xref: /linux/block/blk-merge.c (revision ec8a42e7343234802b9054874fe01810880289ce)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Functions related to segment and merge handling
4  */
5 #include <linux/kernel.h>
6 #include <linux/module.h>
7 #include <linux/bio.h>
8 #include <linux/blkdev.h>
9 #include <linux/scatterlist.h>
10 
11 #include <trace/events/block.h>
12 
13 #include "blk.h"
14 #include "blk-rq-qos.h"
15 
16 static inline bool bio_will_gap(struct request_queue *q,
17 		struct request *prev_rq, struct bio *prev, struct bio *next)
18 {
19 	struct bio_vec pb, nb;
20 
21 	if (!bio_has_data(prev) || !queue_virt_boundary(q))
22 		return false;
23 
24 	/*
25 	 * Don't merge if the 1st bio starts with non-zero offset, otherwise it
26 	 * is quite difficult to respect the sg gap limit.  We work hard to
27 	 * merge a huge number of small single bios in case of mkfs.
28 	 */
29 	if (prev_rq)
30 		bio_get_first_bvec(prev_rq->bio, &pb);
31 	else
32 		bio_get_first_bvec(prev, &pb);
33 	if (pb.bv_offset & queue_virt_boundary(q))
34 		return true;
35 
36 	/*
37 	 * We don't need to worry about the situation that the merged segment
38 	 * ends in unaligned virt boundary:
39 	 *
40 	 * - if 'pb' ends aligned, the merged segment ends aligned
41 	 * - if 'pb' ends unaligned, the next bio must include
42 	 *   one single bvec of 'nb', otherwise the 'nb' can't
43 	 *   merge with 'pb'
44 	 */
45 	bio_get_last_bvec(prev, &pb);
46 	bio_get_first_bvec(next, &nb);
47 	if (biovec_phys_mergeable(q, &pb, &nb))
48 		return false;
49 	return __bvec_gap_to_prev(q, &pb, nb.bv_offset);
50 }
51 
52 static inline bool req_gap_back_merge(struct request *req, struct bio *bio)
53 {
54 	return bio_will_gap(req->q, req, req->biotail, bio);
55 }
56 
57 static inline bool req_gap_front_merge(struct request *req, struct bio *bio)
58 {
59 	return bio_will_gap(req->q, NULL, bio, req->bio);
60 }
61 
62 static struct bio *blk_bio_discard_split(struct request_queue *q,
63 					 struct bio *bio,
64 					 struct bio_set *bs,
65 					 unsigned *nsegs)
66 {
67 	unsigned int max_discard_sectors, granularity;
68 	int alignment;
69 	sector_t tmp;
70 	unsigned split_sectors;
71 
72 	*nsegs = 1;
73 
74 	/* Zero-sector (unknown) and one-sector granularities are the same.  */
75 	granularity = max(q->limits.discard_granularity >> 9, 1U);
76 
77 	max_discard_sectors = min(q->limits.max_discard_sectors,
78 			bio_allowed_max_sectors(q));
79 	max_discard_sectors -= max_discard_sectors % granularity;
80 
81 	if (unlikely(!max_discard_sectors)) {
82 		/* XXX: warn */
83 		return NULL;
84 	}
85 
86 	if (bio_sectors(bio) <= max_discard_sectors)
87 		return NULL;
88 
89 	split_sectors = max_discard_sectors;
90 
91 	/*
92 	 * If the next starting sector would be misaligned, stop the discard at
93 	 * the previous aligned sector.
94 	 */
95 	alignment = (q->limits.discard_alignment >> 9) % granularity;
96 
97 	tmp = bio->bi_iter.bi_sector + split_sectors - alignment;
98 	tmp = sector_div(tmp, granularity);
99 
100 	if (split_sectors > tmp)
101 		split_sectors -= tmp;
102 
103 	return bio_split(bio, split_sectors, GFP_NOIO, bs);
104 }
105 
106 static struct bio *blk_bio_write_zeroes_split(struct request_queue *q,
107 		struct bio *bio, struct bio_set *bs, unsigned *nsegs)
108 {
109 	*nsegs = 0;
110 
111 	if (!q->limits.max_write_zeroes_sectors)
112 		return NULL;
113 
114 	if (bio_sectors(bio) <= q->limits.max_write_zeroes_sectors)
115 		return NULL;
116 
117 	return bio_split(bio, q->limits.max_write_zeroes_sectors, GFP_NOIO, bs);
118 }
119 
120 static struct bio *blk_bio_write_same_split(struct request_queue *q,
121 					    struct bio *bio,
122 					    struct bio_set *bs,
123 					    unsigned *nsegs)
124 {
125 	*nsegs = 1;
126 
127 	if (!q->limits.max_write_same_sectors)
128 		return NULL;
129 
130 	if (bio_sectors(bio) <= q->limits.max_write_same_sectors)
131 		return NULL;
132 
133 	return bio_split(bio, q->limits.max_write_same_sectors, GFP_NOIO, bs);
134 }
135 
136 /*
137  * Return the maximum number of sectors from the start of a bio that may be
138  * submitted as a single request to a block device. If enough sectors remain,
139  * align the end to the physical block size. Otherwise align the end to the
140  * logical block size. This approach minimizes the number of non-aligned
141  * requests that are submitted to a block device if the start of a bio is not
142  * aligned to a physical block boundary.
