1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Functions related to segment and merge handling 4 */ 5 #include <linux/kernel.h> 6 #include <linux/module.h> 7 #include <linux/bio.h> 8 #include <linux/blkdev.h> 9 #include <linux/blk-integrity.h> 10 #include <linux/scatterlist.h> 11 #include <linux/part_stat.h> 12 #include <linux/blk-cgroup.h> 13 14 #include <trace/events/block.h> 15 16 #include "blk.h" 17 #include "blk-mq-sched.h" 18 #include "blk-rq-qos.h" 19 #include "blk-throttle.h" 20 21 static inline void bio_get_first_bvec(struct bio *bio, struct bio_vec *bv) 22 { 23 *bv = mp_bvec_iter_bvec(bio->bi_io_vec, bio->bi_iter); 24 } 25 26 static inline void bio_get_last_bvec(struct bio *bio, struct bio_vec *bv) 27 { 28 struct bvec_iter iter = bio->bi_iter; 29 int idx; 30 31 bio_get_first_bvec(bio, bv); 32 if (bv->bv_len == bio->bi_iter.bi_size) 33 return; /* this bio only has a single bvec */ 34 35 bio_advance_iter(bio, &iter, iter.bi_size); 36 37 if (!iter.bi_bvec_done) 38 idx = iter.bi_idx - 1; 39 else /* in the middle of bvec */ 40 idx = iter.bi_idx; 41 42 *bv = bio->bi_io_vec[idx]; 43 44 /* 45 * iter.bi_bvec_done records actual length of the last bvec 46 * if this bio ends in the middle of one io vector 47 */ 48 if (iter.bi_bvec_done) 49 bv->bv_len = iter.bi_bvec_done; 50 } 51 52 static inline bool bio_will_gap(struct request_queue *q, 53 struct request *prev_rq, struct bio *prev, struct bio *next) 54 { 55 struct bio_vec pb, nb; 56 57 if (!bio_has_data(prev) || !queue_virt_boundary(q)) 58 return false; 59 60 /* 61 * Don't merge if the 1st bio starts with non-zero offset, otherwise it 62 * is quite difficult to respect the sg gap limit. We work hard to 63 * merge a huge number of small single bios in case of mkfs. 64 */ 65 if (prev_rq) 66 bio_get_first_bvec(prev_rq->bio, &pb); 67 else 68 bio_get_first_bvec(prev, &pb); 69 if (pb.bv_offset & queue_virt_boundary(q)) 70 return true; 71 72 /* 73 * We don't need to worry about the situation that the merged segment 74 * ends in unaligned virt boundary: 75 * 76 * - if 'pb' ends aligned, the merged segment ends aligned 77 * - if 'pb' ends unaligned, the next bio must include 78 * one single bvec of 'nb', otherwise the 'nb' can't 79 * merge with 'pb' 80 */ 81 bio_get_last_bvec(prev, &pb); 82 bio_get_first_bvec(next, &nb); 83 if (biovec_phys_mergeable(q, &pb, &nb)) 84 return false; 85 return __bvec_gap_to_prev(q, &pb, nb.bv_offset); 86 } 87 88 static inline bool req_gap_back_merge(struct request *req, struct bio *bio) 89 { 90 return bio_will_gap(req->q, req, req->biotail, bio); 91 } 92 93 static inline bool req_gap_front_merge(struct request *req, struct bio *bio) 94 { 95 return bio_will_gap(req->q, NULL, bio, req->bio); 96 } 97 98 static struct bio *blk_bio_discard_split(struct request_queue *q, 99 struct bio *bio, 100 struct bio_set *bs, 101 unsigned *nsegs) 102 { 103 unsigned int max_discard_sectors, granularity; 104 int alignment; 105 sector_t tmp; 106 unsigned split_sectors; 107 108 *nsegs = 1; 109 110 /* Zero-sector (unknown) and one-sector granularities are the same. */ 111 granularity = max(q->limits.discard_granularity >> 9, 1U); 112 113 max_discard_sectors = min(q->limits.max_discard_sectors, 114 bio_allowed_max_sectors(q)); 115 max_discard_sectors -= max_discard_sectors % granularity; 116 117 if (unlikely(!max_discard_sectors)) { 118 /* XXX: warn */ 119 return NULL; 120 } 121 122 if (bio_sectors(bio) <= max_discard_sectors) 123 return NULL; 124 125 split_sectors = max_discard_sectors; 126 127 /* 128 * If the next starting sector would be misaligned, stop the discard at 129 * the previous aligned sector. 