1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * blk-mq scheduling framework 4 * 5 * Copyright (C) 2016 Jens Axboe 6 */ 7 #include <linux/kernel.h> 8 #include <linux/module.h> 9 #include <linux/blk-mq.h> 10 #include <linux/list_sort.h> 11 12 #include <trace/events/block.h> 13 14 #include "blk.h" 15 #include "blk-mq.h" 16 #include "blk-mq-debugfs.h" 17 #include "blk-mq-sched.h" 18 #include "blk-mq-tag.h" 19 #include "blk-wbt.h" 20 21 void blk_mq_sched_assign_ioc(struct request *rq) 22 { 23 struct request_queue *q = rq->q; 24 struct io_context *ioc; 25 struct io_cq *icq; 26 27 /* 28 * May not have an IO context if it's a passthrough request 29 */ 30 ioc = current->io_context; 31 if (!ioc) 32 return; 33 34 spin_lock_irq(&q->queue_lock); 35 icq = ioc_lookup_icq(ioc, q); 36 spin_unlock_irq(&q->queue_lock); 37 38 if (!icq) { 39 icq = ioc_create_icq(ioc, q, GFP_ATOMIC); 40 if (!icq) 41 return; 42 } 43 get_io_context(icq->ioc); 44 rq->elv.icq = icq; 45 } 46 47 /* 48 * Mark a hardware queue as needing a restart. For shared queues, maintain 49 * a count of how many hardware queues are marked for restart. 50 */ 51 void blk_mq_sched_mark_restart_hctx(struct blk_mq_hw_ctx *hctx) 52 { 53 if (test_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state)) 54 return; 55 56 set_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state); 57 } 58 EXPORT_SYMBOL_GPL(blk_mq_sched_mark_restart_hctx); 59 60 void blk_mq_sched_restart(struct blk_mq_hw_ctx *hctx) 61 { 62 if (!test_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state)) 63 return; 64 clear_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state); 65 66 /* 67 * Order clearing SCHED_RESTART and list_empty_careful(&hctx->dispatch) 68 * in blk_mq_run_hw_queue(). Its pair is the barrier in 69 * blk_mq_dispatch_rq_list(). So dispatch code won't see SCHED_RESTART, 70 * meantime new request added to hctx->dispatch is missed to check in 71 * blk_mq_run_hw_queue(). 72 */ 73 smp_mb(); 74 75 blk_mq_run_hw_queue(hctx, true); 76 } 77 78 static int sched_rq_cmp(void *priv, const struct list_head *a, 79 const struct list_head *b) 80 { 81 struct request *rqa = container_of(a, struct request, queuelist); 82 struct request *rqb = container_of(b, struct request, queuelist); 83 84 return rqa->mq_hctx > rqb->mq_hctx; 85 } 86 87 static bool blk_mq_dispatch_hctx_list(struct list_head *rq_list) 88 { 89 struct blk_mq_hw_ctx *hctx = 90 list_first_entry(rq_list, struct request, queuelist)->mq_hctx; 91 struct request *rq; 92 LIST_HEAD(hctx_list); 93 unsigned int count = 0; 94 95 list_for_each_entry(rq, rq_list, queuelist) { 96 if (rq->mq_hctx != hctx) { 97 list_cut_before(&hctx_list, rq_list, &rq->queuelist); 98 goto dispatch; 99 } 100 count++; 101 } 102 list_splice_tail_init(rq_list, &hctx_list); 103 104 dispatch: 105 return blk_mq_dispatch_rq_list(hctx, &hctx_list, count); 106 } 107 108 #define BLK_MQ_BUDGET_DELAY 3 /* ms units */ 109 110 /* 111 * Only SCSI implements .get_budget and .put_budget, and SCSI restarts 112 * its queue by itself in its completion handler, so we don't need to 113 * restart queue if .get_budget() returns BLK_STS_NO_RESOURCE. 114 * 115 * Returns -EAGAIN if hctx->dispatch was found non-empty and run_work has to 116 * be run again. This is necessary to avoid starving flushes. 