143  */
144 static inline unsigned get_max_io_size(struct request_queue *q,
145 				       struct bio *bio)
146 {
147 	unsigned sectors = blk_max_size_offset(q, bio->bi_iter.bi_sector, 0);
148 	unsigned max_sectors = sectors;
149 	unsigned pbs = queue_physical_block_size(q) >> SECTOR_SHIFT;
150 	unsigned lbs = queue_logical_block_size(q) >> SECTOR_SHIFT;
151 	unsigned start_offset = bio->bi_iter.bi_sector & (pbs - 1);
152 
153 	max_sectors += start_offset;
154 	max_sectors &= ~(pbs - 1);
155 	if (max_sectors > start_offset)
156 		return max_sectors - start_offset;
157 
158 	return sectors & ~(lbs - 1);
159 }
160 
161 static inline unsigned get_max_segment_size(const struct request_queue *q,
162 					    struct page *start_page,
163 					    unsigned long offset)
164 {
165 	unsigned long mask = queue_segment_boundary(q);
166 
167 	offset = mask & (page_to_phys(start_page) + offset);
168 
169 	/*
170 	 * overflow may be triggered in case of zero page physical address
171 	 * on 32bit arch, use queue's max segment size when that happens.
172 	 */
173 	return min_not_zero(mask - offset + 1,
174 			(unsigned long)queue_max_segment_size(q));
175 }
176 
177 /**
178  * bvec_split_segs - verify whether or not a bvec should be split in the middle
179  * @q:        [in] request queue associated with the bio associated with @bv
180  * @bv:       [in] bvec to examine
181  * @nsegs:    [in,out] Number of segments in the bio being built. Incremented
182  *            by the number of segments from @bv that may be appended to that
183  *            bio without exceeding @max_segs
184  * @sectors:  [in,out] Number of sectors in the bio being built. Incremented
185  *            by the number of sectors from @bv that may be appended to that
186  *            bio without exceeding @max_sectors
187  * @max_segs: [in] upper bound for *@nsegs
188  * @max_sectors: [in] upper bound for *@sectors
189  *
190  * When splitting a bio, it can happen that a bvec is encountered that is too
191  * big to fit in a single segment and hence that it has to be split in the
192  * middle. This function verifies whether or not that should happen. The value
193  * %true is returned if and only if appending the entire @bv to a bio with
194  * *@nsegs segments and *@sectors sectors would make that bio unacceptable for
195  * the block driver.
196  */
197 static bool bvec_split_segs(const struct request_queue *q,
198 			    const struct bio_vec *bv, unsigned *nsegs,
199 			    unsigned *sectors, unsigned max_segs,
200 			    unsigned max_sectors)
201 {
202 	unsigned max_len = (min(max_sectors, UINT_MAX >> 9) - *sectors) << 9;
203 	unsigned len = min(bv->bv_len, max_len);
204 	unsigned total_len = 0;
205 	unsigned seg_size = 0;
206 
207 	while (len && *nsegs < max_segs) {
208 		seg_size = get_max_segment_size(q, bv->bv_page,
209 						bv->bv_offset + total_len);
210 		seg_size = min(seg_size, len);
211 
212 		(*nsegs)++;
213 		total_len += seg_size;
214 		len -= seg_size;
215 
216 		if ((bv->bv_offset + total_len) & queue_virt_boundary(q))
217 			break;
218 	}
219 
220 	*sectors += total_len >> 9;
221 
222 	/* tell the caller to split the bvec if it is too big to fit */
223 	return len > 0 || bv->bv_len > max_len;
224 }
225 
226 /**
227  * blk_bio_segment_split - split a bio in two bios
228  * @q:    [in] request queue pointer
229  * @bio:  [in] bio to be split
230  * @bs:	  [in] bio set to allocate the clone from
231  * @segs: [out] number of segments in the bio with the first half of the sectors
232  *
233  * Clone @bio, update the bi_iter of the clone to represent the first sectors
234  * of @bio and update @bio->bi_iter to represent the remaining sectors. The
235  * following is guaranteed for the cloned bio:
236  * - That it has at most get_max_io_size(@q, @bio) sectors.
237  * - That it has at most queue_max_segments(@q) segments.
238  *
239  * Except for discard requests the cloned bio will point at the bi_io_vec of
240  * the original bio. It is the responsibility of the caller to ensure that the
241  * original bio is not freed before the cloned bio. The caller is also
242  * responsible for ensuring that @bs is only destroyed after processing of the
243  * split bio has finished.
244  */
245 static struct bio *blk_bio_segment_split(struct request_queue *q,
246 					 struct bio *bio,
247 					 struct bio_set *bs,
248 					 unsigned *segs)
249 {
250 	struct bio_vec bv, bvprv, *bvprvp = NULL;
251 	struct bvec_iter iter;
252 	unsigned nsegs = 0, sectors = 0;
253 	const unsigned max_sectors = get_max_io_size(q, bio);
254 	const unsigned max_segs = queue_max_segments(q);
255 
256 	bio_for_each_bvec(bv, bio, iter) {
257 		/*
258 		 * If the queue doesn't support SG gaps and adding this
259 		 * offset would create a gap, disallow it.
