1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * blk-mq scheduling framework 4 * 5 * Copyright (C) 2016 Jens Axboe 6 */ 7 #include <linux/kernel.h> 8 #include <linux/module.h> 9 #include <linux/blk-mq.h> 10 #include <linux/list_sort.h> 11 12 #include <trace/events/block.h> 13 14 #include "blk.h" 15 #include "blk-mq.h" 16 #include "blk-mq-debugfs.h" 17 #include "blk-mq-sched.h" 18 #include "blk-mq-tag.h" 19 #include "blk-wbt.h" 20 21 void blk_mq_sched_free_hctx_data(struct request_queue *q, 22 void (*exit)(struct blk_mq_hw_ctx *)) 23 { 24 struct blk_mq_hw_ctx *hctx; 25 int i; 26 27 queue_for_each_hw_ctx(q, hctx, i) { 28 if (exit && hctx->sched_data) 29 exit(hctx); 30 kfree(hctx->sched_data); 31 hctx->sched_data = NULL; 32 } 33 } 34 EXPORT_SYMBOL_GPL(blk_mq_sched_free_hctx_data); 35 36 void blk_mq_sched_assign_ioc(struct request *rq) 37 { 38 struct request_queue *q = rq->q; 39 struct io_context *ioc; 40 struct io_cq *icq; 41 42 /* 43 * May not have an IO context if it's a passthrough request 44 */ 45 ioc = current->io_context; 46 if (!ioc) 47 return; 48 49 spin_lock_irq(&q->queue_lock); 50 icq = ioc_lookup_icq(ioc, q); 51 spin_unlock_irq(&q->queue_lock); 52 53 if (!icq) { 54 icq = ioc_create_icq(ioc, q, GFP_ATOMIC); 55 if (!icq) 56 return; 57 } 58 get_io_context(icq->ioc); 59 rq->elv.icq = icq; 60 } 61 62 /* 63 * Mark a hardware queue as needing a restart. For shared queues, maintain 64 * a count of how many hardware queues are marked for restart. 65 */ 66 void blk_mq_sched_mark_restart_hctx(struct blk_mq_hw_ctx *hctx) 67 { 68 if (test_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state)) 69 return; 70 71 set_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state); 72 } 73 EXPORT_SYMBOL_GPL(blk_mq_sched_mark_restart_hctx); 74 75 void blk_mq_sched_restart(struct blk_mq_hw_ctx *hctx) 76 { 77 if (!test_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state)) 78 return; 79 clear_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state); 80 81 blk_mq_run_hw_queue(hctx, true); 82 } 83 84 static int sched_rq_cmp(void *priv, struct list_head *a, struct list_head *b) 85 { 86 struct request *rqa = container_of(a, struct request, queuelist); 87 struct request *rqb = container_of(b, struct request, queuelist); 88 89 return rqa->mq_hctx > rqb->mq_hctx; 90 } 91 92 static bool blk_mq_dispatch_hctx_list(struct list_head *rq_list) 93 { 94 struct blk_mq_hw_ctx *hctx = 95 list_first_entry(rq_list, struct request, queuelist)->mq_hctx; 96 struct request *rq; 97 LIST_HEAD(hctx_list); 98 unsigned int count = 0; 99 bool ret; 100 101 list_for_each_entry(rq, rq_list, queuelist) { 102 if (rq->mq_hctx != hctx) { 103 list_cut_before(&hctx_list, rq_list, &rq->queuelist); 104 goto dispatch; 105 } 106 count++; 107 } 108 list_splice_tail_init(rq_list, &hctx_list); 109 110 dispatch: 111 ret = blk_mq_dispatch_rq_list(hctx, &hctx_list, count); 112 return ret; 113 } 114 115 #define BLK_MQ_BUDGET_DELAY 3 /* ms units */ 116 117 /* 118 * Only SCSI implements .get_budget and .put_budget, and SCSI restarts 119 * its queue by itself in its completion handler, so we don't need to 120 * restart queue if .get_budget() returns BLK_STS_NO_RESOURCE. 