1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Functions related to segment and merge handling 4 */ 5 #include <linux/kernel.h> 6 #include <linux/module.h> 7 #include <linux/bio.h> 8 #include <linux/blkdev.h> 9 #include <linux/blk-integrity.h> 10 #include <linux/scatterlist.h> 11 #include <linux/part_stat.h> 12 #include <linux/blk-cgroup.h> 13 14 #include <trace/events/block.h> 15 16 #include "blk.h" 17 #include "blk-mq-sched.h" 18 #include "blk-rq-qos.h" 19 #include "blk-throttle.h" 20 21 static inline void bio_get_first_bvec(struct bio *bio, struct bio_vec *bv) 22 { 23 *bv = mp_bvec_iter_bvec(bio->bi_io_vec, bio->bi_iter); 24 } 25 26 static inline void bio_get_last_bvec(struct bio *bio, struct bio_vec *bv) 27 { 28 struct bvec_iter iter = bio->bi_iter; 29 int idx; 30 31 bio_get_first_bvec(bio, bv); 32 if (bv->bv_len == bio->bi_iter.bi_size) 33 return; /* this bio only has a single bvec */ 34 35 bio_advance_iter(bio, &iter, iter.bi_size); 36 37 if (!iter.bi_bvec_done) 38 idx = iter.bi_idx - 1; 39 else /* in the middle of bvec */ 40 idx = iter.bi_idx; 41 42 *bv = bio->bi_io_vec[idx]; 43 44 /* 45 * iter.bi_bvec_done records actual length of the last bvec 46 * if this bio ends in the middle of one io vector 47 */ 48 if (iter.bi_bvec_done) 49 bv->bv_len = iter.bi_bvec_done; 50 } 51 52 static inline bool bio_will_gap(struct request_queue *q, 53 struct request *prev_rq, struct bio *prev, struct bio *next) 54 { 55 struct bio_vec pb, nb; 56 57 if (!bio_has_data(prev) || !queue_virt_boundary(q)) 58 return false; 59 60 /* 61 * Don't merge if the 1st bio starts with non-zero offset, otherwise it 62 * is quite difficult to respect the sg gap limit. We work hard to 63 * merge a huge number of small single bios in case of mkfs. 64 */ 65 if (prev_rq) 66 bio_get_first_bvec(prev_rq->bio, &pb); 67 else 68 bio_get_first_bvec(prev, &pb); 69 if (pb.bv_offset & queue_virt_boundary(q)) 70 return true; 71 72 /* 73 * We don't need to worry about the situation that the merged segment 74 * ends in unaligned virt boundary: 75 * 76 * - if 'pb' ends aligned, the merged segment ends aligned 77 * - if 'pb' ends unaligned, the next bio must include 78 * one single bvec of 'nb', otherwise the 'nb' can't 79 * merge with 'pb' 80 */ 81 bio_get_last_bvec(prev, &pb); 82 bio_get_first_bvec(next, &nb); 83 if (biovec_phys_mergeable(q, &pb, &nb)) 84 return false; 85 return __bvec_gap_to_prev(&q->limits, &pb, nb.bv_offset); 86 } 87 88 static inline bool req_gap_back_merge(struct request *req, struct bio *bio) 89 { 90 return bio_will_gap(req->q, req, req->biotail, bio); 91 } 92 93 static inline bool req_gap_front_merge(struct request *req, struct bio *bio) 94 { 95 return bio_will_gap(req->q, NULL, bio, req->bio); 96 } 97 98 /* 99 * The max size one bio can handle is UINT_MAX becasue bvec_iter.bi_size 100 * is defined as 'unsigned int', meantime it has to be aligned to with the 101 * logical block size, which is the minimum accepted unit by hardware. 