117 */ 118 static int __blk_mq_do_dispatch_sched(struct blk_mq_hw_ctx *hctx) 119 { 120 struct request_queue *q = hctx->queue; 121 struct elevator_queue *e = q->elevator; 122 bool multi_hctxs = false, run_queue = false; 123 bool dispatched = false, busy = false; 124 unsigned int max_dispatch; 125 LIST_HEAD(rq_list); 126 int count = 0; 127 128 if (hctx->dispatch_busy) 129 max_dispatch = 1; 130 else 131 max_dispatch = hctx->queue->nr_requests; 132 133 do { 134 struct request *rq; 135 int budget_token; 136 137 if (e->type->ops.has_work && !e->type->ops.has_work(hctx)) 138 break; 139 140 if (!list_empty_careful(&hctx->dispatch)) { 141 busy = true; 142 break; 143 } 144 145 budget_token = blk_mq_get_dispatch_budget(q); 146 if (budget_token < 0) 147 break; 148 149 rq = e->type->ops.dispatch_request(hctx); 150 if (!rq) { 151 blk_mq_put_dispatch_budget(q, budget_token); 152 /* 153 * We're releasing without dispatching. Holding the 154 * budget could have blocked any "hctx"s with the 155 * same queue and if we didn't dispatch then there's 156 * no guarantee anyone will kick the queue. Kick it 157 * ourselves. 158 */ 159 run_queue = true; 160 break; 161 } 162 163 blk_mq_set_rq_budget_token(rq, budget_token); 164 165 /* 166 * Now this rq owns the budget which has to be released 167 * if this rq won't be queued to driver via .queue_rq() 168 * in blk_mq_dispatch_rq_list(). 169 */ 170 list_add_tail(&rq->queuelist, &rq_list); 171 count++; 172 if (rq->mq_hctx != hctx) 173 multi_hctxs = true; 174 175 /* 176 * If we cannot get tag for the request, stop dequeueing 177 * requests from the IO scheduler. We are unlikely to be able 178 * to submit them anyway and it creates false impression for 179 * scheduling heuristics that the device can take more IO. 180 */ 181 if (!blk_mq_get_driver_tag(rq)) 182 break; 183 } while (count < max_dispatch); 184 185 if (!count) { 186 if (run_queue) 187 blk_mq_delay_run_hw_queues(q, BLK_MQ_BUDGET_DELAY); 188 } else if (multi_hctxs) { 189 /* 190 * Requests from different hctx may be dequeued from some 191 * schedulers, such as bfq and deadline. 192 * 193 * Sort the requests in the list according to their hctx, 194 * dispatch batching requests from same hctx at a time. 195 */ 196 list_sort(NULL, &rq_list, sched_rq_cmp); 197 do { 198 dispatched |= blk_mq_dispatch_hctx_list(&rq_list); 199 } while (!list_empty(&rq_list)); 200 } else { 201 dispatched = blk_mq_dispatch_rq_list(hctx, &rq_list, count); 202 } 203 204 if (busy) 205 return -EAGAIN; 206 return !!dispatched; 207 } 208 209 static int blk_mq_do_dispatch_sched(struct blk_mq_hw_ctx *hctx) 210 { 211 int ret; 212 213 do { 214 ret = __blk_mq_do_dispatch_sched(hctx); 215 } while (ret == 1); 216 217 return ret; 218 } 219 220 static struct blk_mq_ctx *blk_mq_next_ctx(struct blk_mq_hw_ctx *hctx, 221 struct blk_mq_ctx *ctx) 222 { 223 unsigned short idx = ctx->index_hw[hctx->type]; 224 225 if (++idx == hctx->nr_ctx) 226 idx = 0; 227 228 return hctx->ctxs[idx]; 229 } 230 231 /* 232 * Only SCSI implements .get_budget and .put_budget, and SCSI restarts 233 * its queue by itself in its completion handler, so we don't need to 234 * restart queue if .get_budget() returns BLK_STS_NO_RESOURCE. 235 * 236 * Returns -EAGAIN if hctx->dispatch was found non-empty and run_work has to 237 * be run again. This is necessary to avoid starving flushes. 