xref: /linux/block/blk-mq-sched.c (revision aaa44952bbd1d4db14a4d676bf9595bb5db7e7b0)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * blk-mq scheduling framework
4  *
5  * Copyright (C) 2016 Jens Axboe
6  */
7 #include <linux/kernel.h>
8 #include <linux/module.h>
9 #include <linux/blk-mq.h>
10 #include <linux/list_sort.h>
11 
12 #include <trace/events/block.h>
13 
14 #include "blk.h"
15 #include "blk-mq.h"
16 #include "blk-mq-debugfs.h"
17 #include "blk-mq-sched.h"
18 #include "blk-mq-tag.h"
19 #include "blk-wbt.h"
20 
21 void blk_mq_sched_assign_ioc(struct request *rq)
22 {
23 	struct request_queue *q = rq->q;
24 	struct io_context *ioc;
25 	struct io_cq *icq;
26 
27 	/*
28 	 * May not have an IO context if it's a passthrough request
29 	 */
30 	ioc = current->io_context;
31 	if (!ioc)
32 		return;
33 
34 	spin_lock_irq(&q->queue_lock);
35 	icq = ioc_lookup_icq(ioc, q);
36 	spin_unlock_irq(&q->queue_lock);
37 
38 	if (!icq) {
39 		icq = ioc_create_icq(ioc, q, GFP_ATOMIC);
40 		if (!icq)
41 			return;
42 	}
43 	get_io_context(icq->ioc);
44 	rq->elv.icq = icq;
45 }
46 
47 /*
48  * Mark a hardware queue as needing a restart. For shared queues, maintain
49  * a count of how many hardware queues are marked for restart.
50  */
51 void blk_mq_sched_mark_restart_hctx(struct blk_mq_hw_ctx *hctx)
52 {
53 	if (test_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state))
54 		return;
55 
56 	set_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state);
57 }
58 EXPORT_SYMBOL_GPL(blk_mq_sched_mark_restart_hctx);
59 
60 void blk_mq_sched_restart(struct blk_mq_hw_ctx *hctx)
61 {
62 	if (!test_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state))
63 		return;
64 	clear_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state);
65 
66 	/*
67 	 * Order clearing SCHED_RESTART and list_empty_careful(&hctx->dispatch)
68 	 * in blk_mq_run_hw_queue(). Its pair is the barrier in
69 	 * blk_mq_dispatch_rq_list(). So dispatch code won't see SCHED_RESTART,
70 	 * meantime new request added to hctx->dispatch is missed to check in
71 	 * blk_mq_run_hw_queue().
72 	 */
73 	smp_mb();
74 
75 	blk_mq_run_hw_queue(hctx, true);
76 }
77 
78 static int sched_rq_cmp(void *priv, const struct list_head *a,
79 			const struct list_head *b)
80 {
81 	struct request *rqa = container_of(a, struct request, queuelist);
82 	struct request *rqb = container_of(b, struct request, queuelist);
83 
84 	return rqa->mq_hctx > rqb->mq_hctx;
85 }
86 
87 static bool blk_mq_dispatch_hctx_list(struct list_head *rq_list)
88 {
89 	struct blk_mq_hw_ctx *hctx =
90 		list_first_entry(rq_list, struct request, queuelist)->mq_hctx;
91 	struct request *rq;
92 	LIST_HEAD(hctx_list);
93 	unsigned int count = 0;
94 
95 	list_for_each_entry(rq, rq_list, queuelist) {
96 		if (rq->mq_hctx != hctx) {
97 			list_cut_before(&hctx_list, rq_list, &rq->queuelist);
98 			goto dispatch;
99 		}
100 		count++;
101 	}
102 	list_splice_tail_init(rq_list, &hctx_list);
103 
104 dispatch:
105 	return blk_mq_dispatch_rq_list(hctx, &hctx_list, count);
106 }
107 
108 #define BLK_MQ_BUDGET_DELAY	3		/* ms units */
109 
110 /*
111  * Only SCSI implements .get_budget and .put_budget, and SCSI restarts
112  * its queue by itself in its completion handler, so we don't need to
113  * restart queue if .get_budget() returns BLK_STS_NO_RESOURCE.
114  *
115  * Returns -EAGAIN if hctx->dispatch was found non-empty and run_work has to
116  * be run again.  This is necessary to avoid starving flushes.
