xref: /linux/block/blk-mq-sched.c (revision 3ca3af7d1f230d1f93ba4cd8cd9d054870f2406f)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * blk-mq scheduling framework
4  *
5  * Copyright (C) 2016 Jens Axboe
6  */
7 #include <linux/kernel.h>
8 #include <linux/module.h>
9 #include <linux/blk-mq.h>
10 #include <linux/list_sort.h>
11 
12 #include <trace/events/block.h>
13 
14 #include "blk.h"
15 #include "blk-mq.h"
16 #include "blk-mq-debugfs.h"
17 #include "blk-mq-sched.h"
18 #include "blk-mq-tag.h"
19 #include "blk-wbt.h"
20 
21 void blk_mq_sched_assign_ioc(struct request *rq)
22 {
23 	struct request_queue *q = rq->q;
24 	struct io_context *ioc;
25 	struct io_cq *icq;
26 
27 	/*
28 	 * May not have an IO context if it's a passthrough request
29 	 */
30 	ioc = current->io_context;
31 	if (!ioc)
32 		return;
33 
34 	spin_lock_irq(&q->queue_lock);
35 	icq = ioc_lookup_icq(ioc, q);
36 	spin_unlock_irq(&q->queue_lock);
37 
38 	if (!icq) {
39 		icq = ioc_create_icq(ioc, q, GFP_ATOMIC);
40 		if (!icq)
41 			return;
42 	}
43 	get_io_context(icq->ioc);
44 	rq->elv.icq = icq;
45 }
46 
47 /*
48  * Mark a hardware queue as needing a restart. For shared queues, maintain
49  * a count of how many hardware queues are marked for restart.
50  */
51 void blk_mq_sched_mark_restart_hctx(struct blk_mq_hw_ctx *hctx)
52 {
53 	if (test_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state))
54 		return;
55 
56 	set_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state);
57 }
58 EXPORT_SYMBOL_GPL(blk_mq_sched_mark_restart_hctx);
59 
60 void __blk_mq_sched_restart(struct blk_mq_hw_ctx *hctx)
61 {
62 	clear_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state);
63 
64 	/*
65 	 * Order clearing SCHED_RESTART and list_empty_careful(&hctx->dispatch)
66 	 * in blk_mq_run_hw_queue(). Its pair is the barrier in
67 	 * blk_mq_dispatch_rq_list(). So dispatch code won't see SCHED_RESTART,
68 	 * meantime new request added to hctx->dispatch is missed to check in
69 	 * blk_mq_run_hw_queue().
70 	 */
71 	smp_mb();
72 
73 	blk_mq_run_hw_queue(hctx, true);
74 }
75 
76 static int sched_rq_cmp(void *priv, const struct list_head *a,
77 			const struct list_head *b)
78 {
79 	struct request *rqa = container_of(a, struct request, queuelist);
80 	struct request *rqb = container_of(b, struct request, queuelist);
81 
82 	return rqa->mq_hctx > rqb->mq_hctx;
83 }
84 
85 static bool blk_mq_dispatch_hctx_list(struct list_head *rq_list)
86 {
87 	struct blk_mq_hw_ctx *hctx =
88 		list_first_entry(rq_list, struct request, queuelist)->mq_hctx;
89 	struct request *rq;
90 	LIST_HEAD(hctx_list);
91 	unsigned int count = 0;
92 
93 	list_for_each_entry(rq, rq_list, queuelist) {
94 		if (rq->mq_hctx != hctx) {
95 			list_cut_before(&hctx_list, rq_list, &rq->queuelist);
96 			goto dispatch;
97 		}
98 		count++;
99 	}
100 	list_splice_tail_init(rq_list, &hctx_list);
101 
102 dispatch:
103 	return blk_mq_dispatch_rq_list(hctx, &hctx_list, count);
104 }
105 
106 #define BLK_MQ_BUDGET_DELAY	3		/* ms units */
107 
108 /*
109  * Only SCSI implements .get_budget and .put_budget, and SCSI restarts
110  * its queue by itself in its completion handler, so we don't need to
111  * restart queue if .get_budget() returns BLK_STS_NO_RESOURCE.
112  *
113  * Returns -EAGAIN if hctx->dispatch was found non-empty and run_work has to
114  * be run again.  This is necessary to avoid starving flushes.