238 */ 239 static int blk_mq_do_dispatch_ctx(struct blk_mq_hw_ctx *hctx) 240 { 241 struct request_queue *q = hctx->queue; 242 LIST_HEAD(rq_list); 243 struct blk_mq_ctx *ctx = READ_ONCE(hctx->dispatch_from); 244 int ret = 0; 245 struct request *rq; 246 247 do { 248 int budget_token; 249 250 if (!list_empty_careful(&hctx->dispatch)) { 251 ret = -EAGAIN; 252 break; 253 } 254 255 if (!sbitmap_any_bit_set(&hctx->ctx_map)) 256 break; 257 258 budget_token = blk_mq_get_dispatch_budget(q); 259 if (budget_token < 0) 260 break; 261 262 rq = blk_mq_dequeue_from_ctx(hctx, ctx); 263 if (!rq) { 264 blk_mq_put_dispatch_budget(q, budget_token); 265 /* 266 * We're releasing without dispatching. Holding the 267 * budget could have blocked any "hctx"s with the 268 * same queue and if we didn't dispatch then there's 269 * no guarantee anyone will kick the queue. Kick it 270 * ourselves. 271 */ 272 blk_mq_delay_run_hw_queues(q, BLK_MQ_BUDGET_DELAY); 273 break; 274 } 275 276 blk_mq_set_rq_budget_token(rq, budget_token); 277 278 /* 279 * Now this rq owns the budget which has to be released 280 * if this rq won't be queued to driver via .queue_rq() 281 * in blk_mq_dispatch_rq_list(). 282 */ 283 list_add(&rq->queuelist, &rq_list); 284 285 /* round robin for fair dispatch */ 286 ctx = blk_mq_next_ctx(hctx, rq->mq_ctx); 287 288 } while (blk_mq_dispatch_rq_list(rq->mq_hctx, &rq_list, 1)); 289 290 WRITE_ONCE(hctx->dispatch_from, ctx); 291 return ret; 292 } 293 294 static int __blk_mq_sched_dispatch_requests(struct blk_mq_hw_ctx *hctx) 295 { 296 struct request_queue *q = hctx->queue; 297 const bool has_sched = q->elevator; 298 int ret = 0; 299 LIST_HEAD(rq_list); 300 301 /* 302 * If we have previous entries on our dispatch list, grab them first for 303 * more fair dispatch. 304 */ 305 if (!list_empty_careful(&hctx->dispatch)) { 306 spin_lock(&hctx->lock); 307 if (!list_empty(&hctx->dispatch)) 308 list_splice_init(&hctx->dispatch, &rq_list); 309 spin_unlock(&hctx->lock); 310 } 311 312 /* 313 * Only ask the scheduler for requests, if we didn't have residual 314 * requests from the dispatch list. This is to avoid the case where 315 * we only ever dispatch a fraction of the requests available because 316 * of low device queue depth. Once we pull requests out of the IO 317 * scheduler, we can no longer merge or sort them. So it's best to 318 * leave them there for as long as we can. Mark the hw queue as 319 * needing a restart in that case. 320 * 321 * We want to dispatch from the scheduler if there was nothing 322 * on the dispatch list or we were able to dispatch from the 323 * dispatch list. 324 */ 325 if (!list_empty(&rq_list)) { 326 blk_mq_sched_mark_restart_hctx(hctx); 327 if (blk_mq_dispatch_rq_list(hctx, &rq_list, 0)) { 328 if (has_sched) 329 ret = blk_mq_do_dispatch_sched(hctx); 330 else 331 ret = blk_mq_do_dispatch_ctx(hctx); 332 } 333 } else if (has_sched) { 334 ret = blk_mq_do_dispatch_sched(hctx); 335 } else if (hctx->dispatch_busy) { 336 /* dequeue request one by one from sw queue if queue is busy */ 337 ret = blk_mq_do_dispatch_ctx(hctx); 338 } else { 339 blk_mq_flush_busy_ctxs(hctx, &rq_list); 340 blk_mq_dispatch_rq_list(hctx, &rq_list, 0); 341 } 342 343 return ret; 344 } 345 346 void blk_mq_sched_dispatch_requests(struct blk_mq_hw_ctx *hctx) 347 { 348 struct request_queue *q = hctx->queue; 349 350 /* RCU or SRCU read lock is needed before checking quiesced flag */ 351 if (unlikely(blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(q))) 352 return; 353 354 hctx->run++; 355 356 /* 357 * A return of -EAGAIN is an indication that hctx->dispatch is not 358 * empty and we must run again in order to avoid starving flushes. 