117  */
118 static int __blk_mq_do_dispatch_sched(struct blk_mq_hw_ctx *hctx)
119 {
120 	struct request_queue *q = hctx->queue;
121 	struct elevator_queue *e = q->elevator;
122 	bool multi_hctxs = false, run_queue = false;
123 	bool dispatched = false, busy = false;
124 	unsigned int max_dispatch;
125 	LIST_HEAD(rq_list);
126 	int count = 0;
127 
128 	if (hctx->dispatch_busy)
129 		max_dispatch = 1;
130 	else
131 		max_dispatch = hctx->queue->nr_requests;
132 
133 	do {
134 		struct request *rq;
135 		int budget_token;
136 
137 		if (e->type->ops.has_work && !e->type->ops.has_work(hctx))
138 			break;
139 
140 		if (!list_empty_careful(&hctx->dispatch)) {
141 			busy = true;
142 			break;
143 		}
144 
145 		budget_token = blk_mq_get_dispatch_budget(q);
146 		if (budget_token < 0)
147 			break;
148 
149 		rq = e->type->ops.dispatch_request(hctx);
150 		if (!rq) {
151 			blk_mq_put_dispatch_budget(q, budget_token);
152 			/*
153 			 * We're releasing without dispatching. Holding the
154 			 * budget could have blocked any "hctx"s with the
155 			 * same queue and if we didn't dispatch then there's
156 			 * no guarantee anyone will kick the queue.  Kick it
157 			 * ourselves.
158 			 */
159 			run_queue = true;
160 			break;
161 		}
162 
163 		blk_mq_set_rq_budget_token(rq, budget_token);
164 
165 		/*
166 		 * Now this rq owns the budget which has to be released
167 		 * if this rq won't be queued to driver via .queue_rq()
168 		 * in blk_mq_dispatch_rq_list().
169 		 */
170 		list_add_tail(&rq->queuelist, &rq_list);
171 		if (rq->mq_hctx != hctx)
172 			multi_hctxs = true;
173 	} while (++count < max_dispatch);
174 
175 	if (!count) {
176 		if (run_queue)
177 			blk_mq_delay_run_hw_queues(q, BLK_MQ_BUDGET_DELAY);
178 	} else if (multi_hctxs) {
179 		/*
180 		 * Requests from different hctx may be dequeued from some
181 		 * schedulers, such as bfq and deadline.
182 		 *
183 		 * Sort the requests in the list according to their hctx,
184 		 * dispatch batching requests from same hctx at a time.
185 		 */
186 		list_sort(NULL, &rq_list, sched_rq_cmp);
187 		do {
188 			dispatched |= blk_mq_dispatch_hctx_list(&rq_list);
189 		} while (!list_empty(&rq_list));
190 	} else {
191 		dispatched = blk_mq_dispatch_rq_list(hctx, &rq_list, count);
192 	}
193 
194 	if (busy)
195 		return -EAGAIN;
196 	return !!dispatched;
197 }
198 
199 static int blk_mq_do_dispatch_sched(struct blk_mq_hw_ctx *hctx)
200 {
201 	int ret;
202 
203 	do {
204 		ret = __blk_mq_do_dispatch_sched(hctx);
205 	} while (ret == 1);
206 
207 	return ret;
208 }
209 
210 static struct blk_mq_ctx *blk_mq_next_ctx(struct blk_mq_hw_ctx *hctx,
211 					  struct blk_mq_ctx *ctx)
212 {
213 	unsigned short idx = ctx->index_hw[hctx->type];
214 
215 	if (++idx == hctx->nr_ctx)
216 		idx = 0;
217 
218 	return hctx->ctxs[idx];
219 }
220 
221 /*
222  * Only SCSI implements .get_budget and .put_budget, and SCSI restarts
223  * its queue by itself in its completion handler, so we don't need to
224  * restart queue if .get_budget() returns BLK_STS_NO_RESOURCE.
225  *
226  * Returns -EAGAIN if hctx->dispatch was found non-empty and run_work has to
227  * be run again.  This is necessary to avoid starving flushes.