115  */
116 static int __blk_mq_do_dispatch_sched(struct blk_mq_hw_ctx *hctx)
117 {
118 	struct request_queue *q = hctx->queue;
119 	struct elevator_queue *e = q->elevator;
120 	bool multi_hctxs = false, run_queue = false;
121 	bool dispatched = false, busy = false;
122 	unsigned int max_dispatch;
123 	LIST_HEAD(rq_list);
124 	int count = 0;
125 
126 	if (hctx->dispatch_busy)
127 		max_dispatch = 1;
128 	else
129 		max_dispatch = hctx->queue->nr_requests;
130 
131 	do {
132 		struct request *rq;
133 		int budget_token;
134 
135 		if (e->type->ops.has_work && !e->type->ops.has_work(hctx))
136 			break;
137 
138 		if (!list_empty_careful(&hctx->dispatch)) {
139 			busy = true;
140 			break;
141 		}
142 
143 		budget_token = blk_mq_get_dispatch_budget(q);
144 		if (budget_token < 0)
145 			break;
146 
147 		rq = e->type->ops.dispatch_request(hctx);
148 		if (!rq) {
149 			blk_mq_put_dispatch_budget(q, budget_token);
150 			/*
151 			 * We're releasing without dispatching. Holding the
152 			 * budget could have blocked any "hctx"s with the
153 			 * same queue and if we didn't dispatch then there's
154 			 * no guarantee anyone will kick the queue.  Kick it
155 			 * ourselves.
156 			 */
157 			run_queue = true;
158 			break;
159 		}
160 
161 		blk_mq_set_rq_budget_token(rq, budget_token);
162 
163 		/*
164 		 * Now this rq owns the budget which has to be released
165 		 * if this rq won't be queued to driver via .queue_rq()
166 		 * in blk_mq_dispatch_rq_list().
167 		 */
168 		list_add_tail(&rq->queuelist, &rq_list);
169 		count++;
170 		if (rq->mq_hctx != hctx)
171 			multi_hctxs = true;
172 
173 		/*
174 		 * If we cannot get tag for the request, stop dequeueing
175 		 * requests from the IO scheduler. We are unlikely to be able
176 		 * to submit them anyway and it creates false impression for
177 		 * scheduling heuristics that the device can take more IO.
178 		 */
179 		if (!blk_mq_get_driver_tag(rq))
180 			break;
181 	} while (count < max_dispatch);
182 
183 	if (!count) {
184 		if (run_queue)
185 			blk_mq_delay_run_hw_queues(q, BLK_MQ_BUDGET_DELAY);
186 	} else if (multi_hctxs) {
187 		/*
188 		 * Requests from different hctx may be dequeued from some
189 		 * schedulers, such as bfq and deadline.
190 		 *
191 		 * Sort the requests in the list according to their hctx,
192 		 * dispatch batching requests from same hctx at a time.
193 		 */
194 		list_sort(NULL, &rq_list, sched_rq_cmp);
195 		do {
196 			dispatched |= blk_mq_dispatch_hctx_list(&rq_list);
197 		} while (!list_empty(&rq_list));
198 	} else {
199 		dispatched = blk_mq_dispatch_rq_list(hctx, &rq_list, count);
200 	}
201 
202 	if (busy)
203 		return -EAGAIN;
204 	return !!dispatched;
205 }
206 
207 static int blk_mq_do_dispatch_sched(struct blk_mq_hw_ctx *hctx)
208 {
209 	int ret;
210 
211 	do {
212 		ret = __blk_mq_do_dispatch_sched(hctx);
213 	} while (ret == 1);
214 
215 	return ret;
216 }
217 
218 static struct blk_mq_ctx *blk_mq_next_ctx(struct blk_mq_hw_ctx *hctx,
219 					  struct blk_mq_ctx *ctx)
220 {
221 	unsigned short idx = ctx->index_hw[hctx->type];
222 
223 	if (++idx == hctx->nr_ctx)
224 		idx = 0;
225 
226 	return hctx->ctxs[idx];
227 }
228 
229 /*
230  * Only SCSI implements .get_budget and .put_budget, and SCSI restarts
231  * its queue by itself in its completion handler, so we don't need to
232  * restart queue if .get_budget() returns BLK_STS_NO_RESOURCE.
233  *
234  * Returns -EAGAIN if hctx->dispatch was found non-empty and run_work has to
235  * be run again.  This is necessary to avoid starving flushes.
