xref: /linux/block/blk-mq-sched.c (revision e5c86679d5e864947a52fb31e45a425dea3e7fa9)
1 /*
2  * blk-mq scheduling framework
3  *
4  * Copyright (C) 2016 Jens Axboe
5  */
6 #include <linux/kernel.h>
7 #include <linux/module.h>
8 #include <linux/blk-mq.h>
9 
10 #include <trace/events/block.h>
11 
12 #include "blk.h"
13 #include "blk-mq.h"
14 #include "blk-mq-sched.h"
15 #include "blk-mq-tag.h"
16 #include "blk-wbt.h"
17 
18 void blk_mq_sched_free_hctx_data(struct request_queue *q,
19 				 void (*exit)(struct blk_mq_hw_ctx *))
20 {
21 	struct blk_mq_hw_ctx *hctx;
22 	int i;
23 
24 	queue_for_each_hw_ctx(q, hctx, i) {
25 		if (exit && hctx->sched_data)
26 			exit(hctx);
27 		kfree(hctx->sched_data);
28 		hctx->sched_data = NULL;
29 	}
30 }
31 EXPORT_SYMBOL_GPL(blk_mq_sched_free_hctx_data);
32 
33 int blk_mq_sched_init_hctx_data(struct request_queue *q, size_t size,
34 				int (*init)(struct blk_mq_hw_ctx *),
35 				void (*exit)(struct blk_mq_hw_ctx *))
36 {
37 	struct blk_mq_hw_ctx *hctx;
38 	int ret;
39 	int i;
40 
41 	queue_for_each_hw_ctx(q, hctx, i) {
42 		hctx->sched_data = kmalloc_node(size, GFP_KERNEL, hctx->numa_node);
43 		if (!hctx->sched_data) {
44 			ret = -ENOMEM;
45 			goto error;
46 		}
47 
48 		if (init) {
49 			ret = init(hctx);
50 			if (ret) {
51 				/*
52 				 * We don't want to give exit() a partially
53 				 * initialized sched_data. init() must clean up
54 				 * if it fails.
55 				 */
56 				kfree(hctx->sched_data);
57 				hctx->sched_data = NULL;
58 				goto error;
59 			}
60 		}
61 	}
62 
63 	return 0;
64 error:
65 	blk_mq_sched_free_hctx_data(q, exit);
66 	return ret;
67 }
68 EXPORT_SYMBOL_GPL(blk_mq_sched_init_hctx_data);
69 
70 static void __blk_mq_sched_assign_ioc(struct request_queue *q,
71 				      struct request *rq,
72 				      struct bio *bio,
73 				      struct io_context *ioc)
74 {
75 	struct io_cq *icq;
76 
77 	spin_lock_irq(q->queue_lock);
78 	icq = ioc_lookup_icq(ioc, q);
79 	spin_unlock_irq(q->queue_lock);
80 
81 	if (!icq) {
82 		icq = ioc_create_icq(ioc, q, GFP_ATOMIC);
83 		if (!icq)
84 			return;
85 	}
86 
87 	rq->elv.icq = icq;
88 	if (!blk_mq_sched_get_rq_priv(q, rq, bio)) {
89 		rq->rq_flags |= RQF_ELVPRIV;
90 		get_io_context(icq->ioc);
91 		return;
92 	}
93 
94 	rq->elv.icq = NULL;
95 }
96 
97 static void blk_mq_sched_assign_ioc(struct request_queue *q,
98 				    struct request *rq, struct bio *bio)
99 {
100 	struct io_context *ioc;
101 
102 	ioc = rq_ioc(bio);
103 	if (ioc)
104 		__blk_mq_sched_assign_ioc(q, rq, bio, ioc);
105 }
106 
107 struct request *blk_mq_sched_get_request(struct request_queue *q,
108 					 struct bio *bio,
109 					 unsigned int op,
110 					 struct blk_mq_alloc_data *data)
111 {
112 	struct elevator_queue *e = q->elevator;
113 	struct request *rq;
114 
115 	blk_queue_enter_live(q);
116 	data->q = q;
117 	if (likely(!data->ctx))
118 		data->ctx = blk_mq_get_ctx(q);
119 	if (likely(!data->hctx))
120 		data->hctx = blk_mq_map_queue(q, data->ctx->cpu);
121 
122 	if (e) {
123 		data->flags |= BLK_MQ_REQ_INTERNAL;
124 
125 		/*
126 		 * Flush requests are special and go directly to the
127 		 * dispatch list.
