1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * blk-mq scheduling framework 4 * 5 * Copyright (C) 2016 Jens Axboe 6 */ 7 #include <linux/kernel.h> 8 #include <linux/module.h> 9 #include <linux/list_sort.h> 10 11 #include <trace/events/block.h> 12 13 #include "blk.h" 14 #include "blk-mq.h" 15 #include "blk-mq-debugfs.h" 16 #include "blk-mq-sched.h" 17 #include "blk-wbt.h" 18 19 /* 20 * Mark a hardware queue as needing a restart. 21 */ 22 void blk_mq_sched_mark_restart_hctx(struct blk_mq_hw_ctx *hctx) 23 { 24 if (test_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state)) 25 return; 26 27 set_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state); 28 } 29 EXPORT_SYMBOL_GPL(blk_mq_sched_mark_restart_hctx); 30 31 void __blk_mq_sched_restart(struct blk_mq_hw_ctx *hctx) 32 { 33 clear_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state); 34 35 /* 36 * Order clearing SCHED_RESTART and list_empty_careful(&hctx->dispatch) 37 * in blk_mq_run_hw_queue(). Its pair is the barrier in 38 * blk_mq_dispatch_rq_list(). So dispatch code won't see SCHED_RESTART, 39 * meantime new request added to hctx->dispatch is missed to check in 40 * blk_mq_run_hw_queue(). 41 */ 42 smp_mb(); 43 44 blk_mq_run_hw_queue(hctx, true); 45 } 46 47 static int sched_rq_cmp(void *priv, const struct list_head *a, 48 const struct list_head *b) 49 { 50 struct request *rqa = container_of(a, struct request, queuelist); 51 struct request *rqb = container_of(b, struct request, queuelist); 52 53 return rqa->mq_hctx > rqb->mq_hctx; 54 } 55 56 static bool blk_mq_dispatch_hctx_list(struct list_head *rq_list) 57 { 58 struct blk_mq_hw_ctx *hctx = 59 list_first_entry(rq_list, struct request, queuelist)->mq_hctx; 60 struct request *rq; 61 LIST_HEAD(hctx_list); 62 63 list_for_each_entry(rq, rq_list, queuelist) { 64 if (rq->mq_hctx != hctx) { 65 list_cut_before(&hctx_list, rq_list, &rq->queuelist); 66 goto dispatch; 67 } 68 } 69 list_splice_tail_init(rq_list, &hctx_list); 70 71 dispatch: 72 return blk_mq_dispatch_rq_list(hctx, &hctx_list, false); 73 } 74 75 #define BLK_MQ_BUDGET_DELAY 3 /* ms units */ 76 77 /* 78 * Only SCSI implements .get_budget and .put_budget, and SCSI restarts 79 * its queue by itself in its completion handler, so we don't need to 80 * restart queue if .get_budget() fails to get the budget. 81 * 82 * Returns -EAGAIN if hctx->dispatch was found non-empty and run_work has to 83 * be run again. This is necessary to avoid starving flushes. 84 */ 85 static int __blk_mq_do_dispatch_sched(struct blk_mq_hw_ctx *hctx) 86 { 87 struct request_queue *q = hctx->queue; 88 struct elevator_queue *e = q->elevator; 89 bool multi_hctxs = false, run_queue = false; 90 bool dispatched = false, busy = false; 91 unsigned int max_dispatch; 92 LIST_HEAD(rq_list); 93 int count = 0; 94 95 if (hctx->dispatch_busy) 96 max_dispatch = 1; 97 else 98 max_dispatch = hctx->queue->nr_requests; 99 100 do { 101 struct request *rq; 102 int budget_token; 103 104 if (e->type->ops.has_work && !e->type->ops.has_work(hctx)) 105 break; 106 107 if (!list_empty_careful(&hctx->dispatch)) { 108 busy = true; 109 break; 110 } 111 112 budget_token = blk_mq_get_dispatch_budget(q); 113 if (budget_token < 0) 114 break; 115 116 rq = e->type->ops.dispatch_request(hctx); 117 if (!rq) { 118 blk_mq_put_dispatch_budget(q, budget_token); 119 /* 120 * We're releasing without dispatching. Holding the 121 * budget could have blocked any "hctx"s with the 122 * same queue and if we didn't dispatch then there's 123 * no guarantee anyone will kick the queue. Kick it 124 * ourselves. 125 */ 126 run_queue = true; 127 break; 128 } 129 130 blk_mq_set_rq_budget_token(rq, budget_token); 131 132 /* 133 * Now this rq owns the budget which has to be released 134 * if this rq won't be queued to driver via .queue_rq() 135 * in blk_mq_dispatch_rq_list(). 136 */ 137 list_add_tail(&rq->queuelist, &rq_list); 138 count++; 139 if (rq->mq_hctx != hctx) 140 multi_hctxs = true; 141 142 /* 143 * If we cannot get tag for the request, stop dequeueing 144 * requests from the IO scheduler. We are unlikely to be able 145 * to submit them anyway and it creates false impression for 146 * scheduling heuristics that the device can take more IO. 147 */ 148 if (!blk_mq_get_driver_tag(rq)) 149 break; 150 } while (count < max_dispatch); 151 152 if (!count) { 153 if (run_queue) 154 blk_mq_delay_run_hw_queues(q, BLK_MQ_BUDGET_DELAY); 155 } else if (multi_hctxs) { 156 /* 157 * Requests from different hctx may be dequeued from some 158 * schedulers, such as bfq and deadline. 159 * 160 * Sort the requests in the list according to their hctx, 161 * dispatch batching requests from same hctx at a time. 162 */ 163 list_sort(NULL, &rq_list, sched_rq_cmp); 164 do { 165 dispatched |= blk_mq_dispatch_hctx_list(&rq_list); 166 } while (!list_empty(&rq_list)); 167 } else { 168 dispatched = blk_mq_dispatch_rq_list(hctx, &rq_list, false); 169 } 170 171 if (busy) 172 return -EAGAIN; 173 return !!dispatched; 174 } 175 176 static int blk_mq_do_dispatch_sched(struct blk_mq_hw_ctx *hctx) 177 { 178 unsigned long end = jiffies + HZ; 179 int ret; 180 181 do { 182 ret = __blk_mq_do_dispatch_sched(hctx); 183 if (ret != 1) 184 break; 185 if (need_resched() || time_is_before_jiffies(end)) { 186 blk_mq_delay_run_hw_queue(hctx, 0); 187 break; 188 } 189 } while (1); 190 191 return ret; 192 } 193 194 static struct blk_mq_ctx *blk_mq_next_ctx(struct blk_mq_hw_ctx *hctx, 195 struct blk_mq_ctx *ctx) 196 { 197 unsigned short idx = ctx->index_hw[hctx->type]; 198 199 if (++idx == hctx->nr_ctx) 200 idx = 0; 201 202 return hctx->ctxs[idx]; 203 } 204 205 /* 206 * Only SCSI implements .get_budget and .put_budget, and SCSI restarts 207 * its queue by itself in its completion handler, so we don't need to 208 * restart queue if .get_budget() fails to get the budget. 209 * 210 * Returns -EAGAIN if hctx->dispatch was found non-empty and run_work has to 211 * be run again. This is necessary to avoid starving flushes. 