130 */ 131 alignment = (q->limits.discard_alignment >> 9) % granularity; 132 133 tmp = bio->bi_iter.bi_sector + split_sectors - alignment; 134 tmp = sector_div(tmp, granularity); 135 136 if (split_sectors > tmp) 137 split_sectors -= tmp; 138 139 return bio_split(bio, split_sectors, GFP_NOIO, bs); 140 } 141 142 static struct bio *blk_bio_write_zeroes_split(struct request_queue *q, 143 struct bio *bio, struct bio_set *bs, unsigned *nsegs) 144 { 145 *nsegs = 0; 146 147 if (!q->limits.max_write_zeroes_sectors) 148 return NULL; 149 150 if (bio_sectors(bio) <= q->limits.max_write_zeroes_sectors) 151 return NULL; 152 153 return bio_split(bio, q->limits.max_write_zeroes_sectors, GFP_NOIO, bs); 154 } 155 156 /* 157 * Return the maximum number of sectors from the start of a bio that may be 158 * submitted as a single request to a block device. If enough sectors remain, 159 * align the end to the physical block size. Otherwise align the end to the 160 * logical block size. This approach minimizes the number of non-aligned 161 * requests that are submitted to a block device if the start of a bio is not 162 * aligned to a physical block boundary. 163 */ 164 static inline unsigned get_max_io_size(struct request_queue *q, 165 struct bio *bio) 166 { 167 unsigned sectors = blk_max_size_offset(q, bio->bi_iter.bi_sector, 0); 168 unsigned max_sectors = sectors; 169 unsigned pbs = queue_physical_block_size(q) >> SECTOR_SHIFT; 170 unsigned lbs = queue_logical_block_size(q) >> SECTOR_SHIFT; 171 unsigned start_offset = bio->bi_iter.bi_sector & (pbs - 1); 172 173 max_sectors += start_offset; 174 max_sectors &= ~(pbs - 1); 175 if (max_sectors > start_offset) 176 return max_sectors - start_offset; 177 178 return sectors & ~(lbs - 1); 179 } 180 181 static inline unsigned get_max_segment_size(const struct request_queue *q, 182 struct page *start_page, 183 unsigned long offset) 184 { 185 unsigned long mask = queue_segment_boundary(q); 186 187 offset = mask & (page_to_phys(start_page) + offset); 188 189 /* 190 * overflow may be triggered in case of zero page physical address 191 * on 32bit arch, use queue's max segment size when that happens. 192 */ 193 return min_not_zero(mask - offset + 1, 194 (unsigned long)queue_max_segment_size(q)); 195 } 196 197 /** 198 * bvec_split_segs - verify whether or not a bvec should be split in the middle 199 * @q: [in] request queue associated with the bio associated with @bv 200 * @bv: [in] bvec to examine 201 * @nsegs: [in,out] Number of segments in the bio being built. Incremented 202 * by the number of segments from @bv that may be appended to that 203 * bio without exceeding @max_segs 204 * @sectors: [in,out] Number of sectors in the bio being built. Incremented 205 * by the number of sectors from @bv that may be appended to that 206 * bio without exceeding @max_sectors 207 * @max_segs: [in] upper bound for *@nsegs 208 * @max_sectors: [in] upper bound for *@sectors 209 * 210 * When splitting a bio, it can happen that a bvec is encountered that is too 211 * big to fit in a single segment and hence that it has to be split in the 212 * middle. This function verifies whether or not that should happen. The value 213 * %true is returned if and only if appending the entire @bv to a bio with 214 * *@nsegs segments and *@sectors sectors would make that bio unacceptable for 215 * the block driver. 216 */ 217 static bool bvec_split_segs(const struct request_queue *q, 218 const struct bio_vec *bv, unsigned *nsegs, 219 unsigned *sectors, unsigned max_segs, 220 unsigned max_sectors) 221 { 222 unsigned max_len = (min(max_sectors, UINT_MAX >> 9) - *sectors) << 9; 223 unsigned len = min(bv->bv_len, max_len); 224 unsigned total_len = 0; 225 unsigned seg_size = 0; 226 227 while (len && *nsegs < max_segs) { 228 seg_size = get_max_segment_size(q, bv->bv_page, 229 bv->bv_offset + total_len); 230 seg_size = min(seg_size, len); 231 232 (*nsegs)++; 233 total_len += seg_size; 234 len -= seg_size; 235 236 if ((bv->bv_offset + total_len) & queue_virt_boundary(q)) 237 break; 238 } 239 240 *sectors += total_len >> 9; 241 242 /* tell the caller to split the bvec if it is too big to fit */ 243 return len > 0 || bv->bv_len > max_len; 244 } 245 246 /** 247 * blk_bio_segment_split - split a bio in two bios 248 * @q: [in] request queue pointer 249 * @bio: [in] bio to be split 250 * @bs: [in] bio set to allocate the clone from 251 * @segs: [out] number of segments in the bio with the first half of the sectors 252 * 253 * Clone @bio, update the bi_iter of the clone to represent the first sectors 254 * of @bio and update @bio->bi_iter to represent the remaining sectors. The 255 * following is guaranteed for the cloned bio: 256 * - That it has at most get_max_io_size(@q, @bio) sectors. 