228  */
229 static int blk_mq_do_dispatch_ctx(struct blk_mq_hw_ctx *hctx)
230 {
231 	struct request_queue *q = hctx->queue;
232 	LIST_HEAD(rq_list);
233 	struct blk_mq_ctx *ctx = READ_ONCE(hctx->dispatch_from);
234 	int ret = 0;
235 	struct request *rq;
236 
237 	do {
238 		int budget_token;
239 
240 		if (!list_empty_careful(&hctx->dispatch)) {
241 			ret = -EAGAIN;
242 			break;
243 		}
244 
245 		if (!sbitmap_any_bit_set(&hctx->ctx_map))
246 			break;
247 
248 		budget_token = blk_mq_get_dispatch_budget(q);
249 		if (budget_token < 0)
250 			break;
251 
252 		rq = blk_mq_dequeue_from_ctx(hctx, ctx);
253 		if (!rq) {
254 			blk_mq_put_dispatch_budget(q, budget_token);
255 			/*
256 			 * We're releasing without dispatching. Holding the
257 			 * budget could have blocked any "hctx"s with the
258 			 * same queue and if we didn't dispatch then there's
259 			 * no guarantee anyone will kick the queue.  Kick it
260 			 * ourselves.
261 			 */
262 			blk_mq_delay_run_hw_queues(q, BLK_MQ_BUDGET_DELAY);
263 			break;
264 		}
265 
266 		blk_mq_set_rq_budget_token(rq, budget_token);
267 
268 		/*
269 		 * Now this rq owns the budget which has to be released
270 		 * if this rq won't be queued to driver via .queue_rq()
271 		 * in blk_mq_dispatch_rq_list().
272 		 */
273 		list_add(&rq->queuelist, &rq_list);
274 
275 		/* round robin for fair dispatch */
276 		ctx = blk_mq_next_ctx(hctx, rq->mq_ctx);
277 
278 	} while (blk_mq_dispatch_rq_list(rq->mq_hctx, &rq_list, 1));
279 
280 	WRITE_ONCE(hctx->dispatch_from, ctx);
281 	return ret;
282 }
283 
284 static int __blk_mq_sched_dispatch_requests(struct blk_mq_hw_ctx *hctx)
285 {
286 	struct request_queue *q = hctx->queue;
287 	struct elevator_queue *e = q->elevator;
288 	const bool has_sched_dispatch = e && e->type->ops.dispatch_request;
289 	int ret = 0;
290 	LIST_HEAD(rq_list);
291 
292 	/*
293 	 * If we have previous entries on our dispatch list, grab them first for
294 	 * more fair dispatch.
295 	 */
296 	if (!list_empty_careful(&hctx->dispatch)) {
297 		spin_lock(&hctx->lock);
298 		if (!list_empty(&hctx->dispatch))
299 			list_splice_init(&hctx->dispatch, &rq_list);
300 		spin_unlock(&hctx->lock);
301 	}
302 
303 	/*
304 	 * Only ask the scheduler for requests, if we didn't have residual
305 	 * requests from the dispatch list. This is to avoid the case where
306 	 * we only ever dispatch a fraction of the requests available because
307 	 * of low device queue depth. Once we pull requests out of the IO
308 	 * scheduler, we can no longer merge or sort them. So it's best to
309 	 * leave them there for as long as we can. Mark the hw queue as
310 	 * needing a restart in that case.
311 	 *
312 	 * We want to dispatch from the scheduler if there was nothing
313 	 * on the dispatch list or we were able to dispatch from the
314 	 * dispatch list.
315 	 */
316 	if (!list_empty(&rq_list)) {
317 		blk_mq_sched_mark_restart_hctx(hctx);
318 		if (blk_mq_dispatch_rq_list(hctx, &rq_list, 0)) {
319 			if (has_sched_dispatch)
320 				ret = blk_mq_do_dispatch_sched(hctx);
321 			else
322 				ret = blk_mq_do_dispatch_ctx(hctx);
323 		}
324 	} else if (has_sched_dispatch) {
325 		ret = blk_mq_do_dispatch_sched(hctx);
326 	} else if (hctx->dispatch_busy) {
327 		/* dequeue request one by one from sw queue if queue is busy */
328 		ret = blk_mq_do_dispatch_ctx(hctx);
329 	} else {
330 		blk_mq_flush_busy_ctxs(hctx, &rq_list);
331 		blk_mq_dispatch_rq_list(hctx, &rq_list, 0);
332 	}
333 
334 	return ret;
335 }
336 
337 void blk_mq_sched_dispatch_requests(struct blk_mq_hw_ctx *hctx)
338 {
339 	struct request_queue *q = hctx->queue;
340 
341 	/* RCU or SRCU read lock is needed before checking quiesced flag */
342 	if (unlikely(blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(q)))
343 		return;
344 
345 	hctx->run++;
346 
347 	/*
348 	 * A return of -EAGAIN is an indication that hctx->dispatch is not
349 	 * empty and we must run again in order to avoid starving flushes.