236  */
237 static int blk_mq_do_dispatch_ctx(struct blk_mq_hw_ctx *hctx)
238 {
239 	struct request_queue *q = hctx->queue;
240 	LIST_HEAD(rq_list);
241 	struct blk_mq_ctx *ctx = READ_ONCE(hctx->dispatch_from);
242 	int ret = 0;
243 	struct request *rq;
244 
245 	do {
246 		int budget_token;
247 
248 		if (!list_empty_careful(&hctx->dispatch)) {
249 			ret = -EAGAIN;
250 			break;
251 		}
252 
253 		if (!sbitmap_any_bit_set(&hctx->ctx_map))
254 			break;
255 
256 		budget_token = blk_mq_get_dispatch_budget(q);
257 		if (budget_token < 0)
258 			break;
259 
260 		rq = blk_mq_dequeue_from_ctx(hctx, ctx);
261 		if (!rq) {
262 			blk_mq_put_dispatch_budget(q, budget_token);
263 			/*
264 			 * We're releasing without dispatching. Holding the
265 			 * budget could have blocked any "hctx"s with the
266 			 * same queue and if we didn't dispatch then there's
267 			 * no guarantee anyone will kick the queue.  Kick it
268 			 * ourselves.
269 			 */
270 			blk_mq_delay_run_hw_queues(q, BLK_MQ_BUDGET_DELAY);
271 			break;
272 		}
273 
274 		blk_mq_set_rq_budget_token(rq, budget_token);
275 
276 		/*
277 		 * Now this rq owns the budget which has to be released
278 		 * if this rq won't be queued to driver via .queue_rq()
279 		 * in blk_mq_dispatch_rq_list().
280 		 */
281 		list_add(&rq->queuelist, &rq_list);
282 
283 		/* round robin for fair dispatch */
284 		ctx = blk_mq_next_ctx(hctx, rq->mq_ctx);
285 
286 	} while (blk_mq_dispatch_rq_list(rq->mq_hctx, &rq_list, 1));
287 
288 	WRITE_ONCE(hctx->dispatch_from, ctx);
289 	return ret;
290 }
291 
292 static int __blk_mq_sched_dispatch_requests(struct blk_mq_hw_ctx *hctx)
293 {
294 	struct request_queue *q = hctx->queue;
295 	const bool has_sched = q->elevator;
296 	int ret = 0;
297 	LIST_HEAD(rq_list);
298 
299 	/*
300 	 * If we have previous entries on our dispatch list, grab them first for
301 	 * more fair dispatch.
302 	 */
303 	if (!list_empty_careful(&hctx->dispatch)) {
304 		spin_lock(&hctx->lock);
305 		if (!list_empty(&hctx->dispatch))
306 			list_splice_init(&hctx->dispatch, &rq_list);
307 		spin_unlock(&hctx->lock);
308 	}
309 
310 	/*
311 	 * Only ask the scheduler for requests, if we didn't have residual
312 	 * requests from the dispatch list. This is to avoid the case where
313 	 * we only ever dispatch a fraction of the requests available because
314 	 * of low device queue depth. Once we pull requests out of the IO
315 	 * scheduler, we can no longer merge or sort them. So it's best to
316 	 * leave them there for as long as we can. Mark the hw queue as
317 	 * needing a restart in that case.
318 	 *
319 	 * We want to dispatch from the scheduler if there was nothing
320 	 * on the dispatch list or we were able to dispatch from the
321 	 * dispatch list.
322 	 */
323 	if (!list_empty(&rq_list)) {
324 		blk_mq_sched_mark_restart_hctx(hctx);
325 		if (blk_mq_dispatch_rq_list(hctx, &rq_list, 0)) {
326 			if (has_sched)
327 				ret = blk_mq_do_dispatch_sched(hctx);
328 			else
329 				ret = blk_mq_do_dispatch_ctx(hctx);
330 		}
331 	} else if (has_sched) {
332 		ret = blk_mq_do_dispatch_sched(hctx);
333 	} else if (hctx->dispatch_busy) {
334 		/* dequeue request one by one from sw queue if queue is busy */
335 		ret = blk_mq_do_dispatch_ctx(hctx);
336 	} else {
337 		blk_mq_flush_busy_ctxs(hctx, &rq_list);
338 		blk_mq_dispatch_rq_list(hctx, &rq_list, 0);
339 	}
340 
341 	return ret;
342 }
343 
344 void blk_mq_sched_dispatch_requests(struct blk_mq_hw_ctx *hctx)
345 {
346 	struct request_queue *q = hctx->queue;
347 
348 	/* RCU or SRCU read lock is needed before checking quiesced flag */
349 	if (unlikely(blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(q)))
350 		return;
351 
352 	hctx->run++;
353 
354 	/*
355 	 * A return of -EAGAIN is an indication that hctx->dispatch is not
356 	 * empty and we must run again in order to avoid starving flushes.