260 		 */
261 		if (bvprvp && bvec_gap_to_prev(q, bvprvp, bv.bv_offset))
262 			goto split;
263 
264 		if (nsegs < max_segs &&
265 		    sectors + (bv.bv_len >> 9) <= max_sectors &&
266 		    bv.bv_offset + bv.bv_len <= PAGE_SIZE) {
267 			nsegs++;
268 			sectors += bv.bv_len >> 9;
269 		} else if (bvec_split_segs(q, &bv, &nsegs, &sectors, max_segs,
270 					 max_sectors)) {
271 			goto split;
272 		}
273 
274 		bvprv = bv;
275 		bvprvp = &bvprv;
276 	}
277 
278 	*segs = nsegs;
279 	return NULL;
280 split:
281 	*segs = nsegs;
282 
283 	/*
284 	 * Bio splitting may cause subtle trouble such as hang when doing sync
285 	 * iopoll in direct IO routine. Given performance gain of iopoll for
286 	 * big IO can be trival, disable iopoll when split needed.
287 	 */
288 	bio->bi_opf &= ~REQ_HIPRI;
289 
290 	return bio_split(bio, sectors, GFP_NOIO, bs);
291 }
292 
293 /**
294  * __blk_queue_split - split a bio and submit the second half
295  * @bio:     [in, out] bio to be split
296  * @nr_segs: [out] number of segments in the first bio
297  *
298  * Split a bio into two bios, chain the two bios, submit the second half and
299  * store a pointer to the first half in *@bio. If the second bio is still too
300  * big it will be split by a recursive call to this function. Since this
301  * function may allocate a new bio from @bio->bi_disk->queue->bio_split, it is
302  * the responsibility of the caller to ensure that
303  * @bio->bi_disk->queue->bio_split is only released after processing of the
304  * split bio has finished.
305  */
306 void __blk_queue_split(struct bio **bio, unsigned int *nr_segs)
307 {
308 	struct request_queue *q = (*bio)->bi_disk->queue;
309 	struct bio *split = NULL;
310 
311 	switch (bio_op(*bio)) {
312 	case REQ_OP_DISCARD:
313 	case REQ_OP_SECURE_ERASE:
314 		split = blk_bio_discard_split(q, *bio, &q->bio_split, nr_segs);
315 		break;
316 	case REQ_OP_WRITE_ZEROES:
317 		split = blk_bio_write_zeroes_split(q, *bio, &q->bio_split,
318 				nr_segs);
319 		break;
320 	case REQ_OP_WRITE_SAME:
321 		split = blk_bio_write_same_split(q, *bio, &q->bio_split,
322 				nr_segs);
323 		break;
324 	default:
325 		/*
326 		 * All drivers must accept single-segments bios that are <=
327 		 * PAGE_SIZE.  This is a quick and dirty check that relies on
328 		 * the fact that bi_io_vec[0] is always valid if a bio has data.
329 		 * The check might lead to occasional false negatives when bios
330 		 * are cloned, but compared to the performance impact of cloned
331 		 * bios themselves the loop below doesn't matter anyway.
332 		 */
333 		if (!q->limits.chunk_sectors &&
334 		    (*bio)->bi_vcnt == 1 &&
335 		    ((*bio)->bi_io_vec[0].bv_len +
336 		     (*bio)->bi_io_vec[0].bv_offset) <= PAGE_SIZE) {
337 			*nr_segs = 1;
338 			break;
339 		}
340 		split = blk_bio_segment_split(q, *bio, &q->bio_split, nr_segs);
341 		break;
342 	}
343 
344 	if (split) {
345 		/* there isn't chance to merge the splitted bio */
346 		split->bi_opf |= REQ_NOMERGE;
347 
348 		bio_chain(split, *bio);
349 		trace_block_split(split, (*bio)->bi_iter.bi_sector);
350 		submit_bio_noacct(*bio);
351 		*bio = split;
352 	}
353 }
354 
355 /**
356  * blk_queue_split - split a bio and submit the second half
357  * @bio: [in, out] bio to be split
358  *
359  * Split a bio into two bios, chains the two bios, submit the second half and
360  * store a pointer to the first half in *@bio. Since this function may allocate
361  * a new bio from @bio->bi_disk->queue->bio_split, it is the responsibility of
362  * the caller to ensure that @bio->bi_disk->queue->bio_split is only released
363  * after processing of the split bio has finished.
364  */
365 void blk_queue_split(struct bio **bio)
366 {
367 	unsigned int nr_segs;
368 
369 	__blk_queue_split(bio, &nr_segs);
370 }
371 EXPORT_SYMBOL(blk_queue_split);
372 
373 unsigned int blk_recalc_rq_segments(struct request *rq)
374 {
375 	unsigned int nr_phys_segs = 0;
376 	unsigned int nr_sectors = 0;
377 	struct req_iterator iter;
378 	struct bio_vec bv;
379 
380 	if (!rq->bio)
381 		return 0;
382 
383 	switch (bio_op(rq->bio)) {
384 	case REQ_OP_DISCARD:
385 	case REQ_OP_SECURE_ERASE:
386 	case REQ_OP_WRITE_ZEROES:
387 		return 0;
388 	case REQ_OP_WRITE_SAME:
389 		return 1;
390 	}
391 
392 	rq_for_each_bvec(bv, rq, iter)
393 		bvec_split_segs(rq->q, &bv, &nr_phys_segs, &nr_sectors,
394 				UINT_MAX, UINT_MAX);
395 	return nr_phys_segs;
396 }
397 
398 static inline struct scatterlist *blk_next_sg(struct scatterlist **sg,
399 		struct scatterlist *sglist)
400 {
401 	if (!*sg)
402 		return sglist;
403 
404 	/*
405 	 * If the driver previously mapped a shorter list, we could see a
406 	 * termination bit prematurely unless it fully inits the sg table
407 	 * on each mapping. We KNOW that there must be more entries here
408 	 * or the driver would be buggy, so force clear the termination bit
409 	 * to avoid doing a full sg_init_table() in drivers for each command.