350 	 */
351 	if (__blk_mq_sched_dispatch_requests(hctx) == -EAGAIN) {
352 		if (__blk_mq_sched_dispatch_requests(hctx) == -EAGAIN)
353 			blk_mq_run_hw_queue(hctx, true);
354 	}
355 }
356 
357 bool __blk_mq_sched_bio_merge(struct request_queue *q, struct bio *bio,
358 		unsigned int nr_segs)
359 {
360 	struct elevator_queue *e = q->elevator;
361 	struct blk_mq_ctx *ctx = blk_mq_get_ctx(q);
362 	struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, bio->bi_opf, ctx);
363 	bool ret = false;
364 	enum hctx_type type;
365 
366 	if (e && e->type->ops.bio_merge)
367 		return e->type->ops.bio_merge(hctx, bio, nr_segs);
368 
369 	type = hctx->type;
370 	if (!(hctx->flags & BLK_MQ_F_SHOULD_MERGE) ||
371 	    list_empty_careful(&ctx->rq_lists[type]))
372 		return false;
373 
374 	/* default per sw-queue merge */
375 	spin_lock(&ctx->lock);
376 	/*
377 	 * Reverse check our software queue for entries that we could
378 	 * potentially merge with. Currently includes a hand-wavy stop
379 	 * count of 8, to not spend too much time checking for merges.
380 	 */
381 	if (blk_bio_list_merge(q, &ctx->rq_lists[type], bio, nr_segs)) {
382 		ctx->rq_merged++;
383 		ret = true;
384 	}
385 
386 	spin_unlock(&ctx->lock);
387 
388 	return ret;
389 }
390 
391 bool blk_mq_sched_try_insert_merge(struct request_queue *q, struct request *rq)
392 {
393 	return rq_mergeable(rq) && elv_attempt_insert_merge(q, rq);
394 }
395 EXPORT_SYMBOL_GPL(blk_mq_sched_try_insert_merge);
396 
397 static bool blk_mq_sched_bypass_insert(struct blk_mq_hw_ctx *hctx,
398 				       struct request *rq)
399 {
400 	/*
401 	 * dispatch flush and passthrough rq directly
402 	 *
403 	 * passthrough request has to be added to hctx->dispatch directly.
404 	 * For some reason, device may be in one situation which can't
405 	 * handle FS request, so STS_RESOURCE is always returned and the
406 	 * FS request will be added to hctx->dispatch. However passthrough
407 	 * request may be required at that time for fixing the problem. If
408 	 * passthrough request is added to scheduler queue, there isn't any
409 	 * chance to dispatch it given we prioritize requests in hctx->dispatch.
410 	 */
411 	if ((rq->rq_flags & RQF_FLUSH_SEQ) || blk_rq_is_passthrough(rq))
412 		return true;
413 
414 	return false;
415 }
416 
417 void blk_mq_sched_insert_request(struct request *rq, bool at_head,
418 				 bool run_queue, bool async)
419 {
420 	struct request_queue *q = rq->q;
421 	struct elevator_queue *e = q->elevator;
422 	struct blk_mq_ctx *ctx = rq->mq_ctx;
423 	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
424 
425 	WARN_ON(e && (rq->tag != BLK_MQ_NO_TAG));
426 
427 	if (blk_mq_sched_bypass_insert(hctx, rq)) {
428 		/*
429 		 * Firstly normal IO request is inserted to scheduler queue or
430 		 * sw queue, meantime we add flush request to dispatch queue(
431 		 * hctx->dispatch) directly and there is at most one in-flight
432 		 * flush request for each hw queue, so it doesn't matter to add
433 		 * flush request to tail or front of the dispatch queue.
