ACTIVE,
93 					&q->queue_flags))
94 			return;
95 	} else {
96 		if (!test_and_clear_bit(BLK_MQ_S_TAG_ACTIVE, &hctx->state))
97 			return;
98 	}
99 
100 	spin_lock_irq(&tags->lock);
101 	users = tags->active_queues - 1;
102 	WRITE_ONCE(tags->active_queues, users);
103 	blk_mq_update_wake_batch(tags, users);
104 	spin_unlock_irq(&tags->lock);
105 
106 	blk_mq_tag_wakeup_all(tags, false);
107 }
108 
109 static int __blk_mq_get_tag(struct blk_mq_alloc_data *data,
110 			    struct sbitmap_queue *bt)
111 {
112 	if (!data->q->elevator && !(data->flags & BLK_MQ_REQ_RESERVED) &&
113 			!hctx_may_queue(data->hctx, bt))
114 		return BLK_MQ_NO_TAG;
115 
116 	if (data->shallow_depth)
117 		return sbitmap_queue_get_shallow(bt, data->shallow_depth);
118 	else
119 		return __sbitmap_queue_get(bt);
120 }
121 
122 unsigned long blk_mq_get_tags(struct blk_mq_alloc_data *data, int nr_tags,
123 			      unsigned int *offset)
124 {
125 	struct blk_mq_tags *tags = blk_mq_tags_from_data(data);
126 	struct sbitmap_queue *bt = &tags->bitmap_tags;
127 	unsigned long ret;
128 
129 	if (data->shallow_depth ||data->flags & BLK_MQ_REQ_RESERVED ||
130 	    data->hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED)
131 		return 0;
132 	ret = __sbitmap_queue_get_batch(bt, nr_tags, offset);
133 	*offset += tags->nr_reserved_tags;
134 	return ret;
135 }
136 
137 unsigned int blk_mq_get_tag(struct blk_mq_alloc_data *data)
138 {
139 	struct blk_mq_tags *tags = blk_mq_tags_from_data(data);
140 	struct sbitmap_queue *bt;
141 	struct sbq_wait_state *ws;
142 	DEFINE_SBQ_WAIT(wait);
143 	unsigned int tag_offset;
144 	int tag;
145 
146 	if (data->flags & BLK_MQ_REQ_RESERVED) {
147 		if (unlikely(!tags->nr_reserved_tags)) {
148 			WARN_ON_ONCE(1);
149 			return BLK_MQ_NO_TAG;
150 		}
151 		bt = &tags->breserved_tags;
152 		tag_offset = 0;
153 	} else {
154 		bt = &tags->bitmap_tags;
155 		tag_offset = tags->nr_reserved_tags;
156 	}
157 
158 	tag = __blk_mq_get_tag(data, bt);
159 	if (tag != BLK_MQ_NO_TAG)
160 		goto found_tag;
161 
162 	if (data->flags & BLK_MQ_REQ_NOWAIT)
163 		return BLK_MQ_NO_TAG;
164 
165 	ws = bt_wait_ptr(bt, data->hctx);
166 	do {
167 		struct sbitmap_queue *bt_prev;
168 
169 		/*
170 		 * We're out of tags on this hardware queue, kick any
171 		 * pending IO submits before going to sleep waiting for
172 		 * some to complete.
173 		 */
174 		blk_mq_run_hw_queue(data->hctx, false);
175 
176 		/*
177 		 * Retry tag allocation after running the hardware queue,
178 		 * as running the queue may also have found completions.
