1 /* 2 * blk-mq scheduling framework 3 * 4 * Copyright (C) 2016 Jens Axboe 5 */ 6 #include <linux/kernel.h> 7 #include <linux/module.h> 8 #include <linux/blk-mq.h> 9 10 #include <trace/events/block.h> 11 12 #include "blk.h" 13 #include "blk-mq.h" 14 #include "blk-mq-debugfs.h" 15 #include "blk-mq-sched.h" 16 #include "blk-mq-tag.h" 17 #include "blk-wbt.h" 18 19 void blk_mq_sched_free_hctx_data(struct request_queue *q, 20 void (*exit)(struct blk_mq_hw_ctx *)) 21 { 22 struct blk_mq_hw_ctx *hctx; 23 int i; 24 25 queue_for_each_hw_ctx(q, hctx, i) { 26 if (exit && hctx->sched_data) 27 exit(hctx); 28 kfree(hctx->sched_data); 29 hctx->sched_data = NULL; 30 } 31 } 32 EXPORT_SYMBOL_GPL(blk_mq_sched_free_hctx_data); 33 34 static void __blk_mq_sched_assign_ioc(struct request_queue *q, 35 struct request *rq, 36 struct bio *bio, 37 struct io_context *ioc) 38 { 39 struct io_cq *icq; 40 41 spin_lock_irq(q->queue_lock); 42 icq = ioc_lookup_icq(ioc, q); 43 spin_unlock_irq(q->queue_lock); 44 45 if (!icq) { 46 icq = ioc_create_icq(ioc, q, GFP_ATOMIC); 47 if (!icq) 48 return; 49 } 50 51 rq->elv.icq = icq; 52 if (!blk_mq_sched_get_rq_priv(q, rq, bio)) { 53 rq->rq_flags |= RQF_ELVPRIV; 54 get_io_context(icq->ioc); 55 return; 56 } 57 58 rq->elv.icq = NULL; 59 } 60 61 static void blk_mq_sched_assign_ioc(struct request_queue *q, 62 struct request *rq, struct bio *bio) 63 { 64 struct io_context *ioc; 65 66 ioc = rq_ioc(bio); 67 if (ioc) 68 __blk_mq_sched_assign_ioc(q, rq, bio, ioc); 69 } 70 71 struct request *blk_mq_sched_get_request(struct request_queue *q, 72 struct bio *bio, 73 unsigned int op, 74 struct blk_mq_alloc_data *data) 75 { 76 struct elevator_queue *e = q->elevator; 77 struct request *rq; 78 79 blk_queue_enter_live(q); 80 data->q = q; 81 if (likely(!data->ctx)) 82 data->ctx = blk_mq_get_ctx(q); 83 if (likely(!data->hctx)) 84 data->hctx = blk_mq_map_queue(q, data->ctx->cpu); 85 86 if (e) { 87 data->flags |= BLK_MQ_REQ_INTERNAL; 88 89 /* 90 * Flush requests are special and go directly to the 91 * dispatch list. 92 */ 93 if (!op_is_flush(op) && e->type->ops.mq.get_request) { 94 rq = e->type->ops.mq.get_request(q, op, data); 95 if (rq) 96 rq->rq_flags |= RQF_QUEUED; 97 } else 98 rq = __blk_mq_alloc_request(data, op); 99 } else { 100 rq = __blk_mq_alloc_request(data, op); 101 } 102 103 if (rq) { 104 if (!op_is_flush(op)) { 105 rq->elv.icq = NULL; 106 if (e && e->type->icq_cache) 107 blk_mq_sched_assign_ioc(q, rq, bio); 108 } 109 data->hctx->queued++; 110 return rq; 111 } 112 113 blk_queue_exit(q); 114 return NULL; 115 } 116 117 void blk_mq_sched_put_request(struct request *rq) 118 { 119 struct request_queue *q = rq->q; 120 struct elevator_queue *e = q->elevator; 121 122 if (rq->rq_flags & RQF_ELVPRIV) { 123 blk_mq_sched_put_rq_priv(rq->q, rq); 124 if (rq->elv.icq) { 125 put_io_context(rq->elv.icq->ioc); 126 rq->elv.icq = NULL; 127 } 128 } 129 130 if ((rq->rq_flags & RQF_QUEUED) && e && e->type->ops.mq.put_request) 131 e->type->ops.mq.put_request(rq); 132 else 133 blk_mq_finish_request(rq); 134 } 135 136 void blk_mq_sched_dispatch_requests(struct blk_mq_hw_ctx *hctx) 137 { 138 struct request_queue *q = hctx->queue; 139 struct elevator_queue *e = q->elevator; 140 const bool has_sched_dispatch = e && e->type->ops.mq.dispatch_request; 141 bool did_work = false; 142 LIST_HEAD(rq_list); 143 144 if (unlikely(blk_mq_hctx_stopped(hctx))) 145 return; 146 147 hctx->run++; 148 149 /* 150 * If we have previous entries on our dispatch list, grab them first for 151 * more fair dispatch. 