257 * - That it has at most queue_max_segments(@q) segments. 258 * 259 * Except for discard requests the cloned bio will point at the bi_io_vec of 260 * the original bio. It is the responsibility of the caller to ensure that the 261 * original bio is not freed before the cloned bio. The caller is also 262 * responsible for ensuring that @bs is only destroyed after processing of the 263 * split bio has finished. 264 */ 265 static struct bio *blk_bio_segment_split(struct request_queue *q, 266 struct bio *bio, 267 struct bio_set *bs, 268 unsigned *segs) 269 { 270 struct bio_vec bv, bvprv, *bvprvp = NULL; 271 struct bvec_iter iter; 272 unsigned nsegs = 0, sectors = 0; 273 const unsigned max_sectors = get_max_io_size(q, bio); 274 const unsigned max_segs = queue_max_segments(q); 275 276 bio_for_each_bvec(bv, bio, iter) { 277 /* 278 * If the queue doesn't support SG gaps and adding this 279 * offset would create a gap, disallow it. 280 */ 281 if (bvprvp && bvec_gap_to_prev(q, bvprvp, bv.bv_offset)) 282 goto split; 283 284 if (nsegs < max_segs && 285 sectors + (bv.bv_len >> 9) <= max_sectors && 286 bv.bv_offset + bv.bv_len <= PAGE_SIZE) { 287 nsegs++; 288 sectors += bv.bv_len >> 9; 289 } else if (bvec_split_segs(q, &bv, &nsegs, §ors, max_segs, 290 max_sectors)) { 291 goto split; 292 } 293 294 bvprv = bv; 295 bvprvp = &bvprv; 296 } 297 298 *segs = nsegs; 299 return NULL; 300 split: 301 *segs = nsegs; 302 303 /* 304 * Bio splitting may cause subtle trouble such as hang when doing sync 305 * iopoll in direct IO routine. Given performance gain of iopoll for 306 * big IO can be trival, disable iopoll when split needed. 307 */ 308 bio_clear_polled(bio); 309 return bio_split(bio, sectors, GFP_NOIO, bs); 310 } 311 312 /** 313 * __blk_queue_split - split a bio and submit the second half 314 * @q: [in] request_queue new bio is being queued at 315 * @bio: [in, out] bio to be split 316 * @nr_segs: [out] number of segments in the first bio 317 * 318 * Split a bio into two bios, chain the two bios, submit the second half and 319 * store a pointer to the first half in *@bio. If the second bio is still too 320 * big it will be split by a recursive call to this function. Since this 321 * function may allocate a new bio from q->bio_split, it is the responsibility 322 * of the caller to ensure that q->bio_split is only released after processing 323 * of the split bio has finished. 324 */ 325 void __blk_queue_split(struct request_queue *q, struct bio **bio, 326 unsigned int *nr_segs) 327 { 328 struct bio *split = NULL; 329 330 switch (bio_op(*bio)) { 331 case REQ_OP_DISCARD: 332 case REQ_OP_SECURE_ERASE: 333 split = blk_bio_discard_split(q, *bio, &q->bio_split, nr_segs); 334 break; 335 case REQ_OP_WRITE_ZEROES: 336 split = blk_bio_write_zeroes_split(q, *bio, &q->bio_split, 337 nr_segs); 338 break; 339 default: 340 split = blk_bio_segment_split(q, *bio, &q->bio_split, nr_segs); 341 break; 342 } 343 344 if (split) { 345 /* there isn't chance to merge the splitted bio */ 346 split->bi_opf |= REQ_NOMERGE; 347 348 bio_chain(split, *bio); 349 trace_block_split(split, (*bio)->bi_iter.bi_sector); 350 submit_bio_noacct(*bio); 351 *bio = split; 352 } 353 } 354 355 /** 356 * blk_queue_split - split a bio and submit the second half 357 * @bio: [in, out] bio to be split 358 * 359 * Split a bio into two bios, chains the two bios, submit the second half and 360 * store a pointer to the first half in *@bio. Since this function may allocate 361 * a new bio from q->bio_split, it is the responsibility of the caller to ensure 362 * that q->bio_split is only released after processing of the split bio has 363 * finished. 