xref: /linux/block/blk-mq-sched.c (revision 80fa3300b7e5d738365698052d999ea71bb24723)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * blk-mq scheduling framework
4  *
5  * Copyright (C) 2016 Jens Axboe
6  */
7 #include <linux/kernel.h>
8 #include <linux/module.h>
9 #include <linux/blk-mq.h>
10 
11 #include <trace/events/block.h>
12 
13 #include "blk.h"
14 #include "blk-mq.h"
15 #include "blk-mq-debugfs.h"
16 #include "blk-mq-sched.h"
17 #include "blk-mq-tag.h"
18 #include "blk-wbt.h"
19 
20 void blk_mq_sched_free_hctx_data(struct request_queue *q,
21 				 void (*exit)(struct blk_mq_hw_ctx *))
22 {
23 	struct blk_mq_hw_ctx *hctx;
24 	int i;
25 
26 	queue_for_each_hw_ctx(q, hctx, i) {
27 		if (exit && hctx->sched_data)
28 			exit(hctx);
29 		kfree(hctx->sched_data);
30 		hctx->sched_data = NULL;
31 	}
32 }
33 EXPORT_SYMBOL_GPL(blk_mq_sched_free_hctx_data);
34 
35 void blk_mq_sched_assign_ioc(struct request *rq)
36 {
37 	struct request_queue *q = rq->q;
38 	struct io_context *ioc;
39 	struct io_cq *icq;
40 
41 	/*
42 	 * May not have an IO context if it's a passthrough request
43 	 */
44 	ioc = current->io_context;
45 	if (!ioc)
46 		return;
47 
48 	spin_lock_irq(&q->queue_lock);
49 	icq = ioc_lookup_icq(ioc, q);
50 	spin_unlock_irq(&q->queue_lock);
51 
52 	if (!icq) {
53 		icq = ioc_create_icq(ioc, q, GFP_ATOMIC);
54 		if (!icq)
55 			return;
56 	}
57 	get_io_context(icq->ioc);
58 	rq->elv.icq = icq;
59 }
60 
61 /*
62  * Mark a hardware queue as needing a restart. For shared queues, maintain
63  * a count of how many hardware queues are marked for restart.
64  */
65 void blk_mq_sched_mark_restart_hctx(struct blk_mq_hw_ctx *hctx)
66 {
67 	if (test_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state))
68 		return;
69 
70 	set_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state);
71 }
72 EXPORT_SYMBOL_GPL(blk_mq_sched_mark_restart_hctx);
73 
74 void blk_mq_sched_restart(struct blk_mq_hw_ctx *hctx)
75 {
76 	if (!test_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state))
77 		return;
78 	clear_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state);
79 
80 	blk_mq_run_hw_queue(hctx, true);
81 }
82 
83 #define BLK_MQ_BUDGET_DELAY	3		/* ms units */
84 
85 /*
86  * Only SCSI implements .get_budget and .put_budget, and SCSI restarts
87  * its queue by itself in its completion handler, so we don't need to
88  * restart queue if .get_budget() returns BLK_STS_NO_RESOURCE.
89  *
90  * Returns -EAGAIN if hctx->dispatch was found non-empty and run_work has to
91  * be run again.  This is necessary to avoid starving flushes.
92  */
93 static int blk_mq_do_dispatch_sched(struct blk_mq_hw_ctx *hctx)
94 {
95 	struct request_queue *q = hctx->queue;
96 	struct elevator_queue *e = q->elevator;
97 	LIST_HEAD(rq_list);
98 	int ret = 0;
99 
100 	do {
101 		struct request *rq;
102 
103 		if (e->type->ops.has_work && !e->type->ops.has_work(hctx))
104 			break;
105 
106 		if (!list_empty_careful(&hctx->dispatch)) {
107 			ret = -EAGAIN;
108 			break;
109 		}
110 
111 		if (!blk_mq_get_dispatch_budget(hctx))
112 			break;
113 
114 		rq = e->type->ops.dispatch_request(hctx);
115 		if (!rq) {
116 			blk_mq_put_dispatch_budget(hctx);
117 			/*
118 			 * We're releasing without dispatching. Holding the
119 			 * budget could have blocked any "hctx"s with the
120 			 * same queue and if we didn't dispatch then there's
121 			 * no guarantee anyone will kick the queue.  Kick it
122 			 * ourselves.