179 		 */
180 		tag = __blk_mq_get_tag(data, bt);
181 		if (tag != BLK_MQ_NO_TAG)
182 			break;
183 
184 		sbitmap_prepare_to_wait(bt, ws, &wait, TASK_UNINTERRUPTIBLE);
185 
186 		tag = __blk_mq_get_tag(data, bt);
187 		if (tag != BLK_MQ_NO_TAG)
188 			break;
189 
190 		bt_prev = bt;
191 		io_schedule();
192 
193 		sbitmap_finish_wait(bt, ws, &wait);
194 
195 		data->ctx = blk_mq_get_ctx(data->q);
196 		data->hctx = blk_mq_map_queue(data->cmd_flags, data->ctx);
197 		tags = blk_mq_tags_from_data(data);
198 		if (data->flags & BLK_MQ_REQ_RESERVED)
199 			bt = &tags->breserved_tags;
200 		else
201 			bt = &tags->bitmap_tags;
202 
203 		/*
204 		 * If destination hw queue is changed, fake wake up on
205 		 * previous queue for compensating the wake up miss, so
206 		 * other allocations on previous queue won't be starved.
207 		 */
208 		if (bt != bt_prev)
209 			sbitmap_queue_wake_up(bt_prev, 1);
210 
211 		ws = bt_wait_ptr(bt, data->hctx);
212 	} while (1);
213 
214 	sbitmap_finish_wait(bt, ws, &wait);
215 
216 found_tag:
217 	/*
218 	 * Give up this allocation if the hctx is inactive.  The caller will
219 	 * retry on an active hctx.
220 	 */
221 	if (unlikely(test_bit(BLK_MQ_S_INACTIVE, &data->hctx->state))) {
222 		blk_mq_put_tag(tags, data->ctx, tag + tag_offset);
223 		return BLK_MQ_NO_TAG;
224 	}
225 	return tag + tag_offset;
226 }
227 
228 void blk_mq_put_tag(struct blk_mq_tags *tags, struct blk_mq_ctx *ctx,
229 		    unsigned int tag)
230 {
231 	if (!blk_mq_tag_is_reserved(tags, tag)) {
232 		const int real_tag = tag - tags->nr_reserved_tags;
233 
234 		BUG_ON(real_tag >= tags->nr_tags);
235 		sbitmap_queue_clear(&tags->bitmap_tags, real_tag, ctx->cpu);
236 	} else {
237 		sbitmap_queue_clear(&tags->breserved_tags, tag, ctx->cpu);
238 	}
239 }
240 
241 void blk_mq_put_tags(struct blk_mq_tags *tags, int *tag_array, int nr_tags)
242 {
243 	sbitmap_queue_clear_batch(&tags->bitmap_tags, tags->nr_reserved_tags,
244 					tag_array, nr_tags);
245 }
246 
247 struct bt_iter_data {
248 	struct blk_mq_hw_ctx *hctx;
249 	struct request_queue *q;
250 	busy_tag_iter_fn *fn;
251 	void *data;
252 	bool reserved;
253 };
254 
255 static struct request *blk_mq_find_and_get_req(struct blk_mq_tags *tags,
256 		unsigned int bitnr)
257 {
258 	struct request *rq;
259 
260 	rq = tags->rqs[bitnr];
261 	if (!rq || rq->tag != bitnr || !req_ref_inc_not_zero(rq))
262 		rq = NULL;
263 	return rq;
264 }
265 
266 static bool bt_iter(struct sbitmap *bitmap, unsigned int bitnr, void *data)
267 {
268 	struct bt_iter_data *iter_data = data;
269 	struct blk_mq_hw_ctx *hctx = iter_data->hctx;
270 	struct request_queue *q = iter_data->q;
271 	struct blk_mq_tag_set *set = q->tag_set;
272 	struct blk_mq_tags *tags;
273 	struct request *rq;
274 	bool ret = true;
275 
276 	if (blk_mq_is_shared_tags(set->flags))
277 		tags = set->shared_tags;
278 	else
279 		tags = hctx->tags;
280 
281 	if (!iter_data->reserved)
282 		bitnr += tags->nr_reserved_tags;
283 	/*
284 	 * We can hit rq == NULL here, because the tagging functions
285 	 * test and set the bit before assigning ->rqs[].
