xref: /linux/block/blk-mq-sched.c (revision ed00aabd5eb9fb44d6aff1173234a2e911b9fead)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * blk-mq scheduling framework
4  *
5  * Copyright (C) 2016 Jens Axboe
6  */
7 #include <linux/kernel.h>
8 #include <linux/module.h>
9 #include <linux/blk-mq.h>
10 #include <linux/list_sort.h>
11 
12 #include <trace/events/block.h>
13 
14 #include "blk.h"
15 #include "blk-mq.h"
16 #include "blk-mq-debugfs.h"
17 #include "blk-mq-sched.h"
18 #include "blk-mq-tag.h"
19 #include "blk-wbt.h"
20 
21 void blk_mq_sched_free_hctx_data(struct request_queue *q,
22 				 void (*exit)(struct blk_mq_hw_ctx *))
23 {
24 	struct blk_mq_hw_ctx *hctx;
25 	int i;
26 
27 	queue_for_each_hw_ctx(q, hctx, i) {
28 		if (exit && hctx->sched_data)
29 			exit(hctx);
30 		kfree(hctx->sched_data);
31 		hctx->sched_data = NULL;
32 	}
33 }
34 EXPORT_SYMBOL_GPL(blk_mq_sched_free_hctx_data);
35 
36 void blk_mq_sched_assign_ioc(struct request *rq)
37 {
38 	struct request_queue *q = rq->q;
39 	struct io_context *ioc;
40 	struct io_cq *icq;
41 
42 	/*
43 	 * May not have an IO context if it's a passthrough request
44 	 */
45 	ioc = current->io_context;
46 	if (!ioc)
47 		return;
48 
49 	spin_lock_irq(&q->queue_lock);
50 	icq = ioc_lookup_icq(ioc, q);
51 	spin_unlock_irq(&q->queue_lock);
52 
53 	if (!icq) {
54 		icq = ioc_create_icq(ioc, q, GFP_ATOMIC);
55 		if (!icq)
56 			return;
57 	}
58 	get_io_context(icq->ioc);
59 	rq->elv.icq = icq;
60 }
61 
62 /*
63  * Mark a hardware queue as needing a restart. For shared queues, maintain
64  * a count of how many hardware queues are marked for restart.
65  */
66 void blk_mq_sched_mark_restart_hctx(struct blk_mq_hw_ctx *hctx)
67 {
68 	if (test_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state))
69 		return;
70 
71 	set_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state);
72 }
73 EXPORT_SYMBOL_GPL(blk_mq_sched_mark_restart_hctx);
74 
75 void blk_mq_sched_restart(struct blk_mq_hw_ctx *hctx)
76 {
77 	if (!test_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state))
78 		return;
79 	clear_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state);
80 
81 	blk_mq_run_hw_queue(hctx, true);
82 }
83 
84 static int sched_rq_cmp(void *priv, struct list_head *a, struct list_head *b)
85 {
86 	struct request *rqa = container_of(a, struct request, queuelist);
87 	struct request *rqb = container_of(b, struct request, queuelist);
88 
89 	return rqa->mq_hctx > rqb->mq_hctx;
90 }
91 
92 static bool blk_mq_dispatch_hctx_list(struct list_head *rq_list)
93 {
94 	struct blk_mq_hw_ctx *hctx =
95 		list_first_entry(rq_list, struct request, queuelist)->mq_hctx;
96 	struct request *rq;
97 	LIST_HEAD(hctx_list);
98 	unsigned int count = 0;
99 	bool ret;
100 
101 	list_for_each_entry(rq, rq_list, queuelist) {
102 		if (rq->mq_hctx != hctx) {
103 			list_cut_before(&hctx_list, rq_list, &rq->queuelist);
104 			goto dispatch;
105 		}
106 		count++;
107 	}
108 	list_splice_tail_init(rq_list, &hctx_list);
109 
110 dispatch:
111 	ret = blk_mq_dispatch_rq_list(hctx, &hctx_list, count);
112 	return ret;
113 }
114 
115 #define BLK_MQ_BUDGET_DELAY	3		/* ms units */
116 
117 /*
118  * Only SCSI implements .get_budget and .put_budget, and SCSI restarts
119  * its queue by itself in its completion handler, so we don't need to
120  * restart queue if .get_budget() returns BLK_STS_NO_RESOURCE.