359 */ 360 if (__blk_mq_sched_dispatch_requests(hctx) == -EAGAIN) { 361 if (__blk_mq_sched_dispatch_requests(hctx) == -EAGAIN) 362 blk_mq_run_hw_queue(hctx, true); 363 } 364 } 365 366 bool __blk_mq_sched_bio_merge(struct request_queue *q, struct bio *bio, 367 unsigned int nr_segs) 368 { 369 struct elevator_queue *e = q->elevator; 370 struct blk_mq_ctx *ctx; 371 struct blk_mq_hw_ctx *hctx; 372 bool ret = false; 373 enum hctx_type type; 374 375 if (e && e->type->ops.bio_merge) 376 return e->type->ops.bio_merge(q, bio, nr_segs); 377 378 ctx = blk_mq_get_ctx(q); 379 hctx = blk_mq_map_queue(q, bio->bi_opf, ctx); 380 type = hctx->type; 381 if (!(hctx->flags & BLK_MQ_F_SHOULD_MERGE) || 382 list_empty_careful(&ctx->rq_lists[type])) 383 return false; 384 385 /* default per sw-queue merge */ 386 spin_lock(&ctx->lock); 387 /* 388 * Reverse check our software queue for entries that we could 389 * potentially merge with. Currently includes a hand-wavy stop 390 * count of 8, to not spend too much time checking for merges. 391 */ 392 if (blk_bio_list_merge(q, &ctx->rq_lists[type], bio, nr_segs)) { 393 ctx->rq_merged++; 394 ret = true; 395 } 396 397 spin_unlock(&ctx->lock); 398 399 return ret; 400 } 401 402 bool blk_mq_sched_try_insert_merge(struct request_queue *q, struct request *rq, 403 struct list_head *free) 404 { 405 return rq_mergeable(rq) && elv_attempt_insert_merge(q, rq, free); 406 } 407 EXPORT_SYMBOL_GPL(blk_mq_sched_try_insert_merge); 408 409 static bool blk_mq_sched_bypass_insert(struct blk_mq_hw_ctx *hctx, 410 struct request *rq) 411 { 412 /* 413 * dispatch flush and passthrough rq directly 414 * 415 * passthrough request has to be added to hctx->dispatch directly. 416 * For some reason, device may be in one situation which can't 417 * handle FS request, so STS_RESOURCE is always returned and the 418 * FS request will be added to hctx->dispatch. However passthrough 419 * request may be required at that time for fixing the problem. If 420 * passthrough request is added to scheduler queue, there isn't any 421 * chance to dispatch it given we prioritize requests in hctx->dispatch. 422 */ 423 if ((rq->rq_flags & RQF_FLUSH_SEQ) || blk_rq_is_passthrough(rq)) 424 return true; 425 426 return false; 427 } 428 429 void blk_mq_sched_insert_request(struct request *rq, bool at_head, 430 bool run_queue, bool async) 431 { 432 struct request_queue *q = rq->q; 433 struct elevator_queue *e = q->elevator; 434 struct blk_mq_ctx *ctx = rq->mq_ctx; 435 struct blk_mq_hw_ctx *hctx = rq->mq_hctx; 436 437 WARN_ON(e && (rq->tag != BLK_MQ_NO_TAG)); 438 439 if (blk_mq_sched_bypass_insert(hctx, rq)) { 440 /* 441 * Firstly normal IO request is inserted to scheduler queue or 442 * sw queue, meantime we add flush request to dispatch queue( 443 * hctx->dispatch) directly and there is at most one in-flight 444 * flush request for each hw queue, so it doesn't matter to add 445 * flush request to tail or front of the dispatch queue. 