xref: /linux/block/blk-mq-tag.c (revision a3a02a52bcfcbcc4a637d4b68bf1bc391c9fad02)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Tag allocation using scalable bitmaps. Uses active queue tracking to support
4  * fairer distribution of tags between multiple submitters when a shared tag map
5  * is used.
6  *
7  * Copyright (C) 2013-2014 Jens Axboe
8  */
9 #include <linux/kernel.h>
10 #include <linux/module.h>
11 
12 #include <linux/delay.h>
13 #include "blk.h"
14 #include "blk-mq.h"
15 #include "blk-mq-sched.h"
16 
17 /*
18  * Recalculate wakeup batch when tag is shared by hctx.
19  */
20 static void blk_mq_update_wake_batch(struct blk_mq_tags *tags,
21 		unsigned int users)
22 {
23 	if (!users)
24 		return;
25 
26 	sbitmap_queue_recalculate_wake_batch(&tags->bitmap_tags,
27 			users);
28 	sbitmap_queue_recalculate_wake_batch(&tags->breserved_tags,
29 			users);
30 }
31 
32 /*
33  * If a previously inactive queue goes active, bump the active user count.
34  * We need to do this before try to allocate driver tag, then even if fail
35  * to get tag when first time, the other shared-tag users could reserve
36  * budget for it.
37  */
38 void __blk_mq_tag_busy(struct blk_mq_hw_ctx *hctx)
39 {
40 	unsigned int users;
41 	unsigned long flags;
42 	struct blk_mq_tags *tags = hctx->tags;
43 
44 	/*
45 	 * calling test_bit() prior to test_and_set_bit() is intentional,
46 	 * it avoids dirtying the cacheline if the queue is already active.
47 	 */
48 	if (blk_mq_is_shared_tags(hctx->flags)) {
49 		struct request_queue *q = hctx->queue;
50 
51 		if (test_bit(QUEUE_FLAG_HCTX_ACTIVE, &q->queue_flags) ||
52 		    test_and_set_bit(QUEUE_FLAG_HCTX_ACTIVE, &q->queue_flags))
53 			return;
54 	} else {
55 		if (test_bit(BLK_MQ_S_TAG_ACTIVE, &hctx->state) ||
56 		    test_and_set_bit(BLK_MQ_S_TAG_ACTIVE, &hctx->state))
57 			return;
58 	}
59 
60 	spin_lock_irqsave(&tags->lock, flags);
61 	users = tags->active_queues + 1;
62 	WRITE_ONCE(tags->active_queues, users);
63 	blk_mq_update_wake_batch(tags, users);
64 	spin_unlock_irqrestore(&tags->lock, flags);
65 }
66 
67 /*
68  * Wakeup all potentially sleeping on tags
69  */
70 void blk_mq_tag_wakeup_all(struct blk_mq_tags *tags, bool include_reserve)
71 {
72 	sbitmap_queue_wake_all(&tags->bitmap_tags);
73 	if (include_reserve)
74 		sbitmap_queue_wake_all(&tags->breserved_tags);
75 }
76 
77 /*
78  * If a previously busy queue goes inactive, potential waiters could now
79  * be allowed to queue. Wake them up and check.
