1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * blk-mq scheduling framework 4 * 5 * Copyright (C) 2016 Jens Axboe 6 */ 7 #include <linux/kernel.h> 8 #include <linux/module.h> 9 #include <linux/list_sort.h> 10 11 #include <trace/events/block.h> 12 13 #include "blk.h" 14 #include "blk-mq.h" 15 #include "blk-mq-debugfs.h" 16 #include "blk-mq-sched.h" 17 #include "blk-wbt.h" 18 19 /* 20 * Mark a hardware queue as needing a restart. 21 */ 22 void blk_mq_sched_mark_restart_hctx(struct blk_mq_hw_ctx *hctx) 23 { 24 if (test_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state)) 25 return; 26 27 set_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state); 28 } 29 EXPORT_SYMBOL_GPL(blk_mq_sched_mark_restart_hctx); 30 31 void __blk_mq_sched_restart(struct blk_mq_hw_ctx *hctx) 32 { 33 clear_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state); 34 35 /* 36 * Order clearing SCHED_RESTART and list_empty_careful(&hctx->dispatch) 37 * in blk_mq_run_hw_queue(). Its pair is the barrier in 38 * blk_mq_dispatch_rq_list(). So dispatch code won't see SCHED_RESTART, 39 * meantime new request added to hctx->dispatch is missed to check in 40 * blk_mq_run_hw_queue(). 41 */ 42 smp_mb(); 43 44 blk_mq_run_hw_queue(hctx, true); 45 } 46 47 static int sched_rq_cmp(void *priv, const struct list_head *a, 48 const struct list_head *b) 49 { 50 struct request *rqa = container_of(a, struct request, queuelist); 51 struct request *rqb = container_of(b, struct request, queuelist); 52 53 return rqa->mq_hctx > rqb->mq_hctx; 54 } 55 56 static bool blk_mq_dispatch_hctx_list(struct list_head *rq_list) 57 { 58 struct blk_mq_hw_ctx *hctx = 59 list_first_entry(rq_list, struct request, queuelist)->mq_hctx; 60 struct request *rq; 61 LIST_HEAD(hctx_list); 62 unsigned int count = 0; 63 64 list_for_each_entry(rq, rq_list, queuelist) { 65 if (rq->mq_hctx != hctx) { 66 list_cut_before(&hctx_list, rq_list, &rq->queuelist); 67 goto dispatch; 68 } 69 count++; 70 } 71 list_splice_tail_init(rq_list, &hctx_list); 72 73 dispatch: 74 return blk_mq_dispatch_rq_list(hctx, &hctx_list, count); 75 } 76 77 #define BLK_MQ_BUDGET_DELAY 3 /* ms units */ 78 79 /* 80 * Only SCSI implements .get_budget and .put_budget, and SCSI restarts 81 * its queue by itself in its completion handler, so we don't need to 82 * restart queue if .get_budget() fails to get the budget. 83 * 84 * Returns -EAGAIN if hctx->dispatch was found non-empty and run_work has to 85 * be run again. This is necessary to avoid starving flushes. 86 */ 87 static int __blk_mq_do_dispatch_sched(struct blk_mq_hw_ctx *hctx) 88 { 89 struct request_queue *q = hctx->queue; 90 struct elevator_queue *e = q->elevator; 91 bool multi_hctxs = false, run_queue = false; 92 bool dispatched = false, busy = false; 93 unsigned int max_dispatch; 94 LIST_HEAD(rq_list); 95 int count = 0; 96 97 if (hctx->dispatch_busy) 98 max_dispatch = 1; 99 else 100 max_dispatch = hctx->queue->nr_requests; 101 102 do { 103 struct request *rq; 104 int budget_token; 105 106 if (e->type->ops.has_work && !e->type->ops.has_work(hctx)) 107 break; 108 109 if (!list_empty_careful(&hctx->dispatch)) { 110 busy = true; 111 break; 112 } 113 114 budget_token = blk_mq_get_dispatch_budget(q); 115 if (budget_token < 0) 116 break; 117 118 rq = e->type->ops.dispatch_request(hctx); 119 if (!rq) { 120 blk_mq_put_dispatch_budget(q, budget_token); 121 /* 122 * We're releasing without dispatching. Holding the 123 * budget could have blocked any "hctx"s with the 124 * same queue and if we didn't dispatch then there's 125 * no guarantee anyone will kick the queue. Kick it 126 * ourselves. 127 */ 128 run_queue = true; 129 break; 130 } 131 132 blk_mq_set_rq_budget_token(rq, budget_token); 133 134 /* 135 * Now this rq owns the budget which has to be released 136 * if this rq won't be queued to driver via .queue_rq() 137 * in blk_mq_dispatch_rq_list(). 138 */ 139 list_add_tail(&rq->queuelist, &rq_list); 140 count++; 141 if (rq->mq_hctx != hctx) 142 multi_hctxs = true; 143 144 /* 145 * If we cannot get tag for the request, stop dequeueing 146 * requests from the IO scheduler. We are unlikely to be able 147 * to submit them anyway and it creates false impression for 148 * scheduling heuristics that the device can take more IO. 149 */ 150 if (!blk_mq_get_driver_tag(rq)) 151 break; 152 } while (count < max_dispatch); 153 154 if (!count) { 155 if (run_queue) 156 blk_mq_delay_run_hw_queues(q, BLK_MQ_BUDGET_DELAY); 157 } else if (multi_hctxs) { 158 /* 159 * Requests from different hctx may be dequeued from some 160 * schedulers, such as bfq and deadline. 161 * 162 * Sort the requests in the list according to their hctx, 163 * dispatch batching requests from same hctx at a time. 164 */ 165 list_sort(NULL, &rq_list, sched_rq_cmp); 166 do { 167 dispatched |= blk_mq_dispatch_hctx_list(&rq_list); 168 } while (!list_empty(&rq_list)); 169 } else { 170 dispatched = blk_mq_dispatch_rq_list(hctx, &rq_list, count); 171 } 172 173 if (busy) 174 return -EAGAIN; 175 return !!dispatched; 176 } 177 178 static int blk_mq_do_dispatch_sched(struct blk_mq_hw_ctx *hctx) 179 { 180 unsigned long end = jiffies + HZ; 181 int ret; 182 183 do { 184 ret = __blk_mq_do_dispatch_sched(hctx); 185 if (ret != 1) 186 break; 187 if (need_resched() || time_is_before_jiffies(end)) { 188 blk_mq_delay_run_hw_queue(hctx, 0); 189 break; 190 } 191 } while (1); 192 193 return ret; 194 } 195 196 static struct blk_mq_ctx *blk_mq_next_ctx(struct blk_mq_hw_ctx *hctx, 197 struct blk_mq_ctx *ctx) 198 { 199 unsigned short idx = ctx->index_hw[hctx->type]; 200 201 if (++idx == hctx->nr_ctx) 202 idx = 0; 203 204 return hctx->ctxs[idx]; 205 } 206 207 /* 208 * Only SCSI implements .get_budget and .put_budget, and SCSI restarts 209 * its queue by itself in its completion handler, so we don't need to 210 * restart queue if .get_budget() fails to get the budget. 211 * 212 * Returns -EAGAIN if hctx->dispatch was found non-empty and run_work has to 213 * be run again. This is necessary to avoid starving flushes. 