xref: /linux/block/blk-mq-sched.c (revision ad61dd303a0f2439bb104349e2d2ec91a3010ce0)
1 /*
2  * blk-mq scheduling framework
3  *
4  * Copyright (C) 2016 Jens Axboe
5  */
6 #include <linux/kernel.h>
7 #include <linux/module.h>
8 #include <linux/blk-mq.h>
9 
10 #include <trace/events/block.h>
11 
12 #include "blk.h"
13 #include "blk-mq.h"
14 #include "blk-mq-debugfs.h"
15 #include "blk-mq-sched.h"
16 #include "blk-mq-tag.h"
17 #include "blk-wbt.h"
18 
19 void blk_mq_sched_free_hctx_data(struct request_queue *q,
20 				 void (*exit)(struct blk_mq_hw_ctx *))
21 {
22 	struct blk_mq_hw_ctx *hctx;
23 	int i;
24 
25 	queue_for_each_hw_ctx(q, hctx, i) {
26 		if (exit && hctx->sched_data)
27 			exit(hctx);
28 		kfree(hctx->sched_data);
29 		hctx->sched_data = NULL;
30 	}
31 }
32 EXPORT_SYMBOL_GPL(blk_mq_sched_free_hctx_data);
33 
34 static void __blk_mq_sched_assign_ioc(struct request_queue *q,
35 				      struct request *rq,
36 				      struct bio *bio,
37 				      struct io_context *ioc)
38 {
39 	struct io_cq *icq;
40 
41 	spin_lock_irq(q->queue_lock);
42 	icq = ioc_lookup_icq(ioc, q);
43 	spin_unlock_irq(q->queue_lock);
44 
45 	if (!icq) {
46 		icq = ioc_create_icq(ioc, q, GFP_ATOMIC);
47 		if (!icq)
48 			return;
49 	}
50 
51 	rq->elv.icq = icq;
52 	if (!blk_mq_sched_get_rq_priv(q, rq, bio)) {
53 		rq->rq_flags |= RQF_ELVPRIV;
54 		get_io_context(icq->ioc);
55 		return;
56 	}
57 
58 	rq->elv.icq = NULL;
59 }
60 
61 static void blk_mq_sched_assign_ioc(struct request_queue *q,
62 				    struct request *rq, struct bio *bio)
63 {
64 	struct io_context *ioc;
65 
66 	ioc = rq_ioc(bio);
67 	if (ioc)
68 		__blk_mq_sched_assign_ioc(q, rq, bio, ioc);
69 }
70 
71 struct request *blk_mq_sched_get_request(struct request_queue *q,
72 					 struct bio *bio,
73 					 unsigned int op,
74 					 struct blk_mq_alloc_data *data)
75 {
76 	struct elevator_queue *e = q->elevator;
77 	struct request *rq;
78 
79 	blk_queue_enter_live(q);
80 	data->q = q;
81 	if (likely(!data->ctx))
82 		data->ctx = blk_mq_get_ctx(q);
83 	if (likely(!data->hctx))
84 		data->hctx = blk_mq_map_queue(q, data->ctx->cpu);
85 
86 	if (e) {
87 		data->flags |= BLK_MQ_REQ_INTERNAL;
88 
89 		/*
90 		 * Flush requests are special and go directly to the
91 		 * dispatch list.
92 		 */
93 		if (!op_is_flush(op) && e->type->ops.mq.get_request) {
94 			rq = e->type->ops.mq.get_request(q, op, data);
95 			if (rq)
96 				rq->rq_flags |= RQF_QUEUED;
97 		} else
98 			rq = __blk_mq_alloc_request(data, op);
99 	} else {
100 		rq = __blk_mq_alloc_request(data, op);
101 	}
102 
103 	if (rq) {
104 		if (!op_is_flush(op)) {
105 			rq->elv.icq = NULL;
106 			if (e && e->type->icq_cache)
107 				blk_mq_sched_assign_ioc(q, rq, bio);
108 		}
109 		data->hctx->queued++;
110 		return rq;
111 	}
112 
113 	blk_queue_exit(q);
114 	return NULL;
115 }
116 
117 void blk_mq_sched_put_request(struct request *rq)
118 {
119 	struct request_queue *q = rq->q;
120 	struct elevator_queue *e = q->elevator;
121 
122 	if (rq->rq_flags & RQF_ELVPRIV) {
123 		blk_mq_sched_put_rq_priv(rq->q, rq);
124 		if (rq->elv.icq) {
125 			put_io_context(rq->elv.icq->ioc);
126 			rq->elv.icq = NULL;
127 		}
128 	}
129 
130 	if ((rq->rq_flags & RQF_QUEUED) && e && e->type->ops.mq.put_request)
131 		e->type->ops.mq.put_request(rq);
132 	else
133 		blk_mq_finish_request(rq);
134 }
135 
136 void blk_mq_sched_dispatch_requests(struct blk_mq_hw_ctx *hctx)
137 {
138 	struct request_queue *q = hctx->queue;
139 	struct elevator_queue *e = q->elevator;
140 	const bool has_sched_dispatch = e && e->type->ops.mq.dispatch_request;
141 	bool did_work = false;
142 	LIST_HEAD(rq_list);
143 
144 	if (unlikely(blk_mq_hctx_stopped(hctx)))
145 		return;
146 
147 	hctx->run++;
148 
149 	/*
150 	 * If we have previous entries on our dispatch list, grab them first for
151 	 * more fair dispatch.
