xref: /linux/block/blk-mq-sched.c (revision 0408c58be5a475c99b271f08d85859f7b59ec767)
1 /*
2  * blk-mq scheduling framework
3  *
4  * Copyright (C) 2016 Jens Axboe
5  */
6 #include <linux/kernel.h>
7 #include <linux/module.h>
8 #include <linux/blk-mq.h>
9 
10 #include <trace/events/block.h>
11 
12 #include "blk.h"
13 #include "blk-mq.h"
14 #include "blk-mq-debugfs.h"
15 #include "blk-mq-sched.h"
16 #include "blk-mq-tag.h"
17 #include "blk-wbt.h"
18 
19 void blk_mq_sched_free_hctx_data(struct request_queue *q,
20 				 void (*exit)(struct blk_mq_hw_ctx *))
21 {
22 	struct blk_mq_hw_ctx *hctx;
23 	int i;
24 
25 	queue_for_each_hw_ctx(q, hctx, i) {
26 		if (exit && hctx->sched_data)
27 			exit(hctx);
28 		kfree(hctx->sched_data);
29 		hctx->sched_data = NULL;
30 	}
31 }
32 EXPORT_SYMBOL_GPL(blk_mq_sched_free_hctx_data);
33 
34 static void __blk_mq_sched_assign_ioc(struct request_queue *q,
35 				      struct request *rq,
36 				      struct bio *bio,
37 				      struct io_context *ioc)
38 {
39 	struct io_cq *icq;
40 
41 	spin_lock_irq(q->queue_lock);
42 	icq = ioc_lookup_icq(ioc, q);
43 	spin_unlock_irq(q->queue_lock);
44 
45 	if (!icq) {
46 		icq = ioc_create_icq(ioc, q, GFP_ATOMIC);
47 		if (!icq)
48 			return;
49 	}
50 
51 	rq->elv.icq = icq;
52 	if (!blk_mq_sched_get_rq_priv(q, rq, bio)) {
53 		rq->rq_flags |= RQF_ELVPRIV;
54 		get_io_context(icq->ioc);
55 		return;
56 	}
57 
58 	rq->elv.icq = NULL;
59 }
60 
61 static void blk_mq_sched_assign_ioc(struct request_queue *q,
62 				    struct request *rq, struct bio *bio)
63 {
64 	struct io_context *ioc;
65 
66 	ioc = rq_ioc(bio);
67 	if (ioc)
68 		__blk_mq_sched_assign_ioc(q, rq, bio, ioc);
69 }
70 
71 /*
72  * Mark a hardware queue as needing a restart. For shared queues, maintain
73  * a count of how many hardware queues are marked for restart.
74  */
75 static void blk_mq_sched_mark_restart_hctx(struct blk_mq_hw_ctx *hctx)
76 {
77 	if (test_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state))
78 		return;
79 
80 	if (hctx->flags & BLK_MQ_F_TAG_SHARED) {
81 		struct request_queue *q = hctx->queue;
82 
83 		if (!test_and_set_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state))
84 			atomic_inc(&q->shared_hctx_restart);
85 	} else
86 		set_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state);
87 }
88 
89 static bool blk_mq_sched_restart_hctx(struct blk_mq_hw_ctx *hctx)
90 {
91 	if (!test_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state))
92 		return false;
93 
94 	if (hctx->flags & BLK_MQ_F_TAG_SHARED) {
95 		struct request_queue *q = hctx->queue;
96 
97 		if (test_and_clear_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state))
98 			atomic_dec(&q->shared_hctx_restart);
99 	} else
100 		clear_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state);
101 
102 	if (blk_mq_hctx_has_pending(hctx)) {
103 		blk_mq_run_hw_queue(hctx, true);
104 		return true;
105 	}
106 
107 	return false;
108 }
109 
110 struct request *blk_mq_sched_get_request(struct request_queue *q,
111 					 struct bio *bio,
112 					 unsigned int op,
113 					 struct blk_mq_alloc_data *data)
114 {
115 	struct elevator_queue *e = q->elevator;
116 	struct request *rq;
117 
118 	blk_queue_enter_live(q);
119 	data->q = q;
120 	if (likely(!data->ctx))
121 		data->ctx = blk_mq_get_ctx(q);
122 	if (likely(!data->hctx))
123 		data->hctx = blk_mq_map_queue(q, data->ctx->cpu);
124 
125 	if (e) {
126 		data->flags |= BLK_MQ_REQ_INTERNAL;
127 
128 		/*
129 		 * Flush requests are special and go directly to the
130 		 * dispatch list.
