1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Functions related to segment and merge handling 4 */ 5 #include <linux/kernel.h> 6 #include <linux/module.h> 7 #include <linux/bio.h> 8 #include <linux/blkdev.h> 9 #include <linux/blk-integrity.h> 10 #include <linux/scatterlist.h> 11 #include <linux/part_stat.h> 12 #include <linux/blk-cgroup.h> 13 14 #include <trace/events/block.h> 15 16 #include "blk.h" 17 #include "blk-mq-sched.h" 18 #include "blk-rq-qos.h" 19 #include "blk-throttle.h" 20 21 static inline void bio_get_first_bvec(struct bio *bio, struct bio_vec *bv) 22 { 23 *bv = mp_bvec_iter_bvec(bio->bi_io_vec, bio->bi_iter); 24 } 25 26 static inline void bio_get_last_bvec(struct bio *bio, struct bio_vec *bv) 27 { 28 struct bvec_iter iter = bio->bi_iter; 29 int idx; 30 31 bio_get_first_bvec(bio, bv); 32 if (bv->bv_len == bio->bi_iter.bi_size) 33 return; /* this bio only has a single bvec */ 34 35 bio_advance_iter(bio, &iter, iter.bi_size); 36 37 if (!iter.bi_bvec_done) 38 idx = iter.bi_idx - 1; 39 else /* in the middle of bvec */ 40 idx = iter.bi_idx; 41 42 *bv = bio->bi_io_vec[idx]; 43 44 /* 45 * iter.bi_bvec_done records actual length of the last bvec 46 * if this bio ends in the middle of one io vector 47 */ 48 if (iter.bi_bvec_done) 49 bv->bv_len = iter.bi_bvec_done; 50 } 51 52 static inline bool bio_will_gap(struct request_queue *q, 53 struct request *prev_rq, struct bio *prev, struct bio *next) 54 { 55 struct bio_vec pb, nb; 56 57 if (!bio_has_data(prev) || !queue_virt_boundary(q)) 58 return false; 59 60 /* 61 * Don't merge if the 1st bio starts with non-zero offset, otherwise it 62 * is quite difficult to respect the sg gap limit. We work hard to 63 * merge a huge number of small single bios in case of mkfs. 64 */ 65 if (prev_rq) 66 bio_get_first_bvec(prev_rq->bio, &pb); 67 else 68 bio_get_first_bvec(prev, &pb); 69 if (pb.bv_offset & queue_virt_boundary(q)) 70 return true; 71 72 /* 73 * We don't need to worry about the situation that the merged segment 74 * ends in unaligned virt boundary: 75 * 76 * - if 'pb' ends aligned, the merged segment ends aligned 77 * - if 'pb' ends unaligned, the next bio must include 78 * one single bvec of 'nb', otherwise the 'nb' can't 79 * merge with 'pb' 80 */ 81 bio_get_last_bvec(prev, &pb); 82 bio_get_first_bvec(next, &nb); 83 if (biovec_phys_mergeable(q, &pb, &nb)) 84 return false; 85 return __bvec_gap_to_prev(&q->limits, &pb, nb.bv_offset); 86 } 87 88 static inline bool req_gap_back_merge(struct request *req, struct bio *bio) 89 { 90 return bio_will_gap(req->q, req, req->biotail, bio); 91 } 92 93 static inline bool req_gap_front_merge(struct request *req, struct bio *bio) 94 { 95 return bio_will_gap(req->q, NULL, bio, req->bio); 96 } 97 98 /* 99 * The max size one bio can handle is UINT_MAX becasue bvec_iter.bi_size 100 * is defined as 'unsigned int', meantime it has to be aligned to with the 101 * logical block size, which is the minimum accepted unit by hardware. 102 */ 103 static unsigned int bio_allowed_max_sectors(const struct queue_limits *lim) 104 { 105 return round_down(UINT_MAX, lim->logical_block_size) >> SECTOR_SHIFT; 106 } 107 108 static struct bio *bio_split_discard(struct bio *bio, 109 const struct queue_limits *lim, 110 unsigned *nsegs, struct bio_set *bs) 111 { 112 unsigned int max_discard_sectors, granularity; 113 sector_t tmp; 114 unsigned split_sectors; 115 116 *nsegs = 1; 117 118 granularity = max(lim->discard_granularity >> 9, 1U); 119 120 max_discard_sectors = 121 min(lim->max_discard_sectors, bio_allowed_max_sectors(lim)); 122 max_discard_sectors -= max_discard_sectors % granularity; 123 if (unlikely(!max_discard_sectors)) 124 return NULL; 125 126 if (bio_sectors(bio) <= max_discard_sectors) 127 return NULL; 128 129 split_sectors = max_discard_sectors; 130 131 /* 132 * If the next starting sector would be misaligned, stop the discard at 133 * the previous aligned sector. 