152 	 */
153 	if (!list_empty_careful(&hctx->dispatch)) {
154 		spin_lock(&hctx->lock);
155 		if (!list_empty(&hctx->dispatch))
156 			list_splice_init(&hctx->dispatch, &rq_list);
157 		spin_unlock(&hctx->lock);
158 	}
159 
160 	/*
161 	 * Only ask the scheduler for requests, if we didn't have residual
162 	 * requests from the dispatch list. This is to avoid the case where
163 	 * we only ever dispatch a fraction of the requests available because
164 	 * of low device queue depth. Once we pull requests out of the IO
165 	 * scheduler, we can no longer merge or sort them. So it's best to
166 	 * leave them there for as long as we can. Mark the hw queue as
167 	 * needing a restart in that case.
168 	 */
169 	if (!list_empty(&rq_list)) {
170 		blk_mq_sched_mark_restart_hctx(hctx);
171 		did_work = blk_mq_dispatch_rq_list(q, &rq_list);
172 	} else if (!has_sched_dispatch) {
173 		blk_mq_flush_busy_ctxs(hctx, &rq_list);
174 		blk_mq_dispatch_rq_list(q, &rq_list);
175 	}
176 
177 	/*
178 	 * We want to dispatch from the scheduler if we had no work left
179 	 * on the dispatch list, OR if we did have work but weren't able
180 	 * to make progress.
181 	 */
182 	if (!did_work && has_sched_dispatch) {
183 		do {
184 			struct request *rq;
185 
186 			rq = e->type->ops.mq.dispatch_request(hctx);
187 			if (!rq)
188 				break;
189 			list_add(&rq->queuelist, &rq_list);
190 		} while (blk_mq_dispatch_rq_list(q, &rq_list));
191 	}
192 }
193 
194 bool blk_mq_sched_try_merge(struct request_queue *q, struct bio *bio,
195 			    struct request **merged_request)
196 {
197 	struct request *rq;
198 
199 	switch (elv_merge(q, &rq, bio)) {
200 	case ELEVATOR_BACK_MERGE:
201 		if (!blk_mq_sched_allow_merge(q, rq, bio))
202 			return false;
203 		if (!bio_attempt_back_merge(q, rq, bio))
204 			return false;
205 		*merged_request = attempt_back_merge(q, rq);
206 		if (!*merged_request)
207 			elv_merged_request(q, rq, ELEVATOR_BACK_MERGE);
208 		return true;
209 	case ELEVATOR_FRONT_MERGE:
210 		if (!blk_mq_sched_allow_merge(q, rq, bio))
211 			return false;
212 		if (!bio_attempt_front_merge(q, rq, bio))
213 			return false;
214 		*merged_request = attempt_front_merge(q, rq);
215 		if (!*merged_request)
216 			elv_merged_request(q, rq, ELEVATOR_FRONT_MERGE);
217 		return true;
218 	default:
219 		return false;
220 	}
221 }
222 EXPORT_SYMBOL_GPL(blk_mq_sched_try_merge);
223 
224 bool __blk_mq_sched_bio_merge(struct request_queue *q, struct bio *bio)
225 {
226 	struct elevator_queue *e = q->elevator;
227 
228 	if (e->type->ops.mq.bio_merge) {
229 		struct blk_mq_ctx *ctx = blk_mq_get_ctx(q);
230 		struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, ctx->cpu);
231 
232 		blk_mq_put_ctx(ctx);
233 		return e->type->ops.mq.bio_merge(hctx, bio);
234 	}
235 
236 	return false;
237 }
238 
239 bool blk_mq_sched_try_insert_merge(struct request_queue *q, struct request *rq)
240 {
241 	return rq_mergeable(rq) && elv_attempt_insert_merge(q, rq);
242 }
243 EXPORT_SYMBOL_GPL(blk_mq_sched_try_insert_merge);
244 
245 void blk_mq_sched_request_inserted(struct request *rq)
246 {
247 	trace_block_rq_insert(rq->q, rq);
248 }
249 EXPORT_SYMBOL_GPL(blk_mq_sched_request_inserted);
250 
251 static bool blk_mq_sched_bypass_insert(struct blk_mq_hw_ctx *hctx,
252 				       struct request *rq)
253 {
254 	if (rq->tag == -1) {
255 		rq->rq_flags |= RQF_SORTED;
256 		return false;
257 	}
258 
259 	/*
260 	 * If we already have a real request tag, send directly to
261 	 * the dispatch list.