286 	 */
287 	rq = blk_mq_find_and_get_req(tags, bitnr);
288 	if (!rq)
289 		return true;
290 
291 	if (rq->q == q && (!hctx || rq->mq_hctx == hctx))
292 		ret = iter_data->fn(rq, iter_data->data);
293 	blk_mq_put_rq_ref(rq);
294 	return ret;
295 }
296 
297 /**
298  * bt_for_each - iterate over the requests associated with a hardware queue
299  * @hctx:	Hardware queue to examine.
300  * @q:		Request queue @hctx is associated with (@hctx->queue).
301  * @bt:		sbitmap to examine. This is either the breserved_tags member
302  *		or the bitmap_tags member of struct blk_mq_tags.
303  * @fn:		Pointer to the function that will be called for each request
304  *		associated with @hctx that has been assigned a driver tag.
305  *		@fn will be called as follows: @fn(rq, @data) where rq is a
306  *		pointer to a request. Return %true to continue iterating tags;
307  *		%false to stop.
308  * @data:	Will be passed as second argument to @fn.
309  * @reserved:	Indicates whether @bt is the breserved_tags member or the
310  *		bitmap_tags member of struct blk_mq_tags.
311  */
312 static void bt_for_each(struct blk_mq_hw_ctx *hctx, struct request_queue *q,
313 			struct sbitmap_queue *bt, busy_tag_iter_fn *fn,
314 			void *data, bool reserved)
315 {
316 	struct bt_iter_data iter_data = {
317 		.hctx = hctx,
318 		.fn = fn,
319 		.data = data,
320 		.reserved = reserved,
321 		.q = q,
322 	};
323 
324 	sbitmap_for_each_set(&bt->sb, bt_iter, &iter_data);
325 }
326 
327 struct bt_tags_iter_data {
328 	struct blk_mq_tags *tags;
329 	busy_tag_iter_fn *fn;
330 	void *data;
331 	unsigned int flags;
332 };
333 
334 #define BT_TAG_ITER_RESERVED		(1 << 0)
335 #define BT_TAG_ITER_STARTED		(1 << 1)
336 #define BT_TAG_ITER_STATIC_RQS		(1 << 2)
337 
338 static bool bt_tags_iter(struct sbitmap *bitmap, unsigned int bitnr, void *data)
339 {
340 	struct bt_tags_iter_data *iter_data = data;
341 	struct blk_mq_tags *tags = iter_data->tags;
342 	struct request *rq;
343 	bool ret = true;
344 	bool iter_static_rqs = !!(iter_data->flags & BT_TAG_ITER_STATIC_RQS);
345 
346 	if (!(iter_data->flags & BT_TAG_ITER_RESERVED))
347 		bitnr += tags->nr_reserved_tags;
348 
349 	/*
350 	 * We can hit rq == NULL here, because the tagging functions
351 	 * test and set the bit before assigning ->rqs[].
352 	 */
353 	if (iter_static_rqs)
354 		rq = tags->static_rqs[bitnr];
355 	else
356 		rq = blk_mq_find_and_get_req(tags, bitnr);
357 	if (!rq)
358 		return true;
359 
360 	if (!(iter_data->flags & BT_TAG_ITER_STARTED) ||
361 	    blk_mq_request_started(rq))
362 		ret = iter_data->fn(rq, iter_data->data);
363 	if (!iter_static_rqs)
364 		blk_mq_put_rq_ref(rq);
365 	return ret;
366 }
367 
368 /**
369  * bt_tags_for_each - iterate over the requests in a tag map
370  * @tags:	Tag map to iterate over.
371  * @bt:		sbitmap to examine. This is either the breserved_tags member
372  *		or the bitmap_tags member of struct blk_mq_tags.
373  * @fn:		Pointer to the function that will be called for each started
374  *		request. @fn will be called as follows: @fn(rq, @data) where rq
375  *		is a pointer to a request. Return %true to continue iterating
376  *		tags; %false to stop.