131 		 */
132 		if (!op_is_flush(op) && e->type->ops.mq.get_request) {
133 			rq = e->type->ops.mq.get_request(q, op, data);
134 			if (rq)
135 				rq->rq_flags |= RQF_QUEUED;
136 		} else
137 			rq = __blk_mq_alloc_request(data, op);
138 	} else {
139 		rq = __blk_mq_alloc_request(data, op);
140 	}
141 
142 	if (rq) {
143 		if (!op_is_flush(op)) {
144 			rq->elv.icq = NULL;
145 			if (e && e->type->icq_cache)
146 				blk_mq_sched_assign_ioc(q, rq, bio);
147 		}
148 		data->hctx->queued++;
149 		return rq;
150 	}
151 
152 	blk_queue_exit(q);
153 	return NULL;
154 }
155 
156 void blk_mq_sched_put_request(struct request *rq)
157 {
158 	struct request_queue *q = rq->q;
159 	struct elevator_queue *e = q->elevator;
160 
161 	if (rq->rq_flags & RQF_ELVPRIV) {
162 		blk_mq_sched_put_rq_priv(rq->q, rq);
163 		if (rq->elv.icq) {
164 			put_io_context(rq->elv.icq->ioc);
165 			rq->elv.icq = NULL;
166 		}
167 	}
168 
169 	if ((rq->rq_flags & RQF_QUEUED) && e && e->type->ops.mq.put_request)
170 		e->type->ops.mq.put_request(rq);
171 	else
172 		blk_mq_finish_request(rq);
173 }
174 
175 void blk_mq_sched_dispatch_requests(struct blk_mq_hw_ctx *hctx)
176 {
177 	struct request_queue *q = hctx->queue;
178 	struct elevator_queue *e = q->elevator;
179 	const bool has_sched_dispatch = e && e->type->ops.mq.dispatch_request;
180 	bool did_work = false;
181 	LIST_HEAD(rq_list);
182 
183 	if (unlikely(blk_mq_hctx_stopped(hctx)))
184 		return;
185 
186 	hctx->run++;
187 
188 	/*
189 	 * If we have previous entries on our dispatch list, grab them first for
190 	 * more fair dispatch.
191 	 */
192 	if (!list_empty_careful(&hctx->dispatch)) {
193 		spin_lock(&hctx->lock);
194 		if (!list_empty(&hctx->dispatch))
195 			list_splice_init(&hctx->dispatch, &rq_list);
196 		spin_unlock(&hctx->lock);
197 	}
198 
199 	/*
200 	 * Only ask the scheduler for requests, if we didn't have residual
201 	 * requests from the dispatch list. This is to avoid the case where
202 	 * we only ever dispatch a fraction of the requests available because
203 	 * of low device queue depth. Once we pull requests out of the IO
204 	 * scheduler, we can no longer merge or sort them. So it's best to
205 	 * leave them there for as long as we can. Mark the hw queue as
206 	 * needing a restart in that case.