364 */ 365 void blk_queue_split(struct bio **bio) 366 { 367 struct request_queue *q = bdev_get_queue((*bio)->bi_bdev); 368 unsigned int nr_segs; 369 370 if (blk_may_split(q, *bio)) 371 __blk_queue_split(q, bio, &nr_segs); 372 } 373 EXPORT_SYMBOL(blk_queue_split); 374 375 unsigned int blk_recalc_rq_segments(struct request *rq) 376 { 377 unsigned int nr_phys_segs = 0; 378 unsigned int nr_sectors = 0; 379 struct req_iterator iter; 380 struct bio_vec bv; 381 382 if (!rq->bio) 383 return 0; 384 385 switch (bio_op(rq->bio)) { 386 case REQ_OP_DISCARD: 387 case REQ_OP_SECURE_ERASE: 388 if (queue_max_discard_segments(rq->q) > 1) { 389 struct bio *bio = rq->bio; 390 391 for_each_bio(bio) 392 nr_phys_segs++; 393 return nr_phys_segs; 394 } 395 return 1; 396 case REQ_OP_WRITE_ZEROES: 397 return 0; 398 } 399 400 rq_for_each_bvec(bv, rq, iter) 401 bvec_split_segs(rq->q, &bv, &nr_phys_segs, &nr_sectors, 402 UINT_MAX, UINT_MAX); 403 return nr_phys_segs; 404 } 405 406 static inline struct scatterlist *blk_next_sg(struct scatterlist **sg, 407 struct scatterlist *sglist) 408 { 409 if (!*sg) 410 return sglist; 411 412 /* 413 * If the driver previously mapped a shorter list, we could see a 414 * termination bit prematurely unless it fully inits the sg table 415 * on each mapping. We KNOW that there must be more entries here 416 * or the driver would be buggy, so force clear the termination bit 417 * to avoid doing a full sg_init_table() in drivers for each command. 418 */ 419 sg_unmark_end(*sg); 420 return sg_next(*sg); 421 } 422 423 static unsigned blk_bvec_map_sg(struct request_queue *q, 424 struct bio_vec *bvec, struct scatterlist *sglist, 425 struct scatterlist **sg) 426 { 427 unsigned nbytes = bvec->bv_len; 428 unsigned nsegs = 0, total = 0; 429 430 while (nbytes > 0) { 431 unsigned offset = bvec->bv_offset + total; 432 unsigned len = min(get_max_segment_size(q, bvec->bv_page, 433 offset), nbytes); 434 struct page *page = bvec->bv_page; 435 436 /* 437 * Unfortunately a fair number of drivers barf on scatterlists 438 * that have an offset larger than PAGE_SIZE, despite other 439 * subsystems dealing with that invariant just fine. For now 440 * stick to the legacy format where we never present those from 441 * the block layer, but the code below should be removed once 442 * these offenders (mostly MMC/SD drivers) are fixed. 443 */ 444 page += (offset >> PAGE_SHIFT); 445 offset &= ~PAGE_MASK; 446 447 *sg = blk_next_sg(sg, sglist); 448 sg_set_page(*sg, page, len, offset); 449 450 total += len; 451 nbytes -= len; 452 nsegs++; 453 } 454 455 return nsegs; 456 } 457 458 static inline int __blk_bvec_map_sg(struct bio_vec bv, 459 struct scatterlist *sglist, struct scatterlist **sg) 460 { 461 *sg = blk_next_sg(sg, sglist); 462 sg_set_page(*sg, bv.bv_page, bv.bv_len, bv.bv_offset); 463 return 1; 464 } 465 466 /* only try to merge bvecs into one sg if they are from two bios */ 467 static inline bool 468 __blk_segment_map_sg_merge(struct request_queue *q, struct bio_vec *bvec, 469 struct bio_vec *bvprv, struct scatterlist **sg) 470 { 471 472 int nbytes = bvec->bv_len; 473 474 if (!*sg) 475 return false; 476 477 if ((*sg)->length + nbytes > queue_max_segment_size(q)) 478 return false; 479 480 if (!biovec_phys_mergeable(q, bvprv, bvec)) 481 return false; 482 483 (*sg)->length += nbytes; 484 485 return true; 486 } 487 488 static int __blk_bios_map_sg(struct request_queue *q, struct bio *bio, 489 struct scatterlist *sglist, 490 struct scatterlist **sg) 491 { 492 struct bio_vec bvec, bvprv = { NULL }; 493 struct bvec_iter iter; 494 int nsegs = 0; 495 bool new_bio = false; 496 497 for_each_bio(bio) { 498 bio_for_each_bvec(bvec, bio, iter) { 499 /* 500 * Only try to merge bvecs from two bios given we 501 * have done bio internal merge when adding pages 502 * to bio 503 */ 504 if (new_bio && 505 __blk_segment_map_sg_merge(q, &bvec, &bvprv, sg)) 506 goto next_bvec; 507 508 if (bvec.bv_offset + bvec.bv_len <= PAGE_SIZE) 509 nsegs += __blk_bvec_map_sg(bvec, sglist, sg); 510 else 511 nsegs += blk_bvec_map_sg(q, &bvec, sglist, sg); 512 next_bvec: 513 new_bio = false; 514 } 515 if (likely(bio->bi_iter.bi_size)) { 516 bvprv = bvec; 517 new_bio = true; 518 } 519 } 520 521 return nsegs; 522 } 523 524 /* 525 * map a request to scatterlist, return number of sg entries setup. Caller 526 * must make sure sg can hold rq->nr_phys_segments entries 527 */ 528 int __blk_rq_map_sg(struct request_queue *q, struct request *rq, 529 struct scatterlist *sglist, struct scatterlist **last_sg) 530 { 531 int nsegs = 0; 532 533 if (rq->rq_flags & RQF_SPECIAL_PAYLOAD) 534 nsegs = __blk_bvec_map_sg(rq->special_vec, sglist, last_sg); 