xref: /linux/block/blk-mq-sched.c (revision 8bc7c5e525584903ea83332e18a2118ed3b1985e)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * blk-mq scheduling framework
4  *
5  * Copyright (C) 2016 Jens Axboe
6  */
7 #include <linux/kernel.h>
8 #include <linux/module.h>
9 #include <linux/list_sort.h>
10 
11 #include <trace/events/block.h>
12 
13 #include "blk.h"
14 #include "blk-mq.h"
15 #include "blk-mq-debugfs.h"
16 #include "blk-mq-sched.h"
17 #include "blk-wbt.h"
18 
19 /*
20  * Mark a hardware queue as needing a restart.
21  */
22 void blk_mq_sched_mark_restart_hctx(struct blk_mq_hw_ctx *hctx)
23 {
24 	if (test_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state))
25 		return;
26 
27 	set_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state);
28 }
29 EXPORT_SYMBOL_GPL(blk_mq_sched_mark_restart_hctx);
30 
31 void __blk_mq_sched_restart(struct blk_mq_hw_ctx *hctx)
32 {
33 	clear_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state);
34 
35 	/*
36 	 * Order clearing SCHED_RESTART and list_empty_careful(&hctx->dispatch)
37 	 * in blk_mq_run_hw_queue(). Its pair is the barrier in
38 	 * blk_mq_dispatch_rq_list(). So dispatch code won't see SCHED_RESTART,
39 	 * meantime new request added to hctx->dispatch is missed to check in
40 	 * blk_mq_run_hw_queue().
41 	 */
42 	smp_mb();
43 
44 	blk_mq_run_hw_queue(hctx, true);
45 }
46 
47 static int sched_rq_cmp(void *priv, const struct list_head *a,
48 			const struct list_head *b)
49 {
50 	struct request *rqa = container_of(a, struct request, queuelist);
51 	struct request *rqb = container_of(b, struct request, queuelist);
52 
53 	return rqa->mq_hctx > rqb->mq_hctx;
54 }
55 
56 static bool blk_mq_dispatch_hctx_list(struct list_head *rq_list)
57 {
58 	struct blk_mq_hw_ctx *hctx =
59 		list_first_entry(rq_list, struct request, queuelist)->mq_hctx;
60 	struct request *rq;
61 	LIST_HEAD(hctx_list);
62 	unsigned int count = 0;
63 
64 	list_for_each_entry(rq, rq_list, queuelist) {
65 		if (rq->mq_hctx != hctx) {
66 			list_cut_before(&hctx_list, rq_list, &rq->queuelist);
67 			goto dispatch;
68 		}
69 		count++;
70 	}
71 	list_splice_tail_init(rq_list, &hctx_list);
72 
73 dispatch:
74 	return blk_mq_dispatch_rq_list(hctx, &hctx_list, count);
75 }
76 
77 #define BLK_MQ_BUDGET_DELAY	3		/* ms units */
78 
79 /*
80  * Only SCSI implements .get_budget and .put_budget, and SCSI restarts
81  * its queue by itself in its completion handler, so we don't need to
82  * restart queue if .get_budget() fails to get the budget.
83  *
84  * Returns -EAGAIN if hctx->dispatch was found non-empty and run_work has to
85  * be run again.  This is necessary to avoid starving flushes.
86  */
87 static int __blk_mq_do_dispatch_sched(struct blk_mq_hw_ctx *hctx)
88 {
89 	struct request_queue *q = hctx->queue;
90 	struct elevator_queue *e = q->elevator;
91 	bool multi_hctxs = false, run_queue = false;
92 	bool dispatched = false, busy = false;
93 	unsigned int max_dispatch;
94 	LIST_HEAD(rq_list);
95 	int count = 0;
96 
97 	if (hctx->dispatch_busy)
98 		max_dispatch = 1;
99 	else
100 		max_dispatch = hctx->queue->nr_requests;
101 
102 	do {
103 		struct request *rq;
104 		int budget_token;
105 
106 		if (e->type->ops.has_work && !e->type->ops.has_work(hctx))
107 			break;
108 
109 		if (!list_empty_careful(&hctx->dispatch)) {
110 			busy = true;
111 			break;
112 		}
113 
114 		budget_token = blk_mq_get_dispatch_budget(q);
115 		if (budget_token < 0)
116 			break;
117 
118 		rq = e->type->ops.dispatch_request(hctx);
119 		if (!rq) {
120 			blk_mq_put_dispatch_budget(q, budget_token);
121 			/*
122 			 * We're releasing without dispatching. Holding the
123 			 * budget could have blocked any "hctx"s with the
124 			 * same queue and if we didn't dispatch then there's
125 			 * no guarantee anyone will kick the queue.  Kick it
126 			 * ourselves.