212 */ 213 static int blk_mq_do_dispatch_ctx(struct blk_mq_hw_ctx *hctx) 214 { 215 struct request_queue *q = hctx->queue; 216 LIST_HEAD(rq_list); 217 struct blk_mq_ctx *ctx = READ_ONCE(hctx->dispatch_from); 218 int ret = 0; 219 struct request *rq; 220 221 do { 222 int budget_token; 223 224 if (!list_empty_careful(&hctx->dispatch)) { 225 ret = -EAGAIN; 226 break; 227 } 228 229 if (!sbitmap_any_bit_set(&hctx->ctx_map)) 230 break; 231 232 budget_token = blk_mq_get_dispatch_budget(q); 233 if (budget_token < 0) 234 break; 235 236 rq = blk_mq_dequeue_from_ctx(hctx, ctx); 237 if (!rq) { 238 blk_mq_put_dispatch_budget(q, budget_token); 239 /* 240 * We're releasing without dispatching. Holding the 241 * budget could have blocked any "hctx"s with the 242 * same queue and if we didn't dispatch then there's 243 * no guarantee anyone will kick the queue. Kick it 244 * ourselves. 245 */ 246 blk_mq_delay_run_hw_queues(q, BLK_MQ_BUDGET_DELAY); 247 break; 248 } 249 250 blk_mq_set_rq_budget_token(rq, budget_token); 251 252 /* 253 * Now this rq owns the budget which has to be released 254 * if this rq won't be queued to driver via .queue_rq() 255 * in blk_mq_dispatch_rq_list(). 256 */ 257 list_add(&rq->queuelist, &rq_list); 258 259 /* round robin for fair dispatch */ 260 ctx = blk_mq_next_ctx(hctx, rq->mq_ctx); 261 262 } while (blk_mq_dispatch_rq_list(rq->mq_hctx, &rq_list, false)); 263 264 WRITE_ONCE(hctx->dispatch_from, ctx); 265 return ret; 266 } 267 268 static int __blk_mq_sched_dispatch_requests(struct blk_mq_hw_ctx *hctx) 269 { 270 bool need_dispatch = false; 271 LIST_HEAD(rq_list); 272 273 /* 274 * If we have previous entries on our dispatch list, grab them first for 275 * more fair dispatch. 276 */ 277 if (!list_empty_careful(&hctx->dispatch)) { 278 spin_lock(&hctx->lock); 279 if (!list_empty(&hctx->dispatch)) 280 list_splice_init(&hctx->dispatch, &rq_list); 281 spin_unlock(&hctx->lock); 282 } 283 284 /* 285 * Only ask the scheduler for requests, if we didn't have residual 286 * requests from the dispatch list. This is to avoid the case where 287 * we only ever dispatch a fraction of the requests available because 288 * of low device queue depth. Once we pull requests out of the IO 289 * scheduler, we can no longer merge or sort them. So it's best to 290 * leave them there for as long as we can. Mark the hw queue as 291 * needing a restart in that case. 292 * 293 * We want to dispatch from the scheduler if there was nothing 294 * on the dispatch list or we were able to dispatch from the 295 * dispatch list. 296 */ 297 if (!list_empty(&rq_list)) { 298 blk_mq_sched_mark_restart_hctx(hctx); 299 if (!blk_mq_dispatch_rq_list(hctx, &rq_list, true)) 300 return 0; 301 need_dispatch = true; 302 } else { 303 need_dispatch = hctx->dispatch_busy; 304 } 305 306 if (hctx->queue->elevator) 307 return blk_mq_do_dispatch_sched(hctx); 308 309 /* dequeue request one by one from sw queue if queue is busy */ 310 if (need_dispatch) 311 return blk_mq_do_dispatch_ctx(hctx); 312 blk_mq_flush_busy_ctxs(hctx, &rq_list); 313 