102 */ 103 static unsigned int bio_allowed_max_sectors(const struct queue_limits *lim) 104 { 105 return round_down(UINT_MAX, lim->logical_block_size) >> SECTOR_SHIFT; 106 } 107 108 static struct bio *bio_split_discard(struct bio *bio, 109 const struct queue_limits *lim, 110 unsigned *nsegs, struct bio_set *bs) 111 { 112 unsigned int max_discard_sectors, granularity; 113 sector_t tmp; 114 unsigned split_sectors; 115 116 *nsegs = 1; 117 118 /* Zero-sector (unknown) and one-sector granularities are the same. */ 119 granularity = max(lim->discard_granularity >> 9, 1U); 120 121 max_discard_sectors = 122 min(lim->max_discard_sectors, bio_allowed_max_sectors(lim)); 123 max_discard_sectors -= max_discard_sectors % granularity; 124 125 if (unlikely(!max_discard_sectors)) { 126 /* XXX: warn */ 127 return NULL; 128 } 129 130 if (bio_sectors(bio) <= max_discard_sectors) 131 return NULL; 132 133 split_sectors = max_discard_sectors; 134 135 /* 136 * If the next starting sector would be misaligned, stop the discard at 137 * the previous aligned sector. 138 */ 139 tmp = bio->bi_iter.bi_sector + split_sectors - 140 ((lim->discard_alignment >> 9) % granularity); 141 tmp = sector_div(tmp, granularity); 142 143 if (split_sectors > tmp) 144 split_sectors -= tmp; 145 146 return bio_split(bio, split_sectors, GFP_NOIO, bs); 147 } 148 149 static struct bio *bio_split_write_zeroes(struct bio *bio, 150 const struct queue_limits *lim, 151 unsigned *nsegs, struct bio_set *bs) 152 { 153 *nsegs = 0; 154 if (!lim->max_write_zeroes_sectors) 155 return NULL; 156 if (bio_sectors(bio) <= lim->max_write_zeroes_sectors) 157 return NULL; 158 return bio_split(bio, lim->max_write_zeroes_sectors, GFP_NOIO, bs); 159 } 160 161 /* 162 * Return the maximum number of sectors from the start of a bio that may be 163 * submitted as a single request to a block device. If enough sectors remain, 164 * align the end to the physical block size. Otherwise align the end to the 165 * logical block size. This approach minimizes the number of non-aligned 166 * requests that are submitted to a block device if the start of a bio is not 167 * aligned to a physical block boundary. 168 */ 169 static inline unsigned get_max_io_size(struct bio *bio, 170 const struct queue_limits *lim) 171 { 172 unsigned pbs = lim->physical_block_size >> SECTOR_SHIFT; 173 unsigned lbs = lim->logical_block_size >> SECTOR_SHIFT; 174 unsigned max_sectors = lim->max_sectors, start, end; 175 176 if (lim->chunk_sectors) { 177 max_sectors = min(max_sectors, 178 blk_chunk_sectors_left(bio->bi_iter.bi_sector, 179 lim->chunk_sectors)); 180 } 181 182 start = bio->bi_iter.bi_sector & (pbs - 1); 183 end = (start + max_sectors) & ~(pbs - 1); 184 if (end > start) 185 return end - start; 186 return max_sectors & ~(lbs - 1); 187 } 188 189 /** 190 * get_max_segment_size() - maximum number of bytes to add as a single segment 191 * @lim: Request queue limits. 192 * @start_page: See below. 193 * @offset: Offset from @start_page where to add a segment. 194 * 195 * Returns the maximum number of bytes that can be added as a single segment. 196 */ 197 static inline unsigned get_max_segment_size(const struct queue_limits *lim, 198 struct page *start_page, unsigned long offset) 199 { 200 unsigned long mask = lim->seg_boundary_mask; 201 202 offset = mask & (page_to_phys(start_page) + offset); 203 204 /* 205 * Prevent an overflow if mask = ULONG_MAX and offset = 0 by adding 1 206 * after having calculated the minimum. 