1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Tag allocation using scalable bitmaps. Uses active queue tracking to support 4 * fairer distribution of tags between multiple submitters when a shared tag map 5 * is used. 6 * 7 * Copyright (C) 2013-2014 Jens Axboe 8 */ 9 #include <linux/kernel.h> 10 #include <linux/module.h> 11 12 #include <linux/blk-mq.h> 13 #include "blk.h" 14 #include "blk-mq.h" 15 #include "blk-mq-tag.h" 16 17 bool blk_mq_has_free_tags(struct blk_mq_tags *tags) 18 { 19 if (!tags) 20 return true; 21 22 return sbitmap_any_bit_clear(&tags->bitmap_tags.sb); 23 } 24 25 /* 26 * If a previously inactive queue goes active, bump the active user count. 27 * We need to do this before try to allocate driver tag, then even if fail 28 * to get tag when first time, the other shared-tag users could reserve 29 * budget for it. 30 */ 31 bool __blk_mq_tag_busy(struct blk_mq_hw_ctx *hctx) 32 { 33 if (!test_bit(BLK_MQ_S_TAG_ACTIVE, &hctx->state) && 34 !test_and_set_bit(BLK_MQ_S_TAG_ACTIVE, &hctx->state)) 35 atomic_inc(&hctx->tags->active_queues); 36 37 return true; 38 } 39 40 /* 41 * Wakeup all potentially sleeping on tags 42 */ 43 void blk_mq_tag_wakeup_all(struct blk_mq_tags *tags, bool include_reserve) 44 { 45 sbitmap_queue_wake_all(&tags->bitmap_tags); 46 if (include_reserve) 47 sbitmap_queue_wake_all(&tags->breserved_tags); 48 } 49 50 /* 51 * If a previously busy queue goes inactive, potential waiters could now 52 * be allowed to queue. Wake them up and check. 53 */ 54 void __blk_mq_tag_idle(struct blk_mq_hw_ctx *hctx) 55 { 56 struct blk_mq_tags *tags = hctx->tags; 57 58 if (!test_and_clear_bit(BLK_MQ_S_TAG_ACTIVE, &hctx->state)) 59 return; 60 61 atomic_dec(&tags->active_queues); 62 63 blk_mq_tag_wakeup_all(tags, false); 64 } 65 66 /* 67 * For shared tag users, we track the number of currently active users 68 * and attempt to provide a fair share of the tag depth for each of them. 69 */ 70 static inline bool hctx_may_queue(struct blk_mq_hw_ctx *hctx, 71 struct sbitmap_queue *bt) 72 { 73 unsigned int depth, users; 74 75 if (!hctx || !(hctx->flags & BLK_MQ_F_TAG_SHARED)) 76 return true; 77 if (!test_bit(BLK_MQ_S_TAG_ACTIVE, &hctx->state)) 78 return true; 79 80 /* 81 * Don't try dividing an ant 82 */ 83 if (bt->sb.depth == 1) 84 return true; 85 86 users = atomic_read(&hctx->tags->active_queues); 87 if (!users) 88 return true; 89 90 /* 91 * Allow at least some tags 92 */ 93 depth = max((bt->sb.depth + users - 1) / users, 4U); 94 return atomic_read(&hctx->nr_active) < depth; 95 } 96 97 static int __blk_mq_get_tag(struct blk_mq_alloc_data *data, 98 struct sbitmap_queue *bt) 99 { 100 if (!(data->flags & BLK_MQ_REQ_INTERNAL) && 101 !hctx_may_queue(data->hctx, bt)) 102 return -1; 103 if (data->shallow_depth) 104 return __sbitmap_queue_get_shallow(bt, data->shallow_depth); 105 else 106 return __sbitmap_queue_get(bt); 107 } 108 109 unsigned int blk_mq_get_tag(struct blk_mq_alloc_data *data) 110 { 111 struct blk_mq_tags *tags = blk_mq_tags_from_data(data); 112 struct sbitmap_queue *bt; 113 struct sbq_wait_state *ws; 114 DEFINE_SBQ_WAIT(wait); 115 unsigned int tag_offset; 116 bool drop_ctx; 117 int tag; 118 119 if (data->flags & BLK_MQ_REQ_RESERVED) { 120 if (unlikely(!tags->nr_reserved_tags)) { 