123 			 */
124 			blk_mq_delay_run_hw_queues(q, BLK_MQ_BUDGET_DELAY);
125 			break;
126 		}
127 
128 		/*
129 		 * Now this rq owns the budget which has to be released
130 		 * if this rq won't be queued to driver via .queue_rq()
131 		 * in blk_mq_dispatch_rq_list().
132 		 */
133 		list_add(&rq->queuelist, &rq_list);
134 	} while (blk_mq_dispatch_rq_list(q, &rq_list, true));
135 
136 	return ret;
137 }
138 
139 static struct blk_mq_ctx *blk_mq_next_ctx(struct blk_mq_hw_ctx *hctx,
140 					  struct blk_mq_ctx *ctx)
141 {
142 	unsigned short idx = ctx->index_hw[hctx->type];
143 
144 	if (++idx == hctx->nr_ctx)
145 		idx = 0;
146 
147 	return hctx->ctxs[idx];
148 }
149 
150 /*
151  * Only SCSI implements .get_budget and .put_budget, and SCSI restarts
152  * its queue by itself in its completion handler, so we don't need to
153  * restart queue if .get_budget() returns BLK_STS_NO_RESOURCE.
154  *
155  * Returns -EAGAIN if hctx->dispatch was found non-empty and run_work has to
156  * to be run again.  This is necessary to avoid starving flushes.
157  */
158 static int blk_mq_do_dispatch_ctx(struct blk_mq_hw_ctx *hctx)
159 {
160 	struct request_queue *q = hctx->queue;
161 	LIST_HEAD(rq_list);
162 	struct blk_mq_ctx *ctx = READ_ONCE(hctx->dispatch_from);
163 	int ret = 0;
164 
165 	do {
166 		struct request *rq;
167 
168 		if (!list_empty_careful(&hctx->dispatch)) {
169 			ret = -EAGAIN;
170 			break;
171 		}
172 
173 		if (!sbitmap_any_bit_set(&hctx->ctx_map))
174 			break;
175 
176 		if (!blk_mq_get_dispatch_budget(hctx))
177 			break;
178 
179 		rq = blk_mq_dequeue_from_ctx(hctx, ctx);
180 		if (!rq) {
181 			blk_mq_put_dispatch_budget(hctx);
182 			/*
183 			 * We're releasing without dispatching. Holding the
184 			 * budget could have blocked any "hctx"s with the
185 			 * same queue and if we didn't dispatch then there's
186 			 * no guarantee anyone will kick the queue.  Kick it
187 			 * ourselves.
188 			 */
189 			blk_mq_delay_run_hw_queues(q, BLK_MQ_BUDGET_DELAY);
190 			break;
191 		}
192 
193 		/*
194 		 * Now this rq owns the budget which has to be released
195 		 * if this rq won't be queued to driver via .queue_rq()
196 		 * in blk_mq_dispatch_rq_list().
197 		 */
198 		list_add(&rq->queuelist, &rq_list);
199 
200 		/* round robin for fair dispatch */
201 		ctx = blk_mq_next_ctx(hctx, rq->mq_ctx);
202 
203 	} while (blk_mq_dispatch_rq_list(q, &rq_list, true));
204 
205 	WRITE_ONCE(hctx->dispatch_from, ctx);
206 	return ret;
207 }
208 
209 static int __blk_mq_sched_dispatch_requests(struct blk_mq_hw_ctx *hctx)
210 {
211 	struct request_queue *q = hctx->queue;
212 	struct elevator_queue *e = q->elevator;
213 	const bool has_sched_dispatch = e && e->type->ops.dispatch_request;
214 	int ret = 0;
215 	LIST_HEAD(rq_list);
216 
217 	/*
218 	 * If we have previous entries on our dispatch list, grab them first for
219 	 * more fair dispatch.
220 	 */
221 	if (!list_empty_careful(&hctx->dispatch)) {
222 		spin_lock(&hctx->lock);
223 		if (!list_empty(&hctx->dispatch))
224 			list_splice_init(&hctx->dispatch, &rq_list);
225 		spin_unlock(&hctx->lock);
226 	}
227 
228 	/*
229 	 * Only ask the scheduler for requests, if we didn't have residual
230 	 * requests from the dispatch list. This is to avoid the case where
231 	 * we only ever dispatch a fraction of the requests available because
232 	 * of low device queue depth. Once we pull requests out of the IO
233 	 * scheduler, we can no longer merge or sort them. So it's best to
234 	 * leave them there for as long as we can. Mark the hw queue as
235 	 * needing a restart in that case.
