1 /* 2 * blk-mq scheduling framework 3 * 4 * Copyright (C) 2016 Jens Axboe 5 */ 6 #include <linux/kernel.h> 7 #include <linux/module.h> 8 #include <linux/blk-mq.h> 9 10 #include <trace/events/block.h> 11 12 #include "blk.h" 13 #include "blk-mq.h" 14 #include "blk-mq-debugfs.h" 15 #include "blk-mq-sched.h" 16 #include "blk-mq-tag.h" 17 #include "blk-wbt.h" 18 19 void blk_mq_sched_free_hctx_data(struct request_queue *q, 20 void (*exit)(struct blk_mq_hw_ctx *)) 21 { 22 struct blk_mq_hw_ctx *hctx; 23 int i; 24 25 queue_for_each_hw_ctx(q, hctx, i) { 26 if (exit && hctx->sched_data) 27 exit(hctx); 28 kfree(hctx->sched_data); 29 hctx->sched_data = NULL; 30 } 31 } 32 EXPORT_SYMBOL_GPL(blk_mq_sched_free_hctx_data); 33 34 static void __blk_mq_sched_assign_ioc(struct request_queue *q, 35 struct request *rq, 36 struct bio *bio, 37 struct io_context *ioc) 38 { 39 struct io_cq *icq; 40 41 spin_lock_irq(q->queue_lock); 42 icq = ioc_lookup_icq(ioc, q); 43 spin_unlock_irq(q->queue_lock); 44 45 if (!icq) { 46 icq = ioc_create_icq(ioc, q, GFP_ATOMIC); 47 if (!icq) 48 return; 49 } 50 51 rq->elv.icq = icq; 52 if (!blk_mq_sched_get_rq_priv(q, rq, bio)) { 53 rq->rq_flags |= RQF_ELVPRIV; 54 get_io_context(icq->ioc); 55 return; 56 } 57 58 rq->elv.icq = NULL; 59 } 60 61 static void blk_mq_sched_assign_ioc(struct request_queue *q, 62 struct request *rq, struct bio *bio) 63 { 64 struct io_context *ioc; 65 66 ioc = rq_ioc(bio); 67 if (ioc) 68 __blk_mq_sched_assign_ioc(q, rq, bio, ioc); 69 } 70 71 /* 72 * Mark a hardware queue as needing a restart. For shared queues, maintain 73 * a count of how many hardware queues are marked for restart. 74 */ 75 static void blk_mq_sched_mark_restart_hctx(struct blk_mq_hw_ctx *hctx) 76 { 77 if (test_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state)) 78 return; 79 80 if (hctx->flags & BLK_MQ_F_TAG_SHARED) { 81 struct request_queue *q = hctx->queue; 82 83 if (!test_and_set_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state)) 84 atomic_inc(&q->shared_hctx_restart); 85 } else 86 set_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state); 87 } 88 89 static bool blk_mq_sched_restart_hctx(struct blk_mq_hw_ctx *hctx) 90 { 91 if (!test_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state)) 92 return false; 93 94 if (hctx->flags & BLK_MQ_F_TAG_SHARED) { 95 struct request_queue *q = hctx->queue; 96 97 if (test_and_clear_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state)) 98 atomic_dec(&q->shared_hctx_restart); 99 } else 100 clear_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state); 101 102 if (blk_mq_hctx_has_pending(hctx)) { 103 blk_mq_run_hw_queue(hctx, true); 104 return true; 105 } 106 107 return false; 108 } 109 110 struct request *blk_mq_sched_get_request(struct request_queue *q, 111 struct bio *bio, 112 unsigned int op, 113 struct blk_mq_alloc_data *data) 114 { 115 struct elevator_queue *e = q->elevator; 116 struct request *rq; 117 118 blk_queue_enter_live(q); 119 data->q = q; 120 if (likely(!data->ctx)) 121 data->ctx = blk_mq_get_ctx(q); 122 if (likely(!data->hctx)) 123 data->hctx = blk_mq_map_queue(q, data->ctx->cpu); 124 125 if (e) { 126 data->flags |= BLK_MQ_REQ_INTERNAL; 127 128 /* 129 * Flush requests are special and go directly to the 130 * dispatch list. 131 */ 132 if (!op_is_flush(op) && e->type->ops.mq.get_request) { 