152 */ 153 if (!list_empty_careful(&hctx->dispatch)) { 154 spin_lock(&hctx->lock); 155 if (!list_empty(&hctx->dispatch)) 156 list_splice_init(&hctx->dispatch, &rq_list); 157 spin_unlock(&hctx->lock); 158 } 159 160 /* 161 * Only ask the scheduler for requests, if we didn't have residual 162 * requests from the dispatch list. This is to avoid the case where 163 * we only ever dispatch a fraction of the requests available because 164 * of low device queue depth. Once we pull requests out of the IO 165 * scheduler, we can no longer merge or sort them. So it's best to 166 * leave them there for as long as we can. Mark the hw queue as 167 * needing a restart in that case. 168 */ 169 if (!list_empty(&rq_list)) { 170 blk_mq_sched_mark_restart_hctx(hctx); 171 did_work = blk_mq_dispatch_rq_list(q, &rq_list); 172 } else if (!has_sched_dispatch) { 173 blk_mq_flush_busy_ctxs(hctx, &rq_list); 174 blk_mq_dispatch_rq_list(q, &rq_list); 175 } 176 177 /* 178 * We want to dispatch from the scheduler if we had no work left 179 * on the dispatch list, OR if we did have work but weren't able 180 * to make progress. 181 */ 182 if (!did_work && has_sched_dispatch) { 183 do { 184 struct request *rq; 185 186 rq = e->type->ops.mq.dispatch_request(hctx); 187 if (!rq) 188 break; 189 list_add(&rq->queuelist, &rq_list); 190 } while (blk_mq_dispatch_rq_list(q, &rq_list)); 191 } 192 } 193 194 bool blk_mq_sched_try_merge(struct request_queue *q, struct bio *bio, 195 struct request **merged_request) 196 { 197 struct request *rq; 198 199 switch (elv_merge(q, &rq, bio)) { 200 case ELEVATOR_BACK_MERGE: 201 if (!blk_mq_sched_allow_merge(q, rq, bio)) 202 return false; 203 if (!bio_attempt_back_merge(q, rq, bio)) 204 return false; 205 *merged_request = attempt_back_merge(q, rq); 206 if (!*merged_request) 207 elv_merged_request(q, rq, ELEVATOR_BACK_MERGE); 208 return true; 209 case ELEVATOR_FRONT_MERGE: 210 if (!blk_mq_sched_allow_merge(q, rq, bio)) 211 return false; 212 if (!bio_attempt_front_merge(q, rq, bio)) 213 return false; 214 *merged_request = attempt_front_merge(q, rq); 215 if (!*merged_request) 216 elv_merged_request(q, rq, ELEVATOR_FRONT_MERGE); 217 return true; 218 default: 219 return false; 220 } 221 } 222 EXPORT_SYMBOL_GPL(blk_mq_sched_try_merge); 223 224 bool __blk_mq_sched_bio_merge(struct request_queue *q, struct bio *bio) 225 { 226 struct elevator_queue *e = q->elevator; 227 228 if (e->type->ops.mq.bio_merge) { 229 struct blk_mq_ctx *ctx = blk_mq_get_ctx(q); 230 struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, ctx->cpu); 231 232 blk_mq_put_ctx(ctx); 233 return e->type->ops.mq.bio_merge(hctx, bio); 234 } 235 236 return false; 237 } 238 239 bool blk_mq_sched_try_insert_merge(struct