214 */ 215 static int blk_mq_do_dispatch_ctx(struct blk_mq_hw_ctx *hctx) 216 { 217 struct request_queue *q = hctx->queue; 218 LIST_HEAD(rq_list); 219 struct blk_mq_ctx *ctx = READ_ONCE(hctx->dispatch_from); 220 int ret = 0; 221 struct request *rq; 222 223 do { 224 int budget_token; 225 226 if (!list_empty_careful(&hctx->dispatch)) { 227 ret = -EAGAIN; 228 break; 229 } 230 231 if (!sbitmap_any_bit_set(&hctx->ctx_map)) 232 break; 233 234 budget_token = blk_mq_get_dispatch_budget(q); 235 if (budget_token < 0) 236 break; 237 238 rq = blk_mq_dequeue_from_ctx(hctx, ctx); 239 if (!rq) { 240 blk_mq_put_dispatch_budget(q, budget_token); 241 /* 242 * We're releasing without dispatching. Holding the 243 * budget could have blocked any "hctx"s with the 244 * same queue and if we didn't dispatch then there's 245 * no guarantee anyone will kick the queue. Kick it 246 * ourselves. 247 */ 248 blk_mq_delay_run_hw_queues(q, BLK_MQ_BUDGET_DELAY); 249 break; 250 } 251 252 blk_mq_set_rq_budget_token(rq, budget_token); 253 254 /* 255 * Now this rq owns the budget which has to be released 256 * if this rq won't be queued to driver via .queue_rq() 257 * in blk_mq_dispatch_rq_list(). 258 */ 259 list_add(&rq->queuelist, &rq_list); 260 261 /* round robin for fair dispatch */ 262 ctx = blk_mq_next_ctx(hctx, rq->mq_ctx); 263 264 } while (blk_mq_dispatch_rq_list(rq->mq_hctx, &rq_list, 1)); 265 266 WRITE_ONCE(hctx->dispatch_from, ctx); 267 return ret; 268 } 269 270 static int __blk_mq_sched_dispatch_requests(struct blk_mq_hw_ctx *hctx) 271 { 272 bool need_dispatch = false; 273 LIST_HEAD(rq_list); 274 275 /* 276 * If we have previous entries on our dispatch list, grab them first for 277 * more fair dispatch. 278 */ 279 if (!list_empty_careful(&hctx->dispatch)) { 280 spin_lock(&hctx->lock); 281 if (!list_empty(&hctx->dispatch)) 282 list_splice_init(&hctx->dispatch, &rq_list); 283 spin_unlock(&hctx->lock); 284 } 285 286 /* 287 * Only ask the scheduler for requests, if we didn't have residual 288 * requests from the dispatch list. This is to avoid the case where 289 * we only ever dispatch a fraction of the requests available because 290 * of low device queue depth. Once we pull requests out of the IO 291 * scheduler, we can no longer merge or sort them. So it's best to 292 * leave them there for as long as we can. Mark the hw queue as 293 * needing a restart in that case. 294 * 295 * We want to dispatch from the scheduler if there was nothing 296 * on the dispatch list or we were able to dispatch from the 297 * dispatch list. 298 */ 299 if (!list_empty(&rq_list)) { 300 blk_mq_sched_mark_restart_hctx(hctx); 301 if (!blk_mq_dispatch_rq_list(hctx, &rq_list, 0)) 302 return 0; 303 need_dispatch = true; 304 } else { 305 need_dispatch = hctx->dispatch_busy; 306 } 307 308 if (hctx->queue->elevator) 309 return blk_mq_do_dispatch_sched(hctx); 310 311 /* dequeue request one by one from sw queue if queue is busy */ 312 if (need_dispatch) 313 return blk_mq_do_dispatch_ctx(hctx); 314 blk_mq_flush_busy_ctxs(hctx, &rq_list); 315 blk_mq_dispatch_rq_list(hctx, &rq_list, 0); 316 return 0; 317 } 318 319 void blk_mq_sched_dispatch_requests(struct blk_mq_hw_ctx *hctx) 320 { 321 struct request_queue *q = hctx->queue; 322 323 /* RCU or SRCU read lock is needed before checking quiesced flag */ 324 if (unlikely(blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(q))) 325 return; 326 327 /* 328 * A return of -EAGAIN is an indication that hctx->dispatch is not 329 * empty and we must run again in order to avoid starving flushes. 