535 else if (rq->bio) 536 nsegs = __blk_bios_map_sg(q, rq->bio, sglist, last_sg); 537 538 if (*last_sg) 539 sg_mark_end(*last_sg); 540 541 /* 542 * Something must have been wrong if the figured number of 543 * segment is bigger than number of req's physical segments 544 */ 545 WARN_ON(nsegs > blk_rq_nr_phys_segments(rq)); 546 547 return nsegs; 548 } 549 EXPORT_SYMBOL(__blk_rq_map_sg); 550 551 static inline unsigned int blk_rq_get_max_segments(struct request *rq) 552 { 553 if (req_op(rq) == REQ_OP_DISCARD) 554 return queue_max_discard_segments(rq->q); 555 return queue_max_segments(rq->q); 556 } 557 558 static inline unsigned int blk_rq_get_max_sectors(struct request *rq, 559 sector_t offset) 560 { 561 struct request_queue *q = rq->q; 562 563 if (blk_rq_is_passthrough(rq)) 564 return q->limits.max_hw_sectors; 565 566 if (!q->limits.chunk_sectors || 567 req_op(rq) == REQ_OP_DISCARD || 568 req_op(rq) == REQ_OP_SECURE_ERASE) 569 return blk_queue_get_max_sectors(q, req_op(rq)); 570 571 return min(blk_max_size_offset(q, offset, 0), 572 blk_queue_get_max_sectors(q, req_op(rq))); 573 } 574 575 static inline int ll_new_hw_segment(struct request *req, struct bio *bio, 576 unsigned int nr_phys_segs) 577 { 578 if (!blk_cgroup_mergeable(req, bio)) 579 goto no_merge; 580 581 if (blk_integrity_merge_bio(req->q, req, bio) == false) 582 goto no_merge; 583 584 /* discard request merge won't add new segment */ 585 if (req_op(req) == REQ_OP_DISCARD) 586 return 1; 587 588 if (req->nr_phys_segments + nr_phys_segs > blk_rq_get_max_segments(req)) 589 goto no_merge; 590 591 /* 592 * This will form the start of a new hw segment. Bump both 593 * counters. 594 */ 595 req->nr_phys_segments += nr_phys_segs; 596 return 1; 597 598 no_merge: 599 req_set_nomerge(req->q, req); 600 return 0; 601 } 602 603 int ll_back_merge_fn(struct request *req, struct bio *bio, unsigned int nr_segs) 604 { 605 if (req_gap_back_merge(req, bio)) 606 return 0; 607 if (blk_integrity_rq(req) && 608 integrity_req_gap_back_merge(req, bio)) 609 return 0; 610 if (!bio_crypt_ctx_back_mergeable(req, bio)) 611 return 0; 612 if (blk_rq_sectors(req) + bio_sectors(bio) > 613 blk_rq_get_max_sectors(req, blk_rq_pos(req))) { 614 req_set_nomerge(req->q, req); 615 return 0; 616 } 617 618 return ll_new_hw_segment(req, bio, nr_segs); 619 } 620 621 static int ll_front_merge_fn(struct request *req, struct bio *bio, 622 unsigned int nr_segs) 623 { 624 if (req_gap_front_merge(req, bio)) 625 return 0; 626 if (blk_integrity_rq(req) && 627 integrity_req_gap_front_merge(req, bio)) 628 return 0; 629 if (!bio_crypt_ctx_front_mergeable(req, bio)) 630 return 0; 631 if (blk_rq_sectors(req) + bio_sectors(bio) > 632 blk_rq_get_max_sectors(req, bio->bi_iter.bi_sector)) { 633 req_set_nomerge(req->q, req); 634 return 0; 635 } 636 637 return ll_new_hw_segment(req, bio, nr_segs); 638 } 639 640 static bool req_attempt_discard_merge(struct request_queue *q, struct request *req, 641 struct request *next) 642 { 643 unsigned short segments = blk_rq_nr_discard_segments(req); 644 645 if (segments >= queue_max_discard_segments(q)) 646 goto no_merge; 647 if (blk_rq_sectors(req) + bio_sectors(next->bio) > 648 blk_rq_get_max_sectors(req, blk_rq_pos(req))) 649 goto no_merge; 650 651 req->nr_phys_segments = segments + blk_rq_nr_discard_segments(next); 652 return true; 653 no_merge: 654 req_set_nomerge(q, req); 655 return false; 656 } 657 658 static int ll_merge_requests_fn(struct request_queue *q, struct request *req, 659 struct request *next) 660 { 661 int total_phys_segments; 662 663 if (req_gap_back_merge(req, next->bio)) 664 return 0; 665 666 /* 667 * Will it become too large? 668 */ 669 if ((blk_rq_sectors(req) + blk_rq_sectors(next)) > 670 blk_rq_get_max_sectors(req, blk_rq_pos(req))) 671 return 0; 672 673 total_phys_segments = req->nr_phys_segments + next->nr_phys_segments; 674 if (total_phys_segments > blk_rq_get_max_segments(req)) 675 return 0; 676 677 if (!blk_cgroup_mergeable(req, next->bio)) 678 return 0; 679 680 if (blk_integrity_merge_rq(q, req, next) == false) 681 return 0; 682 683 if (!bio_crypt_ctx_merge_rq(req, next)) 684 return 0; 685 686 /* Merge is OK... */ 687 req->nr_phys_segments = total_phys_segments; 688 return 1; 689 } 690 691 /** 692 * blk_rq_set_mixed_merge - mark a request as mixed merge 693 * @rq: request to mark as mixed merge 694 * 695 * Description: 696 * @rq is about to be mixed merged. Make sure the attributes 697 * which can be mixed are set in each bio and mark @rq as mixed 698 * merged. 