1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Tag allocation using scalable bitmaps. Uses active queue tracking to support 4 * fairer distribution of tags between multiple submitters when a shared tag map 5 * is used. 6 * 7 * Copyright (C) 2013-2014 Jens Axboe 8 */ 9 #include <linux/kernel.h> 10 #include <linux/module.h> 11 12 #include <linux/delay.h> 13 #include "blk.h" 14 #include "blk-mq.h" 15 #include "blk-mq-sched.h" 16 17 /* 18 * Recalculate wakeup batch when tag is shared by hctx. 19 */ 20 static void blk_mq_update_wake_batch(struct blk_mq_tags *tags, 21 unsigned int users) 22 { 23 if (!users) 24 return; 25 26 sbitmap_queue_recalculate_wake_batch(&tags->bitmap_tags, 27 users); 28 sbitmap_queue_recalculate_wake_batch(&tags->breserved_tags, 29 users); 30 } 31 32 /* 33 * If a previously inactive queue goes active, bump the active user count. 34 * We need to do this before try to allocate driver tag, then even if fail 35 * to get tag when first time, the other shared-tag users could reserve 36 * budget for it. 37 */ 38 void __blk_mq_tag_busy(struct blk_mq_hw_ctx *hctx) 39 { 40 unsigned int users; 41 42 if (blk_mq_is_shared_tags(hctx->flags)) { 43 struct request_queue *q = hctx->queue; 44 45 if (test_bit(QUEUE_FLAG_HCTX_ACTIVE, &q->queue_flags)) 46 return; 47 set_bit(QUEUE_FLAG_HCTX_ACTIVE, &q->queue_flags); 48 } else { 49 if (test_bit(BLK_MQ_S_TAG_ACTIVE, &hctx->state)) 50 return; 51 set_bit(BLK_MQ_S_TAG_ACTIVE, &hctx->state); 52 } 53 54 users = atomic_inc_return(&hctx->tags->active_queues); 55 56 blk_mq_update_wake_batch(hctx->tags, users); 57 } 58 59 /* 60 * Wakeup all potentially sleeping on tags 61 */ 62 void blk_mq_tag_wakeup_all(struct blk_mq_tags *tags, bool include_reserve) 63 { 64 sbitmap_queue_wake_all(&tags->bitmap_tags); 65 if (include_reserve) 66 sbitmap_queue_wake_all(&tags->breserved_tags); 67 } 68 69 /* 70 * If a previously busy queue goes inactive, potential waiters could now 71 * be allowed to queue. Wake them up and check. 72 */ 73 void __blk_mq_tag_idle(struct blk_mq_hw_ctx *hctx) 74 { 75 struct blk_mq_tags *tags = hctx->tags; 76 unsigned int users; 77 78 if (blk_mq_is_shared_tags(hctx->flags)) { 79 struct request_queue *q = hctx->queue; 80 81 if (!test_and_clear_bit(QUEUE_FLAG_HCTX_ACTIVE, 82 &q->queue_flags)) 83 return; 84 } else { 85 if (!test_and_clear_bit(BLK_MQ_S_TAG_ACTIVE, &hctx->state)) 86 return; 87 } 88 89 users = atomic_dec_return(&tags->active_queues); 90 91 blk_mq_update_wake_batch(tags, users); 92 93 blk_mq_tag_wakeup_all(tags, false); 94 } 95 96 static int __blk_mq_get_tag(struct blk_mq_alloc_data *data, 97 struct sbitmap_queue *bt) 98 { 99 if (!data->q->elevator && !(data->flags & BLK_MQ_REQ_RESERVED) && 100 !hctx_may_queue(data->hctx, bt)) 101 return BLK_MQ_NO_TAG; 102 103 if (data->shallow_depth) 104 return sbitmap_queue_get_shallow(bt, data->shallow_depth); 105 else 106 return __sbitmap_queue_get(bt); 107 } 108 109 unsigned long blk_mq_get_tags(struct blk_mq_alloc_data *data, int nr_tags, 110 unsigned int *offset) 111 { 112 struct blk_mq_tags *tags = blk_mq_tags_from_data(data); 113 struct sbitmap_queue *bt = &tags->bitmap_tags; 114 unsigned long ret; 115 116 if (data->shallow_depth ||data->flags & BLK_MQ_REQ_RESERVED || 117 data->hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED) 118 return 0; 119 ret = __sbitmap_queue_get_batch(bt, nr_tags, offset); 120 *offset += tags->nr_reserved_tags; 121 return ret; 122 } 123 124 unsigned int blk_mq_get_tag(struct blk_mq_alloc_data *data) 125 { 126 struct blk_mq_tags *tags = blk_mq_tags_from_data(data); 127 struct sbitmap_queue *bt; 128 struct sbq_wait_state *ws; 129 DEFINE_SBQ_WAIT(wait); 130 unsigned int tag_offset; 131 int tag; 132 133 if (data->flags & BLK_MQ_REQ_RESERVED) { 134 if (unlikely(!tags->nr_reserved_tags)) { 135 WARN_ON_ONCE(1); 136 return BLK_MQ_NO_TAG; 137 } 138 bt = &tags->breserved_tags; 139 tag_offset = 0; 140 } else { 141 bt = &tags->bitmap_tags; 142 tag_offset = tags->nr_reserved_tags; 143 } 144 145 tag = __blk_mq_get_tag(data, bt); 146 if (tag != BLK_MQ_NO_TAG) 147 goto found_tag; 148 149 if (data->flags & BLK_MQ_REQ_NOWAIT) 150 return BLK_MQ_NO_TAG; 151 152 ws = bt_wait_ptr(bt, data->hctx); 153 do { 154 struct sbitmap_queue *bt_prev; 155 156 /* 157 * We're out of tags on this hardware queue, kick any 158 * pending IO submits before going to sleep waiting for 159 * some to complete. 160 */ 161 blk_mq_run_hw_queue(data->hctx, false); 162 163 /* 164 * Retry tag allocation after running the hardware queue, 165 * as running the queue may also have found completions. 166 */ 167 tag = __blk_mq_get_tag(data, bt); 168 if (tag != BLK_MQ_NO_TAG) 169 break; 170 171 sbitmap_prepare_to_wait(bt, ws, &wait, TASK_UNINTERRUPTIBLE); 172 173 tag = __blk_mq_get_tag(data, bt); 174 if (tag != BLK_MQ_NO_TAG) 175 break; 176 177 bt_prev = bt; 178 io_schedule(); 179 180 sbitmap_finish_wait(bt, ws, &wait); 181 182 data->ctx = blk_mq_get_ctx(data->q); 183 data->hctx = blk_mq_map_queue(data->q, data->cmd_flags, 184 data->ctx); 185 tags = blk_mq_tags_from_data(data); 186 if (data->flags & BLK_MQ_REQ_RESERVED) 187 bt = &tags->breserved_tags; 188 else 189 bt = &tags->bitmap_tags; 190 191 /* 192 * If destination hw queue is changed, fake wake up on 193 * previous queue for compensating the wake up miss, so 194 * other allocations on previous queue won't be starved. 195 */ 196 if (bt != bt_prev) 197 sbitmap_queue_wake_up(bt_prev, 1); 198 199 ws = bt_wait_ptr(bt, data->hctx); 200 } while (1); 201 202 sbitmap_finish_wait(bt, ws, &wait); 203 204 found_tag: 205 /* 206 * Give up this allocation if the hctx is inactive. The caller will 207 * retry on an active hctx. 208 */ 209 if (unlikely(test_bit(BLK_MQ_S_INACTIVE, &data->hctx->state))) { 210 blk_mq_put_tag(tags, data->ctx, tag + tag_offset); 211 return BLK_MQ_NO_TAG; 212 } 213 return tag + tag_offset; 214 } 215 216 void blk_mq_put_tag(struct blk_mq_tags *tags, struct blk_mq_ctx *ctx, 217 unsigned int tag) 218 { 219 if (!blk_mq_tag_is_reserved(tags, tag)) { 220 const int real_tag = tag - tags->nr_reserved_tags; 221 222 BUG_ON(real_tag >= tags->nr_tags); 223 sbitmap_queue_clear(&tags->bitmap_tags, real_tag, ctx->cpu); 224 } else { 225 sbitmap_queue_clear(&tags->breserved_tags, tag, ctx->cpu); 226 } 227 } 228 229 void blk_mq_put_tags(struct blk_mq_tags *tags, int *tag_array, int nr_tags) 230 { 231 sbitmap_queue_clear_batch(&tags->bitmap_tags, tags->nr_reserved_tags, 232 tag_array, nr_tags); 233 } 234 235 struct bt_iter_data { 236 struct blk_mq_hw_ctx *hctx; 237 struct request_queue *q; 238 busy_tag_iter_fn *fn; 239 void *data; 240 bool reserved; 241 }; 242 243 static struct request *blk_mq_find_and_get_req(struct blk_mq_tags *tags, 244 unsigned int bitnr) 245 { 246 struct request *rq; 247 unsigned long flags; 