134 */ 135 tmp = bio->bi_iter.bi_sector + split_sectors - 136 ((lim->discard_alignment >> 9) % granularity); 137 tmp = sector_div(tmp, granularity); 138 139 if (split_sectors > tmp) 140 split_sectors -= tmp; 141 142 return bio_split(bio, split_sectors, GFP_NOIO, bs); 143 } 144 145 static struct bio *bio_split_write_zeroes(struct bio *bio, 146 const struct queue_limits *lim, 147 unsigned *nsegs, struct bio_set *bs) 148 { 149 *nsegs = 0; 150 if (!lim->max_write_zeroes_sectors) 151 return NULL; 152 if (bio_sectors(bio) <= lim->max_write_zeroes_sectors) 153 return NULL; 154 return bio_split(bio, lim->max_write_zeroes_sectors, GFP_NOIO, bs); 155 } 156 157 /* 158 * Return the maximum number of sectors from the start of a bio that may be 159 * submitted as a single request to a block device. If enough sectors remain, 160 * align the end to the physical block size. Otherwise align the end to the 161 * logical block size. This approach minimizes the number of non-aligned 162 * requests that are submitted to a block device if the start of a bio is not 163 * aligned to a physical block boundary. 164 */ 165 static inline unsigned get_max_io_size(struct bio *bio, 166 const struct queue_limits *lim) 167 { 168 unsigned pbs = lim->physical_block_size >> SECTOR_SHIFT; 169 unsigned lbs = lim->logical_block_size >> SECTOR_SHIFT; 170 unsigned max_sectors = lim->max_sectors, start, end; 171 172 if (lim->chunk_sectors) { 173 max_sectors = min(max_sectors, 174 blk_chunk_sectors_left(bio->bi_iter.bi_sector, 175 lim->chunk_sectors)); 176 } 177 178 start = bio->bi_iter.bi_sector & (pbs - 1); 179 end = (start + max_sectors) & ~(pbs - 1); 180 if (end > start) 181 return end - start; 182 return max_sectors & ~(lbs - 1); 183 } 184 185 /** 186 * get_max_segment_size() - maximum number of bytes to add as a single segment 187 * @lim: Request queue limits. 188 * @start_page: See below. 189 * @offset: Offset from @start_page where to add a segment. 190 * 191 * Returns the maximum number of bytes that can be added as a single segment. 192 */ 193 static inline unsigned get_max_segment_size(const struct queue_limits *lim, 194 struct page *start_page, unsigned long offset) 195 { 196 unsigned long mask = lim->seg_boundary_mask; 197 198 offset = mask & (page_to_phys(start_page) + offset); 199 200 /* 201 * Prevent an overflow if mask = ULONG_MAX and offset = 0 by adding 1 202 * after having calculated the minimum. 203 */ 204 return min(mask - offset, (unsigned long)lim->max_segment_size - 1) + 1; 205 } 206 207 /** 208 * bvec_split_segs - verify whether or not a bvec should be split in the middle 209 * @lim: [in] queue limits to split based on 210 * @bv: [in] bvec to examine 211 * @nsegs: [in,out] Number of segments in the bio being built. Incremented 212 * by the number of segments from @bv that may be appended to that 213 * bio without exceeding @max_segs 214 * @bytes: [in,out] Number of bytes in the bio being built. Incremented 215 * by the number of bytes from @bv that may be appended to that 216 * bio without exceeding @max_bytes 217 * @max_segs: [in] upper bound for *@nsegs 218 * @max_bytes: [in] upper bound for *@bytes 219 * 220 * When splitting a bio, it can happen that a bvec is encountered that is too 221 * big to fit in a single segment and hence that it has to be split in the 222 * middle. This function verifies whether or not that should happen. The value 223 * %true is returned if and only if appending the entire @bv to a bio with 224 * *@nsegs segments and *@sectors sectors would make that bio unacceptable for 225 * the block driver. 226 */ 227 static bool bvec_split_segs(const struct queue_limits *lim, 228 const struct bio_vec *bv, unsigned *nsegs, unsigned *bytes, 229 unsigned max_segs, unsigned max_bytes) 230 { 231 unsigned max_len = min(max_bytes, UINT_MAX) - *bytes; 232 unsigned len = min(bv->bv_len, max_len); 233 unsigned total_len = 0; 234 unsigned seg_size = 0; 235 236 while (len && *nsegs < max_segs) { 237 seg_size = get_max_segment_size(lim, bv->bv_page, 238 bv->bv_offset + total_len); 239 seg_size = min(seg_size, len); 240 241 (*nsegs)++; 242 total_len += seg_size; 243 len -= seg_size; 244 245 if ((bv->bv_offset + total_len) & lim->virt_boundary_mask) 246 break; 247 } 248 249 *bytes += total_len; 250 251 /* tell the caller to split the bvec if it is too big to fit */ 252 return len > 0 || bv->bv_len > max_len; 253 } 254 255 /** 256 * bio_split_rw - split a bio in two bios 257 * @bio: [in] bio to be split 258 * @lim: [in] queue limits to split based on 259 * @segs: [out] number of segments in the bio with the first half of the sectors 260 * @bs: [in] bio set to allocate the clone from 261 * @max_bytes: [in] maximum number of bytes per bio 262 * 263 * Clone @bio, update the bi_iter of the clone to represent the first sectors 264 * of @bio and update @bio->bi_iter to represent the remaining sectors. The 265 * following is guaranteed for the cloned bio: 266 * - That it has at most @max_bytes worth of data 267 * - That it has at most queue_max_segments(@q) segments. 