699 */ 700 void blk_rq_set_mixed_merge(struct request *rq) 701 { 702 unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK; 703 struct bio *bio; 704 705 if (rq->rq_flags & RQF_MIXED_MERGE) 706 return; 707 708 /* 709 * @rq will no longer represent mixable attributes for all the 710 * contained bios. It will just track those of the first one. 711 * Distributes the attributs to each bio. 712 */ 713 for (bio = rq->bio; bio; bio = bio->bi_next) { 714 WARN_ON_ONCE((bio->bi_opf & REQ_FAILFAST_MASK) && 715 (bio->bi_opf & REQ_FAILFAST_MASK) != ff); 716 bio->bi_opf |= ff; 717 } 718 rq->rq_flags |= RQF_MIXED_MERGE; 719 } 720 721 static void blk_account_io_merge_request(struct request *req) 722 { 723 if (blk_do_io_stat(req)) { 724 part_stat_lock(); 725 part_stat_inc(req->part, merges[op_stat_group(req_op(req))]); 726 part_stat_unlock(); 727 } 728 } 729 730 static enum elv_merge blk_try_req_merge(struct request *req, 731 struct request *next) 732 { 733 if (blk_discard_mergable(req)) 734 return ELEVATOR_DISCARD_MERGE; 735 else if (blk_rq_pos(req) + blk_rq_sectors(req) == blk_rq_pos(next)) 736 return ELEVATOR_BACK_MERGE; 737 738 return ELEVATOR_NO_MERGE; 739 } 740 741 /* 742 * For non-mq, this has to be called with the request spinlock acquired. 743 * For mq with scheduling, the appropriate queue wide lock should be held. 744 */ 745 static struct request *attempt_merge(struct request_queue *q, 746 struct request *req, struct request *next) 747 { 748 if (!rq_mergeable(req) || !rq_mergeable(next)) 749 return NULL; 750 751 if (req_op(req) != req_op(next)) 752 return NULL; 753 754 if (rq_data_dir(req) != rq_data_dir(next)) 755 return NULL; 756 757 if (req->ioprio != next->ioprio) 758 return NULL; 759 760 /* 761 * If we are allowed to merge, then append bio list 762 * from next to rq and release next. merge_requests_fn 763 * will have updated segment counts, update sector 764 * counts here. Handle DISCARDs separately, as they 765 * have separate settings. 766 */ 767 768 switch (blk_try_req_merge(req, next)) { 769 case ELEVATOR_DISCARD_MERGE: 770 if (!req_attempt_discard_merge(q, req, next)) 771 return NULL; 772 break; 773 case ELEVATOR_BACK_MERGE: 774 if (!ll_merge_requests_fn(q, req, next)) 775 return NULL; 776 break; 777 default: 778 return NULL; 779 } 780 781 /* 782 * If failfast settings disagree or any of the two is already 783 * a mixed merge, mark both as mixed before proceeding. This 784 * makes sure that all involved bios have mixable attributes 785 * set properly. 786 */ 787 if (((req->rq_flags | next->rq_flags) & RQF_MIXED_MERGE) || 788 (req->cmd_flags & REQ_FAILFAST_MASK) != 789 (next->cmd_flags & REQ_FAILFAST_MASK)) { 790 blk_rq_set_mixed_merge(req); 791 blk_rq_set_mixed_merge(next); 792 } 793 794 /* 795 * At this point we have either done a back merge or front merge. We 796 * need the smaller start_time_ns of the merged requests to be the 797 * current request for accounting purposes. 798 */ 799 if (next->start_time_ns < req->start_time_ns) 800 req->start_time_ns = next->start_time_ns; 801 802 req->biotail->bi_next = next->bio; 803 req->biotail = next->biotail; 804 805 req->__data_len += blk_rq_bytes(next); 806 807 if (!blk_discard_mergable(req)) 808 elv_merge_requests(q, req, next); 809 810 /* 811 * 'next' is going away, so update stats accordingly 812 */ 813 blk_account_io_merge_request(next); 814 815 trace_block_rq_merge(next); 816 817 /* 818 * ownership of bio passed from next to req, return 'next' for 819 * the caller to free 820 */ 821 next->bio = NULL; 822 return next; 823 } 824 825 static struct request *attempt_back_merge(struct request_queue *q, 826 struct request *rq) 827 { 828 struct request *next = elv_latter_request(q, rq); 829 830 if (next) 831 return attempt_merge(q, rq, next); 832 833 return NULL; 834 } 835 836 static struct request *attempt_front_merge(struct request_queue *q, 837 struct request *rq) 838 { 839 struct request *prev = elv_former_request(q, rq); 840 841 if (prev) 842 return attempt_merge(q, prev, rq); 843 844 return NULL; 845 } 846 847 /* 848 * Try to merge 'next' into 'rq'. Return true if the merge happened, false 849 * otherwise. The caller is responsible for freeing 'next' if the merge 850 * happened. 