207 	 */
208 	if (!list_empty(&rq_list)) {
209 		blk_mq_sched_mark_restart_hctx(hctx);
210 		did_work = blk_mq_dispatch_rq_list(q, &rq_list);
211 	} else if (!has_sched_dispatch) {
212 		blk_mq_flush_busy_ctxs(hctx, &rq_list);
213 		blk_mq_dispatch_rq_list(q, &rq_list);
214 	}
215 
216 	/*
217 	 * We want to dispatch from the scheduler if we had no work left
218 	 * on the dispatch list, OR if we did have work but weren't able
219 	 * to make progress.
220 	 */
221 	if (!did_work && has_sched_dispatch) {
222 		do {
223 			struct request *rq;
224 
225 			rq = e->type->ops.mq.dispatch_request(hctx);
226 			if (!rq)
227 				break;
228 			list_add(&rq->queuelist, &rq_list);
229 		} while (blk_mq_dispatch_rq_list(q, &rq_list));
230 	}
231 }
232 
233 bool blk_mq_sched_try_merge(struct request_queue *q, struct bio *bio,
234 			    struct request **merged_request)
235 {
236 	struct request *rq;
237 
238 	switch (elv_merge(q, &rq, bio)) {
239 	case ELEVATOR_BACK_MERGE:
240 		if (!blk_mq_sched_allow_merge(q, rq, bio))
241 			return false;
242 		if (!bio_attempt_back_merge(q, rq, bio))
243 			return false;
244 		*merged_request = attempt_back_merge(q, rq);
245 		if (!*merged_request)
246 			elv_merged_request(q, rq, ELEVATOR_BACK_MERGE);
247 		return true;
248 	case ELEVATOR_FRONT_MERGE:
249 		if (!blk_mq_sched_allow_merge(q, rq, bio))
250 			return false;
251 		if (!bio_attempt_front_merge(q, rq, bio))
252 			return false;
253 		*merged_request = attempt_front_merge(q, rq);
254 		if (!*merged_request)
255 			elv_merged_request(q, rq, ELEVATOR_FRONT_MERGE);
256 		return true;
257 	default:
258 		return false;
259 	}
260 }
261 EXPORT_SYMBOL_GPL(blk_mq_sched_try_merge);
262 
263 bool __blk_mq_sched_bio_merge(struct request_queue *q, struct bio *bio)
264 {
265 	struct elevator_queue *e = q->elevator;
266 
267 	if (e->type->ops.mq.bio_merge) {
268 		struct blk_mq_ctx *ctx = blk_mq_get_ctx(q);
269 		struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, ctx->cpu);
270 
271 		blk_mq_put_ctx(ctx);
272 		return e->type->ops.mq.bio_merge(hctx, bio);
273 	}
274 
275 	return false;
276 }
277 
278 bool blk_mq_sched_try_insert_merge(struct request_queue *q, struct request *rq)
279 {
280 	return rq_mergeable(rq) && elv_attempt_insert_merge(q, rq);
281 }
282 EXPORT_SYMBOL_GPL(blk_mq_sched_try_insert_merge);
283 
284 void blk_mq_sched_request_inserted(struct request *rq)
285 {
286 	trace_block_rq_insert(rq->q, rq);
287 }
288 EXPORT_SYMBOL_GPL(blk_mq_sched_request_inserted);
289 
290 static bool blk_mq_sched_bypass_insert(struct blk_mq_hw_ctx *hctx,
291 				       struct request *rq)
292 {
293 	if (rq->tag == -1) {
294 		rq->rq_flags |= RQF_SORTED;
295 		return false;
296 	}
297 
298 	/*
299 	 * If we already have a real request tag, send directly to
300 	 * the dispatch list.
301 	 */
302 	spin_lock(&hctx->lock);
303 	list_add(&rq->queuelist, &hctx->dispatch);
304 	spin_unlock(&hctx->lock);
305 	return true;
306 }
307 
308 /**
309  * list_for_each_entry_rcu_rr - iterate in a round-robin fashion over rcu list
310  * @pos:    loop cursor.
311  * @skip:   the list element that will not be examined. Iteration starts at
312  *          @skip->next.