268 * 269 * Except for discard requests the cloned bio will point at the bi_io_vec of 270 * the original bio. It is the responsibility of the caller to ensure that the 271 * original bio is not freed before the cloned bio. The caller is also 272 * responsible for ensuring that @bs is only destroyed after processing of the 273 * split bio has finished. 274 */ 275 struct bio *bio_split_rw(struct bio *bio, const struct queue_limits *lim, 276 unsigned *segs, struct bio_set *bs, unsigned max_bytes) 277 { 278 struct bio_vec bv, bvprv, *bvprvp = NULL; 279 struct bvec_iter iter; 280 unsigned nsegs = 0, bytes = 0; 281 282 bio_for_each_bvec(bv, bio, iter) { 283 /* 284 * If the queue doesn't support SG gaps and adding this 285 * offset would create a gap, disallow it. 286 */ 287 if (bvprvp && bvec_gap_to_prev(lim, bvprvp, bv.bv_offset)) 288 goto split; 289 290 if (nsegs < lim->max_segments && 291 bytes + bv.bv_len <= max_bytes && 292 bv.bv_offset + bv.bv_len <= PAGE_SIZE) { 293 nsegs++; 294 bytes += bv.bv_len; 295 } else { 296 if (bvec_split_segs(lim, &bv, &nsegs, &bytes, 297 lim->max_segments, max_bytes)) 298 goto split; 299 } 300 301 bvprv = bv; 302 bvprvp = &bvprv; 303 } 304 305 *segs = nsegs; 306 return NULL; 307 split: 308 /* 309 * We can't sanely support splitting for a REQ_NOWAIT bio. End it 310 * with EAGAIN if splitting is required and return an error pointer. 311 */ 312 if (bio->bi_opf & REQ_NOWAIT) { 313 bio->bi_status = BLK_STS_AGAIN; 314 bio_endio(bio); 315 return ERR_PTR(-EAGAIN); 316 } 317 318 *segs = nsegs; 319 320 /* 321 * Individual bvecs might not be logical block aligned. Round down the 322 * split size so that each bio is properly block size aligned, even if 323 * we do not use the full hardware limits. 324 */ 325 bytes = ALIGN_DOWN(bytes, lim->logical_block_size); 326 327 /* 328 * Bio splitting may cause subtle trouble such as hang when doing sync 329 * iopoll in direct IO routine. Given performance gain of iopoll for 330 * big IO can be trival, disable iopoll when split needed. 331 */ 332 bio_clear_polled(bio); 333 return bio_split(bio, bytes >> SECTOR_SHIFT, GFP_NOIO, bs); 334 } 335 EXPORT_SYMBOL_GPL(bio_split_rw); 336 337 /** 338 * __bio_split_to_limits - split a bio to fit the queue limits 339 * @bio: bio to be split 340 * @lim: queue limits to split based on 341 * @nr_segs: returns the number of segments in the returned bio 342 * 343 * Check if @bio needs splitting based on the queue limits, and if so split off 344 * a bio fitting the limits from the beginning of @bio and return it. @bio is 345 * shortened to the remainder and re-submitted. 346 * 347 * The split bio is allocated from @q->bio_split, which is provided by the 348 * block layer. 349 */ 350 struct bio *__bio_split_to_limits(struct bio *bio, 351 const struct queue_limits *lim, 352 unsigned int *nr_segs) 353 { 354 struct bio_set *bs = &bio->bi_bdev->bd_disk->bio_split; 355 struct bio *split; 356 357 switch (bio_op(bio)) { 358 case REQ_OP_DISCARD: 359 case REQ_OP_SECURE_ERASE: 360 split = bio_split_discard(bio, lim, nr_segs, bs); 361 break; 362 case REQ_OP_WRITE_ZEROES: 363 split = bio_split_write_zeroes(bio, lim, nr_segs, bs); 364 break; 365 default: 366 split = bio_split_rw(bio, lim, nr_segs, bs, 367 get_max_io_size(bio, lim) << SECTOR_SHIFT); 368 if (IS_ERR(split)) 369 return NULL; 370 break; 371 } 372 373 if (split) { 374 /* there isn't chance to merge the split bio */ 375 split->bi_opf |= REQ_NOMERGE; 376 377 blkcg_bio_issue_init(split); 378 bio_chain(split, bio); 379 trace_block_split(split, bio->bi_iter.bi_sector); 380 submit_bio_noacct(bio); 381 return split; 382 } 383 return bio; 384 } 385 386 /** 387 * bio_split_to_limits - split a bio to fit the queue limits 388 * @bio: bio to be split 389 * 390 * Check if @bio needs splitting based on the queue limits of @bio->bi_bdev, and 391 * if so split off a bio fitting the limits from the beginning of @bio and 392 * return it. @bio is shortened to the remainder and re-submitted. 393 * 394 * The split bio is allocated from @q->bio_split, which is provided by the 395 * block layer. 