851 */ 852 bool blk_attempt_req_merge(struct request_queue *q, struct request *rq, 853 struct request *next) 854 { 855 return attempt_merge(q, rq, next); 856 } 857 858 bool blk_rq_merge_ok(struct request *rq, struct bio *bio) 859 { 860 if (!rq_mergeable(rq) || !bio_mergeable(bio)) 861 return false; 862 863 if (req_op(rq) != bio_op(bio)) 864 return false; 865 866 /* different data direction or already started, don't merge */ 867 if (bio_data_dir(bio) != rq_data_dir(rq)) 868 return false; 869 870 /* don't merge across cgroup boundaries */ 871 if (!blk_cgroup_mergeable(rq, bio)) 872 return false; 873 874 /* only merge integrity protected bio into ditto rq */ 875 if (blk_integrity_merge_bio(rq->q, rq, bio) == false) 876 return false; 877 878 /* Only merge if the crypt contexts are compatible */ 879 if (!bio_crypt_rq_ctx_compatible(rq, bio)) 880 return false; 881 882 if (rq->ioprio != bio_prio(bio)) 883 return false; 884 885 return true; 886 } 887 888 enum elv_merge blk_try_merge(struct request *rq, struct bio *bio) 889 { 890 if (blk_discard_mergable(rq)) 891 return ELEVATOR_DISCARD_MERGE; 892 else if (blk_rq_pos(rq) + blk_rq_sectors(rq) == bio->bi_iter.bi_sector) 893 return ELEVATOR_BACK_MERGE; 894 else if (blk_rq_pos(rq) - bio_sectors(bio) == bio->bi_iter.bi_sector) 895 return ELEVATOR_FRONT_MERGE; 896 return ELEVATOR_NO_MERGE; 897 } 898 899 static void blk_account_io_merge_bio(struct request *req) 900 { 901 if (!blk_do_io_stat(req)) 902 return; 903 904 part_stat_lock(); 905 part_stat_inc(req->part, merges[op_stat_group(req_op(req))]); 906 part_stat_unlock(); 907 } 908 909 enum bio_merge_status { 910 BIO_MERGE_OK, 911 BIO_MERGE_NONE, 912 BIO_MERGE_FAILED, 913 }; 914 915 static enum bio_merge_status bio_attempt_back_merge(struct request *req, 916 struct bio *bio, unsigned int nr_segs) 917 { 918 const int ff = bio->bi_opf & REQ_FAILFAST_MASK; 919 920 if (!ll_back_merge_fn(req, bio, nr_segs)) 921 return BIO_MERGE_FAILED; 922 923 trace_block_bio_backmerge(bio); 924 rq_qos_merge(req->q, req, bio); 925 926 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff) 927 blk_rq_set_mixed_merge(req); 928 929 req->biotail->bi_next = bio; 930 req->biotail = bio; 931 req->__data_len += bio->bi_iter.bi_size; 932 933 bio_crypt_free_ctx(bio); 934 935 blk_account_io_merge_bio(req); 936 return BIO_MERGE_OK; 937 } 938 939 static enum bio_merge_status bio_attempt_front_merge(struct request *req, 940 struct bio *bio, unsigned int nr_segs) 941 { 942 const int ff = bio->bi_opf & REQ_FAILFAST_MASK; 943 944 if (!ll_front_merge_fn(req, bio, nr_segs)) 945 return BIO_MERGE_FAILED; 946 947 trace_block_bio_frontmerge(bio); 948 rq_qos_merge(req->q, req, bio); 949 950 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff) 951 blk_rq_set_mixed_merge(req); 952 953 bio->bi_next = req->bio; 954 req->bio = bio; 955 956 req->__sector = bio->bi_iter.bi_sector; 957 req->__data_len += bio->bi_iter.bi_size; 958 959 bio_crypt_do_front_merge(req, bio); 960 961 blk_account_io_merge_bio(req); 962 return BIO_MERGE_OK; 963 } 964 965 static enum bio_merge_status bio_attempt_discard_merge(struct request_queue *q, 966 struct request *req, struct bio *bio) 967 { 968 unsigned short segments = blk_rq_nr_discard_segments(req); 969 970 if (segments >= queue_max_discard_segments(q)) 971 goto no_merge; 972 if (blk_rq_sectors(req) + bio_sectors(bio) > 973 blk_rq_get_max_sectors(req, blk_rq_pos(req))) 974 goto no_merge; 975 976 rq_qos_merge(q, req, bio); 977 978 req->biotail->bi_next = bio; 979 req->biotail = bio; 980 req->__data_len += bio->bi_iter.bi_size; 981 req->nr_phys_segments = segments + 1; 982 983 blk_account_io_merge_bio(req); 984 return BIO_MERGE_OK; 985 no_merge: 986 req_set_nomerge(q, req); 987 return BIO_MERGE_FAILED; 988 } 989 990 static enum