request_queue *q, struct request *rq) 240 { 241 return rq_mergeable(rq) && elv_attempt_insert_merge(q, rq); 242 } 243 EXPORT_SYMBOL_GPL(blk_mq_sched_try_insert_merge); 244 245 void blk_mq_sched_request_inserted(struct request *rq) 246 { 247 trace_block_rq_insert(rq->q, rq); 248 } 249 EXPORT_SYMBOL_GPL(blk_mq_sched_request_inserted); 250 251 static bool blk_mq_sched_bypass_insert(struct blk_mq_hw_ctx *hctx, 252 struct request *rq) 253 { 254 if (rq->tag == -1) { 255 rq->rq_flags |= RQF_SORTED; 256 return false; 257 } 258 259 /* 260 * If we already have a real request tag, send directly to 261 * the dispatch list. 262 */ 263 spin_lock(&hctx->lock); 264 list_add(&rq->queuelist, &hctx->dispatch); 265 spin_unlock(&hctx->lock); 266 return true; 267 } 268 269 static bool blk_mq_sched_restart_hctx(struct blk_mq_hw_ctx *hctx) 270 { 271 if (test_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state)) { 272 clear_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state); 273 if (blk_mq_hctx_has_pending(hctx)) { 274 blk_mq_run_hw_queue(hctx, true); 275 return true; 276 } 277 } 278 return false; 279 } 280 281 /** 282 * list_for_each_entry_rcu_rr - iterate in a round-robin fashion over rcu list 283 * @pos: loop cursor. 284 * @skip: the list element that will not be examined. Iteration starts at 285 * @skip->next. 286 * @head: head of the list to examine. This list must have at least one 287 * element, namely @skip. 288 * @member: name of the list_head structure within typeof(*pos). 289 */ 290 #define list_for_each_entry_rcu_rr(pos, skip, head, member) \ 291 for ((pos) = (skip); \ 292 (pos = (pos)->member.next != (head) ? list_entry_rcu( \ 293 (pos)->member.next, typeof(*pos), member) : \ 294 list_entry_rcu((pos)->member.next->next, typeof(*pos), member)), \ 295 (pos) != (skip); ) 296 297 /* 298 * Called after a driver tag has been freed to check whether a hctx needs to 299 * be restarted. Restarts @hctx if its tag set is not shared. Restarts hardware 300 * queues in a round-robin fashion if the tag set of @hctx is shared with other 301 * hardware queues. 302 */ 303 void blk_mq_sched_restart(struct blk_mq_hw_ctx *const hctx) 304 { 305 struct blk_mq_tags *const tags = hctx->tags; 306 struct blk_mq_tag_set *const set = hctx->queue->tag_set; 307 struct request_queue *const queue = hctx->queue, *q; 308 struct blk_mq_hw_ctx *hctx2; 309 unsigned int i, j; 310 311 if (set->flags & BLK_MQ_F_TAG_SHARED) { 312 rcu_read_lock(); 313 list_for_each_entry_rcu_rr(q, queue, &set->tag_list, 314 tag_set_list) { 315 queue_for_each_hw_ctx(q, hctx2, i) 316 if (hctx2->tags == tags && 317 blk_mq_sched_restart_hctx(hctx2)) 318 goto done; 319 } 320 j = hctx->queue_num + 1; 321 for (i = 0; i < queue->nr_hw_queues; i++, j++) { 322 if (j == queue->nr_hw_queues) 323 j = 0; 324 hctx2 = queue->queue_hw_ctx[j]; 325 if (hctx2->tags == tags && 326 blk_mq_sched_restart_hctx(hctx2)) 327 break; 328 } 329 done: 330 rcu_read_unlock(); 331 } else { 332 blk_mq_sched_restart_hctx(hctx); 333 } 334 } 335 336 /* 337 * Add flush/fua to the queue. If we fail getting a driver tag, then 338 * punt