377  * @data:	Will be passed as second argument to @fn.
378  * @flags:	BT_TAG_ITER_*
379  */
380 static void bt_tags_for_each(struct blk_mq_tags *tags, struct sbitmap_queue *bt,
381 			     busy_tag_iter_fn *fn, void *data, unsigned int flags)
382 {
383 	struct bt_tags_iter_data iter_data = {
384 		.tags = tags,
385 		.fn = fn,
386 		.data = data,
387 		.flags = flags,
388 	};
389 
390 	if (tags->rqs)
391 		sbitmap_for_each_set(&bt->sb, bt_tags_iter, &iter_data);
392 }
393 
394 static void __blk_mq_all_tag_iter(struct blk_mq_tags *tags,
395 		busy_tag_iter_fn *fn, void *priv, unsigned int flags)
396 {
397 	WARN_ON_ONCE(flags & BT_TAG_ITER_RESERVED);
398 
399 	if (tags->nr_reserved_tags)
400 		bt_tags_for_each(tags, &tags->breserved_tags, fn, priv,
401 				 flags | BT_TAG_ITER_RESERVED);
402 	bt_tags_for_each(tags, &tags->bitmap_tags, fn, priv, flags);
403 }
404 
405 /**
406  * blk_mq_all_tag_iter - iterate over all requests in a tag map
407  * @tags:	Tag map to iterate over.
408  * @fn:		Pointer to the function that will be called for each
409  *		request. @fn will be called as follows: @fn(rq, @priv) where rq
410  *		is a pointer to a request. Return %true to continue iterating
411  *		tags; %false to stop.
412  * @priv:	Will be passed as second argument to @fn.
413  *
414  * Caller has to pass the tag map from which requests are allocated.
415  */
416 void blk_mq_all_tag_iter(struct blk_mq_tags *tags, busy_tag_iter_fn *fn,
417 		void *priv)
418 {
419 	__blk_mq_all_tag_iter(tags, fn, priv, BT_TAG_ITER_STATIC_RQS);
420 }
421 
422 /**
423  * blk_mq_tagset_busy_iter - iterate over all started requests in a tag set
424  * @tagset:	Tag set to iterate over.
425  * @fn:		Pointer to the function that will be called for each started
426  *		request. @fn will be called as follows: @fn(rq, @priv) where
427  *		rq is a pointer to a request. Return true to continue iterating
428  *		tags, false to stop.
429  * @priv:	Will be passed as second argument to @fn.
430  *
431  * We grab one request reference before calling @fn and release it after
432  * @fn returns.
433  */
434 void blk_mq_tagset_busy_iter(struct blk_mq_tag_set *tagset,
435 		busy_tag_iter_fn *fn, void *priv)
436 {
437 	unsigned int flags = tagset->flags;
438 	int i, nr_tags, srcu_idx;
439 
440 	srcu_idx = srcu_read_lock(&tagset->tags_srcu);
441 
442 	nr_tags = blk_mq_is_shared_tags(flags) ? 1 : tagset->nr_hw_queues;
443 
444 	for (i = 0; i < nr_tags; i++) {
445 		if (tagset->tags && tagset->tags[i])
446 			__blk_mq_all_tag_iter(tagset->tags[i], fn, priv,
447 					      BT_TAG_ITER_STARTED);
448 	}
449 	srcu_read_unlock(&tagset->tags_srcu, srcu_idx);
450 }
451 EXPORT_SYMBOL(blk_mq_tagset_busy_iter);
452 
453 static bool blk_mq_tagset_count_completed_rqs(struct request *rq, void *data)
454 {
455 	unsigned *count = data;
456 
457 	if (blk_mq_request_completed(rq))
458 		(*count)++;
459 	return true;
460 }
461 
462 /**
463  * blk_mq_tagset_wait_completed_request - Wait until all scheduled request
464  * completions have finished.