446 * 447 * Secondly in case of NCQ, flush request belongs to non-NCQ 448 * command, and queueing it will fail when there is any 449 * in-flight normal IO request(NCQ command). When adding flush 450 * rq to the front of hctx->dispatch, it is easier to introduce 451 * extra time to flush rq's latency because of S_SCHED_RESTART 452 * compared with adding to the tail of dispatch queue, then 453 * chance of flush merge is increased, and less flush requests 454 * will be issued to controller. It is observed that ~10% time 455 * is saved in blktests block/004 on disk attached to AHCI/NCQ 456 * drive when adding flush rq to the front of hctx->dispatch. 457 * 458 * Simply queue flush rq to the front of hctx->dispatch so that 459 * intensive flush workloads can benefit in case of NCQ HW. 460 */ 461 at_head = (rq->rq_flags & RQF_FLUSH_SEQ) ? true : at_head; 462 blk_mq_request_bypass_insert(rq, at_head, false); 463 goto run; 464 } 465 466 if (e) { 467 LIST_HEAD(list); 468 469 list_add(&rq->queuelist, &list); 470 e->type->ops.insert_requests(hctx, &list, at_head); 471 } else { 472 spin_lock(&ctx->lock); 473 __blk_mq_insert_request(hctx, rq, at_head); 474 spin_unlock(&ctx->lock); 475 } 476 477 run: 478 if (run_queue) 479 blk_mq_run_hw_queue(hctx, async); 480 } 481 482 void blk_mq_sched_insert_requests(struct blk_mq_hw_ctx *hctx, 483 struct blk_mq_ctx *ctx, 484 struct list_head *list, bool run_queue_async) 485 { 486 struct elevator_queue *e; 487 struct request_queue *q = hctx->queue; 488 489 /* 490 * blk_mq_sched_insert_requests() is called from flush plug 491 * context only, and hold one usage counter to prevent queue 492 * from being released. 493 */ 494 percpu_ref_get(&q->q_usage_counter); 495 496 e = hctx->queue->elevator; 497 if (e) { 498 e->type->ops.insert_requests(hctx, list, false); 499 } else { 500 /* 501 * try to issue requests directly if the hw queue isn't 502 * busy in case of 'none' scheduler, and this way may save 503 * us one extra enqueue & dequeue to sw queue. 504 */ 505 if (!hctx->dispatch_busy && !e && !run_queue_async) { 506 blk_mq_try_issue_list_directly(hctx, list); 507 if (list_empty(list)) 508 goto out; 509 } 510 blk_mq_insert_requests(hctx, ctx, list); 511 } 512 513 blk_mq_run_hw_queue(hctx, run_queue_async); 514 out: 515 percpu_ref_put(&q->q_usage_counter); 516 } 517 518 static int blk_mq_sched_alloc_tags(struct request_queue *q, 519 struct blk_mq_hw_ctx *hctx, 520 unsigned int hctx_idx) 521 { 522 struct blk_mq_tag_set *set = q->tag_set; 523 int ret; 524 525 hctx->sched_tags = blk_mq_alloc_rq_map(set, hctx_idx, q->nr_requests, 526 set->reserved_tags, set->flags); 527 if (!hctx->sched_tags) 528 return -ENOMEM; 529 530 ret = blk_mq_alloc_rqs(set, hctx->sched_tags, hctx_idx, q->nr_requests); 531 if (ret) { 532 blk_mq_free_rq_map(hctx->sched_tags, set->flags); 533 hctx->sched_tags = NULL; 534 } 535 536 return ret; 537 } 538 539 /* called in queue's release handler, tagset has gone away */ 540 static void blk_mq_sched_tags_teardown(struct request_queue *q) 541 { 542 struct blk_mq_hw_ctx *hctx; 543 int i; 544 545 queue_for_each_hw_ctx(q, hctx, i) { 546 if (hctx->sched_tags) { 547 blk_mq_free_rq_map(hctx->sched_tags, hctx->flags); 548 hctx->sched_tags = NULL; 549 } 550 } 551 } 552 553 static int blk_mq_init_sched_shared_sbitmap(struct request_queue *queue) 554 { 555 struct blk_mq_tag_set *set = queue->tag_set; 556 int alloc_policy = BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags); 557 struct blk_mq_hw_ctx *hctx; 558 int ret, i; 559 560 /* 561 * Set initial depth at max so that we don't need to reallocate for 562 * updating nr_requests. 