410 	 */
411 	sg_unmark_end(*sg);
412 	return sg_next(*sg);
413 }
414 
415 static unsigned blk_bvec_map_sg(struct request_queue *q,
416 		struct bio_vec *bvec, struct scatterlist *sglist,
417 		struct scatterlist **sg)
418 {
419 	unsigned nbytes = bvec->bv_len;
420 	unsigned nsegs = 0, total = 0;
421 
422 	while (nbytes > 0) {
423 		unsigned offset = bvec->bv_offset + total;
424 		unsigned len = min(get_max_segment_size(q, bvec->bv_page,
425 					offset), nbytes);
426 		struct page *page = bvec->bv_page;
427 
428 		/*
429 		 * Unfortunately a fair number of drivers barf on scatterlists
430 		 * that have an offset larger than PAGE_SIZE, despite other
431 		 * subsystems dealing with that invariant just fine.  For now
432 		 * stick to the legacy format where we never present those from
433 		 * the block layer, but the code below should be removed once
434 		 * these offenders (mostly MMC/SD drivers) are fixed.
435 		 */
436 		page += (offset >> PAGE_SHIFT);
437 		offset &= ~PAGE_MASK;
438 
439 		*sg = blk_next_sg(sg, sglist);
440 		sg_set_page(*sg, page, len, offset);
441 
442 		total += len;
443 		nbytes -= len;
444 		nsegs++;
445 	}
446 
447 	return nsegs;
448 }
449 
450 static inline int __blk_bvec_map_sg(struct bio_vec bv,
451 		struct scatterlist *sglist, struct scatterlist **sg)
452 {
453 	*sg = blk_next_sg(sg, sglist);
454 	sg_set_page(*sg, bv.bv_page, bv.bv_len, bv.bv_offset);
455 	return 1;
456 }
457 
458 /* only try to merge bvecs into one sg if they are from two bios */
459 static inline bool
460 __blk_segment_map_sg_merge(struct request_queue *q, struct bio_vec *bvec,
461 			   struct bio_vec *bvprv, struct scatterlist **sg)
462 {
463 
464 	int nbytes = bvec->bv_len;
465 
466 	if (!*sg)
467 		return false;
468 
469 	if ((*sg)->length + nbytes > queue_max_segment_size(q))
470 		return false;
471 
472 	if (!biovec_phys_mergeable(q, bvprv, bvec))
473 		return false;
474 
475 	(*sg)->length += nbytes;
476 
477 	return true;
478 }
479 
480 static int __blk_bios_map_sg(struct request_queue *q, struct bio *bio,
481 			     struct scatterlist *sglist,
482 			     struct scatterlist **sg)
483 {
484 	struct bio_vec bvec, bvprv = { NULL };
485 	struct bvec_iter iter;
486 	int nsegs = 0;
487 	bool new_bio = false;
488 
489 	for_each_bio(bio) {
490 		bio_for_each_bvec(bvec, bio, iter) {
491 			/*
492 			 * Only try to merge bvecs from two bios given we
493 			 * have done bio internal merge when adding pages
494 			 * to bio
495 			 */
496 			if (new_bio &&
497 			    __blk_segment_map_sg_merge(q, &bvec, &bvprv, sg))
498 				goto next_bvec;
499 
500 			if (bvec.bv_offset + bvec.bv_len <= PAGE_SIZE)
501 				nsegs += __blk_bvec_map_sg(bvec, sglist, sg);
502 			else
503 				nsegs += blk_bvec_map_sg(q, &bvec, sglist, sg);
504  next_bvec:
505 			new_bio = false;
506 		}
507 		if (likely(bio->bi_iter.bi_size)) {
508 			bvprv = bvec;
509 			new_bio = true;
510 		}
511 	}
512 
513 	return nsegs;
514 }
515 
516 /*
517  * map a request to scatterlist, return number of sg entries setup. Caller
518  * must make sure sg can hold rq->nr_phys_segments entries
519  */
520 int __blk_rq_map_sg(struct request_queue *q, struct request *rq,
521 		struct scatterlist *sglist, struct scatterlist **last_sg)
522 {
523 	int nsegs = 0;
524 
525 	if (rq->rq_flags & RQF_SPECIAL_PAYLOAD)
526 		nsegs = __blk_bvec_map_sg(rq->special_vec, sglist, last_sg);
527 	else if (rq->bio && bio_op(rq->bio) == REQ_OP_WRITE_SAME)
528 		nsegs = __blk_bvec_map_sg(bio_iovec(rq->bio), sglist, last_sg);
529 	else if (rq->bio)
530 		nsegs = __blk_bios_map_sg(q, rq->bio, sglist, last_sg);
531 
532 	if (*last_sg)
533 		sg_mark_end(*last_sg);
534 
535 	/*
536 	 * Something must have been wrong if the figured number of
537 	 * segment is bigger than number of req's physical segments
538 	 */
539 	WARN_ON(nsegs > blk_rq_nr_phys_segments(rq));
540 
541 	return nsegs;
542 }
543 EXPORT_SYMBOL(__blk_rq_map_sg);
544 
545 static inline unsigned int blk_rq_get_max_segments(struct request *rq)
546 {
547 	if (req_op(rq) == REQ_OP_DISCARD)
548 		return queue_max_discard_segments(rq->q);
549 	return queue_max_segments(rq->q);
550 }
551 
552 static inline int ll_new_hw_segment(struct request *req, struct bio *bio,
553 		unsigned int nr_phys_segs)
554 {
555 	if (req->nr_phys_segments + nr_phys_segs > blk_rq_get_max_segments(req))
556 		goto no_merge;
557 
558 	if (blk_integrity_merge_bio(req->q, req, bio) == false)
559 		goto no_merge;
560 
561 	/*
562 	 * This will form the start of a new hw segment.  Bump both
563 	 * counters.