396 */ 397 struct bio *bio_split_to_limits(struct bio *bio) 398 { 399 const struct queue_limits *lim = &bdev_get_queue(bio->bi_bdev)->limits; 400 unsigned int nr_segs; 401 402 if (bio_may_exceed_limits(bio, lim)) 403 return __bio_split_to_limits(bio, lim, &nr_segs); 404 return bio; 405 } 406 EXPORT_SYMBOL(bio_split_to_limits); 407 408 unsigned int blk_recalc_rq_segments(struct request *rq) 409 { 410 unsigned int nr_phys_segs = 0; 411 unsigned int bytes = 0; 412 struct req_iterator iter; 413 struct bio_vec bv; 414 415 if (!rq->bio) 416 return 0; 417 418 switch (bio_op(rq->bio)) { 419 case REQ_OP_DISCARD: 420 case REQ_OP_SECURE_ERASE: 421 if (queue_max_discard_segments(rq->q) > 1) { 422 struct bio *bio = rq->bio; 423 424 for_each_bio(bio) 425 nr_phys_segs++; 426 return nr_phys_segs; 427 } 428 return 1; 429 case REQ_OP_WRITE_ZEROES: 430 return 0; 431 default: 432 break; 433 } 434 435 rq_for_each_bvec(bv, rq, iter) 436 bvec_split_segs(&rq->q->limits, &bv, &nr_phys_segs, &bytes, 437 UINT_MAX, UINT_MAX); 438 return nr_phys_segs; 439 } 440 441 static inline struct scatterlist *blk_next_sg(struct scatterlist **sg, 442 struct scatterlist *sglist) 443 { 444 if (!*sg) 445 return sglist; 446 447 /* 448 * If the driver previously mapped a shorter list, we could see a 449 * termination bit prematurely unless it fully inits the sg table 450 * on each mapping. We KNOW that there must be more entries here 451 * or the driver would be buggy, so force clear the termination bit 452 * to avoid doing a full sg_init_table() in drivers for each command. 453 */ 454 sg_unmark_end(*sg); 455 return sg_next(*sg); 456 } 457 458 static unsigned blk_bvec_map_sg(struct request_queue *q, 459 struct bio_vec *bvec, struct scatterlist *sglist, 460 struct scatterlist **sg) 461 { 462 unsigned nbytes = bvec->bv_len; 463 unsigned nsegs = 0, total = 0; 464 465 while (nbytes > 0) { 466 unsigned offset = bvec->bv_offset + total; 467 unsigned len = min(get_max_segment_size(&q->limits, 468 bvec->bv_page, offset), nbytes); 469 struct page *page = bvec->bv_page; 470 471 /* 472 * Unfortunately a fair number of drivers barf on scatterlists 473 * that have an offset larger than PAGE_SIZE, despite other 474 * subsystems dealing with that invariant just fine. For now 475 * stick to the legacy format where we never present those from 476 * the block layer, but the code below should be removed once 477 * these offenders (mostly MMC/SD drivers) are fixed. 478 */ 479 page += (offset >> PAGE_SHIFT); 480 offset &= ~PAGE_MASK; 481 482 *sg = blk_next_sg(sg, sglist); 483 sg_set_page(*sg, page, len, offset); 484 485 total += len; 486 nbytes -= len; 487 nsegs++; 488 } 489 490 return nsegs; 491 } 492 493 static inline int __blk_bvec_map_sg(struct bio_vec bv, 494 struct scatterlist *sglist, struct scatterlist **sg) 495 { 496 *sg = blk_next_sg(sg, sglist); 497 sg_set_page(*sg, bv.bv_page, bv.bv_len, bv.bv_offset); 498 return 1; 499 } 500 501 /* only try to merge bvecs into one sg if they are from two bios */ 502 static inline bool 503 __blk_segment_map_sg_merge(struct request_queue *q, struct bio_vec *bvec, 504 struct bio_vec *bvprv, struct scatterlist **sg) 505 { 506 507 int nbytes = bvec->bv_len; 508 509 if (!*sg) 510 return false; 511 512 if ((*sg)->length + nbytes > queue_max_segment_size(q)) 513 return false; 514 515 if (!biovec_phys_mergeable(q, bvprv, bvec)) 516 return false; 517 518 (*sg)->length += nbytes; 519 520 return true; 521 } 522 523 static int __blk_bios_map_sg(struct request_queue *q, struct bio *bio, 524 struct scatterlist *sglist, 525 struct scatterlist **sg) 526 { 527 struct bio_vec bvec, bvprv = { NULL }; 528 struct bvec_iter iter; 529 int nsegs = 0; 530 bool new_bio = false; 531 532 for_each_bio(bio) { 533 bio_for_each_bvec(bvec, bio, iter) { 534 /* 535 * Only try to merge bvecs from two bios given we 536 * have done bio internal merge when adding pages 537 * to bio 538 */ 539 if (new_bio && 540 __blk_segment_map_sg_merge(q, &bvec, &bvprv, sg)) 541 goto next_bvec; 542 543 if (bvec.bv_offset + bvec.bv_len <= PAGE_SIZE) 544 nsegs += __blk_bvec_map_sg(bvec, sglist, sg); 545 else 546 nsegs += blk_bvec_map_sg(q, &bvec, sglist, sg); 547 next_bvec: 548 new_bio = false; 549 } 550 if (likely(bio->bi_iter.bi_size)) { 551 bvprv = bvec; 552 new_bio = true; 553 } 554 } 555 556 return nsegs; 557 } 558 559 /* 560 * map a request to scatterlist, return number of sg entries setup. Caller 561 * must make sure sg can hold rq->nr_phys_segments entries 562 */ 563 int __blk_rq_map_sg(struct request_queue *q, struct request *rq, 564 struct