80  */
81 void __blk_mq_tag_idle(struct blk_mq_hw_ctx *hctx)
82 {
83 	struct blk_mq_tags *tags = hctx->tags;
84 	unsigned int users;
85 
86 	if (blk_mq_is_shared_tags(hctx->flags)) {
87 		struct request_queue *q = hctx->queue;
88 
89 		if (!test_and_clear_bit(QUEUE_FLAG_HCTX_ACTIVE,
90 					&q->queue_flags))
91 			return;
92 	} else {
93 		if (!test_and_clear_bit(BLK_MQ_S_TAG_ACTIVE, &hctx->state))
94 			return;
95 	}
96 
97 	spin_lock_irq(&tags->lock);
98 	users = tags->active_queues - 1;
99 	WRITE_ONCE(tags->active_queues, users);
100 	blk_mq_update_wake_batch(tags, users);
101 	spin_unlock_irq(&tags->lock);
102 
103 	blk_mq_tag_wakeup_all(tags, false);
104 }
105 
106 static int __blk_mq_get_tag(struct blk_mq_alloc_data *data,
107 			    struct sbitmap_queue *bt)
108 {
109 	if (!data->q->elevator && !(data->flags & BLK_MQ_REQ_RESERVED) &&
110 			!hctx_may_queue(data->hctx, bt))
111 		return BLK_MQ_NO_TAG;
112 
113 	if (data->shallow_depth)
114 		return sbitmap_queue_get_shallow(bt, data->shallow_depth);
115 	else
116 		return __sbitmap_queue_get(bt);
117 }
118 
119 unsigned long blk_mq_get_tags(struct blk_mq_alloc_data *data, int nr_tags,
120 			      unsigned int *offset)
121 {
122 	struct blk_mq_tags *tags = blk_mq_tags_from_data(data);
123 	struct sbitmap_queue *bt = &tags->bitmap_tags;
124 	unsigned long ret;
125 
126 	if (data->shallow_depth ||data->flags & BLK_MQ_REQ_RESERVED ||
127 	    data->hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED)
128 		return 0;
129 	ret = __sbitmap_queue_get_batch(bt, nr_tags, offset);
130 	*offset += tags->nr_reserved_tags;
131 	return ret;
132 }
133 
134 unsigned int blk_mq_get_tag(struct blk_mq_alloc_data *data)
135 {
136 	struct blk_mq_tags *tags = blk_mq_tags_from_data(data);
137 	struct sbitmap_queue *bt;
138 	struct sbq_wait_state *ws;
139 	DEFINE_SBQ_WAIT(wait);
140 	unsigned int tag_offset;
141 	int tag;
142 
143 	if (data->flags & BLK_MQ_REQ_RESERVED) {
144 		if (unlikely(!tags->nr_reserved_tags)) {
145 			WARN_ON_ONCE(1);
146 			return BLK_MQ_NO_TAG;
147 		}
148 		bt = &tags->breserved_tags;
149 		tag_offset = 0;
150 	} else {
151 		bt = &tags->bitmap_tags;
152 		tag_offset = tags->nr_reserved_tags;
153 	}
154 
155 	tag = __blk_mq_get_tag(data, bt);
156 	if (tag != BLK_MQ_NO_TAG)
157 		goto found_tag;
158 
159 	if (data->flags & BLK_MQ_REQ_NOWAIT)
160 		return BLK_MQ_NO_TAG;
161 
162 	ws = bt_wait_ptr(bt, data->hctx);
163 	do {
164 		struct sbitmap_queue *bt_prev;
165 
166 		/*
167 		 * We're out of tags on this hardware queue, kick any
168 		 * pending IO submits before going to sleep waiting for
169 		 * some to complete.
170 		 */
171 		blk_mq_run_hw_queue(data->hctx, false);
172 
173 		/*
174 		 * Retry tag allocation after running the hardware queue,
175 		 * as running the queue may also have found completions.
176 		 */
177 		tag = __blk_mq_get_tag(data, bt);
178 		if (tag != BLK_MQ_NO_TAG)
179 			break;
180 
181 		sbitmap_prepare_to_wait(bt, ws, &wait, TASK_UNINTERRUPTIBLE);
182 
183 		tag = __blk_mq_get_tag(data, bt);
184 		if (tag != BLK_MQ_NO_TAG)
185 			break;
186 
187 		bt_prev = bt;
188 		io_schedule();
189 
190 		sbitmap_finish_wait(bt, ws, &wait);
191 
192 		data->ctx = blk_mq_get_ctx(data->q);
193 		data->hctx = blk_mq_map_queue(data->q, data->cmd_flags,
194 						data->ctx);
195 		tags = blk_mq_tags_from_data(data);
196 		if (data->flags & BLK_MQ_REQ_RESERVED)
197 			bt = &tags->breserved_tags;
198 		else
199 			bt = &tags->bitmap_tags;
200 
201 		/*
202 		 * If destination hw queue is changed, fake wake up on
203 		 * previous queue for compensating the wake up miss, so
204 		 * other allocations on previous queue won't be starved.