564 	 */
565 	req->nr_phys_segments += nr_phys_segs;
566 	return 1;
567 
568 no_merge:
569 	req_set_nomerge(req->q, req);
570 	return 0;
571 }
572 
573 int ll_back_merge_fn(struct request *req, struct bio *bio, unsigned int nr_segs)
574 {
575 	if (req_gap_back_merge(req, bio))
576 		return 0;
577 	if (blk_integrity_rq(req) &&
578 	    integrity_req_gap_back_merge(req, bio))
579 		return 0;
580 	if (!bio_crypt_ctx_back_mergeable(req, bio))
581 		return 0;
582 	if (blk_rq_sectors(req) + bio_sectors(bio) >
583 	    blk_rq_get_max_sectors(req, blk_rq_pos(req))) {
584 		req_set_nomerge(req->q, req);
585 		return 0;
586 	}
587 
588 	return ll_new_hw_segment(req, bio, nr_segs);
589 }
590 
591 static int ll_front_merge_fn(struct request *req, struct bio *bio,
592 		unsigned int nr_segs)
593 {
594 	if (req_gap_front_merge(req, bio))
595 		return 0;
596 	if (blk_integrity_rq(req) &&
597 	    integrity_req_gap_front_merge(req, bio))
598 		return 0;
599 	if (!bio_crypt_ctx_front_mergeable(req, bio))
600 		return 0;
601 	if (blk_rq_sectors(req) + bio_sectors(bio) >
602 	    blk_rq_get_max_sectors(req, bio->bi_iter.bi_sector)) {
603 		req_set_nomerge(req->q, req);
604 		return 0;
605 	}
606 
607 	return ll_new_hw_segment(req, bio, nr_segs);
608 }
609 
610 static bool req_attempt_discard_merge(struct request_queue *q, struct request *req,
611 		struct request *next)
612 {
613 	unsigned short segments = blk_rq_nr_discard_segments(req);
614 
615 	if (segments >= queue_max_discard_segments(q))
616 		goto no_merge;
617 	if (blk_rq_sectors(req) + bio_sectors(next->bio) >
618 	    blk_rq_get_max_sectors(req, blk_rq_pos(req)))
619 		goto no_merge;
620 
621 	req->nr_phys_segments = segments + blk_rq_nr_discard_segments(next);
622 	return true;
623 no_merge:
624 	req_set_nomerge(q, req);
625 	return false;
626 }
627 
628 static int ll_merge_requests_fn(struct request_queue *q, struct request *req,
629 				struct request *next)
630 {
631 	int total_phys_segments;
632 
633 	if (req_gap_back_merge(req, next->bio))
634 		return 0;
635 
636 	/*
637 	 * Will it become too large?
638 	 */
639 	if ((blk_rq_sectors(req) + blk_rq_sectors(next)) >
640 	    blk_rq_get_max_sectors(req, blk_rq_pos(req)))
641 		return 0;
642 
643 	total_phys_segments = req->nr_phys_segments + next->nr_phys_segments;
644 	if (total_phys_segments > blk_rq_get_max_segments(req))
645 		return 0;
646 
647 	if (blk_integrity_merge_rq(q, req, next) == false)
648 		return 0;
649 
650 	if (!bio_crypt_ctx_merge_rq(req, next))
651 		return 0;
652 
653 	/* Merge is OK... */
654 	req->nr_phys_segments = total_phys_segments;
655 	return 1;
656 }
657 
658 /**
659  * blk_rq_set_mixed_merge - mark a request as mixed merge
660  * @rq: request to mark as mixed merge
661  *
662  * Description:
663  *     @rq is about to be mixed merged.  Make sure the attributes
664  *     which can be mixed are set in each bio and mark @rq as mixed
665  *     merged.
666  */
667 void blk_rq_set_mixed_merge(struct request *rq)
668 {
669 	unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK;
670 	struct bio *bio;
671 
672 	if (rq->rq_flags & RQF_MIXED_MERGE)
673 		return;
674 
675 	/*
676 	 * @rq will no longer represent mixable attributes for all the
677 	 * contained bios.  It will just track those of the first one.
678 	 * Distributes the attributs to each bio.
679 	 */
680 	for (bio = rq->bio; bio; bio = bio->bi_next) {
681 		WARN_ON_ONCE((bio->bi_opf & REQ_FAILFAST_MASK) &&
682 			     (bio->bi_opf & REQ_FAILFAST_MASK) != ff);
683 		bio->bi_opf |= ff;
684 	}
685 	rq->rq_flags |= RQF_MIXED_MERGE;
686 }
687 
688 static void blk_account_io_merge_request(struct request *req)
689 {
690 	if (blk_do_io_stat(req)) {
691 		part_stat_lock();
692 		part_stat_inc(req->part, merges[op_stat_group(req_op(req))]);
693 		part_stat_unlock();
694 	}
695 }
696 
697 /*
698  * Two cases of handling DISCARD merge:
699  * If max_discard_segments > 1, the driver takes every bio
700  * as a range and send them to controller together. The ranges
701  * needn't to be contiguous.