scatterlist *sglist, struct scatterlist **last_sg) 565 { 566 int nsegs = 0; 567 568 if (rq->rq_flags & RQF_SPECIAL_PAYLOAD) 569 nsegs = __blk_bvec_map_sg(rq->special_vec, sglist, last_sg); 570 else if (rq->bio) 571 nsegs = __blk_bios_map_sg(q, rq->bio, sglist, last_sg); 572 573 if (*last_sg) 574 sg_mark_end(*last_sg); 575 576 /* 577 * Something must have been wrong if the figured number of 578 * segment is bigger than number of req's physical segments 579 */ 580 WARN_ON(nsegs > blk_rq_nr_phys_segments(rq)); 581 582 return nsegs; 583 } 584 EXPORT_SYMBOL(__blk_rq_map_sg); 585 586 static inline unsigned int blk_rq_get_max_sectors(struct request *rq, 587 sector_t offset) 588 { 589 struct request_queue *q = rq->q; 590 unsigned int max_sectors; 591 592 if (blk_rq_is_passthrough(rq)) 593 return q->limits.max_hw_sectors; 594 595 max_sectors = blk_queue_get_max_sectors(q, req_op(rq)); 596 if (!q->limits.chunk_sectors || 597 req_op(rq) == REQ_OP_DISCARD || 598 req_op(rq) == REQ_OP_SECURE_ERASE) 599 return max_sectors; 600 return min(max_sectors, 601 blk_chunk_sectors_left(offset, q->limits.chunk_sectors)); 602 } 603 604 static inline int ll_new_hw_segment(struct request *req, struct bio *bio, 605 unsigned int nr_phys_segs) 606 { 607 if (!blk_cgroup_mergeable(req, bio)) 608 goto no_merge; 609 610 if (blk_integrity_merge_bio(req->q, req, bio) == false) 611 goto no_merge; 612 613 /* discard request merge won't add new segment */ 614 if (req_op(req) == REQ_OP_DISCARD) 615 return 1; 616 617 if (req->nr_phys_segments + nr_phys_segs > blk_rq_get_max_segments(req)) 618 goto no_merge; 619 620 /* 621 * This will form the start of a new hw segment. Bump both 622 * counters. 623 */ 624 req->nr_phys_segments += nr_phys_segs; 625 return 1; 626 627 no_merge: 628 req_set_nomerge(req->q, req); 629 return 0; 630 } 631 632 int ll_back_merge_fn(struct request *req, struct bio *bio, unsigned int nr_segs) 633 { 634 if (req_gap_back_merge(req, bio)) 635 return 0; 636 if (blk_integrity_rq(req) && 637 integrity_req_gap_back_merge(req, bio)) 638 return 0; 639 if (!bio_crypt_ctx_back_mergeable(req, bio)) 640 return 0; 641 if (blk_rq_sectors(req) + bio_sectors(bio) > 642 blk_rq_get_max_sectors(req, blk_rq_pos(req))) { 643 req_set_nomerge(req->q, req); 644 return 0; 645 } 646 647 return ll_new_hw_segment(req, bio, nr_segs); 648 } 649 650 static int ll_front_merge_fn(struct request *req, struct bio *bio, 651 unsigned int nr_segs) 652 { 653 if (req_gap_front_merge(req, bio)) 654 return 0; 655 if (blk_integrity_rq(req) && 656 integrity_req_gap_front_merge(req, bio)) 657 return 0; 658 if (!bio_crypt_ctx_front_mergeable(req, bio)) 659 return 0; 660 if (blk_rq_sectors(req) + bio_sectors(bio) > 661 blk_rq_get_max_sectors(req, bio->bi_iter.bi_sector)) { 662 req_set_nomerge(req->q, req); 663 return 0; 664 } 665 666 return ll_new_hw_segment(req, bio, nr_segs); 667 } 668 669 static bool req_attempt_discard_merge(struct request_queue *q, struct request *req, 670 struct request *next) 671 { 672 unsigned short segments = blk_rq_nr_discard_segments(req); 673 674 if (segments >= queue_max_discard_segments(q)) 675 goto no_merge; 676 if (blk_rq_sectors(req) + bio_sectors(next->bio) > 677 blk_rq_get_max_sectors(req, blk_rq_pos(req))) 678 goto no_merge; 679 680 req->nr_phys_segments = segments + blk_rq_nr_discard_segments(next); 681 return true; 682 no_merge: 683 req_set_nomerge(q, req); 684 return false; 685 } 686 687 static int ll_merge_requests_fn(struct request_queue *q, struct request *req, 688 struct request *next) 689 { 690 int total_phys_segments; 691 692 if (req_gap_back_merge(req, next->bio)) 693 return 0; 694 695 /* 696 * Will it become too large? 697 */ 698 if ((blk_rq_sectors(req) + blk_rq_sectors(next)) > 699 blk_rq_get_max_sectors(req, blk_rq_pos(req))) 700 return 0; 701 702 total_phys_segments = req->nr_phys_segments + next->nr_phys_segments; 703 if (total_phys_segments > blk_rq_get_max_segments(req)) 704 return 0; 705 706 if (!blk_cgroup_mergeable(req, next->bio)) 707 return 0; 708 709 if (blk_integrity_merge_rq(q, req, next) == false) 710 return 0; 711 712 if (!bio_crypt_ctx_merge_rq(req, next)) 713 return 0; 714 715 /* Merge is OK... */ 716 req->nr_phys_segments = total_phys_segments; 717 return 1; 718 } 719 720 /** 721 * blk_rq_set_mixed_merge - mark a request as mixed merge 722 * @rq: request to mark as mixed merge 723 * 724 * Description: 725 * @rq is about to be mixed merged. Make sure the attributes 726 * which can be mixed are set in each bio and mark @rq as mixed 727 * merged. 