1 /* 2 * blk-mq scheduling framework 3 * 4 * Copyright (C) 2016 Jens Axboe 5 */ 6 #include <linux/kernel.h> 7 #include <linux/module.h> 8 #include <linux/blk-mq.h> 9 10 #include <trace/events/block.h> 11 12 #include "blk.h" 13 #include "blk-mq.h" 14 #include "blk-mq-sched.h" 15 #include "blk-mq-tag.h" 16 #include "blk-wbt.h" 17 18 void blk_mq_sched_free_hctx_data(struct request_queue *q, 19 void (*exit)(struct blk_mq_hw_ctx *)) 20 { 21 struct blk_mq_hw_ctx *hctx; 22 int i; 23 24 queue_for_each_hw_ctx(q, hctx, i) { 25 if (exit && hctx->sched_data) 26 exit(hctx); 27 kfree(hctx->sched_data); 28 hctx->sched_data = NULL; 29 } 30 } 31 EXPORT_SYMBOL_GPL(blk_mq_sched_free_hctx_data); 32 33 int blk_mq_sched_init_hctx_data(struct request_queue *q, size_t size, 34 int (*init)(struct blk_mq_hw_ctx *), 35 void (*exit)(struct blk_mq_hw_ctx *)) 36 { 37 struct blk_mq_hw_ctx *hctx; 38 int ret; 39 int i; 40 41 queue_for_each_hw_ctx(q, hctx, i) { 42 hctx->sched_data = kmalloc_node(size, GFP_KERNEL, hctx->numa_node); 43 if (!hctx->sched_data) { 44 ret = -ENOMEM; 45 goto error; 46 } 47 48 if (init) { 49 ret = init(hctx); 50 if (ret) { 51 /* 52 * We don't want to give exit() a partially 53 * initialized sched_data. init() must clean up 54 * if it fails. 55 */ 56 kfree(hctx->sched_data); 57 hctx->sched_data = NULL; 58 goto error; 59 } 60 } 61 } 62 63 return 0; 64 error: 65 blk_mq_sched_free_hctx_data(q, exit); 66 return ret; 67 } 68 EXPORT_SYMBOL_GPL(blk_mq_sched_init_hctx_data); 69 70 static void __blk_mq_sched_assign_ioc(struct request_queue *q, 71 struct request *rq, 72 struct bio *bio, 73 struct io_context *ioc) 74 { 75 struct io_cq *icq; 76 77 spin_lock_irq(q->queue_lock); 78 icq = ioc_lookup_icq(ioc, q); 79 spin_unlock_irq(q->queue_lock); 80 81 if (!icq) { 82 icq = ioc_create_icq(ioc, q, GFP_ATOMIC); 83 if (!icq) 84 return; 85 } 86 87 rq->elv.icq = icq; 88 if (!blk_mq_sched_get_rq_priv(q, rq, bio)) { 89 rq->rq_flags |= RQF_ELVPRIV; 90 get_io_context(icq->ioc); 91 return; 92 } 93 94 rq->elv.icq = NULL; 95 } 96 97 static void blk_mq_sched_assign_ioc(struct request_queue *q, 98 struct request *rq, struct bio *bio) 99 { 100 struct io_context *ioc; 101 102 ioc = rq_ioc(bio); 103 if (ioc) 104 __blk_mq_sched_assign_ioc(q, rq, bio, ioc); 105 } 106 107 struct request *blk_mq_sched_get_request(struct request_queue *q, 108 struct bio *bio, 109 unsigned int op, 110 struct blk_mq_alloc_data *data) 111 { 112 struct elevator_queue *e = q->elevator; 113 struct request *rq; 114 115 blk_queue_enter_live(q); 116 data->q = q; 117 if (likely(!data->ctx)) 118 data->ctx = blk_mq_get_ctx(q); 119 if (likely(!data->hctx)) 120 data->hctx = blk_mq_map_queue(q, data->ctx->cpu); 121 122 if (e) { 123 data->flags |= BLK_MQ_REQ_INTERNAL; 124 125 /* 126 * Flush requests are special and go directly to the 127 * dispatch list. 128 */ 129 if (!op_is_flush(op) && e->type->ops.mq.get_request) { 130 rq = e->type->ops.mq.get_request(q, op, data); 131 if (rq) 132 rq->rq_flags |= RQF_QUEUED; 133 } else 134 rq = __blk_mq_alloc_request(data, op); 135 } else { 136 rq = __blk_mq_alloc_request(data, op); 137 } 138 