357 	 */
358 	if (__blk_mq_sched_dispatch_requests(hctx) == -EAGAIN) {
359 		if (__blk_mq_sched_dispatch_requests(hctx) == -EAGAIN)
360 			blk_mq_run_hw_queue(hctx, true);
361 	}
362 }
363 
364 bool blk_mq_sched_bio_merge(struct request_queue *q, struct bio *bio,
365 		unsigned int nr_segs)
366 {
367 	struct elevator_queue *e = q->elevator;
368 	struct blk_mq_ctx *ctx;
369 	struct blk_mq_hw_ctx *hctx;
370 	bool ret = false;
371 	enum hctx_type type;
372 
373 	if (bio_queue_enter(bio))
374 		return false;
375 
376 	if (e && e->type->ops.bio_merge) {
377 		ret = e->type->ops.bio_merge(q, bio, nr_segs);
378 		goto out_put;
379 	}
380 
381 	ctx = blk_mq_get_ctx(q);
382 	hctx = blk_mq_map_queue(q, bio->bi_opf, ctx);
383 	type = hctx->type;
384 	if (!(hctx->flags & BLK_MQ_F_SHOULD_MERGE) ||
385 	    list_empty_careful(&ctx->rq_lists[type]))
386 		goto out_put;
387 
388 	/* default per sw-queue merge */
389 	spin_lock(&ctx->lock);
390 	/*
391 	 * Reverse check our software queue for entries that we could
392 	 * potentially merge with. Currently includes a hand-wavy stop
393 	 * count of 8, to not spend too much time checking for merges.
394 	 */
395 	if (blk_bio_list_merge(q, &ctx->rq_lists[type], bio, nr_segs))
396 		ret = true;
397 
398 	spin_unlock(&ctx->lock);
399 out_put:
400 	blk_queue_exit(q);
401 	return ret;
402 }
403 
404 bool blk_mq_sched_try_insert_merge(struct request_queue *q, struct request *rq,
405 				   struct list_head *free)
406 {
407 	return rq_mergeable(rq) && elv_attempt_insert_merge(q, rq, free);
408 }
409 EXPORT_SYMBOL_GPL(blk_mq_sched_try_insert_merge);
410 
411 static bool blk_mq_sched_bypass_insert(struct blk_mq_hw_ctx *hctx,
412 				       struct request *rq)
413 {
414 	/*
415 	 * dispatch flush and passthrough rq directly
416 	 *
417 	 * passthrough request has to be added to hctx->dispatch directly.
418 	 * For some reason, device may be in one situation which can't
419 	 * handle FS request, so STS_RESOURCE is always returned and the
420 	 * FS request will be added to hctx->dispatch. However passthrough
421 	 * request may be required at that time for fixing the problem. If
422 	 * passthrough request is added to scheduler queue, there isn't any
423 	 * chance to dispatch it given we prioritize requests in hctx->dispatch.
424 	 */
425 	if ((rq->rq_flags & RQF_FLUSH_SEQ) || blk_rq_is_passthrough(rq))
426 		return true;
427 
428 	return false;
429 }
430 
431 void blk_mq_sched_insert_request(struct request *rq, bool at_head,
432 				 bool run_queue, bool async)
433 {
434 	struct request_queue *q = rq->q;
435 	struct elevator_queue *e = q->elevator;
436 	struct blk_mq_ctx *ctx = rq->mq_ctx;
437 	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
438 
439 	WARN_ON(e && (rq->tag != BLK_MQ_NO_TAG));
440 
441 	if (blk_mq_sched_bypass_insert(hctx, rq)) {
442 		/*
443 		 * Firstly normal IO request is inserted to scheduler queue or
444 		 * sw queue, meantime we add flush request to dispatch queue(
445 		 * hctx->dispatch) directly and there is at most one in-flight
446 		 * flush request for each hw queue, so it doesn't matter to add
447 		 * flush request to tail or front of the dispatch queue.