121  *
122  * Returns -EAGAIN if hctx->dispatch was found non-empty and run_work has to
123  * be run again.  This is necessary to avoid starving flushes.
124  */
125 static int __blk_mq_do_dispatch_sched(struct blk_mq_hw_ctx *hctx)
126 {
127 	struct request_queue *q = hctx->queue;
128 	struct elevator_queue *e = q->elevator;
129 	bool multi_hctxs = false, run_queue = false;
130 	bool dispatched = false, busy = false;
131 	unsigned int max_dispatch;
132 	LIST_HEAD(rq_list);
133 	int count = 0;
134 
135 	if (hctx->dispatch_busy)
136 		max_dispatch = 1;
137 	else
138 		max_dispatch = hctx->queue->nr_requests;
139 
140 	do {
141 		struct request *rq;
142 
143 		if (e->type->ops.has_work && !e->type->ops.has_work(hctx))
144 			break;
145 
146 		if (!list_empty_careful(&hctx->dispatch)) {
147 			busy = true;
148 			break;
149 		}
150 
151 		if (!blk_mq_get_dispatch_budget(q))
152 			break;
153 
154 		rq = e->type->ops.dispatch_request(hctx);
155 		if (!rq) {
156 			blk_mq_put_dispatch_budget(q);
157 			/*
158 			 * We're releasing without dispatching. Holding the
159 			 * budget could have blocked any "hctx"s with the
160 			 * same queue and if we didn't dispatch then there's
161 			 * no guarantee anyone will kick the queue.  Kick it
162 			 * ourselves.
163 			 */
164 			run_queue = true;
165 			break;
166 		}
167 
168 		/*
169 		 * Now this rq owns the budget which has to be released
170 		 * if this rq won't be queued to driver via .queue_rq()
171 		 * in blk_mq_dispatch_rq_list().
172 		 */
173 		list_add_tail(&rq->queuelist, &rq_list);
174 		if (rq->mq_hctx != hctx)
175 			multi_hctxs = true;
176 	} while (++count < max_dispatch);
177 
178 	if (!count) {
179 		if (run_queue)
180 			blk_mq_delay_run_hw_queues(q, BLK_MQ_BUDGET_DELAY);
181 	} else if (multi_hctxs) {
182 		/*
183 		 * Requests from different hctx may be dequeued from some
184 		 * schedulers, such as bfq and deadline.
185 		 *
186 		 * Sort the requests in the list according to their hctx,
187 		 * dispatch batching requests from same hctx at a time.
188 		 */
189 		list_sort(NULL, &rq_list, sched_rq_cmp);
190 		do {
191 			dispatched |= blk_mq_dispatch_hctx_list(&rq_list);
192 		} while (!list_empty(&rq_list));
193 	} else {
194 		dispatched = blk_mq_dispatch_rq_list(hctx, &rq_list, count);
195 	}
196 
197 	if (busy)
198 		return -EAGAIN;
199 	return !!dispatched;
200 }
201 
202 static int blk_mq_do_dispatch_sched(struct blk_mq_hw_ctx *hctx)
203 {
204 	int ret;
205 
206 	do {
207 		ret = __blk_mq_do_dispatch_sched(hctx);
208 	} while (ret == 1);
209 
210 	return ret;
211 }
212 
213 static struct blk_mq_ctx *blk_mq_next_ctx(struct blk_mq_hw_ctx *hctx,
214 					  struct blk_mq_ctx *ctx)
215 {
216 	unsigned short idx = ctx->index_hw[hctx->type];
217 
218 	if (++idx == hctx->nr_ctx)
219 		idx = 0;
220 
221 	return hctx->ctxs[idx];
222 }
223 
224 /*
225  * Only SCSI implements .get_budget and .put_budget, and SCSI restarts
226  * its queue by itself in its completion handler, so we don't need to
227  * restart queue if .get_budget() returns BLK_STS_NO_RESOURCE.