728 */ 729 void blk_rq_set_mixed_merge(struct request *rq) 730 { 731 blk_opf_t ff = rq->cmd_flags & REQ_FAILFAST_MASK; 732 struct bio *bio; 733 734 if (rq->rq_flags & RQF_MIXED_MERGE) 735 return; 736 737 /* 738 * @rq will no longer represent mixable attributes for all the 739 * contained bios. It will just track those of the first one. 740 * Distributes the attributs to each bio. 741 */ 742 for (bio = rq->bio; bio; bio = bio->bi_next) { 743 WARN_ON_ONCE((bio->bi_opf & REQ_FAILFAST_MASK) && 744 (bio->bi_opf & REQ_FAILFAST_MASK) != ff); 745 bio->bi_opf |= ff; 746 } 747 rq->rq_flags |= RQF_MIXED_MERGE; 748 } 749 750 static inline blk_opf_t bio_failfast(const struct bio *bio) 751 { 752 if (bio->bi_opf & REQ_RAHEAD) 753 return REQ_FAILFAST_MASK; 754 755 return bio->bi_opf & REQ_FAILFAST_MASK; 756 } 757 758 /* 759 * After we are marked as MIXED_MERGE, any new RA bio has to be updated 760 * as failfast, and request's failfast has to be updated in case of 761 * front merge. 762 */ 763 static inline void blk_update_mixed_merge(struct request *req, 764 struct bio *bio, bool front_merge) 765 { 766 if (req->rq_flags & RQF_MIXED_MERGE) { 767 if (bio->bi_opf & REQ_RAHEAD) 768 bio->bi_opf |= REQ_FAILFAST_MASK; 769 770 if (front_merge) { 771 req->cmd_flags &= ~REQ_FAILFAST_MASK; 772 req->cmd_flags |= bio->bi_opf & REQ_FAILFAST_MASK; 773 } 774 } 775 } 776 777 static void blk_account_io_merge_request(struct request *req) 778 { 779 if (blk_do_io_stat(req)) { 780 part_stat_lock(); 781 part_stat_inc(req->part, merges[op_stat_group(req_op(req))]); 782 part_stat_unlock(); 783 } 784 } 785 786 static enum elv_merge blk_try_req_merge(struct request *req, 787 struct request *next) 788 { 789 if (blk_discard_mergable(req)) 790 return ELEVATOR_DISCARD_MERGE; 791 else if (blk_rq_pos(req) + blk_rq_sectors(req) == blk_rq_pos(next)) 792 return ELEVATOR_BACK_MERGE; 793 794 return ELEVATOR_NO_MERGE; 795 } 796 797 /* 798 * For non-mq, this has to be called with the request spinlock acquired. 799 * For mq with scheduling, the appropriate queue wide lock should be held. 800 */ 801 static struct request *attempt_merge(struct request_queue *q, 802 struct request *req, struct request *next) 803 { 804 if (!rq_mergeable(req) || !rq_mergeable(next)) 805 return NULL; 806 807 if (req_op(req) != req_op(next)) 808 return NULL; 809 810 if (rq_data_dir(req) != rq_data_dir(next)) 811 return NULL; 812 813 if (req->ioprio != next->ioprio) 814 return NULL; 815 816 /* 817 * If we are allowed to merge, then append bio list 818 * from next to rq and release next. merge_requests_fn 819 * will have updated segment counts, update sector 820 * counts here. Handle DISCARDs separately, as they 821 * have separate settings. 822 */ 823 824 switch (blk_try_req_merge(req, next)) { 825 case ELEVATOR_DISCARD_MERGE: 826 if (!req_attempt_discard_merge(q, req, next)) 827 return NULL; 828 break; 829 case ELEVATOR_BACK_MERGE: 830 if (!ll_merge_requests_fn(q, req, next)) 831 return NULL; 832 break; 833 default: 834 return NULL; 835 } 836 837 /* 838 * If failfast settings disagree or any of the two is already 839 * a mixed merge, mark both as mixed before proceeding. This 840 * makes sure that all involved bios have mixable attributes 841 * set properly. 842 */ 843 if (((req->rq_flags | next->rq_flags) & RQF_MIXED_MERGE) || 844 (req->cmd_flags & REQ_FAILFAST_MASK) != 845 (next->cmd_flags & REQ_FAILFAST_MASK)) { 846 blk_rq_set_mixed_merge(req); 847 blk_rq_set_mixed_merge(next); 848 } 849 850 /* 851 * At this point we have either done a back merge or front merge. We 852 * need the smaller start_time_ns of the merged requests to be the 853 * current request for accounting purposes. 