139 if (rq) { 140 if (!op_is_flush(op)) { 141 rq->elv.icq = NULL; 142 if (e && e->type->icq_cache) 143 blk_mq_sched_assign_ioc(q, rq, bio); 144 } 145 data->hctx->queued++; 146 return rq; 147 } 148 149 blk_queue_exit(q); 150 return NULL; 151 } 152 153 void blk_mq_sched_put_request(struct request *rq) 154 { 155 struct request_queue *q = rq->q; 156 struct elevator_queue *e = q->elevator; 157 158 if (rq->rq_flags & RQF_ELVPRIV) { 159 blk_mq_sched_put_rq_priv(rq->q, rq); 160 if (rq->elv.icq) { 161 put_io_context(rq->elv.icq->ioc); 162 rq->elv.icq = NULL; 163 } 164 } 165 166 if ((rq->rq_flags & RQF_QUEUED) && e && e->type->ops.mq.put_request) 167 e->type->ops.mq.put_request(rq); 168 else 169 blk_mq_finish_request(rq); 170 } 171 172 void blk_mq_sched_dispatch_requests(struct blk_mq_hw_ctx *hctx) 173 { 174 struct request_queue *q = hctx->queue; 175 struct elevator_queue *e = q->elevator; 176 const bool has_sched_dispatch = e && e->type->ops.mq.dispatch_request; 177 bool did_work = false; 178 LIST_HEAD(rq_list); 179 180 if (unlikely(blk_mq_hctx_stopped(hctx))) 181 return; 182 183 hctx->run++; 184 185 /* 186 * If we have previous entries on our dispatch list, grab them first for 187 * more fair dispatch. 188 */ 189 if (!list_empty_careful(&hctx->dispatch)) { 190 spin_lock(&hctx->lock); 191 if (!list_empty(&hctx->dispatch)) 192 list_splice_init(&hctx->dispatch, &rq_list); 193 spin_unlock(&hctx->lock); 194 } 195 196 /* 197 * Only ask the scheduler for requests, if we didn't have residual 198 * requests from the dispatch list. This is to avoid the case where 199 * we only ever dispatch a fraction of the requests available because 200 * of low device queue depth. Once we pull requests out of the IO 201 * scheduler, we can no longer merge or sort them. So it's best to 202 * leave them there for as long as we can. Mark the hw queue as 203 * needing a restart in that case. 204 */ 205 if (!list_empty(&rq_list)) { 206 blk_mq_sched_mark_restart_hctx(hctx); 207 did_work = blk_mq_dispatch_rq_list(q, &rq_list); 208 } else if (!has_sched_dispatch) { 209 blk_mq_flush_busy_ctxs(hctx, &rq_list); 210 blk_mq_dispatch_rq_list(q, &rq_list); 211 } 212 213 /* 214 * We want to dispatch from the scheduler if we had no work left 215 * on the dispatch list, OR if we did have work but weren't able 216 * to make progress. 217 */ 218 if (!did_work && has_sched_dispatch) { 219 do { 220 struct request *rq; 221 222 rq = e->type->ops.mq.dispatch_request(hctx); 223 if (!rq) 224 break; 225 list_add(&rq->queuelist, &rq_list); 226 } while (blk_mq_dispatch_rq_list(q, &rq_list)); 227 } 228 } 229 230 void blk_mq_sched_move_to_dispatch(struct blk_mq_hw_ctx *hctx, 231 struct list_head *rq_list, 232 struct request *(*get_rq)(struct blk_mq_hw_ctx *)) 233 { 234 do { 235 struct request *rq; 236 237 rq = get_rq(hctx); 238 if (!rq) 239 break; 240 241 list_add_tail(&rq->queuelist, rq_list); 242 } while (1); 243 } 244 EXPORT_SYMBOL_GPL(blk_mq_sched_move_to_dispatch); 245 246 bool blk_mq_sched_try_merge(struct request_queue *q, struct bio *bio, 247 struct request **merged_request) 248 { 249 struct request *rq; 250 251 switch (elv_merge(q, &rq, bio)) { 252 case ELEVATOR_BACK_MERGE: 253 if (!blk_mq_sched_allow_merge(q, rq, bio)) 254 return false; 255 if (!bio_attempt_back_merge(q, rq, bio)) 256 return false; 257 *merged_request = attempt_back_merge(q, rq); 258 if (!