blk_mq_dispatch_rq_list(hctx, &rq_list, true); 314 return 0; 315 } 316 317 void blk_mq_sched_dispatch_requests(struct blk_mq_hw_ctx *hctx) 318 { 319 struct request_queue *q = hctx->queue; 320 321 /* RCU or SRCU read lock is needed before checking quiesced flag */ 322 if (unlikely(blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(q))) 323 return; 324 325 /* 326 * A return of -EAGAIN is an indication that hctx->dispatch is not 327 * empty and we must run again in order to avoid starving flushes. 328 */ 329 if (__blk_mq_sched_dispatch_requests(hctx) == -EAGAIN) { 330 if (__blk_mq_sched_dispatch_requests(hctx) == -EAGAIN) 331 blk_mq_run_hw_queue(hctx, true); 332 } 333 } 334 335 bool blk_mq_sched_bio_merge(struct request_queue *q, struct bio *bio, 336 unsigned int nr_segs) 337 { 338 struct elevator_queue *e = q->elevator; 339 struct blk_mq_ctx *ctx; 340 struct blk_mq_hw_ctx *hctx; 341 bool ret = false; 342 enum hctx_type type; 343 344 if (e && e->type->ops.bio_merge) { 345 ret = e->type->ops.bio_merge(q, bio, nr_segs); 346 goto out_put; 347 } 348 349 ctx = blk_mq_get_ctx(q); 350 hctx = blk_mq_map_queue(bio->bi_opf, ctx); 351 type = hctx->type; 352 if (list_empty_careful(&ctx->rq_lists[type])) 353 goto out_put; 354 355 /* default per sw-queue merge */ 356 spin_lock(&ctx->lock); 357 /* 358 * Reverse check our software queue for entries that we could 359 * potentially merge with. Currently includes a hand-wavy stop 360 * count of 8, to not spend too much time checking for merges. 361 */ 362 if (blk_bio_list_merge(q, &ctx->rq_lists[type], bio, nr_segs)) 363 ret = true; 364 365 spin_unlock(&ctx->lock); 366 out_put: 367 return ret; 368 } 369 370 bool blk_mq_sched_try_insert_merge(struct request_queue *q, struct request *rq, 371 struct list_head *free) 372 { 373 return rq_mergeable(rq) && elv_attempt_insert_merge(q, rq, free); 374 } 375 EXPORT_SYMBOL_GPL(blk_mq_sched_try_insert_merge); 376 377 /* called in queue's release handler, tagset has gone away */ 378 static void blk_mq_sched_tags_teardown(struct request_queue *q, unsigned int flags) 379 { 380 struct blk_mq_hw_ctx *hctx; 381 unsigned long i; 382 383 queue_for_each_hw_ctx(q, hctx, i) 384 hctx->sched_tags = NULL; 385 386 if (blk_mq_is_shared_tags(flags)) 387 q->sched_shared_tags = NULL; 388 } 389 390 void blk_mq_sched_reg_debugfs(struct request_queue *q) 391 { 392 struct blk_mq_hw_ctx *hctx; 393 unsigned long i; 394 395 mutex_lock(&q->debugfs_mutex); 396 blk_mq_debugfs_register_sched(q); 397 queue_for_each_hw_ctx(q, hctx, i) 398 blk_mq_debugfs_register_sched_hctx(q, hctx); 399 mutex_unlock(&q->debugfs_mutex); 400 } 401 402 void blk_mq_sched_unreg_debugfs(struct request_queue *q) 403 { 404 struct blk_mq_hw_ctx *hctx; 405 unsigned long i; 406 407 mutex_lock(&q->debugfs_mutex); 408 queue_for_each_hw_ctx(q, hctx, i) 409 blk_mq_debugfs_unregister_sched_hctx(hctx); 410 blk_mq_debugfs_unregister_sched(q); 411 mutex_unlock(&q->debugfs_mutex); 412 } 413 414 void blk_mq_free_sched_tags(struct elevator_tags *et, 415 