702  * Otherwise, the bios/requests will be handled as same as
703  * others which should be contiguous.
704  */
705 static inline bool blk_discard_mergable(struct request *req)
706 {
707 	if (req_op(req) == REQ_OP_DISCARD &&
708 	    queue_max_discard_segments(req->q) > 1)
709 		return true;
710 	return false;
711 }
712 
713 static enum elv_merge blk_try_req_merge(struct request *req,
714 					struct request *next)
715 {
716 	if (blk_discard_mergable(req))
717 		return ELEVATOR_DISCARD_MERGE;
718 	else if (blk_rq_pos(req) + blk_rq_sectors(req) == blk_rq_pos(next))
719 		return ELEVATOR_BACK_MERGE;
720 
721 	return ELEVATOR_NO_MERGE;
722 }
723 
724 /*
725  * For non-mq, this has to be called with the request spinlock acquired.
726  * For mq with scheduling, the appropriate queue wide lock should be held.
727  */
728 static struct request *attempt_merge(struct request_queue *q,
729 				     struct request *req, struct request *next)
730 {
731 	if (!rq_mergeable(req) || !rq_mergeable(next))
732 		return NULL;
733 
734 	if (req_op(req) != req_op(next))
735 		return NULL;
736 
737 	if (rq_data_dir(req) != rq_data_dir(next)
738 	    || req->rq_disk != next->rq_disk)
739 		return NULL;
740 
741 	if (req_op(req) == REQ_OP_WRITE_SAME &&
742 	    !blk_write_same_mergeable(req->bio, next->bio))
743 		return NULL;
744 
745 	/*
746 	 * Don't allow merge of different write hints, or for a hint with
747 	 * non-hint IO.
748 	 */
749 	if (req->write_hint != next->write_hint)
750 		return NULL;
751 
752 	if (req->ioprio != next->ioprio)
753 		return NULL;
754 
755 	/*
756 	 * If we are allowed to merge, then append bio list
757 	 * from next to rq and release next. merge_requests_fn
758 	 * will have updated segment counts, update sector
759 	 * counts here. Handle DISCARDs separately, as they
760 	 * have separate settings.
761 	 */
762 
763 	switch (blk_try_req_merge(req, next)) {
764 	case ELEVATOR_DISCARD_MERGE:
765 		if (!req_attempt_discard_merge(q, req, next))
766 			return NULL;
767 		break;
768 	case ELEVATOR_BACK_MERGE:
769 		if (!ll_merge_requests_fn(q, req, next))
770 			return NULL;
771 		break;
772 	default:
773 		return NULL;
774 	}
775 
776 	/*
777 	 * If failfast settings disagree or any of the two is already
778 	 * a mixed merge, mark both as mixed before proceeding.  This
779 	 * makes sure that all involved bios have mixable attributes
780 	 * set properly.
781 	 */
782 	if (((req->rq_flags | next->rq_flags) & RQF_MIXED_MERGE) ||
783 	    (req->cmd_flags & REQ_FAILFAST_MASK) !=
784 	    (next->cmd_flags & REQ_FAILFAST_MASK)) {
785 		blk_rq_set_mixed_merge(req);
786 		blk_rq_set_mixed_merge(next);
787 	}
788 
789 	/*
790 	 * At this point we have either done a back merge or front merge. We
791 	 * need the smaller start_time_ns of the merged requests to be the
792 	 * current request for accounting purposes.
793 	 */
794 	if (next->start_time_ns < req->start_time_ns)
795 		req->start_time_ns = next->start_time_ns;
796 
797 	req->biotail->bi_next = next->bio;
798 	req->biotail = next->biotail;
799 
800 	req->__data_len += blk_rq_bytes(next);
801 
802 	if (!blk_discard_mergable(req))
803 		elv_merge_requests(q, req, next);
804 
805 	/*
806 	 * 'next' is going away, so update stats accordingly
807 	 */
808 	blk_account_io_merge_request(next);
809 
810 	trace_block_rq_merge(next);
811 
812 	/*
813 	 * ownership of bio passed from next to req, return 'next' for
814 	 * the caller to free
815 	 */
816 	next->bio = NULL;
817 	return next;
818 }
819 
820 static struct request *attempt_back_merge(struct request_queue *q,
821 		struct request *rq)
822 {
823 	struct request *next = elv_latter_request(q, rq);
824 
825 	if (next)
826 		return attempt_merge(q, rq, next);
827 
828 	return NULL;
829 }
830 
831 static struct request *attempt_front_merge(struct request_queue *q,
832 		struct request *rq)
833 {
834 	struct request *prev = elv_former_request(q, rq);
835 
836 	if (prev)
837 		return attempt_merge(q, prev, rq);
838 
839 	return NULL;
840 }
841 
842 int blk_attempt_req_merge(struct request_queue *q, struct request *rq,
843 			  struct request *next)
844 {
845 	struct request *free;
846 
847 	free = attempt_merge(q, rq, next);
848 	if (free) {
849 		blk_put_request(free);
850 		return 1;
851 	}
852 
853 	return 0;
854 }
855 
856 bool blk_rq_merge_ok(struct request *rq, struct bio *bio)
857 {
858 	if (!rq_mergeable(rq) || !bio_mergeable(bio))
859 		return false;
860 
861 	if (req_op(rq) != bio_op(bio))
862 		return false;
863 
864 	/* different data direction or already started, don't merge */
865 	if (bio_data_dir(bio) != rq_data_dir(rq))
866 		return false;
867 
868 	/* must be same device */
869 	if (rq->rq_disk != bio->bi_disk)
870 		return false;
871 
872 	/* only merge integrity protected bio into ditto rq */
873 	if (blk_integrity_merge_bio(rq->q, rq, bio) == false)
874 		return false;
875 
876 	/* Only merge if the crypt contexts are compatible */
877 	if (!bio_crypt_rq_ctx_compatible(rq, bio))
878 		return false;
879 
880 	/* must be using the same buffer */
881 	if (req_op(rq) == REQ_OP_WRITE_SAME &&
882 	    !blk_write_same_mergeable(rq->bio, bio))
883 		return false;
884 
885 	/*
886 	 * Don't allow merge of different write hints, or for a hint with
887 	 * non-hint IO.