228  *
229  * Returns -EAGAIN if hctx->dispatch was found non-empty and run_work has to
230  * to be run again.  This is necessary to avoid starving flushes.
231  */
232 static int blk_mq_do_dispatch_ctx(struct blk_mq_hw_ctx *hctx)
233 {
234 	struct request_queue *q = hctx->queue;
235 	LIST_HEAD(rq_list);
236 	struct blk_mq_ctx *ctx = READ_ONCE(hctx->dispatch_from);
237 	int ret = 0;
238 	struct request *rq;
239 
240 	do {
241 		if (!list_empty_careful(&hctx->dispatch)) {
242 			ret = -EAGAIN;
243 			break;
244 		}
245 
246 		if (!sbitmap_any_bit_set(&hctx->ctx_map))
247 			break;
248 
249 		if (!blk_mq_get_dispatch_budget(q))
250 			break;
251 
252 		rq = blk_mq_dequeue_from_ctx(hctx, ctx);
253 		if (!rq) {
254 			blk_mq_put_dispatch_budget(q);
255 			/*
256 			 * We're releasing without dispatching. Holding the
257 			 * budget could have blocked any "hctx"s with the
258 			 * same queue and if we didn't dispatch then there's
259 			 * no guarantee anyone will kick the queue.  Kick it
260 			 * ourselves.
261 			 */
262 			blk_mq_delay_run_hw_queues(q, BLK_MQ_BUDGET_DELAY);
263 			break;
264 		}
265 
266 		/*
267 		 * Now this rq owns the budget which has to be released
268 		 * if this rq won't be queued to driver via .queue_rq()
269 		 * in blk_mq_dispatch_rq_list().
270 		 */
271 		list_add(&rq->queuelist, &rq_list);
272 
273 		/* round robin for fair dispatch */
274 		ctx = blk_mq_next_ctx(hctx, rq->mq_ctx);
275 
276 	} while (blk_mq_dispatch_rq_list(rq->mq_hctx, &rq_list, 1));
277 
278 	WRITE_ONCE(hctx->dispatch_from, ctx);
279 	return ret;
280 }
281 
282 static int __blk_mq_sched_dispatch_requests(struct blk_mq_hw_ctx *hctx)
283 {
284 	struct request_queue *q = hctx->queue;
285 	struct elevator_queue *e = q->elevator;
286 	const bool has_sched_dispatch = e && e->type->ops.dispatch_request;
287 	int ret = 0;
288 	LIST_HEAD(rq_list);
289 
290 	/*
291 	 * If we have previous entries on our dispatch list, grab them first for
292 	 * more fair dispatch.
293 	 */
294 	if (!list_empty_careful(&hctx->dispatch)) {
295 		spin_lock(&hctx->lock);
296 		if (!list_empty(&hctx->dispatch))
297 			list_splice_init(&hctx->dispatch, &rq_list);
298 		spin_unlock(&hctx->lock);
299 	}
300 
301 	/*
302 	 * Only ask the scheduler for requests, if we didn't have residual
303 	 * requests from the dispatch list. This is to avoid the case where
304 	 * we only ever dispatch a fraction of the requests available because
305 	 * of low device queue depth. Once we pull requests out of the IO
306 	 * scheduler, we can no longer merge or sort them. So it's best to
307 	 * leave them there for as long as we can. Mark the hw queue as
308 	 * needing a restart in that case.
309 	 *
310 	 * We want to dispatch from the scheduler if there was nothing
311 	 * on the dispatch list or we were able to dispatch from the
312 	 * dispatch list.