236 	 *
237 	 * We want to dispatch from the scheduler if there was nothing
238 	 * on the dispatch list or we were able to dispatch from the
239 	 * dispatch list.
240 	 */
241 	if (!list_empty(&rq_list)) {
242 		blk_mq_sched_mark_restart_hctx(hctx);
243 		if (blk_mq_dispatch_rq_list(q, &rq_list, false)) {
244 			if (has_sched_dispatch)
245 				ret = blk_mq_do_dispatch_sched(hctx);
246 			else
247 				ret = blk_mq_do_dispatch_ctx(hctx);
248 		}
249 	} else if (has_sched_dispatch) {
250 		ret = blk_mq_do_dispatch_sched(hctx);
251 	} else if (hctx->dispatch_busy) {
252 		/* dequeue request one by one from sw queue if queue is busy */
253 		ret = blk_mq_do_dispatch_ctx(hctx);
254 	} else {
255 		blk_mq_flush_busy_ctxs(hctx, &rq_list);
256 		blk_mq_dispatch_rq_list(q, &rq_list, false);
257 	}
258 
259 	return ret;
260 }
261 
262 void blk_mq_sched_dispatch_requests(struct blk_mq_hw_ctx *hctx)
263 {
264 	struct request_queue *q = hctx->queue;
265 
266 	/* RCU or SRCU read lock is needed before checking quiesced flag */
267 	if (unlikely(blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(q)))
268 		return;
269 
270 	hctx->run++;
271 
272 	/*
273 	 * A return of -EAGAIN is an indication that hctx->dispatch is not
274 	 * empty and we must run again in order to avoid starving flushes.
275 	 */
276 	if (__blk_mq_sched_dispatch_requests(hctx) == -EAGAIN) {
277 		if (__blk_mq_sched_dispatch_requests(hctx) == -EAGAIN)
278 			blk_mq_run_hw_queue(hctx, true);
279 	}
280 }
281 
282 bool blk_mq_sched_try_merge(struct request_queue *q, struct bio *bio,
283 		unsigned int nr_segs, struct request **merged_request)
284 {
285 	struct request *rq;
286 
287 	switch (elv_merge(q, &rq, bio)) {
288 	case ELEVATOR_BACK_MERGE:
289 		if (!blk_mq_sched_allow_merge(q, rq, bio))
290 			return false;
291 		if (!bio_attempt_back_merge(rq, bio, nr_segs))
292 			return false;
293 		*merged_request = attempt_back_merge(q, rq);
294 		if (!*merged_request)
295 			elv_merged_request(q, rq, ELEVATOR_BACK_MERGE);
296 		return true;
297 	case ELEVATOR_FRONT_MERGE:
298 		if (!blk_mq_sched_allow_merge(q, rq, bio))
299 			return false;
300 		if (!bio_attempt_front_merge(rq, bio, nr_segs))
301 			return false;
302 		*merged_request = attempt_front_merge(q, rq);
303 		if (!*merged_request)
304 			elv_merged_request(q, rq, ELEVATOR_FRONT_MERGE);
305 		return true;
306 	case ELEVATOR_DISCARD_MERGE:
307 		return bio_attempt_discard_merge(q, rq, bio);
308 	default:
309 		return false;
310 	}
311 }
312 EXPORT_SYMBOL_GPL(blk_mq_sched_try_merge);
313 
314 /*
315  * Iterate list of requests and see if we can merge this bio with any
316  * of them.