128 		 */
129 		if (!op_is_flush(op) && e->type->ops.mq.get_request) {
130 			rq = e->type->ops.mq.get_request(q, op, data);
131 			if (rq)
132 				rq->rq_flags |= RQF_QUEUED;
133 		} else
134 			rq = __blk_mq_alloc_request(data, op);
135 	} else {
136 		rq = __blk_mq_alloc_request(data, op);
137 	}
138 
139 	if (rq) {
140 		if (!op_is_flush(op)) {
141 			rq->elv.icq = NULL;
142 			if (e && e->type->icq_cache)
143 				blk_mq_sched_assign_ioc(q, rq, bio);
144 		}
145 		data->hctx->queued++;
146 		return rq;
147 	}
148 
149 	blk_queue_exit(q);
150 	return NULL;
151 }
152 
153 void blk_mq_sched_put_request(struct request *rq)
154 {
155 	struct request_queue *q = rq->q;
156 	struct elevator_queue *e = q->elevator;
157 
158 	if (rq->rq_flags & RQF_ELVPRIV) {
159 		blk_mq_sched_put_rq_priv(rq->q, rq);
160 		if (rq->elv.icq) {
161 			put_io_context(rq->elv.icq->ioc);
162 			rq->elv.icq = NULL;
163 		}
164 	}
165 
166 	if ((rq->rq_flags & RQF_QUEUED) && e && e->type->ops.mq.put_request)
167 		e->type->ops.mq.put_request(rq);
168 	else
169 		blk_mq_finish_request(rq);
170 }
171 
172 void blk_mq_sched_dispatch_requests(struct blk_mq_hw_ctx *hctx)
173 {
174 	struct request_queue *q = hctx->queue;
175 	struct elevator_queue *e = q->elevator;
176 	const bool has_sched_dispatch = e && e->type->ops.mq.dispatch_request;
177 	bool did_work = false;
178 	LIST_HEAD(rq_list);
179 
180 	if (unlikely(blk_mq_hctx_stopped(hctx)))
181 		return;
182 
183 	hctx->run++;
184 
185 	/*
186 	 * If we have previous entries on our dispatch list, grab them first for
187 	 * more fair dispatch.
188 	 */
189 	if (!list_empty_careful(&hctx->dispatch)) {
190 		spin_lock(&hctx->lock);
191 		if (!list_empty(&hctx->dispatch))
192 			list_splice_init(&hctx->dispatch, &rq_list);
193 		spin_unlock(&hctx->lock);
194 	}
195 
196 	/*
197 	 * Only ask the scheduler for requests, if we didn't have residual
198 	 * requests from the dispatch list. This is to avoid the case where
199 	 * we only ever dispatch a fraction of the requests available because
200 	 * of low device queue depth. Once we pull requests out of the IO
201 	 * scheduler, we can no longer merge or sort them. So it's best to
202 	 * leave them there for as long as we can. Mark the hw queue as
203 	 * needing a restart in that case.
204 	 */
205 	if (!list_empty(&rq_list)) {
206 		blk_mq_sched_mark_restart_hctx(hctx);
207 		did_work = blk_mq_dispatch_rq_list(q, &rq_list);
208 	} else if (!has_sched_dispatch) {
209 		blk_mq_flush_busy_ctxs(hctx, &rq_list);
210 		blk_mq_dispatch_rq_list(q, &rq_list);
211 	}
212 
213 	/*
214 	 * We want to dispatch from the scheduler if we had no work left
215 	 * on the dispatch list, OR if we did have work but weren't able
216 	 * to make progress.