127 			 */
128 			run_queue = true;
129 			break;
130 		}
131 
132 		blk_mq_set_rq_budget_token(rq, budget_token);
133 
134 		/*
135 		 * Now this rq owns the budget which has to be released
136 		 * if this rq won't be queued to driver via .queue_rq()
137 		 * in blk_mq_dispatch_rq_list().
138 		 */
139 		list_add_tail(&rq->queuelist, &rq_list);
140 		count++;
141 		if (rq->mq_hctx != hctx)
142 			multi_hctxs = true;
143 
144 		/*
145 		 * If we cannot get tag for the request, stop dequeueing
146 		 * requests from the IO scheduler. We are unlikely to be able
147 		 * to submit them anyway and it creates false impression for
148 		 * scheduling heuristics that the device can take more IO.
149 		 */
150 		if (!blk_mq_get_driver_tag(rq))
151 			break;
152 	} while (count < max_dispatch);
153 
154 	if (!count) {
155 		if (run_queue)
156 			blk_mq_delay_run_hw_queues(q, BLK_MQ_BUDGET_DELAY);
157 	} else if (multi_hctxs) {
158 		/*
159 		 * Requests from different hctx may be dequeued from some
160 		 * schedulers, such as bfq and deadline.
161 		 *
162 		 * Sort the requests in the list according to their hctx,
163 		 * dispatch batching requests from same hctx at a time.
164 		 */
165 		list_sort(NULL, &rq_list, sched_rq_cmp);
166 		do {
167 			dispatched |= blk_mq_dispatch_hctx_list(&rq_list);
168 		} while (!list_empty(&rq_list));
169 	} else {
170 		dispatched = blk_mq_dispatch_rq_list(hctx, &rq_list, count);
171 	}
172 
173 	if (busy)
174 		return -EAGAIN;
175 	return !!dispatched;
176 }
177 
178 static int blk_mq_do_dispatch_sched(struct blk_mq_hw_ctx *hctx)
179 {
180 	unsigned long end = jiffies + HZ;
181 	int ret;
182 
183 	do {
184 		ret = __blk_mq_do_dispatch_sched(hctx);
185 		if (ret != 1)
186 			break;
187 		if (need_resched() || time_is_before_jiffies(end)) {
188 			blk_mq_delay_run_hw_queue(hctx, 0);
189 			break;
190 		}
191 	} while (1);
192 
193 	return ret;
194 }
195 
196 static struct blk_mq_ctx *blk_mq_next_ctx(struct blk_mq_hw_ctx *hctx,
197 					  struct blk_mq_ctx *ctx)
198 {
199 	unsigned short idx = ctx->index_hw[hctx->type];
200 
201 	if (++idx == hctx->nr_ctx)
202 		idx = 0;
203 
204 	return hctx->ctxs[idx];
205 }
206 
207 /*
208  * Only SCSI implements .get_budget and .put_budget, and SCSI restarts
209  * its queue by itself in its completion handler, so we don't need to
210  * restart queue if .get_budget() fails to get the budget.
211  *
212  * Returns -EAGAIN if hctx->dispatch was found non-empty and run_work has to
213  * be run again.  This is necessary to avoid starving flushes.