317  */
318 bool blk_mq_bio_list_merge(struct request_queue *q, struct list_head *list,
319 			   struct bio *bio, unsigned int nr_segs)
320 {
321 	struct request *rq;
322 	int checked = 8;
323 
324 	list_for_each_entry_reverse(rq, list, queuelist) {
325 		bool merged = false;
326 
327 		if (!checked--)
328 			break;
329 
330 		if (!blk_rq_merge_ok(rq, bio))
331 			continue;
332 
333 		switch (blk_try_merge(rq, bio)) {
334 		case ELEVATOR_BACK_MERGE:
335 			if (blk_mq_sched_allow_merge(q, rq, bio))
336 				merged = bio_attempt_back_merge(rq, bio,
337 						nr_segs);
338 			break;
339 		case ELEVATOR_FRONT_MERGE:
340 			if (blk_mq_sched_allow_merge(q, rq, bio))
341 				merged = bio_attempt_front_merge(rq, bio,
342 						nr_segs);
343 			break;
344 		case ELEVATOR_DISCARD_MERGE:
345 			merged = bio_attempt_discard_merge(q, rq, bio);
346 			break;
347 		default:
348 			continue;
349 		}
350 
351 		return merged;
352 	}
353 
354 	return false;
355 }
356 EXPORT_SYMBOL_GPL(blk_mq_bio_list_merge);
357 
358 /*
359  * Reverse check our software queue for entries that we could potentially
360  * merge with. Currently includes a hand-wavy stop count of 8, to not spend
361  * too much time checking for merges.
362  */
363 static bool blk_mq_attempt_merge(struct request_queue *q,
364 				 struct blk_mq_hw_ctx *hctx,
365 				 struct blk_mq_ctx *ctx, struct bio *bio,
366 				 unsigned int nr_segs)
367 {
368 	enum hctx_type type = hctx->type;
369 
370 	lockdep_assert_held(&ctx->lock);
371 
372 	if (blk_mq_bio_list_merge(q, &ctx->rq_lists[type], bio, nr_segs)) {
373 		ctx->rq_merged++;
374 		return true;
375 	}
376 
377 	return false;
378 }
379 
380 bool __blk_mq_sched_bio_merge(struct request_queue *q, struct bio *bio,
381 		unsigned int nr_segs)
382 {
383 	struct elevator_queue *e = q->elevator;
384 	struct blk_mq_ctx *ctx = blk_mq_get_ctx(q);
385 	struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, bio->bi_opf, ctx);
386 	bool ret = false;
387 	enum hctx_type type;
388 
389 	if (e && e->type->ops.bio_merge)
390 		return e->type->ops.bio_merge(hctx, bio, nr_segs);
391 
392 	type = hctx->type;
393 	if ((hctx->flags & BLK_MQ_F_SHOULD_MERGE) &&
394 			!list_empty_careful(&ctx->rq_lists[type])) {
395 		/* default per sw-queue merge */
396 		spin_lock(&ctx->lock);
397 		ret = blk_mq_attempt_merge(q, hctx, ctx, bio, nr_segs);
398 		spin_unlock(&ctx->lock);
399 	}
400 
401 	return ret;
402 }
403 
404 bool blk_mq_sched_try_insert_merge(struct request_queue *q, struct request *rq)
405 {
406 	return rq_mergeable(rq) && elv_attempt_insert_merge(q, rq);
407 }
408 EXPORT_SYMBOL_GPL(blk_mq_sched_try_insert_merge);
409 
410 void blk_mq_sched_request_inserted(struct request *rq)
411 {
412 	trace_block_rq_insert(rq->q, rq);
413 }
414 EXPORT_SYMBOL_GPL(blk_mq_sched_request_inserted);
415 
416 static bool blk_mq_sched_bypass_insert(struct blk_mq_hw_ctx *hctx,
417 				       bool has_sched,
418 				       struct request *rq)
419 {
420 	/*
421 	 * dispatch flush and passthrough rq directly
422 	 *
423 	 * passthrough request has to be added to hctx->dispatch directly.
424 	 * For some reason, device may be in one situation which can't
425 	 * handle FS request, so STS_RESOURCE is always returned and the
426 	 * FS request will be added to hctx->dispatch. However passthrough
427 	 * request may be required at that time for fixing the problem. If
428 	 * passthrough request is added to scheduler queue, there isn't any
429 	 * chance to dispatch it given we prioritize requests in hctx->dispatch.