313  * @head:   head of the list to examine. This list must have at least one
314  *          element, namely @skip.
315  * @member: name of the list_head structure within typeof(*pos).
316  */
317 #define list_for_each_entry_rcu_rr(pos, skip, head, member)		\
318 	for ((pos) = (skip);						\
319 	     (pos = (pos)->member.next != (head) ? list_entry_rcu(	\
320 			(pos)->member.next, typeof(*pos), member) :	\
321 	      list_entry_rcu((pos)->member.next->next, typeof(*pos), member)), \
322 	     (pos) != (skip); )
323 
324 /*
325  * Called after a driver tag has been freed to check whether a hctx needs to
326  * be restarted. Restarts @hctx if its tag set is not shared. Restarts hardware
327  * queues in a round-robin fashion if the tag set of @hctx is shared with other
328  * hardware queues.
329  */
330 void blk_mq_sched_restart(struct blk_mq_hw_ctx *const hctx)
331 {
332 	struct blk_mq_tags *const tags = hctx->tags;
333 	struct blk_mq_tag_set *const set = hctx->queue->tag_set;
334 	struct request_queue *const queue = hctx->queue, *q;
335 	struct blk_mq_hw_ctx *hctx2;
336 	unsigned int i, j;
337 
338 	if (set->flags & BLK_MQ_F_TAG_SHARED) {
339 		/*
340 		 * If this is 0, then we know that no hardware queues
341 		 * have RESTART marked. We're done.
342 		 */
343 		if (!atomic_read(&queue->shared_hctx_restart))
344 			return;
345 
346 		rcu_read_lock();
347 		list_for_each_entry_rcu_rr(q, queue, &set->tag_list,
348 					   tag_set_list) {
349 			queue_for_each_hw_ctx(q, hctx2, i)
350 				if (hctx2->tags == tags &&
351 				    blk_mq_sched_restart_hctx(hctx2))
352 					goto done;
353 		}
354 		j = hctx->queue_num + 1;
355 		for (i = 0; i < queue->nr_hw_queues; i++, j++) {
356 			if (j == queue->nr_hw_queues)
357 				j = 0;
358 			hctx2 = queue->queue_hw_ctx[j];
359 			if (hctx2->tags == tags &&
360 			    blk_mq_sched_restart_hctx(hctx2))
361 				break;
362 		}
363 done:
364 		rcu_read_unlock();
365 	} else {
366 		blk_mq_sched_restart_hctx(hctx);
367 	}
368 }
369 
370 /*
371  * Add flush/fua to the queue. If we fail getting a driver tag, then
372  * punt to the requeue list. Requeue will re-invoke us from a context
373  * that's safe to block from.
374  */
375 static void blk_mq_sched_insert_flush(struct blk_mq_hw_ctx *hctx,
376 				      struct request *rq, bool can_block)
377 {
378 	if (blk_mq_get_driver_tag(rq, &hctx, can_block)) {
379 		blk_insert_flush(rq);
380 		blk_mq_run_hw_queue(hctx, true);
381 	} else
382 		blk_mq_add_to_requeue_list(rq, false, true);
383 }
384 
385 void blk_mq_sched_insert_request(struct request *rq, bool at_head,
386 				 bool run_queue, bool async, bool can_block)
387 {
388 	struct request_queue *q = rq->q;
389 	struct elevator_queue *e = q->elevator;
390 	struct blk_mq_ctx *ctx = rq->mq_ctx;
391 	struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, ctx->cpu);
392 
393 	if (rq->tag == -1 && op_is_flush(rq->cmd_flags)) {
394 		blk_mq_sched_insert_flush(hctx, rq, can_block);
395 		return;
396 	}
397 
398 	if (e && blk_mq_sched_bypass_insert(hctx, rq))
399 		goto run;
400 
401 	if (e && e->type->ops.mq.insert_requests) {
402 		LIST_HEAD(list);
403 
404 		list_add(&rq->queuelist, &list);
405 		e->type->ops.mq.insert_requests(hctx, &list, at_head);
406 	} else {
407 		spin_lock(&ctx->lock);
408 		__blk_mq_insert_request(hctx, rq, at_head);
409 		spin_unlock(&ctx->lock);
410 	}
411 
412 run:
413 	if (run_queue)
414 		blk_mq_run_hw_queue(hctx, async);
415 }
416 
417 void blk_mq_sched_insert_requests(struct request_queue *q,
418 				  struct blk_mq_ctx *ctx,
419 				  struct list_head *list, bool run_queue_async)
420 {
421 	struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, ctx->cpu);
422 	struct elevator_queue *e = hctx->queue->elevator;
423 
424 	if (e) {
425 		struct request *rq, *next;
426 
427 		/*
428 		 * We bypass requests that already have a driver tag assigned,
429 		 * which should only be flushes. Flushes are only ever inserted
430 		 * as single requests, so we shouldn't ever hit the
431 		 * WARN_ON_ONCE() below (but let's handle it just in case).