121 * 122 * Returns -EAGAIN if hctx->dispatch was found non-empty and run_work has to 123 * be run again. This is necessary to avoid starving flushes. 124 */ 125 static int __blk_mq_do_dispatch_sched(struct blk_mq_hw_ctx *hctx) 126 { 127 struct request_queue *q = hctx->queue; 128 struct elevator_queue *e = q->elevator; 129 bool multi_hctxs = false, run_queue = false; 130 bool dispatched = false, busy = false; 131 unsigned int max_dispatch; 132 LIST_HEAD(rq_list); 133 int count = 0; 134 135 if (hctx->dispatch_busy) 136 max_dispatch = 1; 137 else 138 max_dispatch = hctx->queue->nr_requests; 139 140 do { 141 struct request *rq; 142 143 if (e->type->ops.has_work && !e->type->ops.has_work(hctx)) 144 break; 145 146 if (!list_empty_careful(&hctx->dispatch)) { 147 busy = true; 148 break; 149 } 150 151 if (!blk_mq_get_dispatch_budget(q)) 152 break; 153 154 rq = e->type->ops.dispatch_request(hctx); 155 if (!rq) { 156 blk_mq_put_dispatch_budget(q); 157 /* 158 * We're releasing without dispatching. Holding the 159 * budget could have blocked any "hctx"s with the 160 * same queue and if we didn't dispatch then there's 161 * no guarantee anyone will kick the queue. Kick it 162 * ourselves. 163 */ 164 run_queue = true; 165 break; 166 } 167 168 /* 169 * Now this rq owns the budget which has to be released 170 * if this rq won't be queued to driver via .queue_rq() 171 * in blk_mq_dispatch_rq_list(). 172 */ 173 list_add_tail(&rq->queuelist, &rq_list); 174 if (rq->mq_hctx != hctx) 175 multi_hctxs = true; 176 } while (++count < max_dispatch); 177 178 if (!count) { 179 if (run_queue) 180 blk_mq_delay_run_hw_queues(q, BLK_MQ_BUDGET_DELAY); 181 } else if (multi_hctxs) { 182 /* 183 * Requests from different hctx may be dequeued from some 184 * schedulers, such as bfq and deadline. 185 * 186 * Sort the requests in the list according to their hctx, 187 * dispatch batching requests from same hctx at a time. 188 */ 189 list_sort(NULL, &rq_list, sched_rq_cmp); 190 do { 191 dispatched |= blk_mq_dispatch_hctx_list(&rq_list); 192 } while (!list_empty(&rq_list)); 193 } else { 194 dispatched = blk_mq_dispatch_rq_list(hctx, &rq_list, count); 195 } 196 197 if (busy) 198 return -EAGAIN; 199 return !!dispatched; 200 } 201 202 static int blk_mq_do_dispatch_sched(struct blk_mq_hw_ctx *hctx) 203 { 204 int ret; 205 206 do { 207 ret = __blk_mq_do_dispatch_sched(hctx); 208 } while (ret == 1); 209 210 return ret; 211 } 212 213 static struct blk_mq_ctx *blk_mq_next_ctx(struct blk_mq_hw_ctx *hctx, 214 struct blk_mq_ctx *ctx) 215 { 216 unsigned short idx = ctx->index_hw[hctx->type]; 217 218 if (++idx == hctx->nr_ctx) 219 idx = 0; 220 221 return hctx->ctxs[idx]; 222 } 223 224 /* 225 * Only SCSI implements .get_budget and .put_budget, and SCSI restarts 226 * its queue by itself in its completion handler, so we don't need to 227 * restart queue if .get_budget() returns BLK_STS_NO_RESOURCE. 