888 	 */
889 	if (rq->write_hint != bio->bi_write_hint)
890 		return false;
891 
892 	if (rq->ioprio != bio_prio(bio))
893 		return false;
894 
895 	return true;
896 }
897 
898 enum elv_merge blk_try_merge(struct request *rq, struct bio *bio)
899 {
900 	if (blk_discard_mergable(rq))
901 		return ELEVATOR_DISCARD_MERGE;
902 	else if (blk_rq_pos(rq) + blk_rq_sectors(rq) == bio->bi_iter.bi_sector)
903 		return ELEVATOR_BACK_MERGE;
904 	else if (blk_rq_pos(rq) - bio_sectors(bio) == bio->bi_iter.bi_sector)
905 		return ELEVATOR_FRONT_MERGE;
906 	return ELEVATOR_NO_MERGE;
907 }
908 
909 static void blk_account_io_merge_bio(struct request *req)
910 {
911 	if (!blk_do_io_stat(req))
912 		return;
913 
914 	part_stat_lock();
915 	part_stat_inc(req->part, merges[op_stat_group(req_op(req))]);
916 	part_stat_unlock();
917 }
918 
919 enum bio_merge_status {
920 	BIO_MERGE_OK,
921 	BIO_MERGE_NONE,
922 	BIO_MERGE_FAILED,
923 };
924 
925 static enum bio_merge_status bio_attempt_back_merge(struct request *req,
926 		struct bio *bio, unsigned int nr_segs)
927 {
928 	const int ff = bio->bi_opf & REQ_FAILFAST_MASK;
929 
930 	if (!ll_back_merge_fn(req, bio, nr_segs))
931 		return BIO_MERGE_FAILED;
932 
933 	trace_block_bio_backmerge(bio);
934 	rq_qos_merge(req->q, req, bio);
935 
936 	if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
937 		blk_rq_set_mixed_merge(req);
938 
939 	req->biotail->bi_next = bio;
940 	req->biotail = bio;
941 	req->__data_len += bio->bi_iter.bi_size;
942 
943 	bio_crypt_free_ctx(bio);
944 
945 	blk_account_io_merge_bio(req);
946 	return BIO_MERGE_OK;
947 }
948 
949 static enum bio_merge_status bio_attempt_front_merge(struct request *req,
950 		struct bio *bio, unsigned int nr_segs)
951 {
952 	const int ff = bio->bi_opf & REQ_FAILFAST_MASK;
953 
954 	if (!ll_front_merge_fn(req, bio, nr_segs))
955 		return BIO_MERGE_FAILED;
956 
957 	trace_block_bio_frontmerge(bio);
958 	rq_qos_merge(req->q, req, bio);
959 
960 	if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
961 		blk_rq_set_mixed_merge(req);
962 
963 	bio->bi_next = req->bio;
964 	req->bio = bio;
965 
966 	req->__sector = bio->bi_iter.bi_sector;
967 	req->__data_len += bio->bi_iter.bi_size;
968 
969 	bio_crypt_do_front_merge(req, bio);
970 
971 	blk_account_io_merge_bio(req);
972 	return BIO_MERGE_OK;
973 }
974 
975 static enum bio_merge_status bio_attempt_discard_merge(struct request_queue *q,
976 		struct request *req, struct bio *bio)
977 {
978 	unsigned short segments = blk_rq_nr_discard_segments(req);
979 
980 	if (segments >= queue_max_discard_segments(q))
981 		goto no_merge;
982 	if (blk_rq_sectors(req) + bio_sectors(bio) >
983 	    blk_rq_get_max_sectors(req, blk_rq_pos(req)))
984 		goto no_merge;
985 
986 	rq_qos_merge(q, req, bio);
987 
988 	req->biotail->bi_next = bio;
989 	req->biotail = bio;
990 	req->__data_len += bio->bi_iter.bi_size;
991 	req->nr_phys_segments = segments + 1;
992 
993 	blk_account_io_merge_bio(req);
994 	return BIO_MERGE_OK;
995 no_merge:
996 	req_set_nomerge(q, req);
997 	return BIO_MERGE_FAILED;
998 }
999 
1000 static enum bio_merge_status blk_attempt_bio_merge(struct request_queue *q,
1001 						   struct request *rq,
1002 						   struct bio *bio,
1003 						   unsigned int nr_segs,
1004 						   bool sched_allow_merge)
1005 {
1006 	if (!blk_rq_merge_ok(rq, bio))
1007 		return BIO_MERGE_NONE;
1008 
1009 	switch (blk_try_merge(rq, bio)) {
1010 	case ELEVATOR_BACK_MERGE:
1011 		if (!sched_allow_merge || blk_mq_sched_allow_merge(q, rq, bio))
1012 			return bio_attempt_back_merge(rq, bio, nr_segs);
1013 		break;
1014 	case ELEVATOR_FRONT_MERGE:
1015 		if (!sched_allow_merge || blk_mq_sched_allow_merge(q, rq, bio))
1016 			return bio_attempt_front_merge(rq, bio, nr_segs);
1017 		break;
1018 	case ELEVATOR_DISCARD_MERGE:
1019 		return bio_attempt_discard_merge(q, rq, bio);
1020 	default:
1021 		return BIO_MERGE_NONE;
1022 	}
1023 
1024 	return BIO_MERGE_FAILED;
1025 }
1026 
1027 /**
1028  * blk_attempt_plug_merge - try to merge with %current's plugged list
1029  * @q: request_queue new bio is being queued at
1030  * @bio: new bio being queued
1031  * @nr_segs: number of segments in @bio
1032  * @same_queue_rq: pointer to &struct request that gets filled in when
1033  * another request associated with @q is found on the plug list
1034  * (optional, may be %NULL)
1035  *
1036  * Determine whether @bio being queued on @q can be merged with a request
1037  * on %current's plugged list.  Returns %true if merge was successful,
1038  * otherwise %false.