133 rq = e->type->ops.mq.get_request(q, op, data); 134 if (rq) 135 rq->rq_flags |= RQF_QUEUED; 136 } else 137 rq = __blk_mq_alloc_request(data, op); 138 } else { 139 rq = __blk_mq_alloc_request(data, op); 140 } 141 142 if (rq) { 143 if (!op_is_flush(op)) { 144 rq->elv.icq = NULL; 145 if (e && e->type->icq_cache) 146 blk_mq_sched_assign_ioc(q, rq, bio); 147 } 148 data->hctx->queued++; 149 return rq; 150 } 151 152 blk_queue_exit(q); 153 return NULL; 154 } 155 156 void blk_mq_sched_put_request(struct request *rq) 157 { 158 struct request_queue *q = rq->q; 159 struct elevator_queue *e = q->elevator; 160 161 if (rq->rq_flags & RQF_ELVPRIV) { 162 blk_mq_sched_put_rq_priv(rq->q, rq); 163 if (rq->elv.icq) { 164 put_io_context(rq->elv.icq->ioc); 165 rq->elv.icq = NULL; 166 } 167 } 168 169 if ((rq->rq_flags & RQF_QUEUED) && e && e->type->ops.mq.put_request) 170 e->type->ops.mq.put_request(rq); 171 else 172 blk_mq_finish_request(rq); 173 } 174 175 void blk_mq_sched_dispatch_requests(struct blk_mq_hw_ctx *hctx) 176 { 177 struct request_queue *q = hctx->queue; 178 struct elevator_queue *e = q->elevator; 179 const bool has_sched_dispatch = e && e->type->ops.mq.dispatch_request; 180 bool did_work = false; 181 LIST_HEAD(rq_list); 182 183 if (unlikely(blk_mq_hctx_stopped(hctx))) 184 return; 185 186 hctx->run++; 187 188 /* 189 * If we have previous entries on our dispatch list, grab them first for 190 * more fair dispatch. 191 */ 192 if (!list_empty_careful(&hctx->dispatch)) { 193 spin_lock(&hctx->lock); 194 if (!list_empty(&hctx->dispatch)) 195 list_splice_init(&hctx->dispatch, &rq_list); 196 spin_unlock(&hctx->lock); 197 } 198 199 /* 200 * Only ask the scheduler for requests, if we didn't have residual 201 * requests from the dispatch list. This is to avoid the case where 202 * we only ever dispatch a fraction of the requests available because 203 * of low device queue depth. Once we pull requests out of the IO 204 * scheduler, we can no longer merge or sort them. So it's best to 205 * leave them there for as long as we can. Mark the hw queue as 206 * needing a restart in that case. 207 */ 208 if (!list_empty(&rq_list)) { 209 blk_mq_sched_mark_restart_hctx(hctx); 210 did_work = blk_mq_dispatch_rq_list(q, &rq_list); 211 } else if (!has_sched_dispatch) { 212 blk_mq_flush_busy_ctxs(hctx, &rq_list); 213 blk_mq_dispatch_rq_list(q, &rq_list); 214 } 215 216 /* 217 * We want to dispatch from the scheduler if we had no work left 218 * on the dispatch list, OR if we did have work but weren't able 219 * to make progress. 220 */ 221 if (!did_work && has_sched_dispatch) { 222 do { 223 struct request *rq; 224 225 rq = e->type->ops.mq.dispatch_request(hctx); 226 if (!rq) 227 break; 228 list_add(&rq->queuelist, &rq_list); 229 } while (blk_mq_dispatch_rq_list(q, &rq_list)); 230 } 231 } 232 233 bool blk_mq_sched_try_merge(struct request_queue *q, struct bio *bio, 234 struct request **merged_request) 235 { 236 struct request *rq; 237 238 switch (elv_merge(q, &rq, bio)) { 239 case ELEVATOR_BACK_MERGE: 240 if (!blk_mq_sched_allow_merge(q, rq, bio)) 241 return false; 242 if (!bio_attempt_back_merge(q, rq, bio)) 243 return false; 244 *merged_request = attempt_back_merge(q, rq); 245 if (!