1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * blk-mq scheduling framework 4 * 5 * Copyright (C) 2016 Jens Axboe 6 */ 7 #include <linux/kernel.h> 8 #include <linux/module.h> 9 #include <linux/list_sort.h> 10 11 #include <trace/events/block.h> 12 13 #include "blk.h" 14 #include "blk-mq.h" 15 #include "blk-mq-debugfs.h" 16 #include "blk-mq-sched.h" 17 #include "blk-wbt.h" 18 19 /* 20 * Mark a hardware queue as needing a restart. 21 */ 22 void blk_mq_sched_mark_restart_hctx(struct blk_mq_hw_ctx *hctx) 23 { 24 if (test_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state)) 25 return; 26 27 set_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state); 28 } 29 EXPORT_SYMBOL_GPL(blk_mq_sched_mark_restart_hctx); 30 31 void __blk_mq_sched_restart(struct blk_mq_hw_ctx *hctx) 32 { 33 clear_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state); 34 35 /* 36 * Order clearing SCHED_RESTART and list_empty_careful(&hctx->dispatch) 37 * in blk_mq_run_hw_queue(). Its pair is the barrier in 38 * blk_mq_dispatch_rq_list(). So dispatch code won't see SCHED_RESTART, 39 * meantime new request added to hctx->dispatch is missed to check in 40 * blk_mq_run_hw_queue(). 41 */ 42 smp_mb(); 43 44 blk_mq_run_hw_queue(hctx, true); 45 } 46 47 static int sched_rq_cmp(void *priv, const struct list_head *a, 48 const struct list_head *b) 49 { 50 struct request *rqa = container_of(a, struct request, queuelist); 51 struct request *rqb = container_of(b, struct request, queuelist); 52 53 return rqa->mq_hctx > rqb->mq_hctx; 54 } 55 56 static bool blk_mq_dispatch_hctx_list(struct list_head *rq_list) 57 { 58 struct blk_mq_hw_ctx *hctx = 59 list_first_entry(rq_list, struct request, queuelist)->mq_hctx; 60 struct request *rq; 61 LIST_HEAD(hctx_list); 62 unsigned int count = 0; 63 64 list_for_each_entry(rq, rq_list, queuelist) { 65 if (rq->mq_hctx != hctx) { 66 list_cut_before(&hctx_list, rq_list, &rq->queuelist); 67 goto dispatch; 68 } 69 count++; 70 } 71 list_splice_tail_init(rq_list, &hctx_list); 72 73 dispatch: 74 return blk_mq_dispatch_rq_list(hctx, &hctx_list, count); 75 } 76 77 #define BLK_MQ_BUDGET_DELAY 3 /* ms units */ 78 79 /* 80 * Only SCSI implements .get_budget and .put_budget, and SCSI restarts 81 * its queue by itself in its completion handler, so we don't need to 82 * restart queue if .get_budget() fails to get the budget. 83 * 84 * Returns -EAGAIN if hctx->dispatch was found non-empty and run_work has to 85 * be run again. This is necessary to avoid starving flushes. 86 */ 87 static int __blk_mq_do_dispatch_sched(struct blk_mq_hw_ctx *hctx) 88 { 89 struct request_queue *q = hctx->queue; 90 struct elevator_queue *e = q->elevator; 91 bool multi_hctxs = false, run_queue = false; 92 bool dispatched = false, busy = false; 93 unsigned int max_dispatch; 94 LIST_HEAD(rq_list); 95 int count = 0; 96 97 if (hctx->dispatch_busy) 98 max_dispatch = 1; 99 else 100 max_dispatch = hctx->queue->nr_requests; 101 102 do { 103 struct request *rq; 104 int budget_token; 105 106 if (e->type->ops.has_work && !e->type->ops.has_work(hctx)) 107 break; 108 109 if (!list_empty_careful(&hctx->dispatch)) { 110 busy = true; 111 break; 112 } 113 114 budget_token = blk_mq_get_dispatch_budget(q); 115 if (budget_token < 0) 116 break; 117 118 rq = e->type->ops.dispatch_request(hctx); 119 if (!rq) { 120 blk_mq_put_dispatch_budget(q, budget_token); 121 /* 122 * We're releasing without dispatching. Holding the 123 * budget could have blocked any "hctx"s with the 124 * same queue and if we didn't dispatch then there's 125 * no guarantee anyone will kick the queue. Kick it 126 * ourselves. 127 */ 128 run_queue = true; 129 break; 130 } 131 132 blk_mq_set_rq_budget_token(rq, budget_token); 133 134 /* 135 * Now this rq owns the budget which has to be released 136 * if this rq won't be queued to driver via .queue_rq() 137 * in blk_mq_dispatch_rq_list(). 138 */ 139 list_add_tail(&rq->queuelist, &rq_list); 140 count++; 141 if (rq->mq_hctx != hctx) 142 multi_hctxs = true; 143 144 /* 145 * If we cannot get tag for the request, stop dequeueing 146 * requests from the IO scheduler. We are unlikely to be able 147 * to submit them anyway and it creates false impression for 148 * scheduling heuristics that the device can take more IO. 149 */ 150 if (!blk_mq_get_driver_tag(rq)) 151 break; 152 } while (count < max_dispatch); 153 154 if (!count) { 155 if (run_queue) 156 blk_mq_delay_run_hw_queues(q, BLK_MQ_BUDGET_DELAY); 157 } else if (multi_hctxs) { 158 /* 159 * Requests from different hctx may be dequeued from some 160 * schedulers, such as bfq and deadline. 161 * 162 * Sort the requests in the list according to their hctx, 163 * dispatch batching requests from same hctx at a time. 164 */ 165 list_sort(NULL, &rq_list, sched_rq_cmp); 166 do { 167 dispatched |= blk_mq_dispatch_hctx_list(&rq_list); 168 } while (!list_empty(&rq_list)); 169 } else { 170 dispatched = blk_mq_dispatch_rq_list(hctx, &rq_list, count); 171 } 172 173 if (busy) 174 return -EAGAIN; 175 return !!dispatched; 176 } 177 178 static int blk_mq_do_dispatch_sched(struct blk_mq_hw_ctx *hctx) 179 { 180 unsigned long end = jiffies + HZ; 181 int ret; 182 183 do { 184 ret = __blk_mq_do_dispatch_sched(hctx); 185 if (ret != 1) 186 break; 187 if (need_resched() || time_is_before_jiffies(end)) { 188 blk_mq_delay_run_hw_queue(hctx, 0); 189 break; 190 } 191 } while (1); 192 193 return ret; 194 } 195 196 static struct blk_mq_ctx *blk_mq_next_ctx(struct blk_mq_hw_ctx *hctx, 197 struct blk_mq_ctx *ctx) 198 { 199 unsigned short idx = ctx->index_hw[hctx->type]; 200 201 if (++idx == hctx->nr_ctx) 202 idx = 0; 203 204 return hctx->ctxs[idx]; 205 } 206 207 /* 208 * Only SCSI implements .get_budget and .put_budget, and SCSI restarts 209 * its queue by itself in its completion handler, so we don't need to 210 * restart queue if .get_budget() fails to get the budget. 211 * 212 * Returns -EAGAIN if hctx->dispatch was found non-empty and run_work has to 213 * be run again. This is necessary to avoid starving flushes. 