205 		 */
206 		if (bt != bt_prev)
207 			sbitmap_queue_wake_up(bt_prev, 1);
208 
209 		ws = bt_wait_ptr(bt, data->hctx);
210 	} while (1);
211 
212 	sbitmap_finish_wait(bt, ws, &wait);
213 
214 found_tag:
215 	/*
216 	 * Give up this allocation if the hctx is inactive.  The caller will
217 	 * retry on an active hctx.
218 	 */
219 	if (unlikely(test_bit(BLK_MQ_S_INACTIVE, &data->hctx->state))) {
220 		blk_mq_put_tag(tags, data->ctx, tag + tag_offset);
221 		return BLK_MQ_NO_TAG;
222 	}
223 	return tag + tag_offset;
224 }
225 
226 void blk_mq_put_tag(struct blk_mq_tags *tags, struct blk_mq_ctx *ctx,
227 		    unsigned int tag)
228 {
229 	if (!blk_mq_tag_is_reserved(tags, tag)) {
230 		const int real_tag = tag - tags->nr_reserved_tags;
231 
232 		BUG_ON(real_tag >= tags->nr_tags);
233 		sbitmap_queue_clear(&tags->bitmap_tags, real_tag, ctx->cpu);
234 	} else {
235 		sbitmap_queue_clear(&tags->breserved_tags, tag, ctx->cpu);
236 	}
237 }
238 
239 void blk_mq_put_tags(struct blk_mq_tags *tags, int *tag_array, int nr_tags)
240 {
241 	sbitmap_queue_clear_batch(&tags->bitmap_tags, tags->nr_reserved_tags,
242 					tag_array, nr_tags);
243 }
244 
245 struct bt_iter_data {
246 	struct blk_mq_hw_ctx *hctx;
247 	struct request_queue *q;
248 	busy_tag_iter_fn *fn;
249 	void *data;
250 	bool reserved;
251 };
252 
253 static struct request *blk_mq_find_and_get_req(struct blk_mq_tags *tags,
254 		unsigned int bitnr)
255 {
256 	struct request *rq;
257 	unsigned long flags;
258 
259 	spin_lock_irqsave(&tags->lock, flags);
260 	rq = tags->rqs[bitnr];
261 	if (!rq || rq->tag != bitnr || !req_ref_inc_not_zero(rq))
262 		rq = NULL;
263 	spin_unlock_irqrestore(&tags->lock, flags);
264 	return rq;
265 }
266 
267 static bool bt_iter(struct sbitmap *bitmap, unsigned int bitnr, void *data)
268 {
269 	struct bt_iter_data *iter_data = data;
270 	struct blk_mq_hw_ctx *hctx = iter_data->hctx;
271 	struct request_queue *q = iter_data->q;
272 	struct blk_mq_tag_set *set = q->tag_set;
273 	struct blk_mq_tags *tags;
274 	struct request *rq;
275 	bool ret = true;
276 
277 	if (blk_mq_is_shared_tags(set->flags))
278 		tags = set->shared_tags;
279 	else
280 		tags = hctx->tags;
281 
282 	if (!iter_data->reserved)
283 		bitnr += tags->nr_reserved_tags;
284 	/*
285 	 * We can hit rq == NULL here, because the tagging functions
286 	 * test and set the bit before assigning ->rqs[].
287 	 */
288 	rq = blk_mq_find_and_get_req(tags, bitnr);
289 	if (!rq)
290 		return true;
291 
292 	if (rq->q == q && (!hctx || rq->mq_hctx == hctx))
293 		ret = iter_data->fn(rq, iter_data->data);
294 	blk_mq_put_rq_ref(rq);
295 	return ret;
296 }
297 
298 /**
299  * bt_for_each - iterate over the requests associated with a hardware queue
300  * @hctx:	Hardware queue to examine.
