xref: /linux/block/blk-mq-tag.c (revision 9cfc5c90ad38c8fc11bfd39de42a107da00871ba)
1 /*
2  * Fast and scalable bitmap tagging variant. Uses sparser bitmaps spread
3  * over multiple cachelines to avoid ping-pong between multiple submitters
4  * or submitter and completer. Uses rolling wakeups to avoid falling of
5  * the scaling cliff when we run out of tags and have to start putting
6  * submitters to sleep.
7  *
8  * Uses active queue tracking to support fairer distribution of tags
9  * between multiple submitters when a shared tag map is used.
10  *
11  * Copyright (C) 2013-2014 Jens Axboe
12  */
13 #include <linux/kernel.h>
14 #include <linux/module.h>
15 #include <linux/random.h>
16 
17 #include <linux/blk-mq.h>
18 #include "blk.h"
19 #include "blk-mq.h"
20 #include "blk-mq-tag.h"
21 
22 static bool bt_has_free_tags(struct blk_mq_bitmap_tags *bt)
23 {
24 	int i;
25 
26 	for (i = 0; i < bt->map_nr; i++) {
27 		struct blk_align_bitmap *bm = &bt->map[i];
28 		int ret;
29 
30 		ret = find_first_zero_bit(&bm->word, bm->depth);
31 		if (ret < bm->depth)
32 			return true;
33 	}
34 
35 	return false;
36 }
37 
38 bool blk_mq_has_free_tags(struct blk_mq_tags *tags)
39 {
40 	if (!tags)
41 		return true;
42 
43 	return bt_has_free_tags(&tags->bitmap_tags);
44 }
45 
46 static inline int bt_index_inc(int index)
47 {
48 	return (index + 1) & (BT_WAIT_QUEUES - 1);
49 }
50 
51 static inline void bt_index_atomic_inc(atomic_t *index)
52 {
53 	int old = atomic_read(index);
54 	int new = bt_index_inc(old);
55 	atomic_cmpxchg(index, old, new);
56 }
57 
58 /*
59  * If a previously inactive queue goes active, bump the active user count.
60  */
61 bool __blk_mq_tag_busy(struct blk_mq_hw_ctx *hctx)
62 {
63 	if (!test_bit(BLK_MQ_S_TAG_ACTIVE, &hctx->state) &&
64 	    !test_and_set_bit(BLK_MQ_S_TAG_ACTIVE, &hctx->state))
65 		atomic_inc(&hctx->tags->active_queues);
66 
67 	return true;
68 }
69 
70 /*
71  * Wakeup all potentially sleeping on tags
72  */
73 void blk_mq_tag_wakeup_all(struct blk_mq_tags *tags, bool include_reserve)
74 {
75 	struct blk_mq_bitmap_tags *bt;
76 	int i, wake_index;
77 
78 	/*
79 	 * Make sure all changes prior to this are visible from other CPUs.
80 	 */
81 	smp_mb();
82 	bt = &tags->bitmap_tags;
83 	wake_index = atomic_read(&bt->wake_index);
84 	for (i = 0; i < BT_WAIT_QUEUES; i++) {
85 		struct bt_wait_state *bs = &bt->bs[wake_index];
86 
87 		if (waitqueue_active(&bs->wait))
88 			wake_up(&bs->wait);
89 
90 		wake_index = bt_index_inc(wake_index);
91 	}
92 
93 	if (include_reserve) {
94 		bt = &tags->breserved_tags;
95 		if (waitqueue_active(&bt->bs[0].wait))
96 			wake_up(&bt->bs[0].wait);
97 	}
98 }
99 
100 /*
101  * If a previously busy queue goes inactive, potential waiters could now
102  * be allowed to queue. Wake them up and check.
103  */
104 void __blk_mq_tag_idle(struct blk_mq_hw_ctx *hctx)
105 {
106 	struct blk_mq_tags *tags = hctx->tags;
107 
108 	if (!test_and_clear_bit(BLK_MQ_S_TAG_ACTIVE, &hctx->state))
109 		return;
110 
111 	atomic_dec(&tags->active_queues);
112 
113 	blk_mq_tag_wakeup_all(tags, false);
114 }
115 
116 /*
117  * For shared tag users, we track the number of currently active users
118  * and attempt to provide a fair share of the tag depth for each of them.