121 WARN_ON_ONCE(1); 122 return BLK_MQ_TAG_FAIL; 123 } 124 bt = &tags->breserved_tags; 125 tag_offset = 0; 126 } else { 127 bt = &tags->bitmap_tags; 128 tag_offset = tags->nr_reserved_tags; 129 } 130 131 tag = __blk_mq_get_tag(data, bt); 132 if (tag != -1) 133 goto found_tag; 134 135 if (data->flags & BLK_MQ_REQ_NOWAIT) 136 return BLK_MQ_TAG_FAIL; 137 138 ws = bt_wait_ptr(bt, data->hctx); 139 drop_ctx = data->ctx == NULL; 140 do { 141 struct sbitmap_queue *bt_prev; 142 143 /* 144 * We're out of tags on this hardware queue, kick any 145 * pending IO submits before going to sleep waiting for 146 * some to complete. 147 */ 148 blk_mq_run_hw_queue(data->hctx, false); 149 150 /* 151 * Retry tag allocation after running the hardware queue, 152 * as running the queue may also have found completions. 153 */ 154 tag = __blk_mq_get_tag(data, bt); 155 if (tag != -1) 156 break; 157 158 sbitmap_prepare_to_wait(bt, ws, &wait, TASK_UNINTERRUPTIBLE); 159 160 tag = __blk_mq_get_tag(data, bt); 161 if (tag != -1) 162 break; 163 164 if (data->ctx) 165 blk_mq_put_ctx(data->ctx); 166 167 bt_prev = bt; 168 io_schedule(); 169 170 sbitmap_finish_wait(bt, ws, &wait); 171 172 data->ctx = blk_mq_get_ctx(data->q); 173 data->hctx = blk_mq_map_queue(data->q, data->cmd_flags, 174 data->ctx); 175 tags = blk_mq_tags_from_data(data); 176 if (data->flags & BLK_MQ_REQ_RESERVED) 177 bt = &tags->breserved_tags; 178 else 179 bt = &tags->bitmap_tags; 180 181 /* 182 * If destination hw queue is changed, fake wake up on 183 * previous queue for compensating the wake up miss, so 184 * other allocations on previous queue won't be starved. 185 */ 186 if (bt != bt_prev) 187 sbitmap_queue_wake_up(bt_prev); 188 189 ws = bt_wait_ptr(bt, data->hctx); 190 } while (1); 191 192 if (drop_ctx && data->ctx) 193 blk_mq_put_ctx(data->ctx); 194 195 sbitmap_finish_wait(bt, ws, &wait); 196 197 found_tag: 198 return tag + tag_offset; 199 } 200 201 void blk_mq_put_tag(struct blk_mq_hw_ctx *hctx, struct blk_mq_tags *tags, 202 struct blk_mq_ctx *ctx, unsigned int tag) 203 { 204 if (!blk_mq_tag_is_reserved(tags, tag)) { 205 const int real_tag = tag - tags->nr_reserved_tags; 206 207 BUG_ON(real_tag >= tags->nr_tags); 208 sbitmap_queue_clear(&tags->bitmap_tags, real_tag, ctx->cpu); 209 } else { 210 BUG_ON(tag >= tags->nr_reserved_tags); 211 sbitmap_queue_clear(&tags->breserved_tags, tag, ctx->cpu); 212 } 213 } 214 215 struct bt_iter_data { 216 struct blk_mq_hw_ctx *hctx; 217 busy_iter_fn *fn; 218 void *data; 219 bool reserved; 220 }; 221 222 static bool bt_iter(struct sbitmap *bitmap, unsigned int bitnr, void *data) 223 { 224 struct bt_iter_data *iter_data = data; 225 struct blk_mq_hw_ctx *hctx = iter_data->hctx; 226 struct blk_mq_tags *tags = hctx->tags; 227 bool reserved = iter_data->reserved; 228 struct request *rq; 229 230 if (!reserved) 231 bitnr += tags->nr_reserved_tags; 232 rq = tags->rqs[bitnr]; 233 234 /* 235 * We can hit rq == NULL here, because the tagging functions 236 * test and set the bit before assigning ->rqs[]. 237 */ 238 if (rq && rq->q == hctx->queue) 239 return iter_data->fn(hctx, rq, iter_data->data, reserved); 240 return true; 241 } 242 243 /** 244 * bt_for_each - iterate over the requests associated with a hardware queue 245 * @hctx: Hardware queue to examine. 