214  */
215 static int blk_mq_do_dispatch_ctx(struct blk_mq_hw_ctx *hctx)
216 {
217 	struct request_queue *q = hctx->queue;
218 	LIST_HEAD(rq_list);
219 	struct blk_mq_ctx *ctx = READ_ONCE(hctx->dispatch_from);
220 	int ret = 0;
221 	struct request *rq;
222 
223 	do {
224 		int budget_token;
225 
226 		if (!list_empty_careful(&hctx->dispatch)) {
227 			ret = -EAGAIN;
228 			break;
229 		}
230 
231 		if (!sbitmap_any_bit_set(&hctx->ctx_map))
232 			break;
233 
234 		budget_token = blk_mq_get_dispatch_budget(q);
235 		if (budget_token < 0)
236 			break;
237 
238 		rq = blk_mq_dequeue_from_ctx(hctx, ctx);
239 		if (!rq) {
240 			blk_mq_put_dispatch_budget(q, budget_token);
241 			/*
242 			 * We're releasing without dispatching. Holding the
243 			 * budget could have blocked any "hctx"s with the
244 			 * same queue and if we didn't dispatch then there's
245 			 * no guarantee anyone will kick the queue.  Kick it
246 			 * ourselves.
247 			 */
248 			blk_mq_delay_run_hw_queues(q, BLK_MQ_BUDGET_DELAY);
249 			break;
250 		}
251 
252 		blk_mq_set_rq_budget_token(rq, budget_token);
253 
254 		/*
255 		 * Now this rq owns the budget which has to be released
256 		 * if this rq won't be queued to driver via .queue_rq()
257 		 * in blk_mq_dispatch_rq_list().
258 		 */
259 		list_add(&rq->queuelist, &rq_list);
260 
261 		/* round robin for fair dispatch */
262 		ctx = blk_mq_next_ctx(hctx, rq->mq_ctx);
263 
264 	} while (blk_mq_dispatch_rq_list(rq->mq_hctx, &rq_list, 1));
265 
266 	WRITE_ONCE(hctx->dispatch_from, ctx);
267 	return ret;
268 }
269 
270 static int __blk_mq_sched_dispatch_requests(struct blk_mq_hw_ctx *hctx)
271 {
272 	bool need_dispatch = false;
273 	LIST_HEAD(rq_list);
274 
275 	/*
276 	 * If we have previous entries on our dispatch list, grab them first for
277 	 * more fair dispatch.
278 	 */
279 	if (!list_empty_careful(&hctx->dispatch)) {
280 		spin_lock(&hctx->lock);
281 		if (!list_empty(&hctx->dispatch))
282 			list_splice_init(&hctx->dispatch, &rq_list);
283 		spin_unlock(&hctx->lock);
284 	}
285 
286 	/*
287 	 * Only ask the scheduler for requests, if we didn't have residual
288 	 * requests from the dispatch list. This is to avoid the case where
289 	 * we only ever dispatch a fraction of the requests available because
290 	 * of low device queue depth. Once we pull requests out of the IO
291 	 * scheduler, we can no longer merge or sort them. So it's best to
292 	 * leave them there for as long as we can. Mark the hw queue as
293 	 * needing a restart in that case.
294 	 *
295 	 * We want to dispatch from the scheduler if there was nothing
296 	 * on the dispatch list or we were able to dispatch from the
297 	 * dispatch list.
298 	 */
299 	if (!list_empty(&rq_list)) {
300 		blk_mq_sched_mark_restart_hctx(hctx);
301 		if (!blk_mq_dispatch_rq_list(hctx, &rq_list, 0))
302 			return 0;
303 		need_dispatch = true;
304 	} else {
305 		need_dispatch = hctx->dispatch_busy;
306 	}
307 
308 	if (hctx->queue->elevator)
309 		return blk_mq_do_dispatch_sched(hctx);
310 
311 	/* dequeue request one by one from sw queue if queue is busy */
312 	if (need_dispatch)
313 		return blk_mq_do_dispatch_ctx(hctx);
314 	blk_mq_flush_busy_ctxs(hctx, &rq_list);
315 	blk_mq_dispatch_rq_list(hctx, &rq_list, 0);
316 	return 0;
317 }
318 
319 void blk_mq_sched_dispatch_requests(struct blk_mq_hw_ctx *hctx)
320 {
321 	struct request_queue *q = hctx->queue;
322 
323 	/* RCU or SRCU read lock is needed before checking quiesced flag */
324 	if (unlikely(blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(q)))
325 		return;
326 
327 	/*
328 	 * A return of -EAGAIN is an indication that hctx->dispatch is not
329 	 * empty and we must run again in order to avoid starving flushes.