119  */
120 static inline bool hctx_may_queue(struct blk_mq_hw_ctx *hctx,
121 				  struct blk_mq_bitmap_tags *bt)
122 {
123 	unsigned int depth, users;
124 
125 	if (!hctx || !(hctx->flags & BLK_MQ_F_TAG_SHARED))
126 		return true;
127 	if (!test_bit(BLK_MQ_S_TAG_ACTIVE, &hctx->state))
128 		return true;
129 
130 	/*
131 	 * Don't try dividing an ant
132 	 */
133 	if (bt->depth == 1)
134 		return true;
135 
136 	users = atomic_read(&hctx->tags->active_queues);
137 	if (!users)
138 		return true;
139 
140 	/*
141 	 * Allow at least some tags
142 	 */
143 	depth = max((bt->depth + users - 1) / users, 4U);
144 	return atomic_read(&hctx->nr_active) < depth;
145 }
146 
147 static int __bt_get_word(struct blk_align_bitmap *bm, unsigned int last_tag,
148 			 bool nowrap)
149 {
150 	int tag, org_last_tag = last_tag;
151 
152 	while (1) {
153 		tag = find_next_zero_bit(&bm->word, bm->depth, last_tag);
154 		if (unlikely(tag >= bm->depth)) {
155 			/*
156 			 * We started with an offset, and we didn't reset the
157 			 * offset to 0 in a failure case, so start from 0 to
158 			 * exhaust the map.
159 			 */
160 			if (org_last_tag && last_tag && !nowrap) {
161 				last_tag = org_last_tag = 0;
162 				continue;
163 			}
164 			return -1;
165 		}
166 
167 		if (!test_and_set_bit(tag, &bm->word))
168 			break;
169 
170 		last_tag = tag + 1;
171 		if (last_tag >= bm->depth - 1)
172 			last_tag = 0;
173 	}
174 
175 	return tag;
176 }
177 
178 #define BT_ALLOC_RR(tags) (tags->alloc_policy == BLK_TAG_ALLOC_RR)
179 
180 /*
181  * Straight forward bitmap tag implementation, where each bit is a tag
182  * (cleared == free, and set == busy). The small twist is using per-cpu
183  * last_tag caches, which blk-mq stores in the blk_mq_ctx software queue
184  * contexts. This enables us to drastically limit the space searched,
185  * without dirtying an extra shared cacheline like we would if we stored
186  * the cache value inside the shared blk_mq_bitmap_tags structure. On top
187  * of that, each word of tags is in a separate cacheline. This means that
188  * multiple users will tend to stick to different cachelines, at least
189  * until the map is exhausted.
190  */
191 static int __bt_get(struct blk_mq_hw_ctx *hctx, struct blk_mq_bitmap_tags *bt,
192 		    unsigned int *tag_cache, struct blk_mq_tags *tags)
193 {
194 	unsigned int last_tag, org_last_tag;
195 	int index, i, tag;
196 
197 	if (!hctx_may_queue(hctx, bt))
198 		return -1;
199 
200 	last_tag = org_last_tag = *tag_cache;
201 	index = TAG_TO_INDEX(bt, last_tag);
202 
203 	for (i = 0; i < bt->map_nr; i++) {
204 		tag = __bt_get_word(&bt->map[index], TAG_TO_BIT(bt, last_tag),
205 				    BT_ALLOC_RR(tags));
206 		if (tag != -1) {
207 			tag += (index << bt->bits_per_word);
208 			goto done;
209 		}
210 
211 		/*
212 		 * Jump to next index, and reset the last tag to be the
213 		 * first tag of that index
214 		 */
215 		index++;
216 		last_tag = (index << bt->bits_per_word);
217 
218 		if (index >= bt->map_nr) {
219 			index = 0;
220 			last_tag = 0;
221 		}
222 	}
223 
224 	*tag_cache = 0;
225 	return -1;
226 
227 	/*
228 	 * Only update the cache from the allocation path, if we ended
229 	 * up using the specific cached tag.