228 * 229 * Returns -EAGAIN if hctx->dispatch was found non-empty and run_work has to 230 * to be run again. This is necessary to avoid starving flushes. 231 */ 232 static int blk_mq_do_dispatch_ctx(struct blk_mq_hw_ctx *hctx) 233 { 234 struct request_queue *q = hctx->queue; 235 LIST_HEAD(rq_list); 236 struct blk_mq_ctx *ctx = READ_ONCE(hctx->dispatch_from); 237 int ret = 0; 238 struct request *rq; 239 240 do { 241 if (!list_empty_careful(&hctx->dispatch)) { 242 ret = -EAGAIN; 243 break; 244 } 245 246 if (!sbitmap_any_bit_set(&hctx->ctx_map)) 247 break; 248 249 if (!blk_mq_get_dispatch_budget(q)) 250 break; 251 252 rq = blk_mq_dequeue_from_ctx(hctx, ctx); 253 if (!rq) { 254 blk_mq_put_dispatch_budget(q); 255 /* 256 * We're releasing without dispatching. Holding the 257 * budget could have blocked any "hctx"s with the 258 * same queue and if we didn't dispatch then there's 259 * no guarantee anyone will kick the queue. Kick it 260 * ourselves. 261 */ 262 blk_mq_delay_run_hw_queues(q, BLK_MQ_BUDGET_DELAY); 263 break; 264 } 265 266 /* 267 * Now this rq owns the budget which has to be released 268 * if this rq won't be queued to driver via .queue_rq() 269 * in blk_mq_dispatch_rq_list(). 270 */ 271 list_add(&rq->queuelist, &rq_list); 272 273 /* round robin for fair dispatch */ 274 ctx = blk_mq_next_ctx(hctx, rq->mq_ctx); 275 276 } while (blk_mq_dispatch_rq_list(rq->mq_hctx, &rq_list, 1)); 277 278 WRITE_ONCE(hctx->dispatch_from, ctx); 279 return ret; 280 } 281 282 static int __blk_mq_sched_dispatch_requests(struct blk_mq_hw_ctx *hctx) 283 { 284 struct request_queue *q = hctx->queue; 285 struct elevator_queue *e = q->elevator; 286 const bool has_sched_dispatch = e && e->type->ops.dispatch_request; 287 int ret = 0; 288 LIST_HEAD(rq_list); 289 290 /* 291 * If we have previous entries on our dispatch list, grab them first for 292 * more fair dispatch. 293 */ 294 if (!list_empty_careful(&hctx->dispatch)) { 295 spin_lock(&hctx->lock); 296 if (!list_empty(&hctx->dispatch)) 297 list_splice_init(&hctx->dispatch, &rq_list); 298 spin_unlock(&hctx->lock); 299 } 300 301 /* 302 * Only ask the scheduler for requests, if we didn't have residual 303 * requests from the dispatch list. This is to avoid the case where 304 * we only ever dispatch a fraction of the requests available because 305 * of low device queue depth. Once we pull requests out of the IO 306 * scheduler, we can no longer merge or sort them. So it's best to 307 * leave them there for as long as we can. Mark the hw queue as 308 * needing a restart in that case. 309 * 310 * We want to dispatch from the scheduler if there was nothing 311 * on the dispatch list or we were able to dispatch from the 312 * dispatch list. 313 */ 314 if (!list_empty(&rq_list)) { 315 blk_mq_sched_mark_restart_hctx(hctx); 316 if (blk_mq_dispatch_rq_list(hctx, &rq_list, 0)) { 317 if (has_sched_dispatch) 318 ret = blk_mq_do_dispatch_sched(hctx); 319 else 320 ret = blk_mq_do_dispatch_ctx(hctx); 321 } 322 } else if (has_sched_dispatch) { 323 ret = blk_mq_do_dispatch_sched(hctx); 