432 		 */
433 		list_for_each_entry_safe(rq, next, list, queuelist) {
434 			if (WARN_ON_ONCE(rq->tag != -1)) {
435 				list_del_init(&rq->queuelist);
436 				blk_mq_sched_bypass_insert(hctx, rq);
437 			}
438 		}
439 	}
440 
441 	if (e && e->type->ops.mq.insert_requests)
442 		e->type->ops.mq.insert_requests(hctx, list, false);
443 	else
444 		blk_mq_insert_requests(hctx, ctx, list);
445 
446 	blk_mq_run_hw_queue(hctx, run_queue_async);
447 }
448 
449 static void blk_mq_sched_free_tags(struct blk_mq_tag_set *set,
450 				   struct blk_mq_hw_ctx *hctx,
451 				   unsigned int hctx_idx)
452 {
453 	if (hctx->sched_tags) {
454 		blk_mq_free_rqs(set, hctx->sched_tags, hctx_idx);
455 		blk_mq_free_rq_map(hctx->sched_tags);
456 		hctx->sched_tags = NULL;
457 	}
458 }
459 
460 static int blk_mq_sched_alloc_tags(struct request_queue *q,
461 				   struct blk_mq_hw_ctx *hctx,
462 				   unsigned int hctx_idx)
463 {
464 	struct blk_mq_tag_set *set = q->tag_set;
465 	int ret;
466 
467 	hctx->sched_tags = blk_mq_alloc_rq_map(set, hctx_idx, q->nr_requests,
468 					       set->reserved_tags);
469 	if (!hctx->sched_tags)
470 		return -ENOMEM;
471 
472 	ret = blk_mq_alloc_rqs(set, hctx->sched_tags, hctx_idx, q->nr_requests);
473 	if (ret)
474 		blk_mq_sched_free_tags(set, hctx, hctx_idx);
475 
476 	return ret;
477 }
478 
479 static void blk_mq_sched_tags_teardown(struct request_queue *q)
480 {
481 	struct blk_mq_tag_set *set = q->tag_set;
482 	struct blk_mq_hw_ctx *hctx;
483 	int i;
484 
485 	queue_for_each_hw_ctx(q, hctx, i)
486 		blk_mq_sched_free_tags(set, hctx, i);
487 }
488 
489 int blk_mq_sched_init_hctx(struct request_queue *q, struct blk_mq_hw_ctx *hctx,
490 			   unsigned int hctx_idx)
491 {
492 	struct elevator_queue *e = q->elevator;
493 	int ret;
494 
495 	if (!e)
496 		return 0;
497 
498 	ret = blk_mq_sched_alloc_tags(q, hctx, hctx_idx);
499 	if (ret)
500 		return ret;
501 
502 	if (e->type->ops.mq.init_hctx) {
503 		ret = e->type->ops.mq.init_hctx(hctx, hctx_idx);
504 		if (ret) {
505 			blk_mq_sched_free_tags(q->tag_set, hctx, hctx_idx);
506 			return ret;
507 		}
508 	}
509 
510 	blk_mq_debugfs_register_sched_hctx(q, hctx);
511 
512 	return 0;
513 }
514 
515 void blk_mq_sched_exit_hctx(struct request_queue *q, struct blk_mq_hw_ctx *hctx,
516 			    unsigned int hctx_idx)