330 	 */
331 	if (__blk_mq_sched_dispatch_requests(hctx) == -EAGAIN) {
332 		if (__blk_mq_sched_dispatch_requests(hctx) == -EAGAIN)
333 			blk_mq_run_hw_queue(hctx, true);
334 	}
335 }
336 
337 bool blk_mq_sched_bio_merge(struct request_queue *q, struct bio *bio,
338 		unsigned int nr_segs)
339 {
340 	struct elevator_queue *e = q->elevator;
341 	struct blk_mq_ctx *ctx;
342 	struct blk_mq_hw_ctx *hctx;
343 	bool ret = false;
344 	enum hctx_type type;
345 
346 	if (e && e->type->ops.bio_merge) {
347 		ret = e->type->ops.bio_merge(q, bio, nr_segs);
348 		goto out_put;
349 	}
350 
351 	ctx = blk_mq_get_ctx(q);
352 	hctx = blk_mq_map_queue(q, bio->bi_opf, ctx);
353 	type = hctx->type;
354 	if (!(hctx->flags & BLK_MQ_F_SHOULD_MERGE) ||
355 	    list_empty_careful(&ctx->rq_lists[type]))
356 		goto out_put;
357 
358 	/* default per sw-queue merge */
359 	spin_lock(&ctx->lock);
360 	/*
361 	 * Reverse check our software queue for entries that we could
362 	 * potentially merge with. Currently includes a hand-wavy stop
363 	 * count of 8, to not spend too much time checking for merges.
364 	 */
365 	if (blk_bio_list_merge(q, &ctx->rq_lists[type], bio, nr_segs))
366 		ret = true;
367 
368 	spin_unlock(&ctx->lock);
369 out_put:
370 	return ret;
371 }
372 
373 bool blk_mq_sched_try_insert_merge(struct request_queue *q, struct request *rq,
374 				   struct list_head *free)
375 {
376 	return rq_mergeable(rq) && elv_attempt_insert_merge(q, rq, free);
377 }
378 EXPORT_SYMBOL_GPL(blk_mq_sched_try_insert_merge);
379 
380 static int blk_mq_sched_alloc_map_and_rqs(struct request_queue *q,
381 					  struct blk_mq_hw_ctx *hctx,
382 					  unsigned int hctx_idx)
383 {
384 	if (blk_mq_is_shared_tags(q->tag_set->flags)) {
385 		hctx->sched_tags = q->sched_shared_tags;
386 		return 0;
387 	}
388 
389 	hctx->sched_tags = blk_mq_alloc_map_and_rqs(q->tag_set, hctx_idx,
390 						    q->nr_requests);
391 
392 	if (!hctx->sched_tags)
393 		return -ENOMEM;
394 	return 0;
395 }
396 
397 static void blk_mq_exit_sched_shared_tags(struct request_queue *queue)
398 {
399 	blk_mq_free_rq_map(queue->sched_shared_tags);
400 	queue->sched_shared_tags = NULL;
401 }
402 
403 /* called in queue's release handler, tagset has gone away */
404 static void blk_mq_sched_tags_teardown(struct request_queue *q, unsigned int flags)
405 {
406 	struct blk_mq_hw_ctx *hctx;
407 	unsigned long i;
408 
409 	queue_for_each_hw_ctx(q, hctx, i) {
410 		if (hctx->sched_tags) {
411 			if (!blk_mq_is_shared_tags(flags))
412 				blk_mq_free_rq_map(hctx->sched_tags);
413 			hctx->sched_tags = NULL;
414 		}
415 	}
416 
417 	if (blk_mq_is_shared_tags(flags))
418 		blk_mq_exit_sched_shared_tags(q);
419 }
420 
421 static int blk_mq_init_sched_shared_tags(struct request_queue *queue)
422 {
423 	struct blk_mq_tag_set *set = queue->tag_set;
424 
425 	/*
426 	 * Set initial depth at max so that we don't need to reallocate for
427 	 * updating nr_requests.
428 	 */
429 	queue->sched_shared_tags = blk_mq_alloc_map_and_rqs(set,
430 						BLK_MQ_NO_HCTX_IDX,
431 						MAX_SCHED_RQ);
432 	if (!queue->sched_shared_tags)
433 		return -ENOMEM;
434 
435 	blk_mq_tag_update_sched_shared_tags(queue);
436 
437 	return 0;
438 }
439 
440 /* caller must have a reference to @e, will grab another one if successful */
441 int blk_mq_init_sched(struct request_queue *q, struct elevator_type *e)
442 {
443 	unsigned int flags = q->tag_set->flags;
444 	struct blk_mq_hw_ctx *hctx;
445 	struct elevator_queue *eq;
446 	unsigned long i;
447 	int ret;
448 
449 	/*
450 	 * Default to double of smaller one between hw queue_depth and 128,
451 	 * since we don't split into sync/async like the old code did.