313 	 */
314 	if (!list_empty(&rq_list)) {
315 		blk_mq_sched_mark_restart_hctx(hctx);
316 		if (blk_mq_dispatch_rq_list(hctx, &rq_list, 0)) {
317 			if (has_sched_dispatch)
318 				ret = blk_mq_do_dispatch_sched(hctx);
319 			else
320 				ret = blk_mq_do_dispatch_ctx(hctx);
321 		}
322 	} else if (has_sched_dispatch) {
323 		ret = blk_mq_do_dispatch_sched(hctx);
324 	} else if (hctx->dispatch_busy) {
325 		/* dequeue request one by one from sw queue if queue is busy */
326 		ret = blk_mq_do_dispatch_ctx(hctx);
327 	} else {
328 		blk_mq_flush_busy_ctxs(hctx, &rq_list);
329 		blk_mq_dispatch_rq_list(hctx, &rq_list, 0);
330 	}
331 
332 	return ret;
333 }
334 
335 void blk_mq_sched_dispatch_requests(struct blk_mq_hw_ctx *hctx)
336 {
337 	struct request_queue *q = hctx->queue;
338 
339 	/* RCU or SRCU read lock is needed before checking quiesced flag */
340 	if (unlikely(blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(q)))
341 		return;
342 
343 	hctx->run++;
344 
345 	/*
346 	 * A return of -EAGAIN is an indication that hctx->dispatch is not
347 	 * empty and we must run again in order to avoid starving flushes.
348 	 */
349 	if (__blk_mq_sched_dispatch_requests(hctx) == -EAGAIN) {
350 		if (__blk_mq_sched_dispatch_requests(hctx) == -EAGAIN)
351 			blk_mq_run_hw_queue(hctx, true);
352 	}
353 }
354 
355 bool blk_mq_sched_try_merge(struct request_queue *q, struct bio *bio,
356 		unsigned int nr_segs, struct request **merged_request)
357 {
358 	struct request *rq;
359 
360 	switch (elv_merge(q, &rq, bio)) {
361 	case ELEVATOR_BACK_MERGE:
362 		if (!blk_mq_sched_allow_merge(q, rq, bio))
363 			return false;
364 		if (!bio_attempt_back_merge(rq, bio, nr_segs))
365 			return false;
366 		*merged_request = attempt_back_merge(q, rq);
367 		if (!*merged_request)
368 			elv_merged_request(q, rq, ELEVATOR_BACK_MERGE);
369 		return true;
370 	case ELEVATOR_FRONT_MERGE:
371 		if (!blk_mq_sched_allow_merge(q, rq, bio))
372 			return false;
373 		if (!bio_attempt_front_merge(rq, bio, nr_segs))
374 			return false;
375 		*merged_request = attempt_front_merge(q, rq);
376 		if (!*merged_request)
377 			elv_merged_request(q, rq, ELEVATOR_FRONT_MERGE);
378 		return true;
379 	case ELEVATOR_DISCARD_MERGE:
380 		return bio_attempt_discard_merge(q, rq, bio);
381 	default:
382 		return false;
383 	}
384 }
385 EXPORT_SYMBOL_GPL(blk_mq_sched_try_merge);
386 
387 /*
388  * Iterate list of requests and see if we can merge this bio with any
389  * of them.
390  */
391 bool blk_mq_bio_list_merge(struct request_queue *q, struct list_head *list,
392 			   struct bio *bio, unsigned int nr_segs)
393 {
394 	struct request *rq;
395 	int checked = 8;
396 
397 	list_for_each_entry_reverse(rq, list, queuelist) {
398 		bool merged = false;
399 
400 		if (!checked--)
401 			break;
402 
403 		if (!blk_rq_merge_ok(rq, bio))
404 			continue;
405 
406 		switch (blk_try_merge(rq, bio)) {
407 		case ELEVATOR_BACK_MERGE:
408 			if (blk_mq_sched_allow_merge(q, rq, bio))
409 				merged = bio_attempt_back_merge(rq, bio,
410 						nr_segs);
411 			break;
412 		case ELEVATOR_FRONT_MERGE:
413 			if (blk_mq_sched_allow_merge(q, rq, bio))
414 				merged = bio_attempt_front_merge(rq, bio,
415 						nr_segs);
416 			break;
417 		case ELEVATOR_DISCARD_MERGE:
418 			merged = bio_attempt_discard_merge(q, rq, bio);
419 			break;
420 		default:
421 			continue;
422 		}
423 
424 		return merged;
425 	}
426 
427 	return false;
428 }
429 EXPORT_SYMBOL_GPL(blk_mq_bio_list_merge);
430 
431 /*
432  * Reverse check our software queue for entries that we could potentially
433  * merge with. Currently includes a hand-wavy stop count of 8, to not spend
434  * too much time checking for merges.