217 	 */
218 	if (!did_work && has_sched_dispatch) {
219 		do {
220 			struct request *rq;
221 
222 			rq = e->type->ops.mq.dispatch_request(hctx);
223 			if (!rq)
224 				break;
225 			list_add(&rq->queuelist, &rq_list);
226 		} while (blk_mq_dispatch_rq_list(q, &rq_list));
227 	}
228 }
229 
230 void blk_mq_sched_move_to_dispatch(struct blk_mq_hw_ctx *hctx,
231 				   struct list_head *rq_list,
232 				   struct request *(*get_rq)(struct blk_mq_hw_ctx *))
233 {
234 	do {
235 		struct request *rq;
236 
237 		rq = get_rq(hctx);
238 		if (!rq)
239 			break;
240 
241 		list_add_tail(&rq->queuelist, rq_list);
242 	} while (1);
243 }
244 EXPORT_SYMBOL_GPL(blk_mq_sched_move_to_dispatch);
245 
246 bool blk_mq_sched_try_merge(struct request_queue *q, struct bio *bio,
247 			    struct request **merged_request)
248 {
249 	struct request *rq;
250 
251 	switch (elv_merge(q, &rq, bio)) {
252 	case ELEVATOR_BACK_MERGE:
253 		if (!blk_mq_sched_allow_merge(q, rq, bio))
254 			return false;
255 		if (!bio_attempt_back_merge(q, rq, bio))
256 			return false;
257 		*merged_request = attempt_back_merge(q, rq);
258 		if (!*merged_request)
259 			elv_merged_request(q, rq, ELEVATOR_BACK_MERGE);
260 		return true;
261 	case ELEVATOR_FRONT_MERGE:
262 		if (!blk_mq_sched_allow_merge(q, rq, bio))
263 			return false;
264 		if (!bio_attempt_front_merge(q, rq, bio))
265 			return false;
266 		*merged_request = attempt_front_merge(q, rq);
267 		if (!*merged_request)
268 			elv_merged_request(q, rq, ELEVATOR_FRONT_MERGE);
269 		return true;
270 	default:
271 		return false;
272 	}
273 }
274 EXPORT_SYMBOL_GPL(blk_mq_sched_try_merge);
275 
276 bool __blk_mq_sched_bio_merge(struct request_queue *q, struct bio *bio)
277 {
278 	struct elevator_queue *e = q->elevator;
279 
280 	if (e->type->ops.mq.bio_merge) {
281 		struct blk_mq_ctx *ctx = blk_mq_get_ctx(q);
282 		struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, ctx->cpu);
283 
284 		blk_mq_put_ctx(ctx);
285 		return e->type->ops.mq.bio_merge(hctx, bio);
286 	}
287 
288 	return false;
289 }
290 
291 bool blk_mq_sched_try_insert_merge(struct request_queue *q, struct request *rq)
292 {
293 	return rq_mergeable(rq) && elv_attempt_insert_merge(q, rq);
294 }
295 EXPORT_SYMBOL_GPL(blk_mq_sched_try_insert_merge);
296 
297 void blk_mq_sched_request_inserted(struct request *rq)
298 {
299 	trace_block_rq_insert(rq->q, rq);
300 }
301 EXPORT_SYMBOL_GPL(blk_mq_sched_request_inserted);
302 
303 static bool blk_mq_sched_bypass_insert(struct blk_mq_hw_ctx *hctx,
304 				       struct request *rq)
305 {
306 	if (rq->tag == -1) {
307 		rq->rq_flags |= RQF_SORTED;
308 		return false;
309 	}
310 
311 	/*
312 	 * If we already have a real request tag, send directly to
313 	 * the dispatch list.
314 	 */
315 	spin_lock(&hctx->lock);
316 	list_add(&rq->queuelist, &hctx->dispatch);
317 	spin_unlock(&hctx->lock);
318 	return true;
319 }
320 
321 static bool blk_mq_sched_restart_hctx(struct blk_mq_hw_ctx *hctx)
322 {
323 	if (test_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state)) {
324 		clear_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state);
325 		if (blk_mq_hctx_has_pending(hctx)) {
326 			blk_mq_run_hw_queue(hctx, true);
327 			return true;
328 		}
329 	}
330 	return false;
331 }
332 
333 /**
334  * list_for_each_entry_rcu_rr - iterate in a round-robin fashion over rcu list
335  * @pos:    loop cursor.
336  * @skip:   the list element that will not be examined. Iteration starts at
337  *          @skip->next.
338  * @head:   head of the list to examine. This list must have at least one
339  *          element, namely @skip.
340  * @member: name of the list_head structure within typeof(*pos).
341  */
342 #define list_for_each_entry_rcu_rr(pos, skip, head, member)		\
343 	for ((pos) = (skip);						\
344 	     (pos = (pos)->member.next != (head) ? list_entry_rcu(	\
345 			(pos)->member.next, typeof(*pos), member) :	\
346 	      list_entry_rcu((pos)->member.next->next, typeof(*pos), member)), \
347 	     (pos) != (skip); )
348 
349 /*
350  * Called after a driver tag has been freed to check whether a hctx needs to
351  * be restarted. Restarts @hctx if its tag set is not shared. Restarts hardware
352  * queues in a round-robin fashion if the tag set of @hctx is shared with other
353  * hardware queues.