struct blk_mq_tag_set *set) 416 { 417 unsigned long i; 418 419 /* Shared tags are stored at index 0 in @tags. */ 420 if (blk_mq_is_shared_tags(set->flags)) 421 blk_mq_free_map_and_rqs(set, et->tags[0], BLK_MQ_NO_HCTX_IDX); 422 else { 423 for (i = 0; i < et->nr_hw_queues; i++) 424 blk_mq_free_map_and_rqs(set, et->tags[i], i); 425 } 426 427 kfree(et); 428 } 429 430 void blk_mq_free_sched_tags_batch(struct xarray *et_table, 431 struct blk_mq_tag_set *set) 432 { 433 struct request_queue *q; 434 struct elevator_tags *et; 435 436 lockdep_assert_held_write(&set->update_nr_hwq_lock); 437 438 list_for_each_entry(q, &set->tag_list, tag_set_list) { 439 /* 440 * Accessing q->elevator without holding q->elevator_lock is 441 * safe because we're holding here set->update_nr_hwq_lock in 442 * the writer context. So, scheduler update/switch code (which 443 * acquires the same lock but in the reader context) can't run 444 * concurrently. 445 */ 446 if (q->elevator) { 447 et = xa_load(et_table, q->id); 448 if (unlikely(!et)) 449 WARN_ON_ONCE(1); 450 else 451 blk_mq_free_sched_tags(et, set); 452 } 453 } 454 } 455 456 struct elevator_tags *blk_mq_alloc_sched_tags(struct blk_mq_tag_set *set, 457 unsigned int nr_hw_queues) 458 { 459 unsigned int nr_tags; 460 int i; 461 struct elevator_tags *et; 462 gfp_t gfp = GFP_NOIO | __GFP_ZERO | __GFP_NOWARN | __GFP_NORETRY; 463 464 if (blk_mq_is_shared_tags(set->flags)) 465 nr_tags = 1; 466 else 467 nr_tags = nr_hw_queues; 468 469 et = kmalloc(sizeof(struct elevator_tags) + 470 nr_tags * sizeof(struct blk_mq_tags *), gfp); 471 if (!et) 472 return NULL; 473 /* 474 * Default to double of smaller one between hw queue_depth and 475 * 128, since we don't split into sync/async like the old code 476 * did. Additionally, this is a per-hw queue depth. 477 */ 478 et->nr_requests = 2 * min_t(unsigned int, set->queue_depth, 479 BLKDEV_DEFAULT_RQ); 480 et->nr_hw_queues = nr_hw_queues; 481 482 if (blk_mq_is_shared_tags(set->flags)) { 483 /* Shared tags are stored at index 0 in @tags. */ 484 et->tags[0] = blk_mq_alloc_map_and_rqs(set, BLK_MQ_NO_HCTX_IDX, 485 MAX_SCHED_RQ); 486 if (!et->tags[0]) 487 goto out; 488 } else { 489 for (i = 0; i < et->nr_hw_queues; i++) { 490 et->tags[i] = blk_mq_alloc_map_and_rqs(set, i, 491 et->nr_requests); 492 if (!et->tags[i]) 493 goto out_unwind; 494 } 495 } 496 497 return et; 498 out_unwind: 499 while (--i >= 0) 500 blk_mq_free_map_and_rqs(set, et->tags[i], i); 501 out: 502 kfree(et); 503 return NULL; 504 } 505 506 int blk_mq_alloc_sched_tags_batch(struct xarray *et_table, 507 struct blk_mq_tag_set *set, unsigned int nr_hw_queues) 508 { 509 struct request_queue *q; 510 struct elevator_tags *et; 511 gfp_t gfp = GFP_NOIO | __GFP_ZERO | __GFP_NOWARN | __GFP_NORETRY; 512 513 lockdep_assert_held_write(&set->update_nr_hwq_lock); 514 515 list_for_each_entry(q, &set->tag_list, tag_set_list) { 516 /* 517 * Accessing q->elevator without holding q->elevator_lock is 518 * safe because we're holding here set->update_nr_hwq_lock in 519 * the writer context. So, scheduler update/switch code (which 520 * acquires the same lock but in the reader context) can't run 521 * concurrently. 