435  */
436 static bool blk_mq_attempt_merge(struct request_queue *q,
437 				 struct blk_mq_hw_ctx *hctx,
438 				 struct blk_mq_ctx *ctx, struct bio *bio,
439 				 unsigned int nr_segs)
440 {
441 	enum hctx_type type = hctx->type;
442 
443 	lockdep_assert_held(&ctx->lock);
444 
445 	if (blk_mq_bio_list_merge(q, &ctx->rq_lists[type], bio, nr_segs)) {
446 		ctx->rq_merged++;
447 		return true;
448 	}
449 
450 	return false;
451 }
452 
453 bool __blk_mq_sched_bio_merge(struct request_queue *q, struct bio *bio,
454 		unsigned int nr_segs)
455 {
456 	struct elevator_queue *e = q->elevator;
457 	struct blk_mq_ctx *ctx = blk_mq_get_ctx(q);
458 	struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, bio->bi_opf, ctx);
459 	bool ret = false;
460 	enum hctx_type type;
461 
462 	if (e && e->type->ops.bio_merge)
463 		return e->type->ops.bio_merge(hctx, bio, nr_segs);
464 
465 	type = hctx->type;
466 	if ((hctx->flags & BLK_MQ_F_SHOULD_MERGE) &&
467 			!list_empty_careful(&ctx->rq_lists[type])) {
468 		/* default per sw-queue merge */
469 		spin_lock(&ctx->lock);
470 		ret = blk_mq_attempt_merge(q, hctx, ctx, bio, nr_segs);
471 		spin_unlock(&ctx->lock);
472 	}
473 
474 	return ret;
475 }
476 
477 bool blk_mq_sched_try_insert_merge(struct request_queue *q, struct request *rq)
478 {
479 	return rq_mergeable(rq) && elv_attempt_insert_merge(q, rq);
480 }
481 EXPORT_SYMBOL_GPL(blk_mq_sched_try_insert_merge);
482 
483 void blk_mq_sched_request_inserted(struct request *rq)
484 {
485 	trace_block_rq_insert(rq->q, rq);
486 }
487 EXPORT_SYMBOL_GPL(blk_mq_sched_request_inserted);
488 
489 static bool blk_mq_sched_bypass_insert(struct blk_mq_hw_ctx *hctx,
490 				       bool has_sched,
491 				       struct request *rq)
492 {
493 	/*
494 	 * dispatch flush and passthrough rq directly
495 	 *
496 	 * passthrough request has to be added to hctx->dispatch directly.
497 	 * For some reason, device may be in one situation which can't
498 	 * handle FS request, so STS_RESOURCE is always returned and the
499 	 * FS request will be added to hctx->dispatch. However passthrough
500 	 * request may be required at that time for fixing the problem. If
501 	 * passthrough request is added to scheduler queue, there isn't any
502 	 * chance to dispatch it given we prioritize requests in hctx->dispatch.
503 	 */
504 	if ((rq->rq_flags & RQF_FLUSH_SEQ) || blk_rq_is_passthrough(rq))
505 		return true;
506 
507 	if (has_sched)
508 		rq->rq_flags |= RQF_SORTED;
509 
510 	return false;
511 }
512 
513 void blk_mq_sched_insert_request(struct request *rq, bool at_head,
514 				 bool run_queue, bool async)
515 {
516 	struct request_queue *q = rq->q;
517 	struct elevator_queue *e = q->elevator;
518 	struct blk_mq_ctx *ctx = rq->mq_ctx;
519 	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
520 
521 	/* flush rq in flush machinery need to be dispatched directly */
522 	if (!(rq->rq_flags & RQF_FLUSH_SEQ) && op_is_flush(rq->cmd_flags)) {
523 		blk_insert_flush(rq);
524 		goto run;
525 	}
526 
527 	WARN_ON(e && (rq->tag != -1));
528 
529 	if (blk_mq_sched_bypass_insert(hctx, !!e, rq)) {
530 		/*
531 		 * Firstly normal IO request is inserted to scheduler queue or
532 		 * sw queue, meantime we add flush request to dispatch queue(
533 		 * hctx->dispatch) directly and there is at most one in-flight
534 		 * flush request for each hw queue, so it doesn't matter to add
535 		 * flush request to tail or front of the dispatch queue.