465  * @tagset:	Tag set to drain completed request
466  *
467  * Note: This function has to be run after all IO queues are shutdown
468  */
469 void blk_mq_tagset_wait_completed_request(struct blk_mq_tag_set *tagset)
470 {
471 	while (true) {
472 		unsigned count = 0;
473 
474 		blk_mq_tagset_busy_iter(tagset,
475 				blk_mq_tagset_count_completed_rqs, &count);
476 		if (!count)
477 			break;
478 		msleep(5);
479 	}
480 }
481 EXPORT_SYMBOL(blk_mq_tagset_wait_completed_request);
482 
483 /**
484  * blk_mq_queue_tag_busy_iter - iterate over all requests with a driver tag
485  * @q:		Request queue to examine.
486  * @fn:		Pointer to the function that will be called for each request
487  *		on @q. @fn will be called as follows: @fn(rq, @priv) where rq
488  *		is a pointer to a request and hctx points to the hardware queue
489  *		associated with the request.
490  * @priv:	Will be passed as second argument to @fn.
491  *
492  * Note: if @q->tag_set is shared with other request queues then @fn will be
493  * called for all requests on all queues that share that tag set and not only
494  * for requests associated with @q.
495  */
496 void blk_mq_queue_tag_busy_iter(struct request_queue *q, busy_tag_iter_fn *fn,
497 		void *priv)
498 {
499 	int srcu_idx;
500 
501 	/*
502 	 * __blk_mq_update_nr_hw_queues() updates nr_hw_queues and hctx_table
503 	 * while the queue is frozen. So we can use q_usage_counter to avoid
504 	 * racing with it.
505 	 */
506 	if (!percpu_ref_tryget(&q->q_usage_counter))
507 		return;
508 
509 	srcu_idx = srcu_read_lock(&q->tag_set->tags_srcu);
510 	if (blk_mq_is_shared_tags(q->tag_set->flags)) {
511 		struct blk_mq_tags *tags = q->tag_set->shared_tags;
512 		struct sbitmap_queue *bresv = &tags->breserved_tags;
513 		struct sbitmap_queue *btags = &tags->bitmap_tags;
514 
515 		if (tags->nr_reserved_tags)
516 			bt_for_each(NULL, q, bresv, fn, priv, true);
517 		bt_for_each(NULL, q, btags, fn, priv, false);
518 	} else {
519 		struct blk_mq_hw_ctx *hctx;
520 		unsigned long i;
521 
522 		queue_for_each_hw_ctx(q, hctx, i) {
523 			struct blk_mq_tags *tags = hctx->tags;
524 			struct sbitmap_queue *bresv = &tags->breserved_tags;
525 			struct sbitmap_queue *btags = &tags->bitmap_tags;
526 
527 			/*
528 			 * If no software queues are currently mapped to this
529 			 * hardware queue, there's nothing to check
530 			 */
531 			if (!blk_mq_hw_queue_mapped(hctx))
532 				continue;
533 
534 			if (tags->nr_reserved_tags)
535 				bt_for_each(hctx, q, bresv, fn, priv, true);
536 			bt_for_each(hctx, q, btags, fn, priv, false);
537 		}
538 	}
539 	srcu_read_unlock(&q->tag_set->tags_srcu, srcu_idx);
540 	blk_queue_exit(q);
541 }
542 
543 static int bt_alloc(struct sbitmap_queue *bt, unsigned int depth,
544 		    bool round_robin, int node)
545 {
546 	return sbitmap_queue_init_node(bt, depth, -1, round_robin, GFP_KERNEL,
547 				       node);
548 }
549 
550 struct blk_mq_tags *blk_mq_init_tags(unsigned int total_tags,
551 		unsigned int reserved_tags, unsigned int flags, int node)
552 {