262 	 */
263 	spin_lock(&hctx->lock);
264 	list_add(&rq->queuelist, &hctx->dispatch);
265 	spin_unlock(&hctx->lock);
266 	return true;
267 }
268 
269 static bool blk_mq_sched_restart_hctx(struct blk_mq_hw_ctx *hctx)
270 {
271 	if (test_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state)) {
272 		clear_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state);
273 		if (blk_mq_hctx_has_pending(hctx)) {
274 			blk_mq_run_hw_queue(hctx, true);
275 			return true;
276 		}
277 	}
278 	return false;
279 }
280 
281 /**
282  * list_for_each_entry_rcu_rr - iterate in a round-robin fashion over rcu list
283  * @pos:    loop cursor.
284  * @skip:   the list element that will not be examined. Iteration starts at
285  *          @skip->next.
286  * @head:   head of the list to examine. This list must have at least one
287  *          element, namely @skip.
288  * @member: name of the list_head structure within typeof(*pos).
289  */
290 #define list_for_each_entry_rcu_rr(pos, skip, head, member)		\
291 	for ((pos) = (skip);						\
292 	     (pos = (pos)->member.next != (head) ? list_entry_rcu(	\
293 			(pos)->member.next, typeof(*pos), member) :	\
294 	      list_entry_rcu((pos)->member.next->next, typeof(*pos), member)), \
295 	     (pos) != (skip); )
296 
297 /*
298  * Called after a driver tag has been freed to check whether a hctx needs to
299  * be restarted. Restarts @hctx if its tag set is not shared. Restarts hardware
300  * queues in a round-robin fashion if the tag set of @hctx is shared with other
301  * hardware queues.
302  */
303 void blk_mq_sched_restart(struct blk_mq_hw_ctx *const hctx)
304 {
305 	struct blk_mq_tags *const tags = hctx->tags;
306 	struct blk_mq_tag_set *const set = hctx->queue->tag_set;
307 	struct request_queue *const queue = hctx->queue, *q;
308 	struct blk_mq_hw_ctx *hctx2;
309 	unsigned int i, j;
310 
311 	if (set->flags & BLK_MQ_F_TAG_SHARED) {
312 		rcu_read_lock();
313 		list_for_each_entry_rcu_rr(q, queue, &set->tag_list,
314 					   tag_set_list) {
315 			queue_for_each_hw_ctx(q, hctx2, i)
316 				if (hctx2->tags == tags &&
317 				    blk_mq_sched_restart_hctx(hctx2))
318 					goto done;
319 		}
320 		j = hctx->queue_num + 1;
321 		for (i = 0; i < queue->nr_hw_queues; i++, j++) {
322 			if (j == queue->nr_hw_queues)
323 				j = 0;
324 			hctx2 = queue->queue_hw_ctx[j];
325 			if (hctx2->tags == tags &&
326 			    blk_mq_sched_restart_hctx(hctx2))
327 				break;
328 		}
329 done:
330 		rcu_read_unlock();
331 	} else {
332 		blk_mq_sched_restart_hctx(hctx);
333 	}
334 }
335 
336 /*
337  * Add flush/fua to the queue. If we fail getting a driver tag, then
338  * punt to the requeue list. Requeue will re-invoke us from a context
339  * that's safe to block from.