536 		 *
537 		 * Secondly in case of NCQ, flush request belongs to non-NCQ
538 		 * command, and queueing it will fail when there is any
539 		 * in-flight normal IO request(NCQ command). When adding flush
540 		 * rq to the front of hctx->dispatch, it is easier to introduce
541 		 * extra time to flush rq's latency because of S_SCHED_RESTART
542 		 * compared with adding to the tail of dispatch queue, then
543 		 * chance of flush merge is increased, and less flush requests
544 		 * will be issued to controller. It is observed that ~10% time
545 		 * is saved in blktests block/004 on disk attached to AHCI/NCQ
546 		 * drive when adding flush rq to the front of hctx->dispatch.
547 		 *
548 		 * Simply queue flush rq to the front of hctx->dispatch so that
549 		 * intensive flush workloads can benefit in case of NCQ HW.
550 		 */
551 		at_head = (rq->rq_flags & RQF_FLUSH_SEQ) ? true : at_head;
552 		blk_mq_request_bypass_insert(rq, at_head, false);
553 		goto run;
554 	}
555 
556 	if (e && e->type->ops.insert_requests) {
557 		LIST_HEAD(list);
558 
559 		list_add(&rq->queuelist, &list);
560 		e->type->ops.insert_requests(hctx, &list, at_head);
561 	} else {
562 		spin_lock(&ctx->lock);
563 		__blk_mq_insert_request(hctx, rq, at_head);
564 		spin_unlock(&ctx->lock);
565 	}
566 
567 run:
568 	if (run_queue)
569 		blk_mq_run_hw_queue(hctx, async);
570 }
571 
572 void blk_mq_sched_insert_requests(struct blk_mq_hw_ctx *hctx,
573 				  struct blk_mq_ctx *ctx,
574 				  struct list_head *list, bool run_queue_async)
575 {
576 	struct elevator_queue *e;
577 	struct request_queue *q = hctx->queue;
578 
579 	/*
580 	 * blk_mq_sched_insert_requests() is called from flush plug
581 	 * context only, and hold one usage counter to prevent queue
582 	 * from being released.
583 	 */
584 	percpu_ref_get(&q->q_usage_counter);
585 
586 	e = hctx->queue->elevator;
587 	if (e && e->type->ops.insert_requests)
588 		e->type->ops.insert_requests(hctx, list, false);
589 	else {
590 		/*
591 		 * try to issue requests directly if the hw queue isn't
592 		 * busy in case of 'none' scheduler, and this way may save
593 		 * us one extra enqueue & dequeue to sw queue.
594 		 */
595 		if (!hctx->dispatch_busy && !e && !run_queue_async) {
596 			blk_mq_try_issue_list_directly(hctx, list);
597 			if (list_empty(list))
598 				goto out;
599 		}
600 		blk_mq_insert_requests(hctx, ctx, list);
601 	}
602 
603 	blk_mq_run_hw_queue(hctx, run_queue_async);
604  out:
605 	percpu_ref_put(&q->q_usage_counter);
606 }
607 
608 static void blk_mq_sched_free_tags(struct blk_mq_tag_set *set,
609 				   struct blk_mq_hw_ctx *hctx,
610 				   unsigned int hctx_idx)
611 {
612 	if (hctx->sched_tags) {
613 		blk_mq_free_rqs(set, hctx->sched_tags, hctx_idx);
614 		blk_mq_free_rq_map(hctx->sched_tags);
615 		hctx->sched_tags = NULL;
616 	}
617 }
618 
619 static int blk_mq_sched_alloc_tags(struct request_queue *q,
620 				   struct blk_mq_hw_ctx *hctx,
621 				   unsigned int hctx_idx)
622 {
623 	struct blk_mq_tag_set *set = q->tag_set;