248 249 spin_lock_irqsave(&tags->lock, flags); 250 rq = tags->rqs[bitnr]; 251 if (!rq || rq->tag != bitnr || !req_ref_inc_not_zero(rq)) 252 rq = NULL; 253 spin_unlock_irqrestore(&tags->lock, flags); 254 return rq; 255 } 256 257 static bool bt_iter(struct sbitmap *bitmap, unsigned int bitnr, void *data) 258 { 259 struct bt_iter_data *iter_data = data; 260 struct blk_mq_hw_ctx *hctx = iter_data->hctx; 261 struct request_queue *q = iter_data->q; 262 struct blk_mq_tag_set *set = q->tag_set; 263 struct blk_mq_tags *tags; 264 struct request *rq; 265 bool ret = true; 266 267 if (blk_mq_is_shared_tags(set->flags)) 268 tags = set->shared_tags; 269 else 270 tags = hctx->tags; 271 272 if (!iter_data->reserved) 273 bitnr += tags->nr_reserved_tags; 274 /* 275 * We can hit rq == NULL here, because the tagging functions 276 * test and set the bit before assigning ->rqs[]. 277 */ 278 rq = blk_mq_find_and_get_req(tags, bitnr); 279 if (!rq) 280 return true; 281 282 if (rq->q == q && (!hctx || rq->mq_hctx == hctx)) 283 ret = iter_data->fn(rq, iter_data->data); 284 blk_mq_put_rq_ref(rq); 285 return ret; 286 } 287 288 /** 289 * bt_for_each - iterate over the requests associated with a hardware queue 290 * @hctx: Hardware queue to examine. 291 * @q: Request queue to examine. 292 * @bt: sbitmap to examine. This is either the breserved_tags member 293 * or the bitmap_tags member of struct blk_mq_tags. 294 * @fn: Pointer to the function that will be called for each request 295 * associated with @hctx that has been assigned a driver tag. 296 * @fn will be called as follows: @fn(@hctx, rq, @data, @reserved) 297 * where rq is a pointer to a request. Return true to continue 298 * iterating tags, false to stop. 299 * @data: Will be passed as third argument to @fn. 300 * @reserved: Indicates whether @bt is the breserved_tags member or the 301 * bitmap_tags member of struct blk_mq_tags. 302 */ 303 static void bt_for_each(struct blk_mq_hw_ctx *hctx, struct request_queue *q, 304 struct sbitmap_queue *bt, busy_tag_iter_fn *fn, 305 void *data, bool reserved) 306 { 307 struct bt_iter_data iter_data = { 308 .hctx = hctx, 309 .fn = fn, 310 .data = data, 311 .reserved = reserved, 312 .q = q, 313 }; 314 315 sbitmap_for_each_set(&bt->sb, bt_iter, &iter_data); 316 } 317 318 struct bt_tags_iter_data { 319 struct blk_mq_tags *tags; 320 busy_tag_iter_fn *fn; 321 void *data; 322 unsigned int flags; 323 }; 324 325 #define BT_TAG_ITER_RESERVED (1 << 0) 326 #define BT_TAG_ITER_STARTED (1 << 1) 327 #define BT_TAG_ITER_STATIC_RQS (1 << 2) 328 329 static bool bt_tags_iter(struct sbitmap *bitmap, unsigned int bitnr, void *data) 330 { 331 struct bt_tags_iter_data *iter_data = data; 332 struct blk_mq_tags *tags = iter_data->tags; 333 struct request *rq; 334 bool ret = true; 335 bool iter_static_rqs = !!(iter_data->flags & BT_TAG_ITER_STATIC_RQS); 336 337 if (!(iter_data->flags & BT_TAG_ITER_RESERVED)) 338 bitnr += tags->nr_reserved_tags; 339 340 /* 341 * We can hit rq == NULL here, because the tagging functions 342 * test and set the bit before assigning ->rqs[]. 343 */ 344 if (iter_static_rqs) 345 rq = tags->static_rqs[bitnr]; 346 else 347 rq = blk_mq_find_and_get_req(tags, bitnr); 348 if (!rq) 349 return true; 350 351 if (!