330 */ 331 if (__blk_mq_sched_dispatch_requests(hctx) == -EAGAIN) { 332 if (__blk_mq_sched_dispatch_requests(hctx) == -EAGAIN) 333 blk_mq_run_hw_queue(hctx, true); 334 } 335 } 336 337 bool blk_mq_sched_bio_merge(struct request_queue *q, struct bio *bio, 338 unsigned int nr_segs) 339 { 340 struct elevator_queue *e = q->elevator; 341 struct blk_mq_ctx *ctx; 342 struct blk_mq_hw_ctx *hctx; 343 bool ret = false; 344 enum hctx_type type; 345 346 if (e && e->type->ops.bio_merge) { 347 ret = e->type->ops.bio_merge(q, bio, nr_segs); 348 goto out_put; 349 } 350 351 ctx = blk_mq_get_ctx(q); 352 hctx = blk_mq_map_queue(q, bio->bi_opf, ctx); 353 type = hctx->type; 354 if (!(hctx->flags & BLK_MQ_F_SHOULD_MERGE) || 355 list_empty_careful(&ctx->rq_lists[type])) 356 goto out_put; 357 358 /* default per sw-queue merge */ 359 spin_lock(&ctx->lock); 360 /* 361 * Reverse check our software queue for entries that we could 362 * potentially merge with. Currently includes a hand-wavy stop 363 * count of 8, to not spend too much time checking for merges. 364 */ 365 if (blk_bio_list_merge(q, &ctx->rq_lists[type], bio, nr_segs)) 366 ret = true; 367 368 spin_unlock(&ctx->lock); 369 out_put: 370 return ret; 371 } 372 373 bool blk_mq_sched_try_insert_merge(struct request_queue *q, struct request *rq, 374 struct list_head *free) 375 { 376 return rq_mergeable(rq) && elv_attempt_insert_merge(q, rq, free); 377 } 378 EXPORT_SYMBOL_GPL(blk_mq_sched_try_insert_merge); 379 380 static int blk_mq_sched_alloc_map_and_rqs(struct request_queue *q, 381 struct blk_mq_hw_ctx *hctx, 382 unsigned int hctx_idx) 383 { 384 if (blk_mq_is_shared_tags(q->tag_set->flags)) { 385 hctx->sched_tags = q->sched_shared_tags; 386 return 0; 387 } 388 389 hctx->sched_tags = blk_mq_alloc_map_and_rqs(q->tag_set, hctx_idx, 390 q->nr_requests); 391 392 if (!hctx->sched_tags) 393 return -ENOMEM; 394 return 0; 395 } 396 397 static void blk_mq_exit_sched_shared_tags(struct request_queue *queue) 398 { 399 blk_mq_free_rq_map(queue->sched_shared_tags); 400 queue->sched_shared_tags = NULL; 401 } 402 403 /* called in queue's release handler, tagset has gone away */ 404 static void blk_mq_sched_tags_teardown(struct request_queue *q, unsigned int flags) 405 { 406 struct blk_mq_hw_ctx *hctx; 407 unsigned long i; 408 409 queue_for_each_hw_ctx(q, hctx, i) { 410 if (hctx->sched_tags) { 411 if (!blk_mq_is_shared_tags(flags)) 412 blk_mq_free_rq_map(hctx->sched_tags); 413 hctx->sched_tags = NULL; 414 } 415 } 416 417 if (blk_mq_is_shared_tags(flags)) 418 blk_mq_exit_sched_shared_tags(q); 419 } 420 421 static int blk_mq_init_sched_shared_tags(struct request_queue *queue) 422 { 423 struct blk_mq_tag_set *set = queue->tag_set; 424 425 /* 426 * Set initial depth at max so that we don't need to reallocate for 427 * updating nr_requests. 