*merged_request) 259 elv_merged_request(q, rq, ELEVATOR_BACK_MERGE); 260 return true; 261 case ELEVATOR_FRONT_MERGE: 262 if (!blk_mq_sched_allow_merge(q, rq, bio)) 263 return false; 264 if (!bio_attempt_front_merge(q, rq, bio)) 265 return false; 266 *merged_request = attempt_front_merge(q, rq); 267 if (!*merged_request) 268 elv_merged_request(q, rq, ELEVATOR_FRONT_MERGE); 269 return true; 270 default: 271 return false; 272 } 273 } 274 EXPORT_SYMBOL_GPL(blk_mq_sched_try_merge); 275 276 bool __blk_mq_sched_bio_merge(struct request_queue *q, struct bio *bio) 277 { 278 struct elevator_queue *e = q->elevator; 279 280 if (e->type->ops.mq.bio_merge) { 281 struct blk_mq_ctx *ctx = blk_mq_get_ctx(q); 282 struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, ctx->cpu); 283 284 blk_mq_put_ctx(ctx); 285 return e->type->ops.mq.bio_merge(hctx, bio); 286 } 287 288 return false; 289 } 290 291 bool blk_mq_sched_try_insert_merge(struct request_queue *q, struct request *rq) 292 { 293 return rq_mergeable(rq) && elv_attempt_insert_merge(q, rq); 294 } 295 EXPORT_SYMBOL_GPL(blk_mq_sched_try_insert_merge); 296 297 void blk_mq_sched_request_inserted(struct request *rq) 298 { 299 trace_block_rq_insert(rq->q, rq); 300 } 301 EXPORT_SYMBOL_GPL(blk_mq_sched_request_inserted); 302 303 static bool blk_mq_sched_bypass_insert(struct blk_mq_hw_ctx *hctx, 304 struct request *rq) 305 { 306 if (rq->tag == -1) { 307 rq->rq_flags |= RQF_SORTED; 308 return false; 309 } 310 311 /* 312 * If we already have a real request tag, send directly to 313 * the dispatch list. 314 */ 315 spin_lock(&hctx->lock); 316 list_add(&rq->queuelist, &hctx->dispatch); 317 spin_unlock(&hctx->lock); 318 return true; 319 } 320 321 static bool blk_mq_sched_restart_hctx(struct blk_mq_hw_ctx *hctx) 322 { 323 if (test_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state)) { 324 clear_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state); 325 if (blk_mq_hctx_has_pending(hctx)) { 326 blk_mq_run_hw_queue(hctx, true); 327 return true; 328 } 329 } 330 return false; 331 } 332 333 /** 334 * list_for_each_entry_rcu_rr - iterate in a round-robin fashion over rcu list 335 * @pos: loop cursor. 336 * @skip: the list element that will not be examined. Iteration starts at 337 * @skip->next. 338 * @head: head of the list to examine. This list must have at least one 339 * element, namely @skip. 340 * @member: name of the list_head structure within typeof(*pos). 341 */ 342 #define list_for_each_entry_rcu_rr(pos, skip, head, member) \ 343 for ((pos) = (skip); \ 344 (pos = (pos)->member.next != (head) ? list_entry_rcu( \ 345 (pos)->member.next, typeof(*pos), member) : \ 346 list_entry_rcu((pos)->member.next->next, typeof(*pos), member)), \ 347 (pos) != (skip); ) 348 349 /* 350 * Called after a driver tag has been freed to check whether a hctx needs to 351 * be restarted. Restarts @hctx if its tag set is not shared. Restarts hardware 352 * queues in a round-robin fashion if the tag set of @hctx is shared with other 353 * hardware queues. 