(iter_data->flags & BT_TAG_ITER_STARTED) || 352 blk_mq_request_started(rq)) 353 ret = iter_data->fn(rq, iter_data->data); 354 if (!iter_static_rqs) 355 blk_mq_put_rq_ref(rq); 356 return ret; 357 } 358 359 /** 360 * bt_tags_for_each - iterate over the requests in a tag map 361 * @tags: Tag map to iterate over. 362 * @bt: sbitmap to examine. This is either the breserved_tags member 363 * or the bitmap_tags member of struct blk_mq_tags. 364 * @fn: Pointer to the function that will be called for each started 365 * request. @fn will be called as follows: @fn(rq, @data, 366 * @reserved) where rq is a pointer to a request. Return true 367 * to continue iterating tags, false to stop. 368 * @data: Will be passed as second argument to @fn. 369 * @flags: BT_TAG_ITER_* 370 */ 371 static void bt_tags_for_each(struct blk_mq_tags *tags, struct sbitmap_queue *bt, 372 busy_tag_iter_fn *fn, void *data, unsigned int flags) 373 { 374 struct bt_tags_iter_data iter_data = { 375 .tags = tags, 376 .fn = fn, 377 .data = data, 378 .flags = flags, 379 }; 380 381 if (tags->rqs) 382 sbitmap_for_each_set(&bt->sb, bt_tags_iter, &iter_data); 383 } 384 385 static void __blk_mq_all_tag_iter(struct blk_mq_tags *tags, 386 busy_tag_iter_fn *fn, void *priv, unsigned int flags) 387 { 388 WARN_ON_ONCE(flags & BT_TAG_ITER_RESERVED); 389 390 if (tags->nr_reserved_tags) 391 bt_tags_for_each(tags, &tags->breserved_tags, fn, priv, 392 flags | BT_TAG_ITER_RESERVED); 393 bt_tags_for_each(tags, &tags->bitmap_tags, fn, priv, flags); 394 } 395 396 /** 397 * blk_mq_all_tag_iter - iterate over all requests in a tag map 398 * @tags: Tag map to iterate over. 399 * @fn: Pointer to the function that will be called for each 400 * request. @fn will be called as follows: @fn(rq, @priv, 401 * reserved) where rq is a pointer to a request. 'reserved' 402 * indicates whether or not @rq is a reserved request. Return 403 * true to continue iterating tags, false to stop. 404 * @priv: Will be passed as second argument to @fn. 405 * 406 * Caller has to pass the tag map from which requests are allocated. 407 */ 408 void blk_mq_all_tag_iter(struct blk_mq_tags *tags, busy_tag_iter_fn *fn, 409 void *priv) 410 { 411 __blk_mq_all_tag_iter(tags, fn, priv, BT_TAG_ITER_STATIC_RQS); 412 } 413 414 /** 415 * blk_mq_tagset_busy_iter - iterate over all started requests in a tag set 416 * @tagset: Tag set to iterate over. 417 * @fn: Pointer to the function that will be called for each started 418 * request. @fn will be called as follows: @fn(rq, @priv, 419 * reserved) where rq is a pointer to a request. 'reserved' 420 * indicates whether or not @rq is a reserved request. Return 421 * true to continue iterating tags, false to stop. 422 * @priv: Will be passed as second argument to @fn. 423 * 424 * We grab one request reference before calling @fn and release it after 425 * @fn returns. 426 */ 427 void blk_mq_tagset_busy_iter(struct blk_mq_tag_set *tagset, 428 busy_tag_iter_fn *fn, void *priv) 429 { 430 unsigned int flags = tagset->flags; 431 int i, nr_tags; 432 433 nr_tags = blk_mq_is_shared_tags(flags) ? 1 : tagset->nr_hw_queues; 434 435 for (i = 0; i < nr_tags; i++) { 436 if (tagset->tags && tagset->tags[i]) 437 __blk_mq_all_tag_iter(tagset->tags[i], fn, priv, 438 BT_TAG_ITER_STARTED); 439 } 440 } 441 EXPORT_SYMBOL(blk_mq_tagset_busy_iter); 442 443 static bool blk_mq_tagset_count_completed_rqs(struct request *rq, void *data) 444 { 445 unsigned *count = data; 446 447 if (blk_mq_request_completed(rq)) 448 (*count)++; 449 return true; 450 } 451 452 /** 453 * blk_mq_tagset_wait_completed_request - Wait until all scheduled request 454 * completions have finished. 