214 */ 215 static int blk_mq_do_dispatch_ctx(struct blk_mq_hw_ctx *hctx) 216 { 217 struct request_queue *q = hctx->queue; 218 LIST_HEAD(rq_list); 219 struct blk_mq_ctx *ctx = READ_ONCE(hctx->dispatch_from); 220 int ret = 0; 221 struct request *rq; 222 223 do { 224 int budget_token; 225 226 if (!list_empty_careful(&hctx->dispatch)) { 227 ret = -EAGAIN; 228 break; 229 } 230 231 if (!sbitmap_any_bit_set(&hctx->ctx_map)) 232 break; 233 234 budget_token = blk_mq_get_dispatch_budget(q); 235 if (budget_token < 0) 236 break; 237 238 rq = blk_mq_dequeue_from_ctx(hctx, ctx); 239 if (!rq) { 240 blk_mq_put_dispatch_budget(q, budget_token); 241 /* 242 * We're releasing without dispatching. Holding the 243 * budget could have blocked any "hctx"s with the 244 * same queue and if we didn't dispatch then there's 245 * no guarantee anyone will kick the queue. Kick it 246 * ourselves. 247 */ 248 blk_mq_delay_run_hw_queues(q, BLK_MQ_BUDGET_DELAY); 249 break; 250 } 251 252 blk_mq_set_rq_budget_token(rq, budget_token); 253 254 /* 255 * Now this rq owns the budget which has to be released 256 * if this rq won't be queued to driver via .queue_rq() 257 * in blk_mq_dispatch_rq_list(). 258 */ 259 list_add(&rq->queuelist, &rq_list); 260 261 /* round robin for fair dispatch */ 262 ctx = blk_mq_next_ctx(hctx, rq->mq_ctx); 263 264 } while (blk_mq_dispatch_rq_list(rq->mq_hctx, &rq_list, 1)); 265 266 WRITE_ONCE(hctx->dispatch_from, ctx); 267 return ret; 268 } 269 270 static int __blk_mq_sched_dispatch_requests(struct blk_mq_hw_ctx *hctx) 271 { 272 bool need_dispatch = false; 273 LIST_HEAD(rq_list); 274 275 /* 276 * If we have previous entries on our dispatch list, grab them first for 277 * more fair dispatch. 278 */ 279 if (!list_empty_careful(&hctx->dispatch)) { 280 spin_lock(&hctx->lock); 281 if (!list_empty(&hctx->dispatch)) 282 list_splice_init(&hctx->dispatch, &rq_list); 283 spin_unlock(&hctx->lock); 284 } 285 286 /* 287 * Only ask the scheduler for requests, if we didn't have residual 288 * requests from the dispatch list. This is to avoid the case where 289 * we only ever dispatch a fraction of the requests available because 290 * of low device queue depth. Once we pull requests out of the IO 291 * scheduler, we can no longer merge or sort them. So it's best to 292 * leave them there for as long as we can. Mark the hw queue as 293 * needing a restart in that case. 294 * 295 * We want to dispatch from the scheduler if there was nothing 296 * on the dispatch list or we were able to dispatch from the 297 * dispatch list. 298 */ 299 if (!list_empty(&rq_list)) { 300 blk_mq_sched_mark_restart_hctx(hctx); 301 if (!blk_mq_dispatch_rq_list(hctx, &rq_list, 0)) 302 return 0; 303 need_dispatch = true; 304 } else { 305 need_dispatch = hctx->dispatch_busy; 306 } 307 308 if (hctx->queue->elevator) 309 return blk_mq_do_dispatch_sched(hctx); 310 311 /* dequeue request one by one from sw queue if queue is busy */ 312 if (need_dispatch) 313 return blk_mq_do_dispatch_ctx(hctx); 314 blk_mq_flush_busy_ctxs(hctx, &rq_list); 315 blk_mq_dispatch_rq_list(hctx, &rq_list, 0); 316 return 0; 317 } 318 319 void blk_mq_sched_dispatch_requests(struct blk_mq_hw_ctx *hctx) 320 { 321 struct request_queue *q = hctx->queue; 322 323 /* RCU or SRCU read lock is needed before checking quiesced flag */ 324 if (unlikely(blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(q))) 325 return; 326 327 hctx->run++; 328 329 /* 330 * A return of -EAGAIN is an indication that hctx->dispatch is not 331 * empty and we must run again in order to avoid starving flushes. 