207 */ 208 return min(mask - offset, (unsigned long)lim->max_segment_size - 1) + 1; 209 } 210 211 /** 212 * bvec_split_segs - verify whether or not a bvec should be split in the middle 213 * @lim: [in] queue limits to split based on 214 * @bv: [in] bvec to examine 215 * @nsegs: [in,out] Number of segments in the bio being built. Incremented 216 * by the number of segments from @bv that may be appended to that 217 * bio without exceeding @max_segs 218 * @bytes: [in,out] Number of bytes in the bio being built. Incremented 219 * by the number of bytes from @bv that may be appended to that 220 * bio without exceeding @max_bytes 221 * @max_segs: [in] upper bound for *@nsegs 222 * @max_bytes: [in] upper bound for *@bytes 223 * 224 * When splitting a bio, it can happen that a bvec is encountered that is too 225 * big to fit in a single segment and hence that it has to be split in the 226 * middle. This function verifies whether or not that should happen. The value 227 * %true is returned if and only if appending the entire @bv to a bio with 228 * *@nsegs segments and *@sectors sectors would make that bio unacceptable for 229 * the block driver. 230 */ 231 static bool bvec_split_segs(const struct queue_limits *lim, 232 const struct bio_vec *bv, unsigned *nsegs, unsigned *bytes, 233 unsigned max_segs, unsigned max_bytes) 234 { 235 unsigned max_len = min(max_bytes, UINT_MAX) - *bytes; 236 unsigned len = min(bv->bv_len, max_len); 237 unsigned total_len = 0; 238 unsigned seg_size = 0; 239 240 while (len && *nsegs < max_segs) { 241 seg_size = get_max_segment_size(lim, bv->bv_page, 242 bv->bv_offset + total_len); 243 seg_size = min(seg_size, len); 244 245 (*nsegs)++; 246 total_len += seg_size; 247 len -= seg_size; 248 249 if ((bv->bv_offset + total_len) & lim->virt_boundary_mask) 250 break; 251 } 252 253 *bytes += total_len; 254 255 /* tell the caller to split the bvec if it is too big to fit */ 256 return len > 0 || bv->bv_len > max_len; 257 } 258 259 /** 260 * bio_split_rw - split a bio in two bios 261 * @bio: [in] bio to be split 262 * @lim: [in] queue limits to split based on 263 * @segs: [out] number of segments in the bio with the first half of the sectors 264 * @bs: [in] bio set to allocate the clone from 265 * @max_bytes: [in] maximum number of bytes per bio 266 * 267 * Clone @bio, update the bi_iter of the clone to represent the first sectors 268 * of @bio and update @bio->bi_iter to represent the remaining sectors. The 269 * following is guaranteed for the cloned bio: 270 * - That it has at most @max_bytes worth of data 271 * - That it has at most queue_max_segments(@q) segments. 272 * 273 * Except for discard requests the cloned bio will point at the bi_io_vec of 274 * the original bio. It is the responsibility of the caller to ensure that the 275 * original bio is not freed before the cloned bio. The caller is also 276 * responsible for ensuring that @bs is only destroyed after processing of the 277 * split bio has finished. 278 */ 279 static struct bio *bio_split_rw(struct bio *bio, const struct queue_limits *lim, 280 unsigned *segs, struct bio_set *bs, unsigned max_bytes) 281 { 282 struct bio_vec bv, bvprv, *bvprvp = NULL; 283 struct bvec_iter iter; 284 unsigned nsegs = 0, bytes = 0; 285 286 bio_for_each_bvec(bv, bio, iter) { 287 /* 288 * If the queue doesn't support SG gaps and adding this 289 * offset would create a gap, disallow it. 290 */ 291 if (bvprvp && bvec_gap_to_prev(lim, bvprvp, bv.bv_offset)) 292 goto split; 293 294 if (nsegs < lim->max_segments && 295 