*merged_request) 246 elv_merged_request(q, rq, ELEVATOR_BACK_MERGE); 247 return true; 248 case ELEVATOR_FRONT_MERGE: 249 if (!blk_mq_sched_allow_merge(q, rq, bio)) 250 return false; 251 if (!bio_attempt_front_merge(q, rq, bio)) 252 return false; 253 *merged_request = attempt_front_merge(q, rq); 254 if (!*merged_request) 255 elv_merged_request(q, rq, ELEVATOR_FRONT_MERGE); 256 return true; 257 default: 258 return false; 259 } 260 } 261 EXPORT_SYMBOL_GPL(blk_mq_sched_try_merge); 262 263 bool __blk_mq_sched_bio_merge(struct request_queue *q, struct bio *bio) 264 { 265 struct elevator_queue *e = q->elevator; 266 267 if (e->type->ops.mq.bio_merge) { 268 struct blk_mq_ctx *ctx = blk_mq_get_ctx(q); 269 struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, ctx->cpu); 270 271 blk_mq_put_ctx(ctx); 272 return e->type->ops.mq.bio_merge(hctx, bio); 273 } 274 275 return false; 276 } 277 278 bool blk_mq_sched_try_insert_merge(struct request_queue *q, struct request *rq) 279 { 280 return rq_mergeable(rq) && elv_attempt_insert_merge(q, rq); 281 } 282 EXPORT_SYMBOL_GPL(blk_mq_sched_try_insert_merge); 283 284 void blk_mq_sched_request_inserted(struct request *rq) 285 { 286 trace_block_rq_insert(rq->q, rq); 287 } 288 EXPORT_SYMBOL_GPL(blk_mq_sched_request_inserted); 289 290 static bool blk_mq_sched_bypass_insert(struct blk_mq_hw_ctx *hctx, 291 struct request *rq) 292 { 293 if (rq->tag == -1) { 294 rq->rq_flags |= RQF_SORTED; 295 return false; 296 } 297 298 /* 299 * If we already have a real request tag, send directly to 300 * the dispatch list. 301 */ 302 spin_lock(&hctx->lock); 303 list_add(&rq->queuelist, &hctx->dispatch); 304 spin_unlock(&hctx->lock); 305 return true; 306 } 307 308 /** 309 * list_for_each_entry_rcu_rr - iterate in a round-robin fashion over rcu list 310 * @pos: loop cursor. 311 * @skip: the list element that will not be examined. Iteration starts at 312 * @skip->next. 313 * @head: head of the list to examine. This list must have at least one 314 * element, namely @skip. 315 * @member: name of the list_head structure within typeof(*pos). 316 */ 317 #define list_for_each_entry_rcu_rr(pos, skip, head, member) \ 318 for ((pos) = (skip); \ 319 (pos = (pos)->member.next != (head) ? list_entry_rcu( \ 320 (pos)->member.next, typeof(*pos), member) : \ 321 list_entry_rcu((pos)->member.next->next, typeof(*pos), member)), \ 322 (pos) != (skip); ) 323 324 /* 325 * Called after a driver tag has been freed to check whether a hctx needs to 326 * be restarted. Restarts @hctx if its tag set is not shared. Restarts hardware 327 * queues in a round-robin fashion if the tag set of @hctx is shared with other 328 * hardware queues. 329 */ 330 void blk_mq_sched_restart(struct blk_mq_hw_ctx *const hctx) 331 { 332 struct blk_mq_tags *const tags = hctx->tags; 333 struct blk_mq_tag_set *const set = hctx->queue->tag_set; 334 struct request_queue *const queue = hctx->queue, *q; 335 struct blk_mq_hw_ctx *hctx2; 336 unsigned int i, j; 337 338 if (set->flags & BLK_MQ_F_TAG_SHARED) { 339 /* 340 * If this is 0, then we know that no hardware queues 341 * have RESTART marked. We're done. 342 */ 343 if (!atomic_read(&queue->shared_hctx_restart)) 344 return; 345 346 rcu_read_lock(); 347 list_for_each_entry_rcu_rr(q, queue, &set->tag_list, 348 tag_set_list) { 349 queue_for_each_hw_ctx(q, hctx2, i) 350 if (hctx2->tags == tags && 351 blk_mq_sched_restart_hctx(hctx2)) 352 goto done; 353 } 354 j = hctx->queue_num + 1; 355 for (i = 0; i < queue->nr_hw_queues; i++, j++) { 356 if (j == queue->nr_hw_queues) 357 j = 0; 358 hctx2 = queue->queue_hw_ctx[j]; 359 if (hctx2->tags == tags && 360 blk_mq_sched_restart_hctx(hctx2)) 361 break; 362 } 363 done: 364 rcu_read_unlock(); 365 } else { 366 blk_mq_sched_restart_hctx(hctx); 367 } 368 } 369 370 /* 371 * Add flush/fua to the queue. If we fail getting a driver tag, then 372 * punt to the requeue list. Requeue will re-invoke us from a context 373 * that's safe to block from. 374 */ 375 static void blk_mq_sched_insert_flush(struct blk_mq_hw_ctx *hctx, 376 struct request *rq, bool can_block) 377 { 378 if (blk_mq_get_driver_tag(rq, &hctx, can_block)) { 379 blk_insert_flush(rq); 380 blk_mq_run_hw_queue(hctx, true); 381 } else 382 blk_mq_add_to_requeue_list(rq, false, true); 383 } 384 385 void blk_mq_sched_insert_request(struct request *rq, bool at_head, 386 bool run_queue, bool async, bool can_block) 387 { 388 struct request_queue *q = rq->q; 389 struct elevator_queue *e = q->elevator; 390 struct blk_mq_ctx *ctx = rq->mq_ctx; 391 struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, ctx->cpu); 392 393 if (rq->tag == -1 && op_is_flush(rq->cmd_flags)) { 394 blk_mq_sched_insert_flush(hctx, rq, can_block); 395 return; 396 } 397 398 if (e && blk_mq_sched_bypass_insert(hctx, rq)) 399 goto run; 400 401 if (e && e->type->ops.mq.insert_requests) { 402 LIST_HEAD(list); 403 404 list_add(&rq->queuelist, &list); 405 e->type->ops.mq.insert_requests(hctx, &list, at_head); 406 } else { 407 spin_lock(&ctx->lock); 408 __blk_mq_insert_request(hctx, rq, at_head); 409 spin_unlock(&ctx->lock); 410 } 411 412 run: 413 if (run_queue) 414 blk_mq_run_hw_queue(hctx, async); 415 } 416 417 void blk_mq_sched_insert_requests(struct request_queue *q, 418 struct blk_mq_ctx *ctx, 419 struct list_head *list, bool run_queue_async) 420 { 421 struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, ctx->cpu); 422 struct elevator_queue *e = hctx->queue->elevator; 423 424 if (e) { 425 struct request *rq, *next; 426 427 /* 428 * We bypass requests that already have a driver tag assigned, 429 * which should only be flushes. Flushes are only ever inserted 430 * as single requests, so we shouldn't ever hit the 431 * WARN_ON_ONCE() below (but let's handle it just in case). 432 */ 433 list_for_each_entry_safe(rq, next, list, queuelist) { 434 if (WARN_ON_ONCE(rq->tag != -1)) { 435 list_del_init(&rq->queuelist); 436 blk_mq_sched_bypass_insert(hctx, rq); 437 } 438 } 439 } 440 441 if (e && e->type->ops.mq.insert_requests) 442 e->type->ops.mq.insert_requests(hctx, list, false); 443 else 444 blk_mq_insert_requests(hctx, ctx, list); 445 446 blk_mq_run_hw_queue(hctx, run_queue_async); 447 } 448 449 static void blk_mq_sched_free_tags(struct blk_mq_tag_set *set, 450 struct blk_mq_hw_ctx *hctx, 451 unsigned int hctx_idx) 452 { 453 if (hctx->sched_tags) { 454 blk_mq_free_rqs(set, hctx->sched_tags, hctx_idx); 455 blk_mq_free_rq_map(hctx->sched_tags); 456 hctx->sched_tags = NULL; 457 } 458 } 459 460 static int blk_mq_sched_alloc_tags(struct request_queue *q, 461 struct blk_mq_hw_ctx *hctx, 462 unsigned int hctx_idx) 463 { 464 struct blk_mq_tag_set *set = q->tag_set; 465 int ret; 466 467 hctx->sched_tags = blk_mq_alloc_rq_map(set, hctx_idx, q->nr_requests, 468 set->reserved_tags); 