563 */ 564 ret = blk_mq_init_bitmaps(&queue->sched_bitmap_tags, 565 &queue->sched_breserved_tags, 566 MAX_SCHED_RQ, set->reserved_tags, 567 set->numa_node, alloc_policy); 568 if (ret) 569 return ret; 570 571 queue_for_each_hw_ctx(queue, hctx, i) { 572 hctx->sched_tags->bitmap_tags = 573 &queue->sched_bitmap_tags; 574 hctx->sched_tags->breserved_tags = 575 &queue->sched_breserved_tags; 576 } 577 578 sbitmap_queue_resize(&queue->sched_bitmap_tags, 579 queue->nr_requests - set->reserved_tags); 580 581 return 0; 582 } 583 584 static void blk_mq_exit_sched_shared_sbitmap(struct request_queue *queue) 585 { 586 sbitmap_queue_free(&queue->sched_bitmap_tags); 587 sbitmap_queue_free(&queue->sched_breserved_tags); 588 } 589 590 int blk_mq_init_sched(struct request_queue *q, struct elevator_type *e) 591 { 592 struct blk_mq_hw_ctx *hctx; 593 struct elevator_queue *eq; 594 unsigned int i; 595 int ret; 596 597 if (!e) { 598 q->elevator = NULL; 599 q->nr_requests = q->tag_set->queue_depth; 600 return 0; 601 } 602 603 /* 604 * Default to double of smaller one between hw queue_depth and 128, 605 * since we don't split into sync/async like the old code did. 606 * Additionally, this is a per-hw queue depth. 607 */ 608 q->nr_requests = 2 * min_t(unsigned int, q->tag_set->queue_depth, 609 BLKDEV_MAX_RQ); 610 611 queue_for_each_hw_ctx(q, hctx, i) { 612 ret = blk_mq_sched_alloc_tags(q, hctx, i); 613 if (ret) 614 goto err_free_tags; 615 } 616 617 if (blk_mq_is_sbitmap_shared(q->tag_set->flags)) { 618 ret = blk_mq_init_sched_shared_sbitmap(q); 619 if (ret) 620 goto err_free_tags; 621 } 622 623 ret = e->ops.init_sched(q, e); 624 if (ret) 625 goto err_free_sbitmap; 626 627 blk_mq_debugfs_register_sched(q); 628 629 queue_for_each_hw_ctx(q, hctx, i) { 630 if (e->ops.init_hctx) { 631 ret = e->ops.init_hctx(hctx, i); 632 if (ret) { 633 eq = q->elevator; 634 blk_mq_sched_free_requests(q); 635 blk_mq_exit_sched(q, eq); 636 kobject_put(&eq->kobj); 637 return ret; 638 } 639 } 640 blk_mq_debugfs_register_sched_hctx(q, hctx); 641 } 642 643 return 0; 644 645 err_free_sbitmap: 646 if (blk_mq_is_sbitmap_shared(q->tag_set->flags)) 647 blk_mq_exit_sched_shared_sbitmap(q); 648 err_free_tags: 649 blk_mq_sched_free_requests(q); 650 blk_mq_sched_tags_teardown(q); 651 q->elevator = NULL; 652 return ret; 653 } 654 655 /* 656 * called in either blk_queue_cleanup or elevator_switch, tagset 657 * is required for freeing requests 658 */ 659 void blk_mq_sched_free_requests(struct request_queue *q) 660 { 661 struct blk_mq_hw_ctx *hctx; 662 int i; 663 664 queue_for_each_hw_ctx(q, hctx, i) { 665 if (hctx->sched_tags) 666 blk_mq_free_rqs(q->tag_set, hctx->sched_tags, i); 667 } 668 } 669 670 void blk_mq_exit_sched(struct request_queue *q, struct elevator_queue *e) 671 { 672 struct blk_mq_hw_ctx *hctx; 673 unsigned int i; 674 unsigned int flags = 0; 675 676 queue_for_each_hw_ctx(q, hctx, i) { 677 blk_mq_debugfs_unregister_sched_hctx(hctx); 678 if (e->type->ops.exit_hctx && hctx->sched_data) { 679 e->type->ops.exit_hctx(hctx, i); 680 hctx->sched_data = NULL; 681 } 682 flags = hctx->flags; 683 } 684 blk_mq_debugfs_unregister_sched(q); 685 if (e->type->ops.exit_sched) 686 e->type->ops.exit_sched(e); 687 blk_mq_sched_tags_teardown(q); 688 if (blk_mq_is_sbitmap_shared(flags)) 689 blk_mq_exit_sched_shared_sbitmap(q); 690 q->elevator = NULL; 691 } 692