246 * @bt: sbitmap to examine. This is either the breserved_tags member 247 * or the bitmap_tags member of struct blk_mq_tags. 248 * @fn: Pointer to the function that will be called for each request 249 * associated with @hctx that has been assigned a driver tag. 250 * @fn will be called as follows: @fn(@hctx, rq, @data, @reserved) 251 * where rq is a pointer to a request. Return true to continue 252 * iterating tags, false to stop. 253 * @data: Will be passed as third argument to @fn. 254 * @reserved: Indicates whether @bt is the breserved_tags member or the 255 * bitmap_tags member of struct blk_mq_tags. 256 */ 257 static void bt_for_each(struct blk_mq_hw_ctx *hctx, struct sbitmap_queue *bt, 258 busy_iter_fn *fn, void *data, bool reserved) 259 { 260 struct bt_iter_data iter_data = { 261 .hctx = hctx, 262 .fn = fn, 263 .data = data, 264 .reserved = reserved, 265 }; 266 267 sbitmap_for_each_set(&bt->sb, bt_iter, &iter_data); 268 } 269 270 struct bt_tags_iter_data { 271 struct blk_mq_tags *tags; 272 busy_tag_iter_fn *fn; 273 void *data; 274 bool reserved; 275 }; 276 277 static bool bt_tags_iter(struct sbitmap *bitmap, unsigned int bitnr, void *data) 278 { 279 struct bt_tags_iter_data *iter_data = data; 280 struct blk_mq_tags *tags = iter_data->tags; 281 bool reserved = iter_data->reserved; 282 struct request *rq; 283 284 if (!reserved) 285 bitnr += tags->nr_reserved_tags; 286 287 /* 288 * We can hit rq == NULL here, because the tagging functions 289 * test and set the bit before assining ->rqs[]. 290 */ 291 rq = tags->rqs[bitnr]; 292 if (rq && blk_mq_request_started(rq)) 293 return iter_data->fn(rq, iter_data->data, reserved); 294 295 return true; 296 } 297 298 /** 299 * bt_tags_for_each - iterate over the requests in a tag map 300 * @tags: Tag map to iterate over. 301 * @bt: sbitmap to examine. This is either the breserved_tags member 302 * or the bitmap_tags member of struct blk_mq_tags. 303 * @fn: Pointer to the function that will be called for each started 304 * request. @fn will be called as follows: @fn(rq, @data, 305 * @reserved) where rq is a pointer to a request. Return true 306 * to continue iterating tags, false to stop. 307 * @data: Will be passed as second argument to @fn. 308 * @reserved: Indicates whether @bt is the breserved_tags member or the 309 * bitmap_tags member of struct blk_mq_tags. 310 */ 311 static void bt_tags_for_each(struct blk_mq_tags *tags, struct sbitmap_queue *bt, 312 busy_tag_iter_fn *fn, void *data, bool reserved) 313 { 314 struct bt_tags_iter_data iter_data = { 315 .tags = tags, 316 .fn = fn, 317 .data = data, 318 .reserved = reserved, 319 }; 320 321 if (tags->rqs) 322 sbitmap_for_each_set(&bt->sb, bt_tags_iter, &iter_data); 323 } 324 325 /** 326 * blk_mq_all_tag_busy_iter - iterate over all started requests in a tag map 327 * @tags: Tag map to iterate over. 328 * @fn: Pointer to the function that will be called for each started 329 * request. @fn will be called as follows: @fn(rq, @priv, 330 * reserved) where rq is a pointer to a request. 