301  * @q:		Request queue to examine.
302  * @bt:		sbitmap to examine. This is either the breserved_tags member
303  *		or the bitmap_tags member of struct blk_mq_tags.
304  * @fn:		Pointer to the function that will be called for each request
305  *		associated with @hctx that has been assigned a driver tag.
306  *		@fn will be called as follows: @fn(@hctx, rq, @data, @reserved)
307  *		where rq is a pointer to a request. Return true to continue
308  *		iterating tags, false to stop.
309  * @data:	Will be passed as third argument to @fn.
310  * @reserved:	Indicates whether @bt is the breserved_tags member or the
311  *		bitmap_tags member of struct blk_mq_tags.
312  */
313 static void bt_for_each(struct blk_mq_hw_ctx *hctx, struct request_queue *q,
314 			struct sbitmap_queue *bt, busy_tag_iter_fn *fn,
315 			void *data, bool reserved)
316 {
317 	struct bt_iter_data iter_data = {
318 		.hctx = hctx,
319 		.fn = fn,
320 		.data = data,
321 		.reserved = reserved,
322 		.q = q,
323 	};
324 
325 	sbitmap_for_each_set(&bt->sb, bt_iter, &iter_data);
326 }
327 
328 struct bt_tags_iter_data {
329 	struct blk_mq_tags *tags;
330 	busy_tag_iter_fn *fn;
331 	void *data;
332 	unsigned int flags;
333 };
334 
335 #define BT_TAG_ITER_RESERVED		(1 << 0)
336 #define BT_TAG_ITER_STARTED		(1 << 1)
337 #define BT_TAG_ITER_STATIC_RQS		(1 << 2)
338 
339 static bool bt_tags_iter(struct sbitmap *bitmap, unsigned int bitnr, void *data)
340 {
341 	struct bt_tags_iter_data *iter_data = data;
342 	struct blk_mq_tags *tags = iter_data->tags;
343 	struct request *rq;
344 	bool ret = true;
345 	bool iter_static_rqs = !!(iter_data->flags & BT_TAG_ITER_STATIC_RQS);
346 
347 	if (!(iter_data->flags & BT_TAG_ITER_RESERVED))
348 		bitnr += tags->nr_reserved_tags;
349 
350 	/*
351 	 * We can hit rq == NULL here, because the tagging functions
352 	 * test and set the bit before assigning ->rqs[].
353 	 */
354 	if (iter_static_rqs)
355 		rq = tags->static_rqs[bitnr];
356 	else
357 		rq = blk_mq_find_and_get_req(tags, bitnr);
358 	if (!rq)
359 		return true;
360 
361 	if (!(iter_data->flags & BT_TAG_ITER_STARTED) ||
362 	    blk_mq_request_started(rq))
363 		ret = iter_data->fn(rq, iter_data->data);
364 	if (!iter_static_rqs)
365 		blk_mq_put_rq_ref(rq);
366 	return ret;
367 }
368 
369 /**
370  * bt_tags_for_each - iterate over the requests in a tag map
371  * @tags:	Tag map to iterate over.
372  * @bt:		sbitmap to examine. This is either the breserved_tags member
373  *		or the bitmap_tags member of struct blk_mq_tags.
374  * @fn:		Pointer to the function that will be called for each started
375  *		request. @fn will be called as follows: @fn(rq, @data,
376  *		@reserved) where rq is a pointer to a request. Return true
377  *		to continue iterating tags, false to stop.
378  * @data:	Will be passed as second argument to @fn.