624 	int ret;
625 
626 	hctx->sched_tags = blk_mq_alloc_rq_map(set, hctx_idx, q->nr_requests,
627 					       set->reserved_tags);
628 	if (!hctx->sched_tags)
629 		return -ENOMEM;
630 
631 	ret = blk_mq_alloc_rqs(set, hctx->sched_tags, hctx_idx, q->nr_requests);
632 	if (ret)
633 		blk_mq_sched_free_tags(set, hctx, hctx_idx);
634 
635 	return ret;
636 }
637 
638 /* called in queue's release handler, tagset has gone away */
639 static void blk_mq_sched_tags_teardown(struct request_queue *q)
640 {
641 	struct blk_mq_hw_ctx *hctx;
642 	int i;
643 
644 	queue_for_each_hw_ctx(q, hctx, i) {
645 		if (hctx->sched_tags) {
646 			blk_mq_free_rq_map(hctx->sched_tags);
647 			hctx->sched_tags = NULL;
648 		}
649 	}
650 }
651 
652 int blk_mq_init_sched(struct request_queue *q, struct elevator_type *e)
653 {
654 	struct blk_mq_hw_ctx *hctx;
655 	struct elevator_queue *eq;
656 	unsigned int i;
657 	int ret;
658 
659 	if (!e) {
660 		q->elevator = NULL;
661 		q->nr_requests = q->tag_set->queue_depth;
662 		return 0;
663 	}
664 
665 	/*
666 	 * Default to double of smaller one between hw queue_depth and 128,
667 	 * since we don't split into sync/async like the old code did.
668 	 * Additionally, this is a per-hw queue depth.
669 	 */
670 	q->nr_requests = 2 * min_t(unsigned int, q->tag_set->queue_depth,
671 				   BLKDEV_MAX_RQ);
672 
673 	queue_for_each_hw_ctx(q, hctx, i) {
674 		ret = blk_mq_sched_alloc_tags(q, hctx, i);
675 		if (ret)
676 			goto err;
677 	}
678 
679 	ret = e->ops.init_sched(q, e);
680 	if (ret)
681 		goto err;
682 
683 	blk_mq_debugfs_register_sched(q);
684 
685 	queue_for_each_hw_ctx(q, hctx, i) {
686 		if (e->ops.init_hctx) {
687 			ret = e->ops.init_hctx(hctx, i);
688 			if (ret) {
689 				eq = q->elevator;
690 				blk_mq_sched_free_requests(q);
691 				blk_mq_exit_sched(q, eq);
692 				kobject_put(&eq->kobj);
693 				return ret;
694 			}
695 		}
696 		blk_mq_debugfs_register_sched_hctx(q, hctx);
697 	}
698 
699 	return 0;
700 
701 err:
702 	blk_mq_sched_free_requests(q);
703 	blk_mq_sched_tags_teardown(q);
704 	q->elevator = NULL;
705 	return ret;
706 }
707 
708 /*
709  * called in either blk_queue_cleanup or elevator_switch, tagset
710  * is required for freeing requests
711  */
712 void blk_mq_sched_free_requests(struct request_queue *q)
713 {
714 	struct blk_mq_hw_ctx *hctx;
715 	int i;
716 
717 	queue_for_each_hw_ctx(q, hctx, i) {
718 		if (hctx->sched_tags)
719 			blk_mq_free_rqs(q->tag_set, hctx->sched_tags, i);
720 	}
721 }
722 
723 void blk_mq_exit_sched(struct request_queue *q, struct elevator_queue *e)
724 {
725 	struct blk_mq_hw_ctx *hctx;
726 	unsigned int i;
727 
728 	queue_for_each_hw_ctx(q, hctx, i) {
729 		blk_mq_debugfs_unregister_sched_hctx(hctx);
730 		if (e->type->ops.exit_hctx && hctx->sched_data) {
731 			e->type->ops.exit_hctx(hctx, i);
732 			hctx->sched_data = NULL;
733 		}
734 	}
735 	blk_mq_debugfs_unregister_sched(q);
736 	if (e->type->ops.exit_sched)
737 		e->type->ops.exit_sched(e);
738 	blk_mq_sched_tags_teardown(q);
739 	q->elevator = NULL;
740 }
741