324 } else if (hctx->dispatch_busy) { 325 /* dequeue request one by one from sw queue if queue is busy */ 326 ret = blk_mq_do_dispatch_ctx(hctx); 327 } else { 328 blk_mq_flush_busy_ctxs(hctx, &rq_list); 329 blk_mq_dispatch_rq_list(hctx, &rq_list, 0); 330 } 331 332 return ret; 333 } 334 335 void blk_mq_sched_dispatch_requests(struct blk_mq_hw_ctx *hctx) 336 { 337 struct request_queue *q = hctx->queue; 338 339 /* RCU or SRCU read lock is needed before checking quiesced flag */ 340 if (unlikely(blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(q))) 341 return; 342 343 hctx->run++; 344 345 /* 346 * A return of -EAGAIN is an indication that hctx->dispatch is not 347 * empty and we must run again in order to avoid starving flushes. 348 */ 349 if (__blk_mq_sched_dispatch_requests(hctx) == -EAGAIN) { 350 if (__blk_mq_sched_dispatch_requests(hctx) == -EAGAIN) 351 blk_mq_run_hw_queue(hctx, true); 352 } 353 } 354 355 bool blk_mq_sched_try_merge(struct request_queue *q, struct bio *bio, 356 unsigned int nr_segs, struct request **merged_request) 357 { 358 struct request *rq; 359 360 switch (elv_merge(q, &rq, bio)) { 361 case ELEVATOR_BACK_MERGE: 362 if (!blk_mq_sched_allow_merge(q, rq, bio)) 363 return false; 364 if (!bio_attempt_back_merge(rq, bio, nr_segs)) 365 return false; 366 *merged_request = attempt_back_merge(q, rq); 367 if (!*merged_request) 368 elv_merged_request(q, rq, ELEVATOR_BACK_MERGE); 369 return true; 370 case ELEVATOR_FRONT_MERGE: 371 if (!blk_mq_sched_allow_merge(q, rq, bio)) 372 return false; 373 if (!bio_attempt_front_merge(rq, bio, nr_segs)) 374 return false; 375 *merged_request = attempt_front_merge(q, rq); 376 if (!*merged_request) 377 elv_merged_request(q, rq, ELEVATOR_FRONT_MERGE); 378 return true; 379 case ELEVATOR_DISCARD_MERGE: 380 return bio_attempt_discard_merge(q, rq, bio); 381 default: 382 return false; 383 } 384 } 385 EXPORT_SYMBOL_GPL(blk_mq_sched_try_merge); 386 387 /* 388 * Iterate list of requests and see if we can merge this bio with any 389 * of them. 390 */ 391 bool blk_mq_bio_list_merge(struct request_queue *q, struct list_head *list, 392 struct bio *bio, unsigned int nr_segs) 393 { 394 struct request *rq; 395 int checked = 8; 396 397 list_for_each_entry_reverse(rq, list, queuelist) { 398 bool merged = false; 399 400 if (!checked--) 401 break; 402 403 if (!blk_rq_merge_ok(rq, bio)) 404 continue; 405 406 switch (blk_try_merge(rq, bio)) { 407 case ELEVATOR_BACK_MERGE: 408 if (blk_mq_sched_allow_merge(q, rq, bio)) 409 merged = bio_attempt_back_merge(rq, bio, 410 nr_segs); 411 break; 412 case ELEVATOR_FRONT_MERGE: 413 if (blk_mq_sched_allow_merge(q, rq, bio)) 414 merged = bio_attempt_front_merge(rq, bio, 415 nr_segs); 416 break; 417 case ELEVATOR_DISCARD_MERGE: 418 merged = bio_attempt_discard_merge(q, rq, bio); 419 break; 420 default: 421 continue; 422 } 423 424 return merged; 425 } 426 427 return false; 428 } 429 EXPORT_SYMBOL_GPL(blk_mq_bio_list_merge); 430 431 /* 432 * Reverse check our software queue for entries that we could potentially 433 * merge with. Currently includes a hand-wavy stop count of 8, to not spend 434 * too much time checking for merges. 