230 	 */
231 done:
232 	if (tag == org_last_tag || unlikely(BT_ALLOC_RR(tags))) {
233 		last_tag = tag + 1;
234 		if (last_tag >= bt->depth - 1)
235 			last_tag = 0;
236 
237 		*tag_cache = last_tag;
238 	}
239 
240 	return tag;
241 }
242 
243 static struct bt_wait_state *bt_wait_ptr(struct blk_mq_bitmap_tags *bt,
244 					 struct blk_mq_hw_ctx *hctx)
245 {
246 	struct bt_wait_state *bs;
247 	int wait_index;
248 
249 	if (!hctx)
250 		return &bt->bs[0];
251 
252 	wait_index = atomic_read(&hctx->wait_index);
253 	bs = &bt->bs[wait_index];
254 	bt_index_atomic_inc(&hctx->wait_index);
255 	return bs;
256 }
257 
258 static int bt_get(struct blk_mq_alloc_data *data,
259 		struct blk_mq_bitmap_tags *bt,
260 		struct blk_mq_hw_ctx *hctx,
261 		unsigned int *last_tag, struct blk_mq_tags *tags)
262 {
263 	struct bt_wait_state *bs;
264 	DEFINE_WAIT(wait);
265 	int tag;
266 
267 	tag = __bt_get(hctx, bt, last_tag, tags);
268 	if (tag != -1)
269 		return tag;
270 
271 	if (!gfpflags_allow_blocking(data->gfp))
272 		return -1;
273 
274 	bs = bt_wait_ptr(bt, hctx);
275 	do {
276 		prepare_to_wait(&bs->wait, &wait, TASK_UNINTERRUPTIBLE);
277 
278 		tag = __bt_get(hctx, bt, last_tag, tags);
279 		if (tag != -1)
280 			break;
281 
282 		/*
283 		 * We're out of tags on this hardware queue, kick any
284 		 * pending IO submits before going to sleep waiting for
285 		 * some to complete. Note that hctx can be NULL here for
286 		 * reserved tag allocation.
287 		 */
288 		if (hctx)
289 			blk_mq_run_hw_queue(hctx, false);
290 
291 		/*
292 		 * Retry tag allocation after running the hardware queue,
293 		 * as running the queue may also have found completions.
294 		 */
295 		tag = __bt_get(hctx, bt, last_tag, tags);
296 		if (tag != -1)
297 			break;
298 
299 		blk_mq_put_ctx(data->ctx);
300 
301 		io_schedule();
302 
303 		data->ctx = blk_mq_get_ctx(data->q);
304 		data->hctx = data->q->mq_ops->map_queue(data->q,
305 				data->ctx->cpu);
306 		if (data->reserved) {
307 			bt = &data->hctx->tags->breserved_tags;
308 		} else {
309 			last_tag = &data->ctx->last_tag;
310 			hctx = data->hctx;
311 			bt = &hctx->tags->bitmap_tags;
312 		}
313 		finish_wait(&bs->wait, &wait);
314 		bs = bt_wait_ptr(bt, hctx);
315 	} while (1);
316 
317 	finish_wait(&bs->wait, &wait);
318 	return tag;
319 }
320 
321 static unsigned int __blk_mq_get_tag(struct blk_mq_alloc_data *data)
322 {
323 	int tag;
324 
325 	tag = bt_get(data, &data->hctx->tags->bitmap_tags, data->hctx,
326 			&data->ctx->last_tag, data->hctx->tags);
327 	if (tag >= 0)
328 		return tag + data->hctx->tags->nr_reserved_tags;
329 
330 	return BLK_MQ_TAG_FAIL;
331 }
332 
333 static unsigned int __blk_mq_get_reserved_tag(struct blk_mq_alloc_data *data)
334 {
335 	int tag, zero = 0;
336 
337 	if (unlikely(!data->hctx->tags->nr_reserved_tags)) {
338 		WARN_ON_ONCE(1);
339 		return BLK_MQ_TAG_FAIL;
340 	}
341 
342 	tag = bt_get(data, &data->hctx->tags->breserved_tags, NULL, &zero,
343 		data->hctx->tags);
344 	if (tag < 0)
345 		return BLK_MQ_TAG_FAIL;
346 
347 	return tag;
348 }
349 
350 unsigned int blk_mq_get_tag(struct blk_mq_alloc_data *data)
351 {
352 	if (!data->reserved)
353 		return __blk_mq_get_tag(data);
354 
355 	return __blk_mq_get_reserved_tag(data);
356 }
357 
358 static struct bt_wait_state *bt_wake_ptr(struct blk_mq_bitmap_tags *bt)
359 {
360 	int i, wake_index;