354 */ 355 void blk_mq_sched_restart(struct blk_mq_hw_ctx *const hctx) 356 { 357 struct blk_mq_tags *const tags = hctx->tags; 358 struct blk_mq_tag_set *const set = hctx->queue->tag_set; 359 struct request_queue *const queue = hctx->queue, *q; 360 struct blk_mq_hw_ctx *hctx2; 361 unsigned int i, j; 362 363 if (set->flags & BLK_MQ_F_TAG_SHARED) { 364 rcu_read_lock(); 365 list_for_each_entry_rcu_rr(q, queue, &set->tag_list, 366 tag_set_list) { 367 queue_for_each_hw_ctx(q, hctx2, i) 368 if (hctx2->tags == tags && 369 blk_mq_sched_restart_hctx(hctx2)) 370 goto done; 371 } 372 j = hctx->queue_num + 1; 373 for (i = 0; i < queue->nr_hw_queues; i++, j++) { 374 if (j == queue->nr_hw_queues) 375 j = 0; 376 hctx2 = queue->queue_hw_ctx[j]; 377 if (hctx2->tags == tags && 378 blk_mq_sched_restart_hctx(hctx2)) 379 break; 380 } 381 done: 382 rcu_read_unlock(); 383 } else { 384 blk_mq_sched_restart_hctx(hctx); 385 } 386 } 387 388 /* 389 * Add flush/fua to the queue. If we fail getting a driver tag, then 390 * punt to the requeue list. Requeue will re-invoke us from a context 391 * that's safe to block from. 392 */ 393 static void blk_mq_sched_insert_flush(struct blk_mq_hw_ctx *hctx, 394 struct request *rq, bool can_block) 395 { 396 if (blk_mq_get_driver_tag(rq, &hctx, can_block)) { 397 blk_insert_flush(rq); 398 blk_mq_run_hw_queue(hctx, true); 399 } else 400 blk_mq_add_to_requeue_list(rq, false, true); 401 } 402 403 void blk_mq_sched_insert_request(struct request *rq, bool at_head, 404 bool run_queue, bool async, bool can_block) 405 { 406 struct request_queue *q = rq->q; 407 struct elevator_queue *e = q->elevator; 408 struct blk_mq_ctx *ctx = rq->mq_ctx; 409 struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, ctx->cpu); 410 411 if (rq->tag == -1 && op_is_flush(rq->cmd_flags)) { 412 blk_mq_sched_insert_flush(hctx, rq, can_block); 413 return; 414 } 415 416 if (e && blk_mq_sched_bypass_insert(hctx, rq)) 417 goto run; 418 419 if (e && e->type->ops.mq.insert_requests) { 420 LIST_HEAD(list); 421 422 list_add(&rq->queuelist, &list); 423 e->type->ops.mq.insert_requests(hctx, &list, at_head); 424 } else { 425 spin_lock(&ctx->lock); 426 __blk_mq_insert_request(hctx, rq, at_head); 427 spin_unlock(&ctx->lock); 428 } 429 430 run: 431 if (run_queue) 432 blk_mq_run_hw_queue(hctx, async); 433 } 434 435 void blk_mq_sched_insert_requests(struct request_queue *q, 436 struct blk_mq_ctx *ctx, 437 struct list_head *list, bool run_queue_async) 438 { 439 struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, ctx->cpu); 440 struct elevator_queue *e = hctx->queue->elevator; 441 442 if (e) { 443 struct request *rq, *next; 444 445 /* 446 * We bypass requests that already have a driver tag assigned, 447 * which should only be flushes. Flushes are only ever inserted 448 * as single requests, so we shouldn't ever hit the 449 * WARN_ON_ONCE() below (but let's handle it just in case). 