340  */
341 static void blk_mq_sched_insert_flush(struct blk_mq_hw_ctx *hctx,
342 				      struct request *rq, bool can_block)
343 {
344 	if (blk_mq_get_driver_tag(rq, &hctx, can_block)) {
345 		blk_insert_flush(rq);
346 		blk_mq_run_hw_queue(hctx, true);
347 	} else
348 		blk_mq_add_to_requeue_list(rq, false, true);
349 }
350 
351 void blk_mq_sched_insert_request(struct request *rq, bool at_head,
352 				 bool run_queue, bool async, bool can_block)
353 {
354 	struct request_queue *q = rq->q;
355 	struct elevator_queue *e = q->elevator;
356 	struct blk_mq_ctx *ctx = rq->mq_ctx;
357 	struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, ctx->cpu);
358 
359 	if (rq->tag == -1 && op_is_flush(rq->cmd_flags)) {
360 		blk_mq_sched_insert_flush(hctx, rq, can_block);
361 		return;
362 	}
363 
364 	if (e && blk_mq_sched_bypass_insert(hctx, rq))
365 		goto run;
366 
367 	if (e && e->type->ops.mq.insert_requests) {
368 		LIST_HEAD(list);
369 
370 		list_add(&rq->queuelist, &list);
371 		e->type->ops.mq.insert_requests(hctx, &list, at_head);
372 	} else {
373 		spin_lock(&ctx->lock);
374 		__blk_mq_insert_request(hctx, rq, at_head);
375 		spin_unlock(&ctx->lock);
376 	}
377 
378 run:
379 	if (run_queue)
380 		blk_mq_run_hw_queue(hctx, async);
381 }
382 
383 void blk_mq_sched_insert_requests(struct request_queue *q,
384 				  struct blk_mq_ctx *ctx,
385 				  struct list_head *list, bool run_queue_async)
386 {
387 	struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, ctx->cpu);
388 	struct elevator_queue *e = hctx->queue->elevator;
389 
390 	if (e) {
391 		struct request *rq, *next;
392 
393 		/*
394 		 * We bypass requests that already have a driver tag assigned,
395 		 * which should only be flushes. Flushes are only ever inserted
396 		 * as single requests, so we shouldn't ever hit the
397 		 * WARN_ON_ONCE() below (but let's handle it just in case).
398 		 */
399 		list_for_each_entry_safe(rq, next, list, queuelist) {
400 			if (WARN_ON_ONCE(rq->tag != -1)) {
401 				list_del_init(&rq->queuelist);
402 				blk_mq_sched_bypass_insert(hctx, rq);
403 			}
404 		}
405 	}
406 
407 	if (e && e->type->ops.mq.insert_requests)
408 		e->type->ops.mq.insert_requests(hctx, list, false);
409 	else
410 		blk_mq_insert_requests(hctx, ctx, list);
411 
412 	blk_mq_run_hw_queue(hctx, run_queue_async);
413 }
414 
415 static void blk_mq_sched_free_tags(struct blk_mq_tag_set *set,
416 				   struct blk_mq_hw_ctx *hctx,
417 				   unsigned int hctx_idx)
418 {
419 	if (hctx->sched_tags) {
420 		blk_mq_free_rqs(set, hctx->sched_tags, hctx_idx);
421 		blk_mq_free_rq_map(hctx->sched_tags);
422 		hctx->sched_tags = NULL;
423 	}
424 }
425 
426 static int blk_mq_sched_alloc_tags(struct request_queue *q,
427 				   struct blk_mq_hw_ctx *hctx,
428 				   unsigned int hctx_idx)
429 {
430 	struct blk_mq_tag_set *set = q->tag_set;
431 	int ret;
432 
433 	hctx->sched_tags = blk_mq_alloc_rq_map(set, hctx_idx, q->nr_requests,
434 					       set->reserved_tags);
435 	if (!hctx->sched_tags)
436 		return -ENOMEM;
437 
438 	ret = blk_mq_alloc_rqs(set, hctx->sched_tags, hctx_idx, q->nr_requests);
439 	if (ret)
440 		blk_mq_sched_free_tags(set, hctx, hctx_idx);
441 
442 	return ret;
443 }
444 