448 		 *
449 		 * Secondly in case of NCQ, flush request belongs to non-NCQ
450 		 * command, and queueing it will fail when there is any
451 		 * in-flight normal IO request(NCQ command). When adding flush
452 		 * rq to the front of hctx->dispatch, it is easier to introduce
453 		 * extra time to flush rq's latency because of S_SCHED_RESTART
454 		 * compared with adding to the tail of dispatch queue, then
455 		 * chance of flush merge is increased, and less flush requests
456 		 * will be issued to controller. It is observed that ~10% time
457 		 * is saved in blktests block/004 on disk attached to AHCI/NCQ
458 		 * drive when adding flush rq to the front of hctx->dispatch.
459 		 *
460 		 * Simply queue flush rq to the front of hctx->dispatch so that
461 		 * intensive flush workloads can benefit in case of NCQ HW.
462 		 */
463 		at_head = (rq->rq_flags & RQF_FLUSH_SEQ) ? true : at_head;
464 		blk_mq_request_bypass_insert(rq, at_head, false);
465 		goto run;
466 	}
467 
468 	if (e) {
469 		LIST_HEAD(list);
470 
471 		list_add(&rq->queuelist, &list);
472 		e->type->ops.insert_requests(hctx, &list, at_head);
473 	} else {
474 		spin_lock(&ctx->lock);
475 		__blk_mq_insert_request(hctx, rq, at_head);
476 		spin_unlock(&ctx->lock);
477 	}
478 
479 run:
480 	if (run_queue)
481 		blk_mq_run_hw_queue(hctx, async);
482 }
483 
484 void blk_mq_sched_insert_requests(struct blk_mq_hw_ctx *hctx,
485 				  struct blk_mq_ctx *ctx,
486 				  struct list_head *list, bool run_queue_async)
487 {
488 	struct elevator_queue *e;
489 	struct request_queue *q = hctx->queue;
490 
491 	/*
492 	 * blk_mq_sched_insert_requests() is called from flush plug
493 	 * context only, and hold one usage counter to prevent queue
494 	 * from being released.
495 	 */
496 	percpu_ref_get(&q->q_usage_counter);
497 
498 	e = hctx->queue->elevator;
499 	if (e) {
500 		e->type->ops.insert_requests(hctx, list, false);
501 	} else {
502 		/*
503 		 * try to issue requests directly if the hw queue isn't
504 		 * busy in case of 'none' scheduler, and this way may save
505 		 * us one extra enqueue & dequeue to sw queue.
506 		 */
507 		if (!hctx->dispatch_busy && !run_queue_async) {
508 			blk_mq_try_issue_list_directly(hctx, list);
509 			if (list_empty(list))
510 				goto out;
511 		}
512 		blk_mq_insert_requests(hctx, ctx, list);
513 	}
514 
515 	blk_mq_run_hw_queue(hctx, run_queue_async);
516  out:
517 	percpu_ref_put(&q->q_usage_counter);
518 }
519 
520 static int blk_mq_sched_alloc_map_and_rqs(struct request_queue *q,
521 					  struct blk_mq_hw_ctx *hctx,
522 					  unsigned int hctx_idx)
523 {
524 	if (blk_mq_is_shared_tags(q->tag_set->flags)) {
525 		hctx->sched_tags = q->sched_shared_tags;
526 		return 0;
527 	}
528 
529 	hctx->sched_tags = blk_mq_alloc_map_and_rqs(q->tag_set, hctx_idx,
530 						    q->nr_requests);
531 
532 	if (!hctx->sched_tags)
533 		return -ENOMEM;
534 	return 0;
535 }
536 
537 static void blk_mq_exit_sched_shared_tags(struct request_queue *queue)
538 {
539 	blk_mq_free_rq_map(queue->sched_shared_tags);
540 	queue->sched_shared_tags = NULL;
541 }
542 
543 /* called in queue's release handler, tagset has gone away */
544 static void blk_mq_sched_tags_teardown(struct request_queue *q, unsigned int flags)
545 {
546 	struct blk_mq_hw_ctx *hctx;
547 	int i;
548 
549 	queue_for_each_hw_ctx(q, hctx, i) {
550 		if (hctx->sched_tags) {
551 			if (!blk_mq_is_shared_tags(flags))
552 				blk_mq_free_rq_map(hctx->sched_tags);
553 			hctx->sched_tags = NULL;
554 		}
555 	}
556 
557 	if (blk_mq_is_shared_tags(flags))
558 		blk_mq_exit_sched_shared_tags(q);
559 }
560 
561 static int blk_mq_init_sched_shared_tags(struct request_queue *queue)
562 {
563 	struct blk_mq_tag_set *set = queue->tag_set;
564 
565 	/*
566 	 * Set initial depth at max so that we don't need to reallocate for
567 	 * updating nr_requests.