354  */
355 void blk_mq_sched_restart(struct blk_mq_hw_ctx *const hctx)
356 {
357 	struct blk_mq_tags *const tags = hctx->tags;
358 	struct blk_mq_tag_set *const set = hctx->queue->tag_set;
359 	struct request_queue *const queue = hctx->queue, *q;
360 	struct blk_mq_hw_ctx *hctx2;
361 	unsigned int i, j;
362 
363 	if (set->flags & BLK_MQ_F_TAG_SHARED) {
364 		rcu_read_lock();
365 		list_for_each_entry_rcu_rr(q, queue, &set->tag_list,
366 					   tag_set_list) {
367 			queue_for_each_hw_ctx(q, hctx2, i)
368 				if (hctx2->tags == tags &&
369 				    blk_mq_sched_restart_hctx(hctx2))
370 					goto done;
371 		}
372 		j = hctx->queue_num + 1;
373 		for (i = 0; i < queue->nr_hw_queues; i++, j++) {
374 			if (j == queue->nr_hw_queues)
375 				j = 0;
376 			hctx2 = queue->queue_hw_ctx[j];
377 			if (hctx2->tags == tags &&
378 			    blk_mq_sched_restart_hctx(hctx2))
379 				break;
380 		}
381 done:
382 		rcu_read_unlock();
383 	} else {
384 		blk_mq_sched_restart_hctx(hctx);
385 	}
386 }
387 
388 /*
389  * Add flush/fua to the queue. If we fail getting a driver tag, then
390  * punt to the requeue list. Requeue will re-invoke us from a context
391  * that's safe to block from.
392  */
393 static void blk_mq_sched_insert_flush(struct blk_mq_hw_ctx *hctx,
394 				      struct request *rq, bool can_block)
395 {
396 	if (blk_mq_get_driver_tag(rq, &hctx, can_block)) {
397 		blk_insert_flush(rq);
398 		blk_mq_run_hw_queue(hctx, true);
399 	} else
400 		blk_mq_add_to_requeue_list(rq, false, true);
401 }
402 
403 void blk_mq_sched_insert_request(struct request *rq, bool at_head,
404 				 bool run_queue, bool async, bool can_block)
405 {
406 	struct request_queue *q = rq->q;
407 	struct elevator_queue *e = q->elevator;
408 	struct blk_mq_ctx *ctx = rq->mq_ctx;
409 	struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, ctx->cpu);
410 
411 	if (rq->tag == -1 && op_is_flush(rq->cmd_flags)) {
412 		blk_mq_sched_insert_flush(hctx, rq, can_block);
413 		return;
414 	}
415 
416 	if (e && blk_mq_sched_bypass_insert(hctx, rq))
417 		goto run;
418 
419 	if (e && e->type->ops.mq.insert_requests) {
420 		LIST_HEAD(list);
421 
422 		list_add(&rq->queuelist, &list);
423 		e->type->ops.mq.insert_requests(hctx, &list, at_head);
424 	} else {
425 		spin_lock(&ctx->lock);
426 		__blk_mq_insert_request(hctx, rq, at_head);
427 		spin_unlock(&ctx->lock);
428 	}
429 
430 run:
431 	if (run_queue)
432 		blk_mq_run_hw_queue(hctx, async);
433 }
434 
435 void blk_mq_sched_insert_requests(struct request_queue *q,
436 				  struct blk_mq_ctx *ctx,
437 				  struct list_head *list, bool run_queue_async)
438 {
439 	struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, ctx->cpu);
440 	struct elevator_queue *e = hctx->queue->elevator;
441 
442 	if (e) {
443 		struct request *rq, *next;
444 
445 		/*
446 		 * We bypass requests that already have a driver tag assigned,
447 		 * which should only be flushes. Flushes are only ever inserted
448 		 * as single requests, so we shouldn't ever hit the
449 		 * WARN_ON_ONCE() below (but let's handle it just in case).