379  * @flags:	BT_TAG_ITER_*
380  */
381 static void bt_tags_for_each(struct blk_mq_tags *tags, struct sbitmap_queue *bt,
382 			     busy_tag_iter_fn *fn, void *data, unsigned int flags)
383 {
384 	struct bt_tags_iter_data iter_data = {
385 		.tags = tags,
386 		.fn = fn,
387 		.data = data,
388 		.flags = flags,
389 	};
390 
391 	if (tags->rqs)
392 		sbitmap_for_each_set(&bt->sb, bt_tags_iter, &iter_data);
393 }
394 
395 static void __blk_mq_all_tag_iter(struct blk_mq_tags *tags,
396 		busy_tag_iter_fn *fn, void *priv, unsigned int flags)
397 {
398 	WARN_ON_ONCE(flags & BT_TAG_ITER_RESERVED);
399 
400 	if (tags->nr_reserved_tags)
401 		bt_tags_for_each(tags, &tags->breserved_tags, fn, priv,
402 				 flags | BT_TAG_ITER_RESERVED);
403 	bt_tags_for_each(tags, &tags->bitmap_tags, fn, priv, flags);
404 }
405 
406 /**
407  * blk_mq_all_tag_iter - iterate over all requests in a tag map
408  * @tags:	Tag map to iterate over.
409  * @fn:		Pointer to the function that will be called for each
410  *		request. @fn will be called as follows: @fn(rq, @priv,
411  *		reserved) where rq is a pointer to a request. 'reserved'
412  *		indicates whether or not @rq is a reserved request. Return
413  *		true to continue iterating tags, false to stop.
414  * @priv:	Will be passed as second argument to @fn.
415  *
416  * Caller has to pass the tag map from which requests are allocated.
417  */
418 void blk_mq_all_tag_iter(struct blk_mq_tags *tags, busy_tag_iter_fn *fn,
419 		void *priv)
420 {
421 	__blk_mq_all_tag_iter(tags, fn, priv, BT_TAG_ITER_STATIC_RQS);
422 }
423 
424 /**
425  * blk_mq_tagset_busy_iter - iterate over all started requests in a tag set
426  * @tagset:	Tag set to iterate over.
427  * @fn:		Pointer to the function that will be called for each started
428  *		request. @fn will be called as follows: @fn(rq, @priv,
429  *		reserved) where rq is a pointer to a request. 'reserved'
430  *		indicates whether or not @rq is a reserved request. Return
431  *		true to continue iterating tags, false to stop.
432  * @priv:	Will be passed as second argument to @fn.
433  *
434  * We grab one request reference before calling @fn and release it after
435  * @fn returns.
436  */
437 void blk_mq_tagset_busy_iter(struct blk_mq_tag_set *tagset,
438 		busy_tag_iter_fn *fn, void *priv)
439 {
440 	unsigned int flags = tagset->flags;
441 	int i, nr_tags;
442 
443 	nr_tags = blk_mq_is_shared_tags(flags) ? 1 : tagset->nr_hw_queues;
444 
445 	for (i = 0; i < nr_tags; i++) {
446 		if (tagset->tags && tagset->tags[i])
447 			__blk_mq_all_tag_iter(tagset->tags[i], fn, priv,
448 					      BT_TAG_ITER_STARTED);
449 	}
450 }
451 EXPORT_SYMBOL(blk_mq_tagset_busy_iter);
452 
453 static bool blk_mq_tagset_count_completed_rqs(struct request *rq, void *data)
454 {
455 	unsigned *count = data;
456 
457 	if (blk_mq_request_completed(rq))
458 		(*count)++;
459 	return true;
460 }
461 
462 /**
463  * blk_mq_tagset_wait_completed_request - Wait until all scheduled request
464  * completions have finished.
465  * @tagset:	Tag set to drain completed request
466  *
467  * Note: This function has to be run after all IO queues are shutdown
468  */
469 void blk_mq_tagset_wait_completed_request(struct blk_mq_tag_set *tagset)
470 {
471 	while (true) {
472 		unsigned count = 0;
473 
474 		blk_mq_tagset_busy_iter(tagset,
475 				blk_mq_tagset_count_completed_rqs, &count);
476 		if (!count)
477 			break;
478 		msleep(5);
479 	}
480 }
481 EXPORT_SYMBOL(blk_mq_tagset_wait_completed_request);
482 
483 /**
484  * blk_mq_queue_tag_busy_iter - iterate over all requests with a driver tag
485  * @q:		Request queue to examine.