435 */ 436 static bool blk_mq_attempt_merge(struct request_queue *q, 437 struct blk_mq_hw_ctx *hctx, 438 struct blk_mq_ctx *ctx, struct bio *bio, 439 unsigned int nr_segs) 440 { 441 enum hctx_type type = hctx->type; 442 443 lockdep_assert_held(&ctx->lock); 444 445 if (blk_mq_bio_list_merge(q, &ctx->rq_lists[type], bio, nr_segs)) { 446 ctx->rq_merged++; 447 return true; 448 } 449 450 return false; 451 } 452 453 bool __blk_mq_sched_bio_merge(struct request_queue *q, struct bio *bio, 454 unsigned int nr_segs) 455 { 456 struct elevator_queue *e = q->elevator; 457 struct blk_mq_ctx *ctx = blk_mq_get_ctx(q); 458 struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, bio->bi_opf, ctx); 459 bool ret = false; 460 enum hctx_type type; 461 462 if (e && e->type->ops.bio_merge) 463 return e->type->ops.bio_merge(hctx, bio, nr_segs); 464 465 type = hctx->type; 466 if ((hctx->flags & BLK_MQ_F_SHOULD_MERGE) && 467 !list_empty_careful(&ctx->rq_lists[type])) { 468 /* default per sw-queue merge */ 469 spin_lock(&ctx->lock); 470 ret = blk_mq_attempt_merge(q, hctx, ctx, bio, nr_segs); 471 spin_unlock(&ctx->lock); 472 } 473 474 return ret; 475 } 476 477 bool blk_mq_sched_try_insert_merge(struct request_queue *q, struct request *rq) 478 { 479 return rq_mergeable(rq) && elv_attempt_insert_merge(q, rq); 480 } 481 EXPORT_SYMBOL_GPL(blk_mq_sched_try_insert_merge); 482 483 void blk_mq_sched_request_inserted(struct request *rq) 484 { 485 trace_block_rq_insert(rq->q, rq); 486 } 487 EXPORT_SYMBOL_GPL(blk_mq_sched_request_inserted); 488 489 static bool blk_mq_sched_bypass_insert(struct blk_mq_hw_ctx *hctx, 490 bool has_sched, 491 struct request *rq) 492 { 493 /* 494 * dispatch flush and passthrough rq directly 495 * 496 * passthrough request has to be added to hctx->dispatch directly. 497 * For some reason, device may be in one situation which can't 498 * handle FS request, so STS_RESOURCE is always returned and the 499 * FS request will be added to hctx->dispatch. However passthrough 500 * request may be required at that time for fixing the problem. If 501 * passthrough request is added to scheduler queue, there isn't any 502 * chance to dispatch it given we prioritize requests in hctx->dispatch. 503 */ 504 if ((rq->rq_flags & RQF_FLUSH_SEQ) || blk_rq_is_passthrough(rq)) 505 return true; 506 507 if (has_sched) 508 rq->rq_flags |= RQF_SORTED; 509 510 return false; 511 } 512 513 void blk_mq_sched_insert_request(struct request *rq, bool at_head, 514 bool run_queue, bool async) 515 { 516 struct request_queue *q = rq->q; 517 struct elevator_queue *e = q->elevator; 518 struct blk_mq_ctx *ctx = rq->mq_ctx; 519 struct blk_mq_hw_ctx *hctx = rq->mq_hctx; 520 521 /* flush rq in flush machinery need to be dispatched directly */ 522 if (!