430 	 */
431 	if ((rq->rq_flags & RQF_FLUSH_SEQ) || blk_rq_is_passthrough(rq))
432 		return true;
433 
434 	if (has_sched)
435 		rq->rq_flags |= RQF_SORTED;
436 
437 	return false;
438 }
439 
440 void blk_mq_sched_insert_request(struct request *rq, bool at_head,
441 				 bool run_queue, bool async)
442 {
443 	struct request_queue *q = rq->q;
444 	struct elevator_queue *e = q->elevator;
445 	struct blk_mq_ctx *ctx = rq->mq_ctx;
446 	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
447 
448 	/* flush rq in flush machinery need to be dispatched directly */
449 	if (!(rq->rq_flags & RQF_FLUSH_SEQ) && op_is_flush(rq->cmd_flags)) {
450 		blk_insert_flush(rq);
451 		goto run;
452 	}
453 
454 	WARN_ON(e && (rq->tag != -1));
455 
456 	if (blk_mq_sched_bypass_insert(hctx, !!e, rq)) {
457 		/*
458 		 * Firstly normal IO request is inserted to scheduler queue or
459 		 * sw queue, meantime we add flush request to dispatch queue(
460 		 * hctx->dispatch) directly and there is at most one in-flight
461 		 * flush request for each hw queue, so it doesn't matter to add
462 		 * flush request to tail or front of the dispatch queue.
463 		 *
464 		 * Secondly in case of NCQ, flush request belongs to non-NCQ
465 		 * command, and queueing it will fail when there is any
466 		 * in-flight normal IO request(NCQ command). When adding flush
467 		 * rq to the front of hctx->dispatch, it is easier to introduce
468 		 * extra time to flush rq's latency because of S_SCHED_RESTART
469 		 * compared with adding to the tail of dispatch queue, then
470 		 * chance of flush merge is increased, and less flush requests
471 		 * will be issued to controller. It is observed that ~10% time
472 		 * is saved in blktests block/004 on disk attached to AHCI/NCQ
473 		 * drive when adding flush rq to the front of hctx->dispatch.
474 		 *
475 		 * Simply queue flush rq to the front of hctx->dispatch so that
476 		 * intensive flush workloads can benefit in case of NCQ HW.
477 		 */
478 		at_head = (rq->rq_flags & RQF_FLUSH_SEQ) ? true : at_head;
479 		blk_mq_request_bypass_insert(rq, at_head, false);
480 		goto run;
481 	}
482 
483 	if (e && e->type->ops.insert_requests) {
484 		LIST_HEAD(list);
485 
486 		list_add(&rq->queuelist, &list);
487 		e->type->ops.insert_requests(hctx, &list, at_head);
488 	} else {
489 		spin_lock(&ctx->lock);
490 		__blk_mq_insert_request(hctx, rq, at_head);
491 		spin_unlock(&ctx->lock);
492 	}
493 
494 run:
495 	if (run_queue)
496 		blk_mq_run_hw_queue(hctx, async);
497 }
498 
499 void blk_mq_sched_insert_requests(struct blk_mq_hw_ctx *hctx,
500 				  struct blk_mq_ctx *ctx,
501 				  struct list_head *list, bool run_queue_async)
502 {
503 	struct elevator_queue *e;
504 	struct request_queue *q = hctx->queue;
505 
506 	/*
507 	 * blk_mq_sched_insert_requests() is called from flush plug
508 	 * context only, and hold one usage counter to prevent queue
509 	 * from being released.
510 	 */
511 	percpu_ref_get(&q->q_usage_counter);
512 
513 	e = hctx->queue->elevator;
514 	if (e && e->type->ops.insert_requests)
515 		e->type->ops.insert_requests(hctx, list, false);
516 	else {
517 		/*
518 		 * try to issue requests directly if the hw queue isn't
519 		 * busy in case of 'none' scheduler, and this way may save
520 		 * us one extra enqueue & dequeue to sw queue.