428 */ 429 queue->sched_shared_tags = blk_mq_alloc_map_and_rqs(set, 430 BLK_MQ_NO_HCTX_IDX, 431 MAX_SCHED_RQ); 432 if (!queue->sched_shared_tags) 433 return -ENOMEM; 434 435 blk_mq_tag_update_sched_shared_tags(queue); 436 437 return 0; 438 } 439 440 /* caller must have a reference to @e, will grab another one if successful */ 441 int blk_mq_init_sched(struct request_queue *q, struct elevator_type *e) 442 { 443 unsigned int flags = q->tag_set->flags; 444 struct blk_mq_hw_ctx *hctx; 445 struct elevator_queue *eq; 446 unsigned long i; 447 int ret; 448 449 /* 450 * Default to double of smaller one between hw queue_depth and 128, 451 * since we don't split into sync/async like the old code did. 452 * Additionally, this is a per-hw queue depth. 453 */ 454 q->nr_requests = 2 * min_t(unsigned int, q->tag_set->queue_depth, 455 BLKDEV_DEFAULT_RQ); 456 457 if (blk_mq_is_shared_tags(flags)) { 458 ret = blk_mq_init_sched_shared_tags(q); 459 if (ret) 460 return ret; 461 } 462 463 queue_for_each_hw_ctx(q, hctx, i) { 464 ret = blk_mq_sched_alloc_map_and_rqs(q, hctx, i); 465 if (ret) 466 goto err_free_map_and_rqs; 467 } 468 469 ret = e->ops.init_sched(q, e); 470 if (ret) 471 goto err_free_map_and_rqs; 472 473 mutex_lock(&q->debugfs_mutex); 474 blk_mq_debugfs_register_sched(q); 475 mutex_unlock(&q->debugfs_mutex); 476 477 queue_for_each_hw_ctx(q, hctx, i) { 478 if (e->ops.init_hctx) { 479 ret = e->ops.init_hctx(hctx, i); 480 if (ret) { 481 eq = q->elevator; 482 blk_mq_sched_free_rqs(q); 483 blk_mq_exit_sched(q, eq); 484 kobject_put(&eq->kobj); 485 return ret; 486 } 487 } 488 mutex_lock(&q->debugfs_mutex); 489 blk_mq_debugfs_register_sched_hctx(q, hctx); 490 mutex_unlock(&q->debugfs_mutex); 491 } 492 493 return 0; 494 495 err_free_map_and_rqs: 496 blk_mq_sched_free_rqs(q); 497 blk_mq_sched_tags_teardown(q, flags); 498 499 q->elevator = NULL; 500 return ret; 501 } 502 503 /* 504 * called in either blk_queue_cleanup or elevator_switch, tagset 505 * is required for freeing requests 506 */ 507 void blk_mq_sched_free_rqs(struct request_queue *q) 508 { 509 struct blk_mq_hw_ctx *hctx; 510 unsigned long i; 511 512 if (blk_mq_is_shared_tags(q->tag_set->flags)) { 513 blk_mq_free_rqs(q->tag_set, q->sched_shared_tags, 514 BLK_MQ_NO_HCTX_IDX); 515 } else { 516 queue_for_each_hw_ctx(q, hctx, i) { 517 if (hctx->sched_tags) 518 blk_mq_free_rqs(q->tag_set, 519 hctx->sched_tags, i); 520 } 521 } 522 } 523 524 void blk_mq_exit_sched(struct request_queue *q, struct elevator_queue *e) 525 { 526 struct blk_mq_hw_ctx *hctx; 527 unsigned long i; 528 unsigned int flags = 0; 529 530 queue_for_each_hw_ctx(q, hctx, i) { 531 mutex_lock(&q->debugfs_mutex); 532 blk_mq_debugfs_unregister_sched_hctx(hctx); 533 mutex_unlock(&q->debugfs_mutex); 534 535 if (e->type->ops.exit_hctx && hctx->sched_data) { 536 e->type->ops.exit_hctx(hctx, i); 537 hctx->sched_data = NULL; 538 } 539 flags = hctx->flags; 540 } 541 542 mutex_lock(&q->debugfs_mutex); 543 blk_mq_debugfs_unregister_sched(q); 544 mutex_unlock(&q->debugfs_mutex); 545 546 if (e->type->ops.exit_sched) 547 e->type->ops.exit_sched(e); 548 blk_mq_sched_tags_teardown(q, flags); 549 q->elevator = NULL; 550 } 551