1039  *
1040  * Plugging coalesces IOs from the same issuer for the same purpose without
1041  * going through @q->queue_lock.  As such it's more of an issuing mechanism
1042  * than scheduling, and the request, while may have elvpriv data, is not
1043  * added on the elevator at this point.  In addition, we don't have
1044  * reliable access to the elevator outside queue lock.  Only check basic
1045  * merging parameters without querying the elevator.
1046  *
1047  * Caller must ensure !blk_queue_nomerges(q) beforehand.
1048  */
1049 bool blk_attempt_plug_merge(struct request_queue *q, struct bio *bio,
1050 		unsigned int nr_segs, struct request **same_queue_rq)
1051 {
1052 	struct blk_plug *plug;
1053 	struct request *rq;
1054 	struct list_head *plug_list;
1055 
1056 	plug = blk_mq_plug(q, bio);
1057 	if (!plug)
1058 		return false;
1059 
1060 	plug_list = &plug->mq_list;
1061 
1062 	list_for_each_entry_reverse(rq, plug_list, queuelist) {
1063 		if (rq->q == q && same_queue_rq) {
1064 			/*
1065 			 * Only blk-mq multiple hardware queues case checks the
1066 			 * rq in the same queue, there should be only one such
1067 			 * rq in a queue
1068 			 **/
1069 			*same_queue_rq = rq;
1070 		}
1071 
1072 		if (rq->q != q)
1073 			continue;
1074 
1075 		if (blk_attempt_bio_merge(q, rq, bio, nr_segs, false) ==
1076 		    BIO_MERGE_OK)
1077 			return true;
1078 	}
1079 
1080 	return false;
1081 }
1082 
1083 /*
1084  * Iterate list of requests and see if we can merge this bio with any
1085  * of them.
1086  */
1087 bool blk_bio_list_merge(struct request_queue *q, struct list_head *list,
1088 			struct bio *bio, unsigned int nr_segs)
1089 {
1090 	struct request *rq;
1091 	int checked = 8;
1092 
1093 	list_for_each_entry_reverse(rq, list, queuelist) {
1094 		if (!checked--)
1095 			break;
1096 
1097 		switch (blk_attempt_bio_merge(q, rq, bio, nr_segs, true)) {
1098 		case BIO_MERGE_NONE:
1099 			continue;
1100 		case BIO_MERGE_OK:
1101 			return true;
1102 		case BIO_MERGE_FAILED:
1103 			return false;
1104 		}
1105 
1106 	}
1107 
1108 	return false;
1109 }
1110 EXPORT_SYMBOL_GPL(blk_bio_list_merge);
1111 
1112 bool blk_mq_sched_try_merge(struct request_queue *q, struct bio *bio,
1113 		unsigned int nr_segs, struct request **merged_request)
1114 {
1115 	struct request *rq;
1116 
1117 	switch (elv_merge(q, &rq, bio)) {
1118 	case ELEVATOR_BACK_MERGE:
1119 		if (!blk_mq_sched_allow_merge(q, rq, bio))
1120 			return false;
1121 		if (bio_attempt_back_merge(rq, bio, nr_segs) != BIO_MERGE_OK)
1122 			return false;
1123 		*merged_request = attempt_back_merge(q, rq);
1124 		if (!*merged_request)
1125 			elv_merged_request(q, rq, ELEVATOR_BACK_MERGE);
1126 		return true;
1127 	case ELEVATOR_FRONT_MERGE:
1128 		if (!blk_mq_sched_allow_merge(q, rq, bio))
1129 			return false;
1130 		if (bio_attempt_front_merge(rq, bio, nr_segs) != BIO_MERGE_OK)
1131 			return false;
1132 		*merged_request = attempt_front_merge(q, rq);
1133 		if (!*merged_request)
1134 			elv_merged_request(q, rq, ELEVATOR_FRONT_MERGE);
1135 		return true;
1136 	case ELEVATOR_DISCARD_MERGE:
1137 		return bio_attempt_discard_merge(q, rq, bio) == BIO_MERGE_OK;
1138 	default:
1139 		return false;
1140 	}
1141 }
1142 EXPORT_SYMBOL_GPL(blk_mq_sched_try_merge);
1143