361 
362 	wake_index = atomic_read(&bt->wake_index);
363 	for (i = 0; i < BT_WAIT_QUEUES; i++) {
364 		struct bt_wait_state *bs = &bt->bs[wake_index];
365 
366 		if (waitqueue_active(&bs->wait)) {
367 			int o = atomic_read(&bt->wake_index);
368 			if (wake_index != o)
369 				atomic_cmpxchg(&bt->wake_index, o, wake_index);
370 
371 			return bs;
372 		}
373 
374 		wake_index = bt_index_inc(wake_index);
375 	}
376 
377 	return NULL;
378 }
379 
380 static void bt_clear_tag(struct blk_mq_bitmap_tags *bt, unsigned int tag)
381 {
382 	const int index = TAG_TO_INDEX(bt, tag);
383 	struct bt_wait_state *bs;
384 	int wait_cnt;
385 
386 	clear_bit(TAG_TO_BIT(bt, tag), &bt->map[index].word);
387 
388 	/* Ensure that the wait list checks occur after clear_bit(). */
389 	smp_mb();
390 
391 	bs = bt_wake_ptr(bt);
392 	if (!bs)
393 		return;
394 
395 	wait_cnt = atomic_dec_return(&bs->wait_cnt);
396 	if (unlikely(wait_cnt < 0))
397 		wait_cnt = atomic_inc_return(&bs->wait_cnt);
398 	if (wait_cnt == 0) {
399 		atomic_add(bt->wake_cnt, &bs->wait_cnt);
400 		bt_index_atomic_inc(&bt->wake_index);
401 		wake_up(&bs->wait);
402 	}
403 }
404 
405 void blk_mq_put_tag(struct blk_mq_hw_ctx *hctx, unsigned int tag,
406 		    unsigned int *last_tag)
407 {
408 	struct blk_mq_tags *tags = hctx->tags;
409 
410 	if (tag >= tags->nr_reserved_tags) {
411 		const int real_tag = tag - tags->nr_reserved_tags;
412 
413 		BUG_ON(real_tag >= tags->nr_tags);
414 		bt_clear_tag(&tags->bitmap_tags, real_tag);
415 		if (likely(tags->alloc_policy == BLK_TAG_ALLOC_FIFO))
416 			*last_tag = real_tag;
417 	} else {
418 		BUG_ON(tag >= tags->nr_reserved_tags);
419 		bt_clear_tag(&tags->breserved_tags, tag);
420 	}
421 }
422 
423 static void bt_for_each(struct blk_mq_hw_ctx *hctx,
424 		struct blk_mq_bitmap_tags *bt, unsigned int off,
425 		busy_iter_fn *fn, void *data, bool reserved)
426 {
427 	struct request *rq;
428 	int bit, i;
429 
430 	for (i = 0; i < bt->map_nr; i++) {
431 		struct blk_align_bitmap *bm = &bt->map[i];
432 
433 		for (bit = find_first_bit(&bm->word, bm->depth);
434 		     bit < bm->depth;
435 		     bit = find_next_bit(&bm->word, bm->depth, bit + 1)) {
436 			rq = hctx->tags->rqs[off + bit];
437 			if (rq->q == hctx->queue)
438 				fn(hctx, rq, data, reserved);
439 		}
440 
441 		off += (1 << bt->bits_per_word);
442 	}
443 }
444 
445 static void bt_tags_for_each(struct blk_mq_tags *tags,
446 		struct blk_mq_bitmap_tags *bt, unsigned int off,
447 		busy_tag_iter_fn *fn, void *data, bool reserved)
448 {
449 	struct request *rq;
450 	int bit, i;
451 
452 	if (!tags->rqs)
453 		return;
454 	for (i = 0; i < bt->map_nr; i++) {
455 		struct blk_align_bitmap *bm = &bt->map[i];
456 
457 		for (bit = find_first_bit(&bm->word, bm->depth);
458 		     bit < bm->depth;
459 		     bit = find_next_bit(&bm->word, bm->depth, bit + 1)) {
460 			rq = tags->rqs[off + bit];
461 			fn(rq, data, reserved);
462 		}
463 
464 		off += (1 << bt->bits_per_word);
465 	}
466 }
467 
468 void blk_mq_all_tag_busy_iter(struct blk_mq_tags *tags, busy_tag_iter_fn *fn,
469 		void *priv)
470 {
471 	if (tags->nr_reserved_tags)
472 		bt_tags_for_each(tags, &tags->breserved_tags, 0, fn, priv, true);
473 	bt_tags_for_each(tags, &tags->bitmap_tags, tags->nr_reserved_tags, fn, priv,
474 			false);
475 }
476 EXPORT_SYMBOL(blk_mq_all_tag_busy_iter);
477 