553 	unsigned int depth = total_tags - reserved_tags;
554 	bool round_robin = flags & BLK_MQ_F_TAG_RR;
555 	struct blk_mq_tags *tags;
556 
557 	if (total_tags > BLK_MQ_TAG_MAX) {
558 		pr_err("blk-mq: tag depth too large\n");
559 		return NULL;
560 	}
561 
562 	tags = kzalloc_node(sizeof(*tags), GFP_KERNEL, node);
563 	if (!tags)
564 		return NULL;
565 
566 	tags->nr_tags = total_tags;
567 	tags->nr_reserved_tags = reserved_tags;
568 	spin_lock_init(&tags->lock);
569 	INIT_LIST_HEAD(&tags->page_list);
570 
571 	if (bt_alloc(&tags->bitmap_tags, depth, round_robin, node))
572 		goto out_free_tags;
573 	if (bt_alloc(&tags->breserved_tags, reserved_tags, round_robin, node))
574 		goto out_free_bitmap_tags;
575 
576 	return tags;
577 
578 out_free_bitmap_tags:
579 	sbitmap_queue_free(&tags->bitmap_tags);
580 out_free_tags:
581 	kfree(tags);
582 	return NULL;
583 }
584 
585 static void blk_mq_free_tags_callback(struct rcu_head *head)
586 {
587 	struct blk_mq_tags *tags = container_of(head, struct blk_mq_tags,
588 						rcu_head);
589 	struct page *page;
590 
591 	while (!list_empty(&tags->page_list)) {
592 		page = list_first_entry(&tags->page_list, struct page, lru);
593 		list_del_init(&page->lru);
594 		/*
595 		 * Remove kmemleak object previously allocated in
596 		 * blk_mq_alloc_rqs().
597 		 */
598 		kmemleak_free(page_address(page));
599 		__free_pages(page, page->private);
600 	}
601 	kfree(tags);
602 }
603 
604 void blk_mq_free_tags(struct blk_mq_tag_set *set, struct blk_mq_tags *tags)
605 {
606 	sbitmap_queue_free(&tags->bitmap_tags);
607 	sbitmap_queue_free(&tags->breserved_tags);
608 
609 	/* if tags pages is not allocated yet, free tags directly */
610 	if (list_empty(&tags->page_list)) {
611 		kfree(tags);
612 		return;
613 	}
614 
615 	call_srcu(&set->tags_srcu, &tags->rcu_head, blk_mq_free_tags_callback);
616 }
617 
618 void blk_mq_tag_resize_shared_tags(struct blk_mq_tag_set *set, unsigned int size)
619 {
620 	struct blk_mq_tags *tags = set->shared_tags;
621 
622 	sbitmap_queue_resize(&tags->bitmap_tags, size - set->reserved_tags);
623 }
624 
625 void blk_mq_tag_update_sched_shared_tags(struct request_queue *q)
626 {
627 	sbitmap_queue_resize(&q->sched_shared_tags->bitmap_tags,
628 			     q->nr_requests - q->tag_set->reserved_tags);
629 }
630 
631 /**
632  * blk_mq_unique_tag() - return a tag that is unique queue-wide
633  * @rq: request for which to compute a unique tag
634  *
635  * The tag field in struct request is unique per hardware queue but not over
636  * all hardware queues. Hence this function that returns a tag with the
637  * hardware context index in the upper bits and the per hardware queue tag in
638  * the lower bits.
639  *
640  * Note: When called for a request that is queued on a non-multiqueue request
641  * queue, the hardware context index is set to zero.
642  */
643 u32 blk_mq_unique_tag(struct request *rq)
644 {
645 	return (rq->mq_hctx->queue_num << BLK_MQ_UNIQUE_TAG_BITS) |
646 		(rq->tag & BLK_MQ_UNIQUE_TAG_MASK);
647 }
648 EXPORT_SYMBOL(blk_mq_unique_tag);
649