bytes + bv.bv_len <= max_bytes && 296 bv.bv_offset + bv.bv_len <= PAGE_SIZE) { 297 nsegs++; 298 bytes += bv.bv_len; 299 } else { 300 if (bvec_split_segs(lim, &bv, &nsegs, &bytes, 301 lim->max_segments, max_bytes)) 302 goto split; 303 } 304 305 bvprv = bv; 306 bvprvp = &bvprv; 307 } 308 309 *segs = nsegs; 310 return NULL; 311 split: 312 *segs = nsegs; 313 314 /* 315 * Individual bvecs might not be logical block aligned. Round down the 316 * split size so that each bio is properly block size aligned, even if 317 * we do not use the full hardware limits. 318 */ 319 bytes = ALIGN_DOWN(bytes, lim->logical_block_size); 320 321 /* 322 * Bio splitting may cause subtle trouble such as hang when doing sync 323 * iopoll in direct IO routine. Given performance gain of iopoll for 324 * big IO can be trival, disable iopoll when split needed. 325 */ 326 bio_clear_polled(bio); 327 return bio_split(bio, bytes >> SECTOR_SHIFT, GFP_NOIO, bs); 328 } 329 330 /** 331 * __bio_split_to_limits - split a bio to fit the queue limits 332 * @bio: bio to be split 333 * @lim: queue limits to split based on 334 * @nr_segs: returns the number of segments in the returned bio 335 * 336 * Check if @bio needs splitting based on the queue limits, and if so split off 337 * a bio fitting the limits from the beginning of @bio and return it. @bio is 338 * shortened to the remainder and re-submitted. 339 * 340 * The split bio is allocated from @q->bio_split, which is provided by the 341 * block layer. 342 */ 343 struct bio *__bio_split_to_limits(struct bio *bio, 344 const struct queue_limits *lim, 345 unsigned int *nr_segs) 346 { 347 struct bio_set *bs = &bio->bi_bdev->bd_disk->bio_split; 348 struct bio *split; 349 350 switch (bio_op(bio)) { 351 case REQ_OP_DISCARD: 352 case REQ_OP_SECURE_ERASE: 353 split = bio_split_discard(bio, lim, nr_segs, bs); 354 break; 355 case REQ_OP_WRITE_ZEROES: 356 split = bio_split_write_zeroes(bio, lim, nr_segs, bs); 357 break; 358 default: 359 split = bio_split_rw(bio, lim, nr_segs, bs, 360 get_max_io_size(bio, lim) << SECTOR_SHIFT); 361 break; 362 } 363 364 if (split) { 365 /* there isn't chance to merge the splitted bio */ 366 split->bi_opf |= REQ_NOMERGE; 367 368 blkcg_bio_issue_init(split); 369 bio_chain(split, bio); 370 trace_block_split(split, bio->bi_iter.bi_sector); 371 submit_bio_noacct(bio); 372 return split; 373 } 374 return bio; 375 } 376 377 /** 378 * bio_split_to_limits - split a bio to fit the queue limits 379 * @bio: bio to be split 380 * 381 * Check if @bio needs splitting based on the queue limits of @bio->bi_bdev, and 382 * if so split off a bio fitting the limits from the beginning of @bio and 383 * return it. @bio is shortened to the remainder and re-submitted. 384 * 385 * The split bio is allocated from @q->bio_split, which is provided by the 386 * block layer. 387 */ 388 struct bio *bio_split_to_limits(struct bio *bio) 389 { 390 const struct queue_limits *lim = &bdev_get_queue(bio->bi_bdev)->limits; 391 unsigned int nr_segs; 392 393 if (bio_may_exceed_limits(bio, lim)) 394 return __bio_split_to_limits(bio, lim, &nr_segs); 395 return bio; 396 } 397 EXPORT_SYMBOL(bio_split_to_limits); 398 399 unsigned int blk_recalc_rq_segments(struct request *rq) 400 { 401 unsigned int nr_phys_segs = 0; 402 unsigned int bytes = 0; 403 struct req_iterator iter; 404 