478 void blk_mq_queue_tag_busy_iter(struct request_queue *q, busy_iter_fn *fn,
479 		void *priv)
480 {
481 	struct blk_mq_hw_ctx *hctx;
482 	int i;
483 
484 
485 	queue_for_each_hw_ctx(q, hctx, i) {
486 		struct blk_mq_tags *tags = hctx->tags;
487 
488 		/*
489 		 * If not software queues are currently mapped to this
490 		 * hardware queue, there's nothing to check
491 		 */
492 		if (!blk_mq_hw_queue_mapped(hctx))
493 			continue;
494 
495 		if (tags->nr_reserved_tags)
496 			bt_for_each(hctx, &tags->breserved_tags, 0, fn, priv, true);
497 		bt_for_each(hctx, &tags->bitmap_tags, tags->nr_reserved_tags, fn, priv,
498 		      false);
499 	}
500 
501 }
502 
503 static unsigned int bt_unused_tags(struct blk_mq_bitmap_tags *bt)
504 {
505 	unsigned int i, used;
506 
507 	for (i = 0, used = 0; i < bt->map_nr; i++) {
508 		struct blk_align_bitmap *bm = &bt->map[i];
509 
510 		used += bitmap_weight(&bm->word, bm->depth);
511 	}
512 
513 	return bt->depth - used;
514 }
515 
516 static void bt_update_count(struct blk_mq_bitmap_tags *bt,
517 			    unsigned int depth)
518 {
519 	unsigned int tags_per_word = 1U << bt->bits_per_word;
520 	unsigned int map_depth = depth;
521 
522 	if (depth) {
523 		int i;
524 
525 		for (i = 0; i < bt->map_nr; i++) {
526 			bt->map[i].depth = min(map_depth, tags_per_word);
527 			map_depth -= bt->map[i].depth;
528 		}
529 	}
530 
531 	bt->wake_cnt = BT_WAIT_BATCH;
532 	if (bt->wake_cnt > depth / BT_WAIT_QUEUES)
533 		bt->wake_cnt = max(1U, depth / BT_WAIT_QUEUES);
534 
535 	bt->depth = depth;
536 }
537 
538 static int bt_alloc(struct blk_mq_bitmap_tags *bt, unsigned int depth,
539 			int node, bool reserved)
540 {
541 	int i;
542 
543 	bt->bits_per_word = ilog2(BITS_PER_LONG);
544 
545 	/*
546 	 * Depth can be zero for reserved tags, that's not a failure
547 	 * condition.
548 	 */
549 	if (depth) {
550 		unsigned int nr, tags_per_word;
551 
552 		tags_per_word = (1 << bt->bits_per_word);
553 
554 		/*
555 		 * If the tag space is small, shrink the number of tags
556 		 * per word so we spread over a few cachelines, at least.
557 		 * If less than 4 tags, just forget about it, it's not
558 		 * going to work optimally anyway.
559 		 */
560 		if (depth >= 4) {
561 			while (tags_per_word * 4 > depth) {
562 				bt->bits_per_word--;
563 				tags_per_word = (1 << bt->bits_per_word);
564 			}
565 		}
566 
567 		nr = ALIGN(depth, tags_per_word) / tags_per_word;
568 		bt->map = kzalloc_node(nr * sizeof(struct blk_align_bitmap),
569 						GFP_KERNEL, node);
570 		if (!bt->map)
571 			return -ENOMEM;
572 
573 		bt->map_nr = nr;
574 	}
575 
576 	bt->bs = kzalloc(BT_WAIT_QUEUES * sizeof(*bt->bs), GFP_KERNEL);
577 	if (!bt->bs) {
578 		kfree(bt->map);
579 		bt->map = NULL;
580 		return -ENOMEM;
581 	}
582 
583 	bt_update_count(bt, depth);
584 
585 	for (i = 0; i < BT_WAIT_QUEUES; i++) {
586 		init_waitqueue_head(&bt->bs[i].wait);
587 		atomic_set(&bt->bs[i].wait_cnt, bt->wake_cnt);
588 	}
589 
590 	return 0;
591 }
592 
593 static void bt_free(struct blk_mq_bitmap_tags *bt)
594 {
595 	kfree(bt->map);
596 	kfree(bt->bs);
597 }
598 
599 static struct blk_mq_tags *blk_mq_init_bitmap_tags(struct blk_mq_tags *tags,
600 						   int node, int alloc_policy)
601 {
602 	unsigned int depth = tags->nr_tags - tags->nr_reserved_tags;
603 
604 	tags->alloc_policy = alloc_policy;
605 
606 	if (bt_alloc(&tags->bitmap_tags, depth, node, false))