434 		 *
435 		 * Secondly in case of NCQ, flush request belongs to non-NCQ
436 		 * command, and queueing it will fail when there is any
437 		 * in-flight normal IO request(NCQ command). When adding flush
438 		 * rq to the front of hctx->dispatch, it is easier to introduce
439 		 * extra time to flush rq's latency because of S_SCHED_RESTART
440 		 * compared with adding to the tail of dispatch queue, then
441 		 * chance of flush merge is increased, and less flush requests
442 		 * will be issued to controller. It is observed that ~10% time
443 		 * is saved in blktests block/004 on disk attached to AHCI/NCQ
444 		 * drive when adding flush rq to the front of hctx->dispatch.
445 		 *
446 		 * Simply queue flush rq to the front of hctx->dispatch so that
447 		 * intensive flush workloads can benefit in case of NCQ HW.
448 		 */
449 		at_head = (rq->rq_flags & RQF_FLUSH_SEQ) ? true : at_head;
450 		blk_mq_request_bypass_insert(rq, at_head, false);
451 		goto run;
452 	}
453 
454 	if (e && e->type->ops.insert_requests) {
455 		LIST_HEAD(list);
456 
457 		list_add(&rq->queuelist, &list);
458 		e->type->ops.insert_requests(hctx, &list, at_head);
459 	} else {
460 		spin_lock(&ctx->lock);
461 		__blk_mq_insert_request(hctx, rq, at_head);
462 		spin_unlock(&ctx->lock);
463 	}
464 
465 run:
466 	if (run_queue)
467 		blk_mq_run_hw_queue(hctx, async);
468 }
469 
470 void blk_mq_sched_insert_requests(struct blk_mq_hw_ctx *hctx,
471 				  struct blk_mq_ctx *ctx,
472 				  struct list_head *list, bool run_queue_async)
473 {
474 	struct elevator_queue *e;
475 	struct request_queue *q = hctx->queue;
476 
477 	/*
478 	 * blk_mq_sched_insert_requests() is called from flush plug
479 	 * context only, and hold one usage counter to prevent queue
480 	 * from being released.
481 	 */
482 	percpu_ref_get(&q->q_usage_counter);
483 
484 	e = hctx->queue->elevator;
485 	if (e && e->type->ops.insert_requests)
486 		e->type->ops.insert_requests(hctx, list, false);
487 	else {
488 		/*
489 		 * try to issue requests directly if the hw queue isn't
490 		 * busy in case of 'none' scheduler, and this way may save
491 		 * us one extra enqueue & dequeue to sw queue.
492 		 */
493 		if (!hctx->dispatch_busy && !e && !run_queue_async) {
494 			blk_mq_try_issue_list_directly(hctx, list);
495 			if (list_empty(list))
496 				goto out;
497 		}
498 		blk_mq_insert_requests(hctx, ctx, list);
499 	}
500 
501 	blk_mq_run_hw_queue(hctx, run_queue_async);
502  out:
503 	percpu_ref_put(&q->q_usage_counter);
504 }
505 
506 static void blk_mq_sched_free_tags(struct blk_mq_tag_set *set,
507 				   struct blk_mq_hw_ctx *hctx,
508 				   unsigned int hctx_idx)
509 {
510 	unsigned int flags = set->flags & ~BLK_MQ_F_TAG_HCTX_SHARED;
511 
512 	if (hctx->sched_tags) {
513 		blk_mq_free_rqs(set, hctx->sched_tags, hctx_idx);
514 		blk_mq_free_rq_map(hctx->sched_tags, flags);
515 		hctx->sched_tags = NULL;
516 	}
517 }
518 
519 static int blk_mq_sched_alloc_tags(struct request_queue *q,
520 				   struct blk_mq_hw_ctx *hctx,
521 				   unsigned int hctx_idx)
522 {
523 	struct blk_mq_tag_set *set = q->tag_set;
524 	/* Clear HCTX_SHARED so tags are init'ed */
525 	unsigned int flags = set->flags & ~BLK_MQ_F_TAG_HCTX_SHARED;