521 		 */
522 		if (!hctx->dispatch_busy && !e && !run_queue_async) {
523 			blk_mq_try_issue_list_directly(hctx, list);
524 			if (list_empty(list))
525 				goto out;
526 		}
527 		blk_mq_insert_requests(hctx, ctx, list);
528 	}
529 
530 	blk_mq_run_hw_queue(hctx, run_queue_async);
531  out:
532 	percpu_ref_put(&q->q_usage_counter);
533 }
534 
535 static void blk_mq_sched_free_tags(struct blk_mq_tag_set *set,
536 				   struct blk_mq_hw_ctx *hctx,
537 				   unsigned int hctx_idx)
538 {
539 	if (hctx->sched_tags) {
540 		blk_mq_free_rqs(set, hctx->sched_tags, hctx_idx);
541 		blk_mq_free_rq_map(hctx->sched_tags);
542 		hctx->sched_tags = NULL;
543 	}
544 }
545 
546 static int blk_mq_sched_alloc_tags(struct request_queue *q,
547 				   struct blk_mq_hw_ctx *hctx,
548 				   unsigned int hctx_idx)
549 {
550 	struct blk_mq_tag_set *set = q->tag_set;
551 	int ret;
552 
553 	hctx->sched_tags = blk_mq_alloc_rq_map(set, hctx_idx, q->nr_requests,
554 					       set->reserved_tags);
555 	if (!hctx->sched_tags)
556 		return -ENOMEM;
557 
558 	ret = blk_mq_alloc_rqs(set, hctx->sched_tags, hctx_idx, q->nr_requests);
559 	if (ret)
560 		blk_mq_sched_free_tags(set, hctx, hctx_idx);
561 
562 	return ret;
563 }
564 
565 /* called in queue's release handler, tagset has gone away */
566 static void blk_mq_sched_tags_teardown(struct request_queue *q)
567 {
568 	struct blk_mq_hw_ctx *hctx;
569 	int i;
570 
571 	queue_for_each_hw_ctx(q, hctx, i) {
572 		if (hctx->sched_tags) {
573 			blk_mq_free_rq_map(hctx->sched_tags);
574 			hctx->sched_tags = NULL;
575 		}
576 	}
577 }
578 
579 int blk_mq_init_sched(struct request_queue *q, struct elevator_type *e)
580 {
581 	struct blk_mq_hw_ctx *hctx;
582 	struct elevator_queue *eq;
583 	unsigned int i;
584 	int ret;
585 
586 	if (!e) {
587 		q->elevator = NULL;
588 		q->nr_requests = q->tag_set->queue_depth;
589 		return 0;
590 	}
591 
592 	/*
593 	 * Default to double of smaller one between hw queue_depth and 128,
594 	 * since we don't split into sync/async like the old code did.
595 	 * Additionally, this is a per-hw queue depth.
596 	 */
597 	q->nr_requests = 2 * min_t(unsigned int, q->tag_set->queue_depth,
598 				   BLKDEV_MAX_RQ);
599 
600 	queue_for_each_hw_ctx(q, hctx, i) {
601 		ret = blk_mq_sched_alloc_tags(q, hctx, i);
602 		if (ret)
603 			goto err;
604 	}
605 
606 	ret = e->ops.init_sched(q, e);
607 	if (ret)
608 		goto err;
609 
610 	blk_mq_debugfs_register_sched(q);
611 
612 	queue_for_each_hw_ctx(q, hctx, i) {
613 		if (e->ops.init_hctx) {
614 			ret = e->ops.init_hctx(hctx, i);
615 			if (ret) {
616 				eq = q->elevator;
617 				blk_mq_sched_free_requests(q);
618 				blk_mq_exit_sched(q, eq);
619 				kobject_put(&eq->kobj);
620 				return ret;
621 			}
622 		}
623 		blk_mq_debugfs_register_sched_hctx(q, hctx);
624 	}
625 
626 	return 0;
627 
628 err:
629 	blk_mq_sched_free_requests(q);
630 	blk_mq_sched_tags_teardown(q);
631 	q->elevator = NULL;
632 	return ret;
633 }
634 
635 /*
636  * called in either blk_queue_cleanup or elevator_switch, tagset
637  * is required for freeing requests
638  */
639 void blk_mq_sched_free_requests(struct request_queue *q)
640 {
641 	struct blk_mq_hw_ctx *hctx;
642 	int i;
643 
644 	queue_for_each_hw_ctx(q, hctx, i) {
645 		if (hctx->sched_tags)
646 			blk_mq_free_rqs(q->tag_set, hctx->sched_tags, i);
647 	}
648 }
649 
650 void blk_mq_exit_sched(struct request_queue *q, struct elevator_queue *e)
651 {
652 	struct blk_mq_hw_ctx *hctx;
653 	unsigned int i;
654 
655 	queue_for_each_hw_ctx(q, hctx, i) {
656 		blk_mq_debugfs_unregister_sched_hctx(hctx);
657 		if (e->type->ops.exit_hctx && hctx->sched_data) {
658 			e->type->ops.exit_hctx(hctx, i);
659 			hctx->sched_data = NULL;
660 		}
661 	}
662 	blk_mq_debugfs_unregister_sched(q);
663 	if (e->type->ops.exit_sched)
664 		e->type->ops.exit_sched(e);
665 	blk_mq_sched_tags_teardown(q);
666 	q->elevator = NULL;
667 }
668