607 		goto enomem;
608 	if (bt_alloc(&tags->breserved_tags, tags->nr_reserved_tags, node, true))
609 		goto enomem;
610 
611 	return tags;
612 enomem:
613 	bt_free(&tags->bitmap_tags);
614 	kfree(tags);
615 	return NULL;
616 }
617 
618 struct blk_mq_tags *blk_mq_init_tags(unsigned int total_tags,
619 				     unsigned int reserved_tags,
620 				     int node, int alloc_policy)
621 {
622 	struct blk_mq_tags *tags;
623 
624 	if (total_tags > BLK_MQ_TAG_MAX) {
625 		pr_err("blk-mq: tag depth too large\n");
626 		return NULL;
627 	}
628 
629 	tags = kzalloc_node(sizeof(*tags), GFP_KERNEL, node);
630 	if (!tags)
631 		return NULL;
632 
633 	if (!zalloc_cpumask_var(&tags->cpumask, GFP_KERNEL)) {
634 		kfree(tags);
635 		return NULL;
636 	}
637 
638 	tags->nr_tags = total_tags;
639 	tags->nr_reserved_tags = reserved_tags;
640 
641 	return blk_mq_init_bitmap_tags(tags, node, alloc_policy);
642 }
643 
644 void blk_mq_free_tags(struct blk_mq_tags *tags)
645 {
646 	bt_free(&tags->bitmap_tags);
647 	bt_free(&tags->breserved_tags);
648 	free_cpumask_var(tags->cpumask);
649 	kfree(tags);
650 }
651 
652 void blk_mq_tag_init_last_tag(struct blk_mq_tags *tags, unsigned int *tag)
653 {
654 	unsigned int depth = tags->nr_tags - tags->nr_reserved_tags;
655 
656 	*tag = prandom_u32() % depth;
657 }
658 
659 int blk_mq_tag_update_depth(struct blk_mq_tags *tags, unsigned int tdepth)
660 {
661 	tdepth -= tags->nr_reserved_tags;
662 	if (tdepth > tags->nr_tags)
663 		return -EINVAL;
664 
665 	/*
666 	 * Don't need (or can't) update reserved tags here, they remain
667 	 * static and should never need resizing.
668 	 */
669 	bt_update_count(&tags->bitmap_tags, tdepth);
670 	blk_mq_tag_wakeup_all(tags, false);
671 	return 0;
672 }
673 
674 /**
675  * blk_mq_unique_tag() - return a tag that is unique queue-wide
676  * @rq: request for which to compute a unique tag
677  *
678  * The tag field in struct request is unique per hardware queue but not over
679  * all hardware queues. Hence this function that returns a tag with the
680  * hardware context index in the upper bits and the per hardware queue tag in
681  * the lower bits.
682  *
683  * Note: When called for a request that is queued on a non-multiqueue request
684  * queue, the hardware context index is set to zero.
685  */
686 u32 blk_mq_unique_tag(struct request *rq)
687 {
688 	struct request_queue *q = rq->q;
689 	struct blk_mq_hw_ctx *hctx;
690 	int hwq = 0;
691 
692 	if (q->mq_ops) {
693 		hctx = q->mq_ops->map_queue(q, rq->mq_ctx->cpu);
694 		hwq = hctx->queue_num;
695 	}
696 
697 	return (hwq << BLK_MQ_UNIQUE_TAG_BITS) |
698 		(rq->tag & BLK_MQ_UNIQUE_TAG_MASK);
699 }
700 EXPORT_SYMBOL(blk_mq_unique_tag);
701 
702 ssize_t blk_mq_tag_sysfs_show(struct blk_mq_tags *tags, char *page)
703 {
704 	char *orig_page = page;
705 	unsigned int free, res;
706 
707 	if (!tags)
708 		return 0;
709 
710 	page += sprintf(page, "nr_tags=%u, reserved_tags=%u, "
711 			"bits_per_word=%u\n",
712 			tags->nr_tags, tags->nr_reserved_tags,
713 			tags->bitmap_tags.bits_per_word);
714 
715 	free = bt_unused_tags(&tags->bitmap_tags);
716 	res = bt_unused_tags(&tags->breserved_tags);
717 
718 	page += sprintf(page, "nr_free=%u, nr_reserved=%u\n", free, res);
719 	page += sprintf(page, "active_queues=%u\n", atomic_read(&tags->active_queues));
720 
721 	return page - orig_page;
722 }
723