469 if (!hctx->sched_tags) 470 return -ENOMEM; 471 472 ret = blk_mq_alloc_rqs(set, hctx->sched_tags, hctx_idx, q->nr_requests); 473 if (ret) 474 blk_mq_sched_free_tags(set, hctx, hctx_idx); 475 476 return ret; 477 } 478 479 static void blk_mq_sched_tags_teardown(struct request_queue *q) 480 { 481 struct blk_mq_tag_set *set = q->tag_set; 482 struct blk_mq_hw_ctx *hctx; 483 int i; 484 485 queue_for_each_hw_ctx(q, hctx, i) 486 blk_mq_sched_free_tags(set, hctx, i); 487 } 488 489 int blk_mq_sched_init_hctx(struct request_queue *q, struct blk_mq_hw_ctx *hctx, 490 unsigned int hctx_idx) 491 { 492 struct elevator_queue *e = q->elevator; 493 int ret; 494 495 if (!e) 496 return 0; 497 498 ret = blk_mq_sched_alloc_tags(q, hctx, hctx_idx); 499 if (ret) 500 return ret; 501 502 if (e->type->ops.mq.init_hctx) { 503 ret = e->type->ops.mq.init_hctx(hctx, hctx_idx); 504 if (ret) { 505 blk_mq_sched_free_tags(q->tag_set, hctx, hctx_idx); 506 return ret; 507 } 508 } 509 510 blk_mq_debugfs_register_sched_hctx(q, hctx); 511 512 return 0; 513 } 514 515 void blk_mq_sched_exit_hctx(struct request_queue *q, struct blk_mq_hw_ctx *hctx, 516 unsigned int hctx_idx) 517 { 518 struct elevator_queue *e = q->elevator; 519 520 if (!e) 521 return; 522 523 blk_mq_debugfs_unregister_sched_hctx(hctx); 524 525 if (e->type->ops.mq.exit_hctx && hctx->sched_data) { 526 e->type->ops.mq.exit_hctx(hctx, hctx_idx); 527 hctx->sched_data = NULL; 528 } 529 530 blk_mq_sched_free_tags(q->tag_set, hctx, hctx_idx); 531 } 532 533 int blk_mq_init_sched(struct request_queue *q, struct elevator_type *e) 534 { 535 struct blk_mq_hw_ctx *hctx; 536 struct elevator_queue *eq; 537 unsigned int i; 538 int ret; 539 540 if (!e) { 541 q->elevator = NULL; 542 return 0; 543 } 544 545 /* 546 * Default to 256, since we don't split into sync/async like the 547 * old code did. Additionally, this is a per-hw queue depth. 548 */ 549 q->nr_requests = 2 * BLKDEV_MAX_RQ; 550 551 queue_for_each_hw_ctx(q, hctx, i) { 552 ret = blk_mq_sched_alloc_tags(q, hctx, i); 553 if (ret) 554 goto err; 555 } 556 557 ret = e->ops.mq.init_sched(q, e); 558 if (ret) 559 goto err; 560 561 blk_mq_debugfs_register_sched(q); 562 563 queue_for_each_hw_ctx(q, hctx, i) { 564 if (e->ops.mq.init_hctx) { 565 ret = e->ops.mq.init_hctx(hctx, i); 566 if (ret) { 567 eq = q->elevator; 568 blk_mq_exit_sched(q, eq); 569 kobject_put(&eq->kobj); 570 return ret; 571 } 572 } 573 blk_mq_debugfs_register_sched_hctx(q, hctx); 574 } 575 576 return 0; 577 578 err: 579 blk_mq_sched_tags_teardown(q); 580 q->elevator = NULL; 581 return ret; 582 } 583 584 void blk_mq_exit_sched(struct request_queue *q, struct elevator_queue *e) 585 { 586 struct blk_mq_hw_ctx *hctx; 587 unsigned int i; 588 589 queue_for_each_hw_ctx(q, hctx, i) { 590 blk_mq_debugfs_unregister_sched_hctx(hctx); 591 if (e->type->ops.mq.exit_hctx && hctx->sched_data) { 592 e->type->ops.mq.exit_hctx(hctx, i); 593 hctx->sched_data = NULL; 594 } 595 } 596 blk_mq_debugfs_unregister_sched(q); 597 if (e->type->ops.mq.exit_sched) 598 e->type->ops.mq.exit_sched(e); 599 blk_mq_sched_tags_teardown(q); 600 q->elevator = NULL; 601 } 602 603 int blk_mq_sched_init(struct request_queue *q) 604 { 605 int ret; 606 607 mutex_lock(&q->sysfs_lock); 608 ret = elevator_init(q, NULL); 609 mutex_unlock(&q->sysfs_lock); 610 611 return ret; 612 } 613