854 */ 855 if (next->start_time_ns < req->start_time_ns) 856 req->start_time_ns = next->start_time_ns; 857 858 req->biotail->bi_next = next->bio; 859 req->biotail = next->biotail; 860 861 req->__data_len += blk_rq_bytes(next); 862 863 if (!blk_discard_mergable(req)) 864 elv_merge_requests(q, req, next); 865 866 blk_crypto_rq_put_keyslot(next); 867 868 /* 869 * 'next' is going away, so update stats accordingly 870 */ 871 blk_account_io_merge_request(next); 872 873 trace_block_rq_merge(next); 874 875 /* 876 * ownership of bio passed from next to req, return 'next' for 877 * the caller to free 878 */ 879 next->bio = NULL; 880 return next; 881 } 882 883 static struct request *attempt_back_merge(struct request_queue *q, 884 struct request *rq) 885 { 886 struct request *next = elv_latter_request(q, rq); 887 888 if (next) 889 return attempt_merge(q, rq, next); 890 891 return NULL; 892 } 893 894 static struct request *attempt_front_merge(struct request_queue *q, 895 struct request *rq) 896 { 897 struct request *prev = elv_former_request(q, rq); 898 899 if (prev) 900 return attempt_merge(q, prev, rq); 901 902 return NULL; 903 } 904 905 /* 906 * Try to merge 'next' into 'rq'. Return true if the merge happened, false 907 * otherwise. The caller is responsible for freeing 'next' if the merge 908 * happened. 909 */ 910 bool blk_attempt_req_merge(struct request_queue *q, struct request *rq, 911 struct request *next) 912 { 913 return attempt_merge(q, rq, next); 914 } 915 916 bool blk_rq_merge_ok(struct request *rq, struct bio *bio) 917 { 918 if (!rq_mergeable(rq) || !bio_mergeable(bio)) 919 return false; 920 921 if (req_op(rq) != bio_op(bio)) 922 return false; 923 924 /* different data direction or already started, don't merge */ 925 if (bio_data_dir(bio) != rq_data_dir(rq)) 926 return false; 927 928 /* don't merge across cgroup boundaries */ 929 if (!blk_cgroup_mergeable(rq, bio)) 930 return false; 931 932 /* only merge integrity protected bio into ditto rq */ 933 if (blk_integrity_merge_bio(rq->q, rq, bio) == false) 934 return false; 935 936 /* Only merge if the crypt contexts are compatible */ 937 if (!bio_crypt_rq_ctx_compatible(rq, bio)) 938 return false; 939 940 if (rq->ioprio != bio_prio(bio)) 941 return false; 942 943 return true; 944 } 945 946 enum elv_merge blk_try_merge(struct request *rq, struct bio *bio) 947 { 948 if (blk_discard_mergable(rq)) 949 return ELEVATOR_DISCARD_MERGE; 950 else if (blk_rq_pos(rq) + blk_rq_sectors(rq) == bio->bi_iter.bi_sector) 951 return ELEVATOR_BACK_MERGE; 952 else if (blk_rq_pos(rq) - bio_sectors(bio) == bio->bi_iter.bi_sector) 953 return ELEVATOR_FRONT_MERGE; 954 return ELEVATOR_NO_MERGE; 955 } 956 957 static void blk_account_io_merge_bio(struct request *req) 958 { 959 if (!blk_do_io_stat(req)) 960 return; 961 962 part_stat_lock(); 963 part_stat_inc(req->part, merges[op_stat_group(req_op(req))]); 964 part_stat_unlock(); 965 } 966 967 enum bio_merge_status { 968 BIO_MERGE_OK, 969 BIO_MERGE_NONE, 970 BIO_MERGE_FAILED, 971 }; 972 973 static enum bio_merge_status bio_attempt_back_merge(struct request *req, 974 struct bio *bio, unsigned int nr_segs) 975 { 976 const blk_opf_t ff = bio_failfast(bio); 977 978 if (!ll_back_merge_fn(req, bio, nr_segs)) 979 return BIO_MERGE_FAILED; 980 981 trace_block_bio_backmerge(bio); 982 rq_qos_merge(req->q, req, bio); 983 984 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff) 985 blk_rq_set_mixed_merge(req); 986 987 blk_update_mixed_merge(req, bio, false); 988 989 req->biotail->bi_next = bio; 990 req->biotail = bio; 991 req->__data_len += bio->bi_iter.bi_size; 992 993 bio_crypt_free_ctx(bio); 994 995 blk_account_io_merge_bio(req); 996 return BIO_MERGE_OK; 997 } 998 999 static enum bio_merge_status bio_attempt_front_merge(struct request *req, 1000 struct bio *bio, unsigned int nr_segs) 1001 { 1002 const blk_opf_t ff = bio_failfast(bio); 1003 1004 if (!ll_front_merge_fn(req, bio, nr_segs)) 1005 return BIO_MERGE_FAILED; 1006 1007 trace_block_bio_frontmerge(bio); 1008 rq_qos_merge(req->q, req, bio); 1009 1010 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff) 1011 blk_rq_set_mixed_merge(req); 1012 1013 blk_update_mixed_merge(req, bio, true); 1014 1015 bio->bi_next = req->bio; 1016 req->bio = bio; 1017 1018 req->__sector = bio->bi_iter.bi_sector; 1019 req->__data_len += bio->bi_iter.bi_size; 1020 1021 bio_crypt_do_front_merge(req, bio); 1022 1023 blk_account_io_merge_bio(req); 1024 return BIO_MERGE_OK; 1025 } 1026 1027 static enum bio_merge_status bio_attempt_discard_merge(struct request_queue *q, 1028 struct request *req, struct bio *bio) 1029 { 1030 unsigned short segments = blk_rq_nr_discard_segments(req); 1031 1032 if (segments >= queue_max_discard_segments(q)) 1033 goto no_merge; 1034 if (blk_rq_sectors(req) + bio_sectors(bio) > 1035 blk_rq_get_max_sectors(req, blk_rq_pos(req))) 1036 goto no_merge; 1037 1038 rq_qos_merge(q, req, bio); 1039 1040 req->biotail->bi_next = bio; 1041 req->biotail = bio; 1042 req->__data_len += bio->bi_iter.bi_size; 