struct bio_vec bv; 405 406 if (!rq->bio) 407 return 0; 408 409 switch (bio_op(rq->bio)) { 410 case REQ_OP_DISCARD: 411 case REQ_OP_SECURE_ERASE: 412 if (queue_max_discard_segments(rq->q) > 1) { 413 struct bio *bio = rq->bio; 414 415 for_each_bio(bio) 416 nr_phys_segs++; 417 return nr_phys_segs; 418 } 419 return 1; 420 case REQ_OP_WRITE_ZEROES: 421 return 0; 422 default: 423 break; 424 } 425 426 rq_for_each_bvec(bv, rq, iter) 427 bvec_split_segs(&rq->q->limits, &bv, &nr_phys_segs, &bytes, 428 UINT_MAX, UINT_MAX); 429 return nr_phys_segs; 430 } 431 432 static inline struct scatterlist *blk_next_sg(struct scatterlist **sg, 433 struct scatterlist *sglist) 434 { 435 if (!*sg) 436 return sglist; 437 438 /* 439 * If the driver previously mapped a shorter list, we could see a 440 * termination bit prematurely unless it fully inits the sg table 441 * on each mapping. We KNOW that there must be more entries here 442 * or the driver would be buggy, so force clear the termination bit 443 * to avoid doing a full sg_init_table() in drivers for each command. 444 */ 445 sg_unmark_end(*sg); 446 return sg_next(*sg); 447 } 448 449 static unsigned blk_bvec_map_sg(struct request_queue *q, 450 struct bio_vec *bvec, struct scatterlist *sglist, 451 struct scatterlist **sg) 452 { 453 unsigned nbytes = bvec->bv_len; 454 unsigned nsegs = 0, total = 0; 455 456 while (nbytes > 0) { 457 unsigned offset = bvec->bv_offset + total; 458 unsigned len = min(get_max_segment_size(&q->limits, 459 bvec->bv_page, offset), nbytes); 460 struct page *page = bvec->bv_page; 461 462 /* 463 * Unfortunately a fair number of drivers barf on scatterlists 464 * that have an offset larger than PAGE_SIZE, despite other 465 * subsystems dealing with that invariant just fine. For now 466 * stick to the legacy format where we never present those from 467 * the block layer, but the code below should be removed once 468 * these offenders (mostly MMC/SD drivers) are fixed. 469 */ 470 page += (offset >> PAGE_SHIFT); 471 offset &= ~PAGE_MASK; 472 473 *sg = blk_next_sg(sg, sglist); 474 sg_set_page(*sg, page, len, offset); 475 476 total += len; 477 nbytes -= len; 478 nsegs++; 479 } 480 481 return nsegs; 482 } 483 484 static inline int __blk_bvec_map_sg(struct bio_vec bv, 485 struct scatterlist *sglist, struct scatterlist **sg) 486 { 487 *sg = blk_next_sg(sg, sglist); 488 sg_set_page(*sg, bv.bv_page, bv.bv_len, bv.bv_offset); 489 return 1; 490 } 491 492 /* only try to merge bvecs into one sg if they are from two bios */ 493 static inline bool 494 __blk_segment_map_sg_merge(struct request_queue *q, struct bio_vec *bvec, 495 struct bio_vec *bvprv, struct scatterlist **sg) 496 { 497 498 int nbytes = bvec->bv_len; 499 500 if (!*sg) 501 return false; 502 503 if ((*sg)->length + nbytes > queue_max_segment_size(q)) 504 return false; 505 506 if (!biovec_phys_mergeable(q, bvprv, bvec)) 507 return false; 508 509 (*sg)->length += nbytes; 510 511 return true; 512 } 513 514 static int __blk_bios_map_sg(struct request_queue *q, struct bio *bio, 515 struct scatterlist *sglist, 516 struct scatterlist **sg) 517 { 518 struct bio_vec bvec, bvprv = { NULL }; 519 struct bvec_iter iter; 520 int nsegs = 0; 521 bool new_bio = false; 522 523 for_each_bio(bio) { 524 bio_for_each_bvec(bvec, bio, iter) { 525 /* 526 * Only try to merge bvecs from two bios