'reserved' 331 * indicates whether or not @rq is a reserved request. Return 332 * true to continue iterating tags, false to stop. 333 * @priv: Will be passed as second argument to @fn. 334 */ 335 static void blk_mq_all_tag_busy_iter(struct blk_mq_tags *tags, 336 busy_tag_iter_fn *fn, void *priv) 337 { 338 if (tags->nr_reserved_tags) 339 bt_tags_for_each(tags, &tags->breserved_tags, fn, priv, true); 340 bt_tags_for_each(tags, &tags->bitmap_tags, fn, priv, false); 341 } 342 343 /** 344 * blk_mq_tagset_busy_iter - iterate over all started requests in a tag set 345 * @tagset: Tag set to iterate over. 346 * @fn: Pointer to the function that will be called for each started 347 * request. @fn will be called as follows: @fn(rq, @priv, 348 * reserved) where rq is a pointer to a request. 'reserved' 349 * indicates whether or not @rq is a reserved request. Return 350 * true to continue iterating tags, false to stop. 351 * @priv: Will be passed as second argument to @fn. 352 */ 353 void blk_mq_tagset_busy_iter(struct blk_mq_tag_set *tagset, 354 busy_tag_iter_fn *fn, void *priv) 355 { 356 int i; 357 358 for (i = 0; i < tagset->nr_hw_queues; i++) { 359 if (tagset->tags && tagset->tags[i]) 360 blk_mq_all_tag_busy_iter(tagset->tags[i], fn, priv); 361 } 362 } 363 EXPORT_SYMBOL(blk_mq_tagset_busy_iter); 364 365 /** 366 * blk_mq_queue_tag_busy_iter - iterate over all requests with a driver tag 367 * @q: Request queue to examine. 368 * @fn: Pointer to the function that will be called for each request 369 * on @q. @fn will be called as follows: @fn(hctx, rq, @priv, 370 * reserved) where rq is a pointer to a request and hctx points 371 * to the hardware queue associated with the request. 'reserved' 372 * indicates whether or not @rq is a reserved request. 373 * @priv: Will be passed as third argument to @fn. 374 * 375 * Note: if @q->tag_set is shared with other request queues then @fn will be 376 * called for all requests on all queues that share that tag set and not only 377 * for requests associated with @q. 378 */ 379 void blk_mq_queue_tag_busy_iter(struct request_queue *q, busy_iter_fn *fn, 380 void *priv) 381 { 382 struct blk_mq_hw_ctx *hctx; 383 int i; 384 385 /* 386 * __blk_mq_update_nr_hw_queues() updates nr_hw_queues and queue_hw_ctx 387 * while the queue is frozen. So we can use q_usage_counter to avoid 388 * racing with it. __blk_mq_update_nr_hw_queues() uses 389 * synchronize_rcu() to ensure this function left the critical section 390 * below. 391 */ 392 if (!percpu_ref_tryget(&q->q_usage_counter)) 393 return; 394 395 queue_for_each_hw_ctx(q, hctx, i) { 396 struct blk_mq_tags *tags = hctx->tags; 397 398 /* 399 * If no software queues are currently mapped to this 400 * hardware queue, there's nothing to check 401 */ 402 if (!blk_mq_hw_queue_mapped(hctx)) 403 continue; 404 405 if (tags->nr_reserved_tags) 406 bt_for_each(hctx, &tags->breserved_tags, fn, priv, true); 407 bt_for_each(hctx, &tags->bitmap_tags, fn, priv, false); 408 } 409 blk_queue_exit(q); 410 } 411 412 static int bt_alloc(struct sbitmap_queue *bt, unsigned int depth, 413 bool round_robin, int node) 414 { 415 return sbitmap_queue_init_node(bt, depth, -1, round_robin, GFP_KERNEL, 416 node); 417 } 418 419 static struct blk_mq_tags *blk_mq_init_bitmap_tags(struct blk_mq_tags *tags, 420 int node, int alloc_policy) 421 { 422 unsigned int depth = tags->nr_tags - tags->nr_reserved_tags; 