486  * @fn:		Pointer to the function that will be called for each request
487  *		on @q. @fn will be called as follows: @fn(hctx, rq, @priv,
488  *		reserved) where rq is a pointer to a request and hctx points
489  *		to the hardware queue associated with the request. 'reserved'
490  *		indicates whether or not @rq is a reserved request.
491  * @priv:	Will be passed as third argument to @fn.
492  *
493  * Note: if @q->tag_set is shared with other request queues then @fn will be
494  * called for all requests on all queues that share that tag set and not only
495  * for requests associated with @q.
496  */
497 void blk_mq_queue_tag_busy_iter(struct request_queue *q, busy_tag_iter_fn *fn,
498 		void *priv)
499 {
500 	/*
501 	 * __blk_mq_update_nr_hw_queues() updates nr_hw_queues and hctx_table
502 	 * while the queue is frozen. So we can use q_usage_counter to avoid
503 	 * racing with it.
504 	 */
505 	if (!percpu_ref_tryget(&q->q_usage_counter))
506 		return;
507 
508 	if (blk_mq_is_shared_tags(q->tag_set->flags)) {
509 		struct blk_mq_tags *tags = q->tag_set->shared_tags;
510 		struct sbitmap_queue *bresv = &tags->breserved_tags;
511 		struct sbitmap_queue *btags = &tags->bitmap_tags;
512 
513 		if (tags->nr_reserved_tags)
514 			bt_for_each(NULL, q, bresv, fn, priv, true);
515 		bt_for_each(NULL, q, btags, fn, priv, false);
516 	} else {
517 		struct blk_mq_hw_ctx *hctx;
518 		unsigned long i;
519 
520 		queue_for_each_hw_ctx(q, hctx, i) {
521 			struct blk_mq_tags *tags = hctx->tags;
522 			struct sbitmap_queue *bresv = &tags->breserved_tags;
523 			struct sbitmap_queue *btags = &tags->bitmap_tags;
524 
525 			/*
526 			 * If no software queues are currently mapped to this
527 			 * hardware queue, there's nothing to check
528 			 */
529 			if (!blk_mq_hw_queue_mapped(hctx))
530 				continue;
531 
532 			if (tags->nr_reserved_tags)
533 				bt_for_each(hctx, q, bresv, fn, priv, true);
534 			bt_for_each(hctx, q, btags, fn, priv, false);
535 		}
536 	}
537 	blk_queue_exit(q);
538 }
539 
540 static int bt_alloc(struct sbitmap_queue *bt, unsigned int depth,
541 		    bool round_robin, int node)
542 {
543 	return sbitmap_queue_init_node(bt, depth, -1, round_robin, GFP_KERNEL,
544 				       node);
545 }
546 
547 int blk_mq_init_bitmaps(struct sbitmap_queue *bitmap_tags,
548 			struct sbitmap_queue *breserved_tags,
549 			unsigned int queue_depth, unsigned int reserved,
550 			int node, int alloc_policy)
551 {
552 	unsigned int depth = queue_depth - reserved;
553 	bool round_robin = alloc_policy == BLK_TAG_ALLOC_RR;
554 
555 	if (bt_alloc(bitmap_tags, depth, round_robin, node))
556 		return -ENOMEM;
557 	if (bt_alloc(breserved_tags, reserved, round_robin, node))
558 		goto free_bitmap_tags;
559 
560 	return 0;
561 
562 free_bitmap_tags:
563 	sbitmap_queue_free(bitmap_tags);
564 	return -ENOMEM;
565 }
566 
567 struct blk_mq_tags *blk_mq_init_tags(unsigned int total_tags,
568 				     unsigned int reserved_tags,
569 				     int node, int alloc_policy)
570 {
571 	struct blk_mq_tags *tags;
572 
573 	if (total_tags > BLK_MQ_TAG_MAX) {
574 		pr_err("blk-mq: tag depth too large\n");
575 		return NULL;
576 	}
577 
578 	tags = kzalloc_node(sizeof(*tags), GFP_KERNEL, node);