445 static void blk_mq_sched_tags_teardown(struct request_queue *q)
446 {
447 	struct blk_mq_tag_set *set = q->tag_set;
448 	struct blk_mq_hw_ctx *hctx;
449 	int i;
450 
451 	queue_for_each_hw_ctx(q, hctx, i)
452 		blk_mq_sched_free_tags(set, hctx, i);
453 }
454 
455 int blk_mq_sched_init_hctx(struct request_queue *q, struct blk_mq_hw_ctx *hctx,
456 			   unsigned int hctx_idx)
457 {
458 	struct elevator_queue *e = q->elevator;
459 	int ret;
460 
461 	if (!e)
462 		return 0;
463 
464 	ret = blk_mq_sched_alloc_tags(q, hctx, hctx_idx);
465 	if (ret)
466 		return ret;
467 
468 	if (e->type->ops.mq.init_hctx) {
469 		ret = e->type->ops.mq.init_hctx(hctx, hctx_idx);
470 		if (ret) {
471 			blk_mq_sched_free_tags(q->tag_set, hctx, hctx_idx);
472 			return ret;
473 		}
474 	}
475 
476 	blk_mq_debugfs_register_sched_hctx(q, hctx);
477 
478 	return 0;
479 }
480 
481 void blk_mq_sched_exit_hctx(struct request_queue *q, struct blk_mq_hw_ctx *hctx,
482 			    unsigned int hctx_idx)
483 {
484 	struct elevator_queue *e = q->elevator;
485 
486 	if (!e)
487 		return;
488 
489 	blk_mq_debugfs_unregister_sched_hctx(hctx);
490 
491 	if (e->type->ops.mq.exit_hctx && hctx->sched_data) {
492 		e->type->ops.mq.exit_hctx(hctx, hctx_idx);
493 		hctx->sched_data = NULL;
494 	}
495 
496 	blk_mq_sched_free_tags(q->tag_set, hctx, hctx_idx);
497 }
498 
499 int blk_mq_init_sched(struct request_queue *q, struct elevator_type *e)
500 {
501 	struct blk_mq_hw_ctx *hctx;
502 	struct elevator_queue *eq;
503 	unsigned int i;
504 	int ret;
505 
506 	if (!e) {
507 		q->elevator = NULL;
508 		return 0;
509 	}
510 
511 	/*
512 	 * Default to 256, since we don't split into sync/async like the
513 	 * old code did. Additionally, this is a per-hw queue depth.
514 	 */
515 	q->nr_requests = 2 * BLKDEV_MAX_RQ;
516 
517 	queue_for_each_hw_ctx(q, hctx, i) {
518 		ret = blk_mq_sched_alloc_tags(q, hctx, i);
519 		if (ret)
520 			goto err;
521 	}
522 
523 	ret = e->ops.mq.init_sched(q, e);
524 	if (ret)
525 		goto err;
526 
527 	blk_mq_debugfs_register_sched(q);
528 
529 	queue_for_each_hw_ctx(q, hctx, i) {
530 		if (e->ops.mq.init_hctx) {
531 			ret = e->ops.mq.init_hctx(hctx, i);
532 			if (ret) {
533 				eq = q->elevator;
534 				blk_mq_exit_sched(q, eq);
535 				kobject_put(&eq->kobj);
536 				return ret;
537 			}
538 		}
539 		blk_mq_debugfs_register_sched_hctx(q, hctx);
540 	}
541 
542 	return 0;
543 
544 err:
545 	blk_mq_sched_tags_teardown(q);
546 	q->elevator = NULL;
547 	return ret;
548 }
549 
550 void blk_mq_exit_sched(struct request_queue *q, struct elevator_queue *e)
551 {
552 	struct blk_mq_hw_ctx *hctx;
553 	unsigned int i;
554 
555 	queue_for_each_hw_ctx(q, hctx, i) {
556 		blk_mq_debugfs_unregister_sched_hctx(hctx);
557 		if (e->type->ops.mq.exit_hctx && hctx->sched_data) {
558 			e->type->ops.mq.exit_hctx(hctx, i);
559 			hctx->sched_data = NULL;
560 		}
561 	}
562 	blk_mq_debugfs_unregister_sched(q);
563 	if (e->type->ops.mq.exit_sched)
564 		e->type->ops.mq.exit_sched(e);
565 	blk_mq_sched_tags_teardown(q);
566 	q->elevator = NULL;
567 }
568 
569 int blk_mq_sched_init(struct request_queue *q)
570 {
571 	int ret;
572 
573 	mutex_lock(&q->sysfs_lock);
574 	ret = elevator_init(q, NULL);
575 	mutex_unlock(&q->sysfs_lock);
576 
577 	return ret;
578 }
579