423 bool round_robin = alloc_policy == BLK_TAG_ALLOC_RR; 424 425 if (bt_alloc(&tags->bitmap_tags, depth, round_robin, node)) 426 goto free_tags; 427 if (bt_alloc(&tags->breserved_tags, tags->nr_reserved_tags, round_robin, 428 node)) 429 goto free_bitmap_tags; 430 431 return tags; 432 free_bitmap_tags: 433 sbitmap_queue_free(&tags->bitmap_tags); 434 free_tags: 435 kfree(tags); 436 return NULL; 437 } 438 439 struct blk_mq_tags *blk_mq_init_tags(unsigned int total_tags, 440 unsigned int reserved_tags, 441 int node, int alloc_policy) 442 { 443 struct blk_mq_tags *tags; 444 445 if (total_tags > BLK_MQ_TAG_MAX) { 446 pr_err("blk-mq: tag depth too large\n"); 447 return NULL; 448 } 449 450 tags = kzalloc_node(sizeof(*tags), GFP_KERNEL, node); 451 if (!tags) 452 return NULL; 453 454 tags->nr_tags = total_tags; 455 tags->nr_reserved_tags = reserved_tags; 456 457 return blk_mq_init_bitmap_tags(tags, node, alloc_policy); 458 } 459 460 void blk_mq_free_tags(struct blk_mq_tags *tags) 461 { 462 sbitmap_queue_free(&tags->bitmap_tags); 463 sbitmap_queue_free(&tags->breserved_tags); 464 kfree(tags); 465 } 466 467 int blk_mq_tag_update_depth(struct blk_mq_hw_ctx *hctx, 468 struct blk_mq_tags **tagsptr, unsigned int tdepth, 469 bool can_grow) 470 { 471 struct blk_mq_tags *tags = *tagsptr; 472 473 if (tdepth <= tags->nr_reserved_tags) 474 return -EINVAL; 475 476 /* 477 * If we are allowed to grow beyond the original size, allocate 478 * a new set of tags before freeing the old one. 479 */ 480 if (tdepth > tags->nr_tags) { 481 struct blk_mq_tag_set *set = hctx->queue->tag_set; 482 struct blk_mq_tags *new; 483 bool ret; 484 485 if (!can_grow) 486 return -EINVAL; 487 488 /* 489 * We need some sort of upper limit, set it high enough that 490 * no valid use cases should require more. 491 */ 492 if (tdepth > 16 * BLKDEV_MAX_RQ) 493 return -EINVAL; 494 495 new = blk_mq_alloc_rq_map(set, hctx->queue_num, tdepth, 496 tags->nr_reserved_tags); 497 if (!new) 498 return -ENOMEM; 499 ret = blk_mq_alloc_rqs(set, new, hctx->queue_num, tdepth); 500 if (ret) { 501 blk_mq_free_rq_map(new); 502 return -ENOMEM; 503 } 504 505 blk_mq_free_rqs(set, *tagsptr, hctx->queue_num); 506 blk_mq_free_rq_map(*tagsptr); 507 *tagsptr = new; 508 } else { 509 /* 510 * Don't need (or can't) update reserved tags here, they 511 * remain static and should never need resizing. 512 */ 513 sbitmap_queue_resize(&tags->bitmap_tags, 514 tdepth - tags->nr_reserved_tags); 515 } 516 517 return 0; 518 } 519 520 /** 521 * blk_mq_unique_tag() - return a tag that is unique queue-wide 522 * @rq: request for which to compute a unique tag 523 * 524 * The tag field in struct request is unique per hardware queue but not over 525 * all hardware queues. Hence this function that returns a tag with the 526 * hardware context index in the upper bits and the per hardware queue tag in 527 * the lower bits. 528 * 529 * Note: When called for a request that is queued on a non-multiqueue request 530 * queue, the hardware context index is set to zero. 531 */ 532 u32 blk_mq_unique_tag(struct request *rq) 533 { 534 return (rq->mq_hctx->queue_num << BLK_MQ_UNIQUE_TAG_BITS) | 535 (rq->tag & BLK_MQ_UNIQUE_TAG_MASK); 536 } 537 EXPORT_SYMBOL(blk_mq_unique_tag); 538