1043 req->nr_phys_segments = segments + 1; 1044 1045 blk_account_io_merge_bio(req); 1046 return BIO_MERGE_OK; 1047 no_merge: 1048 req_set_nomerge(q, req); 1049 return BIO_MERGE_FAILED; 1050 } 1051 1052 static enum bio_merge_status blk_attempt_bio_merge(struct request_queue *q, 1053 struct request *rq, 1054 struct bio *bio, 1055 unsigned int nr_segs, 1056 bool sched_allow_merge) 1057 { 1058 if (!blk_rq_merge_ok(rq, bio)) 1059 return BIO_MERGE_NONE; 1060 1061 switch (blk_try_merge(rq, bio)) { 1062 case ELEVATOR_BACK_MERGE: 1063 if (!sched_allow_merge || blk_mq_sched_allow_merge(q, rq, bio)) 1064 return bio_attempt_back_merge(rq, bio, nr_segs); 1065 break; 1066 case ELEVATOR_FRONT_MERGE: 1067 if (!sched_allow_merge || blk_mq_sched_allow_merge(q, rq, bio)) 1068 return bio_attempt_front_merge(rq, bio, nr_segs); 1069 break; 1070 case ELEVATOR_DISCARD_MERGE: 1071 return bio_attempt_discard_merge(q, rq, bio); 1072 default: 1073 return BIO_MERGE_NONE; 1074 } 1075 1076 return BIO_MERGE_FAILED; 1077 } 1078 1079 /** 1080 * blk_attempt_plug_merge - try to merge with %current's plugged list 1081 * @q: request_queue new bio is being queued at 1082 * @bio: new bio being queued 1083 * @nr_segs: number of segments in @bio 1084 * from the passed in @q already in the plug list 1085 * 1086 * Determine whether @bio being queued on @q can be merged with the previous 1087 * request on %current's plugged list. Returns %true if merge was successful, 1088 * otherwise %false. 1089 * 1090 * Plugging coalesces IOs from the same issuer for the same purpose without 1091 * going through @q->queue_lock. As such it's more of an issuing mechanism 1092 * than scheduling, and the request, while may have elvpriv data, is not 1093 * added on the elevator at this point. In addition, we don't have 1094 * reliable access to the elevator outside queue lock. Only check basic 1095 * merging parameters without querying the elevator. 1096 * 1097 * Caller must ensure !blk_queue_nomerges(q) beforehand. 1098 */ 1099 bool blk_attempt_plug_merge(struct request_queue *q, struct bio *bio, 1100 unsigned int nr_segs) 1101 { 1102 struct blk_plug *plug; 1103 struct request *rq; 1104 1105 plug = blk_mq_plug(bio); 1106 if (!plug || rq_list_empty(plug->mq_list)) 1107 return false; 1108 1109 rq_list_for_each(&plug->mq_list, rq) { 1110 if (rq->q == q) { 1111 if (blk_attempt_bio_merge(q, rq, bio, nr_segs, false) == 1112 BIO_MERGE_OK) 1113 return true; 1114 break; 1115 } 1116 1117 /* 1118 * Only keep iterating plug list for merges if we have multiple 1119 * queues 1120 */ 1121 if (!plug->multiple_queues) 1122 break; 1123 } 1124 return false; 1125 } 1126 1127 /* 1128 * Iterate list of requests and see if we can merge this bio with any 1129 * of them. 1130 */ 1131 bool blk_bio_list_merge(struct request_queue *q, struct list_head *list, 1132 struct bio *bio, unsigned int nr_segs) 1133 { 1134 struct request *rq; 1135 int checked = 8; 1136 1137 list_for_each_entry_reverse(rq, list, queuelist) { 1138 if (!checked--) 1139 break; 1140 1141 switch (blk_attempt_bio_merge(q, rq, bio, nr_segs, true)) { 1142 case BIO_MERGE_NONE: 1143 continue; 1144 case BIO_MERGE_OK: 1145 return true; 1146 case BIO_MERGE_FAILED: 1147 return false; 1148 } 1149 1150 } 1151 1152 return false; 1153 } 1154 EXPORT_SYMBOL_GPL(blk_bio_list_merge); 1155 1156 bool blk_mq_sched_try_merge(struct request_queue *q, struct bio *bio, 1157 unsigned int nr_segs, struct request **merged_request) 1158 { 1159 struct request *rq; 1160 1161 switch (elv_merge(q, &rq, bio)) { 1162 case ELEVATOR_BACK_MERGE: 1163 if (!blk_mq_sched_allow_merge(q, rq, bio)) 1164 return false; 1165 if (bio_attempt_back_merge(rq, bio, nr_segs) != BIO_MERGE_OK) 1166 return false; 1167 *merged_request = attempt_back_merge(q, rq); 1168 if (!*merged_request) 1169 elv_merged_request(q, rq, ELEVATOR_BACK_MERGE); 1170 return true; 1171 case ELEVATOR_FRONT_MERGE: 1172 if (!blk_mq_sched_allow_merge(q, rq, bio)) 1173 return false; 1174 if (bio_attempt_front_merge(rq, bio, nr_segs) != BIO_MERGE_OK) 1175 return false; 1176 *merged_request = attempt_front_merge(q, rq); 1177 if (!*merged_request) 1178 elv_merged_request(q, rq, ELEVATOR_FRONT_MERGE); 1179 return true; 1180 case ELEVATOR_DISCARD_MERGE: 1181 return bio_attempt_discard_merge(q, rq, bio) == BIO_MERGE_OK; 1182 default: 1183 return false; 1184 } 1185 } 1186 EXPORT_SYMBOL_GPL(blk_mq_sched_try_merge); 1187