332 */ 333 if (__blk_mq_sched_dispatch_requests(hctx) == -EAGAIN) { 334 if (__blk_mq_sched_dispatch_requests(hctx) == -EAGAIN) 335 blk_mq_run_hw_queue(hctx, true); 336 } 337 } 338 339 bool blk_mq_sched_bio_merge(struct request_queue *q, struct bio *bio, 340 unsigned int nr_segs) 341 { 342 struct elevator_queue *e = q->elevator; 343 struct blk_mq_ctx *ctx; 344 struct blk_mq_hw_ctx *hctx; 345 bool ret = false; 346 enum hctx_type type; 347 348 if (e && e->type->ops.bio_merge) { 349 ret = e->type->ops.bio_merge(q, bio, nr_segs); 350 goto out_put; 351 } 352 353 ctx = blk_mq_get_ctx(q); 354 hctx = blk_mq_map_queue(q, bio->bi_opf, ctx); 355 type = hctx->type; 356 if (!(hctx->flags & BLK_MQ_F_SHOULD_MERGE) || 357 list_empty_careful(&ctx->rq_lists[type])) 358 goto out_put; 359 360 /* default per sw-queue merge */ 361 spin_lock(&ctx->lock); 362 /* 363 * Reverse check our software queue for entries that we could 364 * potentially merge with. Currently includes a hand-wavy stop 365 * count of 8, to not spend too much time checking for merges. 366 */ 367 if (blk_bio_list_merge(q, &ctx->rq_lists[type], bio, nr_segs)) 368 ret = true; 369 370 spin_unlock(&ctx->lock); 371 out_put: 372 return ret; 373 } 374 375 bool blk_mq_sched_try_insert_merge(struct request_queue *q, struct request *rq, 376 struct list_head *free) 377 { 378 return rq_mergeable(rq) && elv_attempt_insert_merge(q, rq, free); 379 } 380 EXPORT_SYMBOL_GPL(blk_mq_sched_try_insert_merge); 381 382 static int blk_mq_sched_alloc_map_and_rqs(struct request_queue *q, 383 struct blk_mq_hw_ctx *hctx, 384 unsigned int hctx_idx) 385 { 386 if (blk_mq_is_shared_tags(q->tag_set->flags)) { 387 hctx->sched_tags = q->sched_shared_tags; 388 return 0; 389 } 390 391 hctx->sched_tags = blk_mq_alloc_map_and_rqs(q->tag_set, hctx_idx, 392 q->nr_requests); 393 394 if (!hctx->sched_tags) 395 return -ENOMEM; 396 return 0; 397 } 398 399 static void blk_mq_exit_sched_shared_tags(struct request_queue *queue) 400 { 401 blk_mq_free_rq_map(queue->sched_shared_tags); 402 queue->sched_shared_tags = NULL; 403 } 404 405 /* called in queue's release handler, tagset has gone away */ 406 static void blk_mq_sched_tags_teardown(struct request_queue *q, unsigned int flags) 407 { 408 struct blk_mq_hw_ctx *hctx; 409 unsigned long i; 410 411 queue_for_each_hw_ctx(q, hctx, i) { 412 if (hctx->sched_tags) { 413 if (!blk_mq_is_shared_tags(flags)) 414 blk_mq_free_rq_map(hctx->sched_tags); 415 hctx->sched_tags = NULL; 416 } 417 } 418 419 if (blk_mq_is_shared_tags(flags)) 420 blk_mq_exit_sched_shared_tags(q); 421 } 422 423 static int blk_mq_init_sched_shared_tags(struct request_queue *queue) 424 { 425 struct blk_mq_tag_set *set = queue->tag_set; 426 427 /* 428 * Set initial depth at max so that we don't need to reallocate for 429 * updating nr_requests. 