to the requeue list. Requeue will re-invoke us from a context 339 * that's safe to block from. 340 */ 341 static void blk_mq_sched_insert_flush(struct blk_mq_hw_ctx *hctx, 342 struct request *rq, bool can_block) 343 { 344 if (blk_mq_get_driver_tag(rq, &hctx, can_block)) { 345 blk_insert_flush(rq); 346 blk_mq_run_hw_queue(hctx, true); 347 } else 348 blk_mq_add_to_requeue_list(rq, false, true); 349 } 350 351 void blk_mq_sched_insert_request(struct request *rq, bool at_head, 352 bool run_queue, bool async, bool can_block) 353 { 354 struct request_queue *q = rq->q; 355 struct elevator_queue *e = q->elevator; 356 struct blk_mq_ctx *ctx = rq->mq_ctx; 357 struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, ctx->cpu); 358 359 if (rq->tag == -1 && op_is_flush(rq->cmd_flags)) { 360 blk_mq_sched_insert_flush(hctx, rq, can_block); 361 return; 362 } 363 364 if (e && blk_mq_sched_bypass_insert(hctx, rq)) 365 goto run; 366 367 if (e && e->type->ops.mq.insert_requests) { 368 LIST_HEAD(list); 369 370 list_add(&rq->queuelist, &list); 371 e->type->ops.mq.insert_requests(hctx, &list, at_head); 372 } else { 373 spin_lock(&ctx->lock); 374 __blk_mq_insert_request(hctx, rq, at_head); 375 spin_unlock(&ctx->lock); 376 } 377 378 run: 379 if (run_queue) 380 blk_mq_run_hw_queue(hctx, async); 381 } 382 383 void blk_mq_sched_insert_requests(struct request_queue *q, 384 struct blk_mq_ctx *ctx, 385 struct list_head *list, bool run_queue_async) 386 { 387 struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, ctx->cpu); 388 struct elevator_queue *e = hctx->queue->elevator; 389 390 if (e) { 391 struct request *rq, *next; 392 393 /* 394 * We bypass requests that already have a driver tag assigned, 395 * which should only be flushes. Flushes are only ever inserted 396 * as single requests, so we shouldn't ever hit the 397 * WARN_ON_ONCE() below (but let's handle it just in case). 398 */ 399 list_for_each_entry_safe(rq, next, list, queuelist) { 400 if (WARN_ON_ONCE(rq->tag != -1)) { 401 list_del_init(&rq->queuelist); 402 blk_mq_sched_bypass_insert(hctx, rq); 403 } 404 } 405 } 406 407 if (e && e->type->ops.mq.insert_requests) 408 e->type->ops.mq.insert_requests(hctx, list, false); 409 else 410 blk_mq_insert_requests(hctx, ctx, list); 411 412 blk_mq_run_hw_queue(hctx, run_queue_async); 413 } 414 415 static void blk_mq_sched_free_tags(struct blk_mq_tag_set *set, 416 struct blk_mq_hw_ctx *hctx, 417 unsigned int hctx_idx) 418 { 419 if (hctx->sched_tags) { 420 blk_mq_free_rqs(set, hctx->sched_tags, hctx_idx); 421 blk_mq_free_rq_map(hctx->sched_tags); 422 hctx->sched_tags = NULL; 423 } 424 } 425 426 static int blk_mq_sched_alloc_tags(struct request_queue *q, 427 struct blk_mq_hw_ctx *hctx, 428 unsigned int hctx_idx) 429 { 430 struct blk_mq_tag_set *set = q->tag_set; 431 int ret; 432 433 hctx->sched_tags = blk_mq_alloc_rq_map(set, hctx_idx, q->nr_requests, 434 set->reserved_tags); 435 if (!hctx->sched_tags) 436 return -ENOMEM; 437 438 ret = blk_mq_alloc_rqs(set, hctx->sched_tags, hctx_idx, q->nr_requests); 439 if (ret) 440 blk_mq_sched_free_tags(set, hctx, hctx_idx); 441 442 return ret; 