(rq->rq_flags & RQF_FLUSH_SEQ) && op_is_flush(rq->cmd_flags)) { 523 blk_insert_flush(rq); 524 goto run; 525 } 526 527 WARN_ON(e && (rq->tag != -1)); 528 529 if (blk_mq_sched_bypass_insert(hctx, !!e, rq)) { 530 /* 531 * Firstly normal IO request is inserted to scheduler queue or 532 * sw queue, meantime we add flush request to dispatch queue( 533 * hctx->dispatch) directly and there is at most one in-flight 534 * flush request for each hw queue, so it doesn't matter to add 535 * flush request to tail or front of the dispatch queue. 536 * 537 * Secondly in case of NCQ, flush request belongs to non-NCQ 538 * command, and queueing it will fail when there is any 539 * in-flight normal IO request(NCQ command). When adding flush 540 * rq to the front of hctx->dispatch, it is easier to introduce 541 * extra time to flush rq's latency because of S_SCHED_RESTART 542 * compared with adding to the tail of dispatch queue, then 543 * chance of flush merge is increased, and less flush requests 544 * will be issued to controller. It is observed that ~10% time 545 * is saved in blktests block/004 on disk attached to AHCI/NCQ 546 * drive when adding flush rq to the front of hctx->dispatch. 547 * 548 * Simply queue flush rq to the front of hctx->dispatch so that 549 * intensive flush workloads can benefit in case of NCQ HW. 550 */ 551 at_head = (rq->rq_flags & RQF_FLUSH_SEQ) ? true : at_head; 552 blk_mq_request_bypass_insert(rq, at_head, false); 553 goto run; 554 } 555 556 if (e && e->type->ops.insert_requests) { 557 LIST_HEAD(list); 558 559 list_add(&rq->queuelist, &list); 560 e->type->ops.insert_requests(hctx, &list, at_head); 561 } else { 562 spin_lock(&ctx->lock); 563 __blk_mq_insert_request(hctx, rq, at_head); 564 spin_unlock(&ctx->lock); 565 } 566 567 run: 568 if (run_queue) 569 blk_mq_run_hw_queue(hctx, async); 570 } 571 572 void blk_mq_sched_insert_requests(struct blk_mq_hw_ctx *hctx, 573 struct blk_mq_ctx *ctx, 574 struct list_head *list, bool run_queue_async) 575 { 576 struct elevator_queue *e; 577 struct request_queue *q = hctx->queue; 578 579 /* 580 * blk_mq_sched_insert_requests() is called from flush plug 581 * context only, and hold one usage counter to prevent queue 582 * from being released. 583 */ 584 percpu_ref_get(&q->q_usage_counter); 585 586 e = hctx->queue->elevator; 587 if (e && e->type->ops.insert_requests) 588 e->type->ops.insert_requests(hctx, list, false); 589 else { 590 /* 591 * try to issue requests directly if the hw queue isn't 592 * busy in case of 'none' scheduler, and this way may save 593 * us one extra enqueue & dequeue to sw queue. 594 */ 595 if (!hctx->dispatch_busy && !e && !run_queue_async) { 596 blk_mq_try_issue_list_directly(hctx, list); 597 if (list_empty(list)) 598 goto out; 599 } 600 blk_mq_insert_requests(hctx, ctx, list); 601 } 602 603 blk_mq_run_hw_queue(hctx, run_queue_async); 604 out: 605 percpu_ref_put(&q->q_usage_counter); 606 } 607 608 static void blk_mq_sched_free_tags(struct blk_mq_tag_set *set, 609 struct blk_mq_hw_ctx *hctx, 610 unsigned int hctx_idx) 611 { 612 if (hctx->sched_tags) { 613 blk_mq_free_rqs(set, hctx->sched_tags, hctx_idx); 614 blk_mq_free_rq_map(hctx->sched_tags); 615 hctx->sched_tags = NULL; 616 } 617 } 618 619 static