568 	 */
569 	queue->sched_shared_tags = blk_mq_alloc_map_and_rqs(set,
570 						BLK_MQ_NO_HCTX_IDX,
571 						MAX_SCHED_RQ);
572 	if (!queue->sched_shared_tags)
573 		return -ENOMEM;
574 
575 	blk_mq_tag_update_sched_shared_tags(queue);
576 
577 	return 0;
578 }
579 
580 int blk_mq_init_sched(struct request_queue *q, struct elevator_type *e)
581 {
582 	unsigned int i, flags = q->tag_set->flags;
583 	struct blk_mq_hw_ctx *hctx;
584 	struct elevator_queue *eq;
585 	int ret;
586 
587 	if (!e) {
588 		q->elevator = NULL;
589 		q->nr_requests = q->tag_set->queue_depth;
590 		return 0;
591 	}
592 
593 	/*
594 	 * Default to double of smaller one between hw queue_depth and 128,
595 	 * since we don't split into sync/async like the old code did.
596 	 * Additionally, this is a per-hw queue depth.
597 	 */
598 	q->nr_requests = 2 * min_t(unsigned int, q->tag_set->queue_depth,
599 				   BLKDEV_DEFAULT_RQ);
600 
601 	if (blk_mq_is_shared_tags(flags)) {
602 		ret = blk_mq_init_sched_shared_tags(q);
603 		if (ret)
604 			return ret;
605 	}
606 
607 	queue_for_each_hw_ctx(q, hctx, i) {
608 		ret = blk_mq_sched_alloc_map_and_rqs(q, hctx, i);
609 		if (ret)
610 			goto err_free_map_and_rqs;
611 	}
612 
613 	ret = e->ops.init_sched(q, e);
614 	if (ret)
615 		goto err_free_map_and_rqs;
616 
617 	blk_mq_debugfs_register_sched(q);
618 
619 	queue_for_each_hw_ctx(q, hctx, i) {
620 		if (e->ops.init_hctx) {
621 			ret = e->ops.init_hctx(hctx, i);
622 			if (ret) {
623 				eq = q->elevator;
624 				blk_mq_sched_free_rqs(q);
625 				blk_mq_exit_sched(q, eq);
626 				kobject_put(&eq->kobj);
627 				return ret;
628 			}
629 		}
630 		blk_mq_debugfs_register_sched_hctx(q, hctx);
631 	}
632 
633 	return 0;
634 
635 err_free_map_and_rqs:
636 	blk_mq_sched_free_rqs(q);
637 	blk_mq_sched_tags_teardown(q, flags);
638 
639 	q->elevator = NULL;
640 	return ret;
641 }
642 
643 /*
644  * called in either blk_queue_cleanup or elevator_switch, tagset
645  * is required for freeing requests
646  */
647 void blk_mq_sched_free_rqs(struct request_queue *q)
648 {
649 	struct blk_mq_hw_ctx *hctx;
650 	int i;
651 
652 	if (blk_mq_is_shared_tags(q->tag_set->flags)) {
653 		blk_mq_free_rqs(q->tag_set, q->sched_shared_tags,
654 				BLK_MQ_NO_HCTX_IDX);
655 	} else {
656 		queue_for_each_hw_ctx(q, hctx, i) {
657 			if (hctx->sched_tags)
658 				blk_mq_free_rqs(q->tag_set,
659 						hctx->sched_tags, i);
660 		}
661 	}
662 }
663 
664 void blk_mq_exit_sched(struct request_queue *q, struct elevator_queue *e)
665 {
666 	struct blk_mq_hw_ctx *hctx;
667 	unsigned int i;
668 	unsigned int flags = 0;
669 
670 	queue_for_each_hw_ctx(q, hctx, i) {
671 		blk_mq_debugfs_unregister_sched_hctx(hctx);
672 		if (e->type->ops.exit_hctx && hctx->sched_data) {
673 			e->type->ops.exit_hctx(hctx, i);
674 			hctx->sched_data = NULL;
675 		}
676 		flags = hctx->flags;
677 	}
678 	blk_mq_debugfs_unregister_sched(q);
679 	if (e->type->ops.exit_sched)
680 		e->type->ops.exit_sched(e);
681 	blk_mq_sched_tags_teardown(q, flags);
682 	q->elevator = NULL;
683 }
684