bio_merge_status blk_attempt_bio_merge(struct request_queue *q, 991 struct request *rq, 992 struct bio *bio, 993 unsigned int nr_segs, 994 bool sched_allow_merge) 995 { 996 if (!blk_rq_merge_ok(rq, bio)) 997 return BIO_MERGE_NONE; 998 999 switch (blk_try_merge(rq, bio)) { 1000 case ELEVATOR_BACK_MERGE: 1001 if (!sched_allow_merge || blk_mq_sched_allow_merge(q, rq, bio)) 1002 return bio_attempt_back_merge(rq, bio, nr_segs); 1003 break; 1004 case ELEVATOR_FRONT_MERGE: 1005 if (!sched_allow_merge || blk_mq_sched_allow_merge(q, rq, bio)) 1006 return bio_attempt_front_merge(rq, bio, nr_segs); 1007 break; 1008 case ELEVATOR_DISCARD_MERGE: 1009 return bio_attempt_discard_merge(q, rq, bio); 1010 default: 1011 return BIO_MERGE_NONE; 1012 } 1013 1014 return BIO_MERGE_FAILED; 1015 } 1016 1017 /** 1018 * blk_attempt_plug_merge - try to merge with %current's plugged list 1019 * @q: request_queue new bio is being queued at 1020 * @bio: new bio being queued 1021 * @nr_segs: number of segments in @bio 1022 * from the passed in @q already in the plug list 1023 * 1024 * Determine whether @bio being queued on @q can be merged with the previous 1025 * request on %current's plugged list. Returns %true if merge was successful, 1026 * otherwise %false. 1027 * 1028 * Plugging coalesces IOs from the same issuer for the same purpose without 1029 * going through @q->queue_lock. As such it's more of an issuing mechanism 1030 * than scheduling, and the request, while may have elvpriv data, is not 1031 * added on the elevator at this point. In addition, we don't have 1032 * reliable access to the elevator outside queue lock. Only check basic 1033 * merging parameters without querying the elevator. 1034 * 1035 * Caller must ensure !blk_queue_nomerges(q) beforehand. 1036 */ 1037 bool blk_attempt_plug_merge(struct request_queue *q, struct bio *bio, 1038 unsigned int nr_segs) 1039 { 1040 struct blk_plug *plug; 1041 struct request *rq; 1042 1043 plug = blk_mq_plug(q, bio); 1044 if (!plug || rq_list_empty(plug->mq_list)) 1045 return false; 1046 1047 rq_list_for_each(&plug->mq_list, rq) { 1048 if (rq->q == q) { 1049 if (blk_attempt_bio_merge(q, rq, bio, nr_segs, false) == 1050 BIO_MERGE_OK) 1051 return true; 1052 break; 1053 } 1054 1055 /* 1056 * Only keep iterating plug list for merges if we have multiple 1057 * queues 1058 */ 1059 if (!plug->multiple_queues) 1060 break; 1061 } 1062 return false; 1063 } 1064 1065 /* 1066 * Iterate list of requests and see if we can merge this bio with any 1067 * of them. 1068 */ 1069 bool blk_bio_list_merge(struct request_queue *q, struct list_head *list, 1070 struct bio *bio, unsigned int nr_segs) 1071 { 1072 struct request *rq; 1073 int checked = 8; 1074 1075 list_for_each_entry_reverse(rq, list, queuelist) { 1076 if (!checked--) 1077 break; 1078 1079 switch (blk_attempt_bio_merge(q, rq, bio, nr_segs, true)) { 1080 case BIO_MERGE_NONE: 1081 continue; 1082 case BIO_MERGE_OK: 1083 return true; 1084 case BIO_MERGE_FAILED: 1085 return false; 1086 } 1087 1088 } 1089 1090 return false; 1091 } 1092 EXPORT_SYMBOL_GPL(blk_bio_list_merge); 1093 1094 bool blk_mq_sched_try_merge(struct request_queue *q, struct bio *bio, 1095 unsigned int nr_segs, struct request **merged_request) 1096 { 1097 struct request *rq; 1098 1099 switch (elv_merge(q, &rq, bio)) { 1100 case ELEVATOR_BACK_MERGE: 1101 if (!blk_mq_sched_allow_merge(q, rq, bio)) 1102 return false; 1103 if (bio_attempt_back_merge(rq, bio, nr_segs) != BIO_MERGE_OK) 1104 return false; 1105 *merged_request = attempt_back_merge(q, rq); 1106 if (!*merged_request) 1107 elv_merged_request(q, rq, ELEVATOR_BACK_MERGE); 1108 return true; 1109 case ELEVATOR_FRONT_MERGE: 1110 if (!blk_mq_sched_allow_merge(q, rq, bio)) 1111 return false; 1112 if (bio_attempt_front_merge(rq, bio, nr_segs) != BIO_MERGE_OK) 1113 return false; 1114 *merged_request = attempt_front_merge(q, rq); 1115 if (!*merged_request) 1116 elv_merged_request(q, rq, ELEVATOR_FRONT_MERGE); 1117 return true; 1118 case ELEVATOR_DISCARD_MERGE: 1119 return bio_attempt_discard_merge(q, rq, bio) == BIO_MERGE_OK; 1120 default: 1121 return false; 1122 } 1123 } 1124 EXPORT_SYMBOL_GPL(blk_mq_sched_try_merge); 1125