given we 527 * have done bio internal merge when adding pages 528 * to bio 529 */ 530 if (new_bio && 531 __blk_segment_map_sg_merge(q, &bvec, &bvprv, sg)) 532 goto next_bvec; 533 534 if (bvec.bv_offset + bvec.bv_len <= PAGE_SIZE) 535 nsegs += __blk_bvec_map_sg(bvec, sglist, sg); 536 else 537 nsegs += blk_bvec_map_sg(q, &bvec, sglist, sg); 538 next_bvec: 539 new_bio = false; 540 } 541 if (likely(bio->bi_iter.bi_size)) { 542 bvprv = bvec; 543 new_bio = true; 544 } 545 } 546 547 return nsegs; 548 } 549 550 /* 551 * map a request to scatterlist, return number of sg entries setup. Caller 552 * must make sure sg can hold rq->nr_phys_segments entries 553 */ 554 int __blk_rq_map_sg(struct request_queue *q, struct request *rq, 555 struct scatterlist *sglist, struct scatterlist **last_sg) 556 { 557 int nsegs = 0; 558 559 if (rq->rq_flags & RQF_SPECIAL_PAYLOAD) 560 nsegs = __blk_bvec_map_sg(rq->special_vec, sglist, last_sg); 561 else if (rq->bio) 562 nsegs = __blk_bios_map_sg(q, rq->bio, sglist, last_sg); 563 564 if (*last_sg) 565 sg_mark_end(*last_sg); 566 567 /* 568 * Something must have been wrong if the figured number of 569 * segment is bigger than number of req's physical segments 570 */ 571 WARN_ON(nsegs > blk_rq_nr_phys_segments(rq)); 572 573 return nsegs; 574 } 575 EXPORT_SYMBOL(__blk_rq_map_sg); 576 577 static inline unsigned int blk_rq_get_max_segments(struct request *rq) 578 { 579 if (req_op(rq) == REQ_OP_DISCARD) 580 return queue_max_discard_segments(rq->q); 581 return queue_max_segments(rq->q); 582 } 583 584 static inline unsigned int blk_rq_get_max_sectors(struct request *rq, 585 sector_t offset) 586 { 587 struct request_queue *q = rq->q; 588 unsigned int max_sectors; 589 590 if (blk_rq_is_passthrough(rq)) 591 return q->limits.max_hw_sectors; 592 593 max_sectors = blk_queue_get_max_sectors(q, req_op(rq)); 594 if (!q->limits.chunk_sectors || 595 req_op(rq) == REQ_OP_DISCARD || 596 req_op(rq) == REQ_OP_SECURE_ERASE) 597 return max_sectors; 598 return min(max_sectors, 599 blk_chunk_sectors_left(offset, q->limits.chunk_sectors)); 600 } 601 602 static inline int ll_new_hw_segment(struct request *req, struct bio *bio, 603 unsigned int nr_phys_segs) 604 { 605 if (!blk_cgroup_mergeable(req, bio)) 606 goto no_merge; 607 608 if (blk_integrity_merge_bio(req->q, req, bio) == false) 609 goto no_merge; 610 611 /* discard request merge won't add new segment */ 612 if (req_op(req) == REQ_OP_DISCARD) 613 return 1; 614 615 if (req->nr_phys_segments + nr_phys_segs > blk_rq_get_max_segments(req)) 616 goto no_merge; 617 618 /* 619 * This will form the start of a new hw segment. Bump both 620 * counters. 621 */ 622 req->nr_phys_segments += nr_phys_segs; 623 return 1; 624 625 no_merge: 626 req_set_nomerge(req->q, req); 627 return 0; 628 } 629 630 int ll_back_merge_fn(struct request *req, struct bio *bio, unsigned int nr_segs) 631 { 632 if (req_gap_back_merge(req, bio)) 633 return 0; 634 if (blk_integrity_rq(req) && 635 integrity_req_gap_back_merge(req, bio)) 636 return 0; 637 if (!bio_crypt_ctx_back_mergeable(req, bio)) 638 return 0; 639 if (blk_rq_sectors(req) + bio_sectors(bio) > 640 blk_rq_get_max_sectors(req, blk_rq_pos(req))) { 641 req_set_nomerge(req->q, req); 642 return 0; 643 } 644 645 return ll_new_hw_segment(req, bio, nr_segs); 646 } 647 648 static int ll_front_merge_fn(struct