450 		 */
451 		list_for_each_entry_safe(rq, next, list, queuelist) {
452 			if (WARN_ON_ONCE(rq->tag != -1)) {
453 				list_del_init(&rq->queuelist);
454 				blk_mq_sched_bypass_insert(hctx, rq);
455 			}
456 		}
457 	}
458 
459 	if (e && e->type->ops.mq.insert_requests)
460 		e->type->ops.mq.insert_requests(hctx, list, false);
461 	else
462 		blk_mq_insert_requests(hctx, ctx, list);
463 
464 	blk_mq_run_hw_queue(hctx, run_queue_async);
465 }
466 
467 static void blk_mq_sched_free_tags(struct blk_mq_tag_set *set,
468 				   struct blk_mq_hw_ctx *hctx,
469 				   unsigned int hctx_idx)
470 {
471 	if (hctx->sched_tags) {
472 		blk_mq_free_rqs(set, hctx->sched_tags, hctx_idx);
473 		blk_mq_free_rq_map(hctx->sched_tags);
474 		hctx->sched_tags = NULL;
475 	}
476 }
477 
478 static int blk_mq_sched_alloc_tags(struct request_queue *q,
479 				   struct blk_mq_hw_ctx *hctx,
480 				   unsigned int hctx_idx)
481 {
482 	struct blk_mq_tag_set *set = q->tag_set;
483 	int ret;
484 
485 	hctx->sched_tags = blk_mq_alloc_rq_map(set, hctx_idx, q->nr_requests,
486 					       set->reserved_tags);
487 	if (!hctx->sched_tags)
488 		return -ENOMEM;
489 
490 	ret = blk_mq_alloc_rqs(set, hctx->sched_tags, hctx_idx, q->nr_requests);
491 	if (ret)
492 		blk_mq_sched_free_tags(set, hctx, hctx_idx);
493 
494 	return ret;
495 }
496 
497 static void blk_mq_sched_tags_teardown(struct request_queue *q)
498 {
499 	struct blk_mq_tag_set *set = q->tag_set;
500 	struct blk_mq_hw_ctx *hctx;
501 	int i;
502 
503 	queue_for_each_hw_ctx(q, hctx, i)
504 		blk_mq_sched_free_tags(set, hctx, i);
505 }
506 
507 int blk_mq_sched_init_hctx(struct request_queue *q, struct blk_mq_hw_ctx *hctx,
508 			   unsigned int hctx_idx)
509 {
510 	struct elevator_queue *e = q->elevator;
511 
512 	if (!e)
513 		return 0;
514 
515 	return blk_mq_sched_alloc_tags(q, hctx, hctx_idx);
516 }
517 
518 void blk_mq_sched_exit_hctx(struct request_queue *q, struct blk_mq_hw_ctx *hctx,
519 			    unsigned int hctx_idx)
520 {
521 	struct elevator_queue *e = q->elevator;
522 
523 	if (!e)
524 		return;
525 
526 	blk_mq_sched_free_tags(q->tag_set, hctx, hctx_idx);
527 }
528 
529 int blk_mq_init_sched(struct request_queue *q, struct elevator_type *e)
530 {
531 	struct blk_mq_hw_ctx *hctx;
532 	unsigned int i;
533 	int ret;
534 
535 	if (!e) {
536 		q->elevator = NULL;
537 		return 0;
538 	}
539 
540 	/*
541 	 * Default to 256, since we don't split into sync/async like the
542 	 * old code did. Additionally, this is a per-hw queue depth.
543 	 */
544 	q->nr_requests = 2 * BLKDEV_MAX_RQ;
545 
546 	queue_for_each_hw_ctx(q, hctx, i) {
547 		ret = blk_mq_sched_alloc_tags(q, hctx, i);
548 		if (ret)
549 			goto err;
550 	}
551 
552 	ret = e->ops.mq.init_sched(q, e);
553 	if (ret)
554 		goto err;
555 
556 	return 0;
557 
558 err:
559 	blk_mq_sched_tags_teardown(q);
560 	q->elevator = NULL;
561 	return ret;
562 }
563 
564 void blk_mq_exit_sched(struct request_queue *q, struct elevator_queue *e)
565 {
566 	if (e->type->ops.mq.exit_sched)
567 		e->type->ops.mq.exit_sched(e);
568 	blk_mq_sched_tags_teardown(q);
569 	q->elevator = NULL;
570 }
571 
572 int blk_mq_sched_init(struct request_queue *q)
573 {
574 	int ret;
575 
576 	mutex_lock(&q->sysfs_lock);
577 	ret = elevator_init(q, NULL);
578 	mutex_unlock(&q->sysfs_lock);
579 
580 	return ret;
581 }
582