522 */ 523 if (q->elevator) { 524 et = blk_mq_alloc_sched_tags(set, nr_hw_queues); 525 if (!et) 526 goto out_unwind; 527 if (xa_insert(et_table, q->id, et, gfp)) 528 goto out_free_tags; 529 } 530 } 531 return 0; 532 out_free_tags: 533 blk_mq_free_sched_tags(et, set); 534 out_unwind: 535 list_for_each_entry_continue_reverse(q, &set->tag_list, tag_set_list) { 536 if (q->elevator) { 537 et = xa_load(et_table, q->id); 538 if (et) 539 blk_mq_free_sched_tags(et, set); 540 } 541 } 542 return -ENOMEM; 543 } 544 545 /* caller must have a reference to @e, will grab another one if successful */ 546 int blk_mq_init_sched(struct request_queue *q, struct elevator_type *e, 547 struct elevator_tags *et) 548 { 549 unsigned int flags = q->tag_set->flags; 550 struct blk_mq_hw_ctx *hctx; 551 struct elevator_queue *eq; 552 unsigned long i; 553 int ret; 554 555 eq = elevator_alloc(q, e, et); 556 if (!eq) 557 return -ENOMEM; 558 559 q->nr_requests = et->nr_requests; 560 561 if (blk_mq_is_shared_tags(flags)) { 562 /* Shared tags are stored at index 0 in @et->tags. */ 563 q->sched_shared_tags = et->tags[0]; 564 blk_mq_tag_update_sched_shared_tags(q); 565 } 566 567 queue_for_each_hw_ctx(q, hctx, i) { 568 if (blk_mq_is_shared_tags(flags)) 569 hctx->sched_tags = q->sched_shared_tags; 570 else 571 hctx->sched_tags = et->tags[i]; 572 } 573 574 ret = e->ops.init_sched(q, eq); 575 if (ret) 576 goto out; 577 578 queue_for_each_hw_ctx(q, hctx, i) { 579 if (e->ops.init_hctx) { 580 ret = e->ops.init_hctx(hctx, i); 581 if (ret) { 582 blk_mq_exit_sched(q, eq); 583 kobject_put(&eq->kobj); 584 return ret; 585 } 586 } 587 } 588 return 0; 589 590 out: 591 blk_mq_sched_tags_teardown(q, flags); 592 kobject_put(&eq->kobj); 593 q->elevator = NULL; 594 return ret; 595 } 596 597 /* 598 * called in either blk_queue_cleanup or elevator_switch, tagset 599 * is required for freeing requests 600 */ 601 void blk_mq_sched_free_rqs(struct request_queue *q) 602 { 603 struct blk_mq_hw_ctx *hctx; 604 unsigned long i; 605 606 if (blk_mq_is_shared_tags(q->tag_set->flags)) { 607 blk_mq_free_rqs(q->tag_set, q->sched_shared_tags, 608 BLK_MQ_NO_HCTX_IDX); 609 } else { 610 queue_for_each_hw_ctx(q, hctx, i) { 611 if (hctx->sched_tags) 612 blk_mq_free_rqs(q->tag_set, 613 hctx->sched_tags, i); 614 } 615 } 616 } 617 618 void blk_mq_exit_sched(struct request_queue *q, struct elevator_queue *e) 619 { 620 struct blk_mq_hw_ctx *hctx; 621 unsigned long i; 622 unsigned int flags = 0; 623 624 queue_for_each_hw_ctx(q, hctx, i) { 625 if (e->type->ops.exit_hctx && hctx->sched_data) { 626 e->type->ops.exit_hctx(hctx, i); 627 hctx->sched_data = NULL; 628 } 629 flags = hctx->flags; 630 } 631 632 if (e->type->ops.exit_sched) 633 e->type->ops.exit_sched(e); 634 blk_mq_sched_tags_teardown(q, flags); 635 set_bit(ELEVATOR_FLAG_DYING, &q->elevator->flags); 636 q->elevator = NULL; 637 } 638