579 	if (!tags)
580 		return NULL;
581 
582 	tags->nr_tags = total_tags;
583 	tags->nr_reserved_tags = reserved_tags;
584 	spin_lock_init(&tags->lock);
585 
586 	if (blk_mq_init_bitmaps(&tags->bitmap_tags, &tags->breserved_tags,
587 				total_tags, reserved_tags, node,
588 				alloc_policy) < 0) {
589 		kfree(tags);
590 		return NULL;
591 	}
592 	return tags;
593 }
594 
595 void blk_mq_free_tags(struct blk_mq_tags *tags)
596 {
597 	sbitmap_queue_free(&tags->bitmap_tags);
598 	sbitmap_queue_free(&tags->breserved_tags);
599 	kfree(tags);
600 }
601 
602 int blk_mq_tag_update_depth(struct blk_mq_hw_ctx *hctx,
603 			    struct blk_mq_tags **tagsptr, unsigned int tdepth,
604 			    bool can_grow)
605 {
606 	struct blk_mq_tags *tags = *tagsptr;
607 
608 	if (tdepth <= tags->nr_reserved_tags)
609 		return -EINVAL;
610 
611 	/*
612 	 * If we are allowed to grow beyond the original size, allocate
613 	 * a new set of tags before freeing the old one.
614 	 */
615 	if (tdepth > tags->nr_tags) {
616 		struct blk_mq_tag_set *set = hctx->queue->tag_set;
617 		struct blk_mq_tags *new;
618 
619 		if (!can_grow)
620 			return -EINVAL;
621 
622 		/*
623 		 * We need some sort of upper limit, set it high enough that
624 		 * no valid use cases should require more.
625 		 */
626 		if (tdepth > MAX_SCHED_RQ)
627 			return -EINVAL;
628 
629 		/*
630 		 * Only the sbitmap needs resizing since we allocated the max
631 		 * initially.
632 		 */
633 		if (blk_mq_is_shared_tags(set->flags))
634 			return 0;
635 
636 		new = blk_mq_alloc_map_and_rqs(set, hctx->queue_num, tdepth);
637 		if (!new)
638 			return -ENOMEM;
639 
640 		blk_mq_free_map_and_rqs(set, *tagsptr, hctx->queue_num);
641 		*tagsptr = new;
642 	} else {
643 		/*
644 		 * Don't need (or can't) update reserved tags here, they
645 		 * remain static and should never need resizing.
646 		 */
647 		sbitmap_queue_resize(&tags->bitmap_tags,
648 				tdepth - tags->nr_reserved_tags);
649 	}
650 
651 	return 0;
652 }
653 
654 void blk_mq_tag_resize_shared_tags(struct blk_mq_tag_set *set, unsigned int size)
655 {
656 	struct blk_mq_tags *tags = set->shared_tags;
657 
658 	sbitmap_queue_resize(&tags->bitmap_tags, size - set->reserved_tags);
659 }
660 
661 void blk_mq_tag_update_sched_shared_tags(struct request_queue *q)
662 {
663 	sbitmap_queue_resize(&q->sched_shared_tags->bitmap_tags,
664 			     q->nr_requests - q->tag_set->reserved_tags);
665 }
666 
667 /**
668  * blk_mq_unique_tag() - return a tag that is unique queue-wide
669  * @rq: request for which to compute a unique tag
670  *
671  * The tag field in struct request is unique per hardware queue but not over
672  * all hardware queues. Hence this function that returns a tag with the
673  * hardware context index in the upper bits and the per hardware queue tag in
674  * the lower bits.
675  *
676  * Note: When called for a request that is queued on a non-multiqueue request
677  * queue, the hardware context index is set to zero.
678  */
679 u32 blk_mq_unique_tag(struct request *rq)
680 {
681 	return (rq->mq_hctx->queue_num << BLK_MQ_UNIQUE_TAG_BITS) |
682 		(rq->tag & BLK_MQ_UNIQUE_TAG_MASK);
683 }
684 EXPORT_SYMBOL(blk_mq_unique_tag);
685