517 {
518 	struct elevator_queue *e = q->elevator;
519 
520 	if (!e)
521 		return;
522 
523 	blk_mq_debugfs_unregister_sched_hctx(hctx);
524 
525 	if (e->type->ops.mq.exit_hctx && hctx->sched_data) {
526 		e->type->ops.mq.exit_hctx(hctx, hctx_idx);
527 		hctx->sched_data = NULL;
528 	}
529 
530 	blk_mq_sched_free_tags(q->tag_set, hctx, hctx_idx);
531 }
532 
533 int blk_mq_init_sched(struct request_queue *q, struct elevator_type *e)
534 {
535 	struct blk_mq_hw_ctx *hctx;
536 	struct elevator_queue *eq;
537 	unsigned int i;
538 	int ret;
539 
540 	if (!e) {
541 		q->elevator = NULL;
542 		return 0;
543 	}
544 
545 	/*
546 	 * Default to 256, since we don't split into sync/async like the
547 	 * old code did. Additionally, this is a per-hw queue depth.
548 	 */
549 	q->nr_requests = 2 * BLKDEV_MAX_RQ;
550 
551 	queue_for_each_hw_ctx(q, hctx, i) {
552 		ret = blk_mq_sched_alloc_tags(q, hctx, i);
553 		if (ret)
554 			goto err;
555 	}
556 
557 	ret = e->ops.mq.init_sched(q, e);
558 	if (ret)
559 		goto err;
560 
561 	blk_mq_debugfs_register_sched(q);
562 
563 	queue_for_each_hw_ctx(q, hctx, i) {
564 		if (e->ops.mq.init_hctx) {
565 			ret = e->ops.mq.init_hctx(hctx, i);
566 			if (ret) {
567 				eq = q->elevator;
568 				blk_mq_exit_sched(q, eq);
569 				kobject_put(&eq->kobj);
570 				return ret;
571 			}
572 		}
573 		blk_mq_debugfs_register_sched_hctx(q, hctx);
574 	}
575 
576 	return 0;
577 
578 err:
579 	blk_mq_sched_tags_teardown(q);
580 	q->elevator = NULL;
581 	return ret;
582 }
583 
584 void blk_mq_exit_sched(struct request_queue *q, struct elevator_queue *e)
585 {
586 	struct blk_mq_hw_ctx *hctx;
587 	unsigned int i;
588 
589 	queue_for_each_hw_ctx(q, hctx, i) {
590 		blk_mq_debugfs_unregister_sched_hctx(hctx);
591 		if (e->type->ops.mq.exit_hctx && hctx->sched_data) {
592 			e->type->ops.mq.exit_hctx(hctx, i);
593 			hctx->sched_data = NULL;
594 		}
595 	}
596 	blk_mq_debugfs_unregister_sched(q);
597 	if (e->type->ops.mq.exit_sched)
598 		e->type->ops.mq.exit_sched(e);
599 	blk_mq_sched_tags_teardown(q);
600 	q->elevator = NULL;
601 }
602 
603 int blk_mq_sched_init(struct request_queue *q)
604 {
605 	int ret;
606 
607 	mutex_lock(&q->sysfs_lock);
608 	ret = elevator_init(q, NULL);
609 	mutex_unlock(&q->sysfs_lock);
610 
611 	return ret;
612 }
613