int blk_mq_sched_alloc_tags(struct request_queue *q, 620 struct blk_mq_hw_ctx *hctx, 621 unsigned int hctx_idx) 622 { 623 struct blk_mq_tag_set *set = q->tag_set; 624 int ret; 625 626 hctx->sched_tags = blk_mq_alloc_rq_map(set, hctx_idx, q->nr_requests, 627 set->reserved_tags); 628 if (!hctx->sched_tags) 629 return -ENOMEM; 630 631 ret = blk_mq_alloc_rqs(set, hctx->sched_tags, hctx_idx, q->nr_requests); 632 if (ret) 633 blk_mq_sched_free_tags(set, hctx, hctx_idx); 634 635 return ret; 636 } 637 638 /* called in queue's release handler, tagset has gone away */ 639 static void blk_mq_sched_tags_teardown(struct request_queue *q) 640 { 641 struct blk_mq_hw_ctx *hctx; 642 int i; 643 644 queue_for_each_hw_ctx(q, hctx, i) { 645 if (hctx->sched_tags) { 646 blk_mq_free_rq_map(hctx->sched_tags); 647 hctx->sched_tags = NULL; 648 } 649 } 650 } 651 652 int blk_mq_init_sched(struct request_queue *q, struct elevator_type *e) 653 { 654 struct blk_mq_hw_ctx *hctx; 655 struct elevator_queue *eq; 656 unsigned int i; 657 int ret; 658 659 if (!e) { 660 q->elevator = NULL; 661 q->nr_requests = q->tag_set->queue_depth; 662 return 0; 663 } 664 665 /* 666 * Default to double of smaller one between hw queue_depth and 128, 667 * since we don't split into sync/async like the old code did. 668 * Additionally, this is a per-hw queue depth. 669 */ 670 q->nr_requests = 2 * min_t(unsigned int, q->tag_set->queue_depth, 671 BLKDEV_MAX_RQ); 672 673 queue_for_each_hw_ctx(q, hctx, i) { 674 ret = blk_mq_sched_alloc_tags(q, hctx, i); 675 if (ret) 676 goto err; 677 } 678 679 ret = e->ops.init_sched(q, e); 680 if (ret) 681 goto err; 682 683 blk_mq_debugfs_register_sched(q); 684 685 queue_for_each_hw_ctx(q, hctx, i) { 686 if (e->ops.init_hctx) { 687 ret = e->ops.init_hctx(hctx, i); 688 if (ret) { 689 eq = q->elevator; 690 blk_mq_sched_free_requests(q); 691 blk_mq_exit_sched(q, eq); 692 kobject_put(&eq->kobj); 693 return ret; 694 } 695 } 696 blk_mq_debugfs_register_sched_hctx(q, hctx); 697 } 698 699 return 0; 700 701 err: 702 blk_mq_sched_free_requests(q); 703 blk_mq_sched_tags_teardown(q); 704 q->elevator = NULL; 705 return ret; 706 } 707 708 /* 709 * called in either blk_queue_cleanup or elevator_switch, tagset 710 * is required for freeing requests 711 */ 712 void blk_mq_sched_free_requests(struct request_queue *q) 713 { 714 struct blk_mq_hw_ctx *hctx; 715 int i; 716 717 queue_for_each_hw_ctx(q, hctx, i) { 718 if (hctx->sched_tags) 719 blk_mq_free_rqs(q->tag_set, hctx->sched_tags, i); 720 } 721 } 722 723 void blk_mq_exit_sched(struct request_queue *q, struct elevator_queue *e) 724 { 725 struct blk_mq_hw_ctx *hctx; 726 unsigned int i; 727 728 queue_for_each_hw_ctx(q, hctx, i) { 729 blk_mq_debugfs_unregister_sched_hctx(hctx); 730 if (e->type->ops.exit_hctx && hctx->sched_data) { 731 e->type->ops.exit_hctx(hctx, i); 732 hctx->sched_data = NULL; 733 } 734 } 735 blk_mq_debugfs_unregister_sched(q); 736 if (e->type->ops.exit_sched) 737 e->type->ops.exit_sched(e); 738 blk_mq_sched_tags_teardown(q); 739 q->elevator = NULL; 740 } 741