455 * @tagset: Tag set to drain completed request 456 * 457 * Note: This function has to be run after all IO queues are shutdown 458 */ 459 void blk_mq_tagset_wait_completed_request(struct blk_mq_tag_set *tagset) 460 { 461 while (true) { 462 unsigned count = 0; 463 464 blk_mq_tagset_busy_iter(tagset, 465 blk_mq_tagset_count_completed_rqs, &count); 466 if (!count) 467 break; 468 msleep(5); 469 } 470 } 471 EXPORT_SYMBOL(blk_mq_tagset_wait_completed_request); 472 473 /** 474 * blk_mq_queue_tag_busy_iter - iterate over all requests with a driver tag 475 * @q: Request queue to examine. 476 * @fn: Pointer to the function that will be called for each request 477 * on @q. @fn will be called as follows: @fn(hctx, rq, @priv, 478 * reserved) where rq is a pointer to a request and hctx points 479 * to the hardware queue associated with the request. 'reserved' 480 * indicates whether or not @rq is a reserved request. 481 * @priv: Will be passed as third argument to @fn. 482 * 483 * Note: if @q->tag_set is shared with other request queues then @fn will be 484 * called for all requests on all queues that share that tag set and not only 485 * for requests associated with @q. 486 */ 487 void blk_mq_queue_tag_busy_iter(struct request_queue *q, busy_tag_iter_fn *fn, 488 void *priv) 489 { 490 /* 491 * __blk_mq_update_nr_hw_queues() updates nr_hw_queues and hctx_table 492 * while the queue is frozen. So we can use q_usage_counter to avoid 493 * racing with it. 494 */ 495 if (!percpu_ref_tryget(&q->q_usage_counter)) 496 return; 497 498 if (blk_mq_is_shared_tags(q->tag_set->flags)) { 499 struct blk_mq_tags *tags = q->tag_set->shared_tags; 500 struct sbitmap_queue *bresv = &tags->breserved_tags; 501 struct sbitmap_queue *btags = &tags->bitmap_tags; 502 503 if (tags->nr_reserved_tags) 504 bt_for_each(NULL, q, bresv, fn, priv, true); 505 bt_for_each(NULL, q, btags, fn, priv, false); 506 } else { 507 struct blk_mq_hw_ctx *hctx; 508 unsigned long i; 509 510 queue_for_each_hw_ctx(q, hctx, i) { 511 struct blk_mq_tags *tags = hctx->tags; 512 struct sbitmap_queue *bresv = &tags->breserved_tags; 513 struct sbitmap_queue *btags = &tags->bitmap_tags; 514 515 /* 516 * If no software queues are currently mapped to this 517 * hardware queue, there's nothing to check 518 */ 519 if (!blk_mq_hw_queue_mapped(hctx)) 520 continue; 521 522 if (tags->nr_reserved_tags) 523 bt_for_each(hctx, q, bresv, fn, priv, true); 524 bt_for_each(hctx, q, btags, fn, priv, false); 525 } 526 } 527 blk_queue_exit(q); 528 } 529 530 static int bt_alloc(struct sbitmap_queue *bt, unsigned int depth, 531 bool round_robin, int node) 532 { 533 return sbitmap_queue_init_node(bt, depth, -1, round_robin, GFP_KERNEL, 534 node); 535 } 536 537 int blk_mq_init_bitmaps(struct sbitmap_queue *bitmap_tags, 538 struct sbitmap_queue *breserved_tags, 539 unsigned int queue_depth, unsigned int reserved, 540 int node, int alloc_policy) 541 { 542 unsigned int depth = queue_depth - reserved; 543 bool round_robin = alloc_policy == BLK_TAG_ALLOC_RR; 544 545 if (bt_alloc(bitmap_tags, depth, round_robin, node)) 546 return -ENOMEM; 547 if (bt_alloc(breserved_tags, reserved, round_robin, node)) 548 goto free_bitmap_tags; 549 550 return 0; 551 552 free_bitmap_tags: 553 sbitmap_queue_free(bitmap_tags); 554 