450 */ 451 list_for_each_entry_safe(rq, next, list, queuelist) { 452 if (WARN_ON_ONCE(rq->tag != -1)) { 453 list_del_init(&rq->queuelist); 454 blk_mq_sched_bypass_insert(hctx, rq); 455 } 456 } 457 } 458 459 if (e && e->type->ops.mq.insert_requests) 460 e->type->ops.mq.insert_requests(hctx, list, false); 461 else 462 blk_mq_insert_requests(hctx, ctx, list); 463 464 blk_mq_run_hw_queue(hctx, run_queue_async); 465 } 466 467 static void blk_mq_sched_free_tags(struct blk_mq_tag_set *set, 468 struct blk_mq_hw_ctx *hctx, 469 unsigned int hctx_idx) 470 { 471 if (hctx->sched_tags) { 472 blk_mq_free_rqs(set, hctx->sched_tags, hctx_idx); 473 blk_mq_free_rq_map(hctx->sched_tags); 474 hctx->sched_tags = NULL; 475 } 476 } 477 478 static int blk_mq_sched_alloc_tags(struct request_queue *q, 479 struct blk_mq_hw_ctx *hctx, 480 unsigned int hctx_idx) 481 { 482 struct blk_mq_tag_set *set = q->tag_set; 483 int ret; 484 485 hctx->sched_tags = blk_mq_alloc_rq_map(set, hctx_idx, q->nr_requests, 486 set->reserved_tags); 487 if (!hctx->sched_tags) 488 return -ENOMEM; 489 490 ret = blk_mq_alloc_rqs(set, hctx->sched_tags, hctx_idx, q->nr_requests); 491 if (ret) 492 blk_mq_sched_free_tags(set, hctx, hctx_idx); 493 494 return ret; 495 } 496 497 static void blk_mq_sched_tags_teardown(struct request_queue *q) 498 { 499 struct blk_mq_tag_set *set = q->tag_set; 500 struct blk_mq_hw_ctx *hctx; 501 int i; 502 503 queue_for_each_hw_ctx(q, hctx, i) 504 blk_mq_sched_free_tags(set, hctx, i); 505 } 506 507 int blk_mq_sched_init_hctx(struct request_queue *q, struct blk_mq_hw_ctx *hctx, 508 unsigned int hctx_idx) 509 { 510 struct elevator_queue *e = q->elevator; 511 512 if (!e) 513 return 0; 514 515 return blk_mq_sched_alloc_tags(q, hctx, hctx_idx); 516 } 517 518 void blk_mq_sched_exit_hctx(struct request_queue *q, struct blk_mq_hw_ctx *hctx, 519 unsigned int hctx_idx) 520 { 521 struct elevator_queue *e = q->elevator; 522 523 if (!e) 524 return; 525 526 blk_mq_sched_free_tags(q->tag_set, hctx, hctx_idx); 527 } 528 529 int blk_mq_init_sched(struct request_queue *q, struct elevator_type *e) 530 { 531 struct blk_mq_hw_ctx *hctx; 532 unsigned int i; 533 int ret; 534 535 if (!e) { 536 q->elevator = NULL; 537 return 0; 538 } 539 540 /* 541 * Default to 256, since we don't split into sync/async like the 542 * old code did. Additionally, this is a per-hw queue depth. 543 */ 544 q->nr_requests = 2 * BLKDEV_MAX_RQ; 545 546 queue_for_each_hw_ctx(q, hctx, i) { 547 ret = blk_mq_sched_alloc_tags(q, hctx, i); 548 if (ret) 549 goto err; 550 } 551 552 ret = e->ops.mq.init_sched(q, e); 553 if (ret) 554 goto err; 555 556 return 0; 557 558 err: 559 blk_mq_sched_tags_teardown(q); 560 q->elevator = NULL; 561 return ret; 562 } 563 564 void blk_mq_exit_sched(struct request_queue *q, struct elevator_queue *e) 565 { 566 if (e->type->ops.mq.exit_sched) 567 e->type->ops.mq.exit_sched(e); 568 blk_mq_sched_tags_teardown(q); 569 q->elevator = NULL; 570 } 571 572 int blk_mq_sched_init(struct request_queue *q) 573 { 574 int ret; 575 576 mutex_lock(&q->sysfs_lock); 577 ret = elevator_init(q, NULL); 578 mutex_unlock(&q->sysfs_lock); 579 580 return ret; 581 } 582