430 */ 431 queue->sched_shared_tags = blk_mq_alloc_map_and_rqs(set, 432 BLK_MQ_NO_HCTX_IDX, 433 MAX_SCHED_RQ); 434 if (!queue->sched_shared_tags) 435 return -ENOMEM; 436 437 blk_mq_tag_update_sched_shared_tags(queue); 438 439 return 0; 440 } 441 442 /* caller must have a reference to @e, will grab another one if successful */ 443 int blk_mq_init_sched(struct request_queue *q, struct elevator_type *e) 444 { 445 unsigned int flags = q->tag_set->flags; 446 struct blk_mq_hw_ctx *hctx; 447 struct elevator_queue *eq; 448 unsigned long i; 449 int ret; 450 451 /* 452 * Default to double of smaller one between hw queue_depth and 128, 453 * since we don't split into sync/async like the old code did. 454 * Additionally, this is a per-hw queue depth. 455 */ 456 q->nr_requests = 2 * min_t(unsigned int, q->tag_set->queue_depth, 457 BLKDEV_DEFAULT_RQ); 458 459 if (blk_mq_is_shared_tags(flags)) { 460 ret = blk_mq_init_sched_shared_tags(q); 461 if (ret) 462 return ret; 463 } 464 465 queue_for_each_hw_ctx(q, hctx, i) { 466 ret = blk_mq_sched_alloc_map_and_rqs(q, hctx, i); 467 if (ret) 468 goto err_free_map_and_rqs; 469 } 470 471 ret = e->ops.init_sched(q, e); 472 if (ret) 473 goto err_free_map_and_rqs; 474 475 mutex_lock(&q->debugfs_mutex); 476 blk_mq_debugfs_register_sched(q); 477 mutex_unlock(&q->debugfs_mutex); 478 479 queue_for_each_hw_ctx(q, hctx, i) { 480 if (e->ops.init_hctx) { 481 ret = e->ops.init_hctx(hctx, i); 482 if (ret) { 483 eq = q->elevator; 484 blk_mq_sched_free_rqs(q); 485 blk_mq_exit_sched(q, eq); 486 kobject_put(&eq->kobj); 487 return ret; 488 } 489 } 490 mutex_lock(&q->debugfs_mutex); 491 blk_mq_debugfs_register_sched_hctx(q, hctx); 492 mutex_unlock(&q->debugfs_mutex); 493 } 494 495 return 0; 496 497 err_free_map_and_rqs: 498 blk_mq_sched_free_rqs(q); 499 blk_mq_sched_tags_teardown(q, flags); 500 501 q->elevator = NULL; 502 return ret; 503 } 504 505 /* 506 * called in either blk_queue_cleanup or elevator_switch, tagset 507 * is required for freeing requests 508 */ 509 void blk_mq_sched_free_rqs(struct request_queue *q) 510 { 511 struct blk_mq_hw_ctx *hctx; 512 unsigned long i; 513 514 if (blk_mq_is_shared_tags(q->tag_set->flags)) { 515 blk_mq_free_rqs(q->tag_set, q->sched_shared_tags, 516 BLK_MQ_NO_HCTX_IDX); 517 } else { 518 queue_for_each_hw_ctx(q, hctx, i) { 519 if (hctx->sched_tags) 520 blk_mq_free_rqs(q->tag_set, 521 hctx->sched_tags, i); 522 } 523 } 524 } 525 526 void blk_mq_exit_sched(struct request_queue *q, struct elevator_queue *e) 527 { 528 struct blk_mq_hw_ctx *hctx; 529 unsigned long i; 530 unsigned int flags = 0; 531 532 queue_for_each_hw_ctx(q, hctx, i) { 533 mutex_lock(&q->debugfs_mutex); 534 blk_mq_debugfs_unregister_sched_hctx(hctx); 535 mutex_unlock(&q->debugfs_mutex); 536 537 if (e->type->ops.exit_hctx && hctx->sched_data) { 538 e->type->ops.exit_hctx(hctx, i); 539 hctx->sched_data = NULL; 540 } 541 flags = hctx->flags; 542 } 543 544 mutex_lock(&q->debugfs_mutex); 545 blk_mq_debugfs_unregister_sched(q); 546 mutex_unlock(&q->debugfs_mutex); 547 548 if (e->type->ops.exit_sched) 549 e->type->ops.exit_sched(e); 550 blk_mq_sched_tags_teardown(q, flags); 551 q->elevator = NULL; 552 } 553