return -ENOMEM; 555 } 556 557 struct blk_mq_tags *blk_mq_init_tags(unsigned int total_tags, 558 unsigned int reserved_tags, 559 int node, int alloc_policy) 560 { 561 struct blk_mq_tags *tags; 562 563 if (total_tags > BLK_MQ_TAG_MAX) { 564 pr_err("blk-mq: tag depth too large\n"); 565 return NULL; 566 } 567 568 tags = kzalloc_node(sizeof(*tags), GFP_KERNEL, node); 569 if (!tags) 570 return NULL; 571 572 tags->nr_tags = total_tags; 573 tags->nr_reserved_tags = reserved_tags; 574 spin_lock_init(&tags->lock); 575 576 if (blk_mq_init_bitmaps(&tags->bitmap_tags, &tags->breserved_tags, 577 total_tags, reserved_tags, node, 578 alloc_policy) < 0) { 579 kfree(tags); 580 return NULL; 581 } 582 return tags; 583 } 584 585 void blk_mq_free_tags(struct blk_mq_tags *tags) 586 { 587 sbitmap_queue_free(&tags->bitmap_tags); 588 sbitmap_queue_free(&tags->breserved_tags); 589 kfree(tags); 590 } 591 592 int blk_mq_tag_update_depth(struct blk_mq_hw_ctx *hctx, 593 struct blk_mq_tags **tagsptr, unsigned int tdepth, 594 bool can_grow) 595 { 596 struct blk_mq_tags *tags = *tagsptr; 597 598 if (tdepth <= tags->nr_reserved_tags) 599 return -EINVAL; 600 601 /* 602 * If we are allowed to grow beyond the original size, allocate 603 * a new set of tags before freeing the old one. 604 */ 605 if (tdepth > tags->nr_tags) { 606 struct blk_mq_tag_set *set = hctx->queue->tag_set; 607 struct blk_mq_tags *new; 608 609 if (!can_grow) 610 return -EINVAL; 611 612 /* 613 * We need some sort of upper limit, set it high enough that 614 * no valid use cases should require more. 615 */ 616 if (tdepth > MAX_SCHED_RQ) 617 return -EINVAL; 618 619 /* 620 * Only the sbitmap needs resizing since we allocated the max 621 * initially. 622 */ 623 if (blk_mq_is_shared_tags(set->flags)) 624 return 0; 625 626 new = blk_mq_alloc_map_and_rqs(set, hctx->queue_num, tdepth); 627 if (!new) 628 return -ENOMEM; 629 630 blk_mq_free_map_and_rqs(set, *tagsptr, hctx->queue_num); 631 *tagsptr = new; 632 } else { 633 /* 634 * Don't need (or can't) update reserved tags here, they 635 * remain static and should never need resizing. 636 */ 637 sbitmap_queue_resize(&tags->bitmap_tags, 638 tdepth - tags->nr_reserved_tags); 639 } 640 641 return 0; 642 } 643 644 void blk_mq_tag_resize_shared_tags(struct blk_mq_tag_set *set, unsigned int size) 645 { 646 struct blk_mq_tags *tags = set->shared_tags; 647 648 sbitmap_queue_resize(&tags->bitmap_tags, size - set->reserved_tags); 649 } 650 651 void blk_mq_tag_update_sched_shared_tags(struct request_queue *q) 652 { 653 sbitmap_queue_resize(&q->sched_shared_tags->bitmap_tags, 654 q->nr_requests - q->tag_set->reserved_tags); 655 } 656 657 /** 658 * blk_mq_unique_tag() - return a tag that is unique queue-wide 659 * @rq: request for which to compute a unique tag 660 * 661 * The tag field in struct request is unique per hardware queue but not over 662 * all hardware queues. Hence this function that returns a tag with the 663 * hardware context index in the upper bits and the per hardware queue tag in 664 * the lower bits. 665 * 666 * Note: When called for a request that is queued on a non-multiqueue request 667 * queue, the hardware context index is set to zero. 668 */ 669 u32 blk_mq_unique_tag(struct request *rq) 670 { 671 return (rq->mq_hctx->queue_num << BLK_MQ_UNIQUE_TAG_BITS) | 672 (rq->tag & BLK_MQ_UNIQUE_TAG_MASK); 673 } 674 EXPORT_SYMBOL(blk_mq_unique_tag); 675