443 } 444 445 static void blk_mq_sched_tags_teardown(struct request_queue *q) 446 { 447 struct blk_mq_tag_set *set = q->tag_set; 448 struct blk_mq_hw_ctx *hctx; 449 int i; 450 451 queue_for_each_hw_ctx(q, hctx, i) 452 blk_mq_sched_free_tags(set, hctx, i); 453 } 454 455 int blk_mq_sched_init_hctx(struct request_queue *q, struct blk_mq_hw_ctx *hctx, 456 unsigned int hctx_idx) 457 { 458 struct elevator_queue *e = q->elevator; 459 int ret; 460 461 if (!e) 462 return 0; 463 464 ret = blk_mq_sched_alloc_tags(q, hctx, hctx_idx); 465 if (ret) 466 return ret; 467 468 if (e->type->ops.mq.init_hctx) { 469 ret = e->type->ops.mq.init_hctx(hctx, hctx_idx); 470 if (ret) { 471 blk_mq_sched_free_tags(q->tag_set, hctx, hctx_idx); 472 return ret; 473 } 474 } 475 476 blk_mq_debugfs_register_sched_hctx(q, hctx); 477 478 return 0; 479 } 480 481 void blk_mq_sched_exit_hctx(struct request_queue *q, struct blk_mq_hw_ctx *hctx, 482 unsigned int hctx_idx) 483 { 484 struct elevator_queue *e = q->elevator; 485 486 if (!e) 487 return; 488 489 blk_mq_debugfs_unregister_sched_hctx(hctx); 490 491 if (e->type->ops.mq.exit_hctx && hctx->sched_data) { 492 e->type->ops.mq.exit_hctx(hctx, hctx_idx); 493 hctx->sched_data = NULL; 494 } 495 496 blk_mq_sched_free_tags(q->tag_set, hctx, hctx_idx); 497 } 498 499 int blk_mq_init_sched(struct request_queue *q, struct elevator_type *e) 500 { 501 struct blk_mq_hw_ctx *hctx; 502 struct elevator_queue *eq; 503 unsigned int i; 504 int ret; 505 506 if (!e) { 507 q->elevator = NULL; 508 return 0; 509 } 510 511 /* 512 * Default to 256, since we don't split into sync/async like the 513 * old code did. Additionally, this is a per-hw queue depth. 514 */ 515 q->nr_requests = 2 * BLKDEV_MAX_RQ; 516 517 queue_for_each_hw_ctx(q, hctx, i) { 518 ret = blk_mq_sched_alloc_tags(q, hctx, i); 519 if (ret) 520 goto err; 521 } 522 523 ret = e->ops.mq.init_sched(q, e); 524 if (ret) 525 goto err; 526 527 blk_mq_debugfs_register_sched(q); 528 529 queue_for_each_hw_ctx(q, hctx, i) { 530 if (e->ops.mq.init_hctx) { 531 ret = e->ops.mq.init_hctx(hctx, i); 532 if (ret) { 533 eq = q->elevator; 534 blk_mq_exit_sched(q, eq); 535 kobject_put(&eq->kobj); 536 return ret; 537 } 538 } 539 blk_mq_debugfs_register_sched_hctx(q, hctx); 540 } 541 542 return 0; 543 544 err: 545 blk_mq_sched_tags_teardown(q); 546 q->elevator = NULL; 547 return ret; 548 } 549 550 void blk_mq_exit_sched(struct request_queue *q, struct elevator_queue *e) 551 { 552 struct blk_mq_hw_ctx *hctx; 553 unsigned int i; 554 555 queue_for_each_hw_ctx(q, hctx, i) { 556 blk_mq_debugfs_unregister_sched_hctx(hctx); 557 if (e->type->ops.mq.exit_hctx && hctx->sched_data) { 558 e->type->ops.mq.exit_hctx(hctx, i); 559 hctx->sched_data = NULL; 560 } 561 } 562 blk_mq_debugfs_unregister_sched(q); 563 if (e->type->ops.mq.exit_sched) 564 e->type->ops.mq.exit_sched(e); 565 blk_mq_sched_tags_teardown(q); 566 q->elevator = NULL; 567 } 568 569 int blk_mq_sched_init(struct request_queue *q) 570 { 571 int ret; 572 573 mutex_lock(&q->sysfs_lock); 574 ret = elevator_init(q, NULL); 575 mutex_unlock(&q->sysfs_lock); 576 577 return ret; 578 } 579