526 	int ret;
527 
528 	hctx->sched_tags = blk_mq_alloc_rq_map(set, hctx_idx, q->nr_requests,
529 					       set->reserved_tags, flags);
530 	if (!hctx->sched_tags)
531 		return -ENOMEM;
532 
533 	ret = blk_mq_alloc_rqs(set, hctx->sched_tags, hctx_idx, q->nr_requests);
534 	if (ret)
535 		blk_mq_sched_free_tags(set, hctx, hctx_idx);
536 
537 	return ret;
538 }
539 
540 /* called in queue's release handler, tagset has gone away */
541 static void blk_mq_sched_tags_teardown(struct request_queue *q)
542 {
543 	struct blk_mq_hw_ctx *hctx;
544 	int i;
545 
546 	queue_for_each_hw_ctx(q, hctx, i) {
547 		/* Clear HCTX_SHARED so tags are freed */
548 		unsigned int flags = hctx->flags & ~BLK_MQ_F_TAG_HCTX_SHARED;
549 
550 		if (hctx->sched_tags) {
551 			blk_mq_free_rq_map(hctx->sched_tags, flags);
552 			hctx->sched_tags = NULL;
553 		}
554 	}
555 }
556 
557 int blk_mq_init_sched(struct request_queue *q, struct elevator_type *e)
558 {
559 	struct blk_mq_hw_ctx *hctx;
560 	struct elevator_queue *eq;
561 	unsigned int i;
562 	int ret;
563 
564 	if (!e) {
565 		q->elevator = NULL;
566 		q->nr_requests = q->tag_set->queue_depth;
567 		return 0;
568 	}
569 
570 	/*
571 	 * Default to double of smaller one between hw queue_depth and 128,
572 	 * since we don't split into sync/async like the old code did.
573 	 * Additionally, this is a per-hw queue depth.
574 	 */
575 	q->nr_requests = 2 * min_t(unsigned int, q->tag_set->queue_depth,
576 				   BLKDEV_MAX_RQ);
577 
578 	queue_for_each_hw_ctx(q, hctx, i) {
579 		ret = blk_mq_sched_alloc_tags(q, hctx, i);
580 		if (ret)
581 			goto err;
582 	}
583 
584 	ret = e->ops.init_sched(q, e);
585 	if (ret)
586 		goto err;
587 
588 	blk_mq_debugfs_register_sched(q);
589 
590 	queue_for_each_hw_ctx(q, hctx, i) {
591 		if (e->ops.init_hctx) {
592 			ret = e->ops.init_hctx(hctx, i);
593 			if (ret) {
594 				eq = q->elevator;
595 				blk_mq_sched_free_requests(q);
596 				blk_mq_exit_sched(q, eq);
597 				kobject_put(&eq->kobj);
598 				return ret;
599 			}
600 		}
601 		blk_mq_debugfs_register_sched_hctx(q, hctx);
602 	}
603 
604 	return 0;
605 
606 err:
607 	blk_mq_sched_free_requests(q);
608 	blk_mq_sched_tags_teardown(q);
609 	q->elevator = NULL;
610 	return ret;
611 }
612 
613 /*
614  * called in either blk_queue_cleanup or elevator_switch, tagset
615  * is required for freeing requests
616  */
617 void blk_mq_sched_free_requests(struct request_queue *q)
618 {
619 	struct blk_mq_hw_ctx *hctx;
620 	int i;
621 
622 	queue_for_each_hw_ctx(q, hctx, i) {
623 		if (hctx->sched_tags)
624 			blk_mq_free_rqs(q->tag_set, hctx->sched_tags, i);
625 	}
626 }
627 
628 void blk_mq_exit_sched(struct request_queue *q, struct elevator_queue *e)
629 {
630 	struct blk_mq_hw_ctx *hctx;
631 	unsigned int i;
632 
633 	queue_for_each_hw_ctx(q, hctx, i) {
634 		blk_mq_debugfs_unregister_sched_hctx(hctx);
635 		if (e->type->ops.exit_hctx && hctx->sched_data) {
636 			e->type->ops.exit_hctx(hctx, i);
637 			hctx->sched_data = NULL;
638 		}
639 	}
640 	blk_mq_debugfs_unregister_sched(q);
641 	if (e->type->ops.exit_sched)
642 		e->type->ops.exit_sched(e);
643 	blk_mq_sched_tags_teardown(q);
644 	q->elevator = NULL;
645 }
646