452 	 * Additionally, this is a per-hw queue depth.
453 	 */
454 	q->nr_requests = 2 * min_t(unsigned int, q->tag_set->queue_depth,
455 				   BLKDEV_DEFAULT_RQ);
456 
457 	if (blk_mq_is_shared_tags(flags)) {
458 		ret = blk_mq_init_sched_shared_tags(q);
459 		if (ret)
460 			return ret;
461 	}
462 
463 	queue_for_each_hw_ctx(q, hctx, i) {
464 		ret = blk_mq_sched_alloc_map_and_rqs(q, hctx, i);
465 		if (ret)
466 			goto err_free_map_and_rqs;
467 	}
468 
469 	ret = e->ops.init_sched(q, e);
470 	if (ret)
471 		goto err_free_map_and_rqs;
472 
473 	mutex_lock(&q->debugfs_mutex);
474 	blk_mq_debugfs_register_sched(q);
475 	mutex_unlock(&q->debugfs_mutex);
476 
477 	queue_for_each_hw_ctx(q, hctx, i) {
478 		if (e->ops.init_hctx) {
479 			ret = e->ops.init_hctx(hctx, i);
480 			if (ret) {
481 				eq = q->elevator;
482 				blk_mq_sched_free_rqs(q);
483 				blk_mq_exit_sched(q, eq);
484 				kobject_put(&eq->kobj);
485 				return ret;
486 			}
487 		}
488 		mutex_lock(&q->debugfs_mutex);
489 		blk_mq_debugfs_register_sched_hctx(q, hctx);
490 		mutex_unlock(&q->debugfs_mutex);
491 	}
492 
493 	return 0;
494 
495 err_free_map_and_rqs:
496 	blk_mq_sched_free_rqs(q);
497 	blk_mq_sched_tags_teardown(q, flags);
498 
499 	q->elevator = NULL;
500 	return ret;
501 }
502 
503 /*
504  * called in either blk_queue_cleanup or elevator_switch, tagset
505  * is required for freeing requests
506  */
507 void blk_mq_sched_free_rqs(struct request_queue *q)
508 {
509 	struct blk_mq_hw_ctx *hctx;
510 	unsigned long i;
511 
512 	if (blk_mq_is_shared_tags(q->tag_set->flags)) {
513 		blk_mq_free_rqs(q->tag_set, q->sched_shared_tags,
514 				BLK_MQ_NO_HCTX_IDX);
515 	} else {
516 		queue_for_each_hw_ctx(q, hctx, i) {
517 			if (hctx->sched_tags)
518 				blk_mq_free_rqs(q->tag_set,
519 						hctx->sched_tags, i);
520 		}
521 	}
522 }
523 
524 void blk_mq_exit_sched(struct request_queue *q, struct elevator_queue *e)
525 {
526 	struct blk_mq_hw_ctx *hctx;
527 	unsigned long i;
528 	unsigned int flags = 0;
529 
530 	queue_for_each_hw_ctx(q, hctx, i) {
531 		mutex_lock(&q->debugfs_mutex);
532 		blk_mq_debugfs_unregister_sched_hctx(hctx);
533 		mutex_unlock(&q->debugfs_mutex);
534 
535 		if (e->type->ops.exit_hctx && hctx->sched_data) {
536 			e->type->ops.exit_hctx(hctx, i);
537 			hctx->sched_data = NULL;
538 		}
539 		flags = hctx->flags;
540 	}
541 
542 	mutex_lock(&q->debugfs_mutex);
543 	blk_mq_debugfs_unregister_sched(q);
544 	mutex_unlock(&q->debugfs_mutex);
545 
546 	if (e->type->ops.exit_sched)
547 		e->type->ops.exit_sched(e);
548 	blk_mq_sched_tags_teardown(q, flags);
549 	q->elevator = NULL;
550 }
551