request *req, struct bio *bio, 649 unsigned int nr_segs) 650 { 651 if (req_gap_front_merge(req, bio)) 652 return 0; 653 if (blk_integrity_rq(req) && 654 integrity_req_gap_front_merge(req, bio)) 655 return 0; 656 if (!bio_crypt_ctx_front_mergeable(req, bio)) 657 return 0; 658 if (blk_rq_sectors(req) + bio_sectors(bio) > 659 blk_rq_get_max_sectors(req, bio->bi_iter.bi_sector)) { 660 req_set_nomerge(req->q, req); 661 return 0; 662 } 663 664 return ll_new_hw_segment(req, bio, nr_segs); 665 } 666 667 static bool req_attempt_discard_merge(struct request_queue *q, struct request *req, 668 struct request *next) 669 { 670 unsigned short segments = blk_rq_nr_discard_segments(req); 671 672 if (segments >= queue_max_discard_segments(q)) 673 goto no_merge; 674 if (blk_rq_sectors(req) + bio_sectors(next->bio) > 675 blk_rq_get_max_sectors(req, blk_rq_pos(req))) 676 goto no_merge; 677 678 req->nr_phys_segments = segments + blk_rq_nr_discard_segments(next); 679 return true; 680 no_merge: 681 req_set_nomerge(q, req); 682 return false; 683 } 684 685 static int ll_merge_requests_fn(struct request_queue *q, struct request *req, 686 struct request *next) 687 { 688 int total_phys_segments; 689 690 if (req_gap_back_merge(req, next->bio)) 691 return 0; 692 693 /* 694 * Will it become too large? 695 */ 696 if ((blk_rq_sectors(req) + blk_rq_sectors(next)) > 697 blk_rq_get_max_sectors(req, blk_rq_pos(req))) 698 return 0; 699 700 total_phys_segments = req->nr_phys_segments + next->nr_phys_segments; 701 if (total_phys_segments > blk_rq_get_max_segments(req)) 702 return 0; 703 704 if (!blk_cgroup_mergeable(req, next->bio)) 705 return 0; 706 707 if (blk_integrity_merge_rq(q, req, next) == false) 708 return 0; 709 710 if (!bio_crypt_ctx_merge_rq(req, next)) 711 return 0; 712 713 /* Merge is OK... */ 714 req->nr_phys_segments = total_phys_segments; 715 return 1; 716 } 717 718 /** 719 * blk_rq_set_mixed_merge - mark a request as mixed merge 720 * @rq: request to mark as mixed merge 721 * 722 * Description: 723 * @rq is about to be mixed merged. Make sure the attributes 724 * which can be mixed are set in each bio and mark @rq as mixed 725 * merged. 726 */ 727 void blk_rq_set_mixed_merge(struct request *rq) 728 { 729 blk_opf_t ff = rq->cmd_flags & REQ_FAILFAST_MASK; 730 struct bio *bio; 731 732 if (rq->rq_flags & RQF_MIXED_MERGE) 733 return; 734 735 /* 736 * @rq will no longer represent mixable attributes for all the 737 * contained bios. It will just track those of the first one. 738 * Distributes the attributs to each bio. 739 */ 740 for (bio = rq->bio; bio; bio = bio->bi_next) { 741 WARN_ON_ONCE((bio->bi_opf & REQ_FAILFAST_MASK) && 742 (bio->bi_opf & REQ_FAILFAST_MASK) != ff); 743 bio->bi_opf |= ff; 744 } 745 rq->rq_flags |= RQF_MIXED_MERGE; 746 } 747 748 static void blk_account_io_merge_request(struct request *req) 749 { 750 if (blk_do_io_stat(req)) { 751 part_stat_lock(); 752 part_stat_inc(req->part, merges[op_stat_group(req_op(req))]); 753 part_stat_unlock(); 754 } 755 } 756 757 static enum elv_merge blk_try_req_merge(struct request *req, 758 struct request *next) 759 { 760 if (blk_discard_mergable(req)) 761 return ELEVATOR_DISCARD_MERGE; 762 else if (blk_rq_pos(req) + blk_rq_sectors(req) == blk_rq_pos(next)) 763 return ELEVATOR_BACK_MERGE; 764 765 return ELEVATOR_NO_MERGE; 766 } 767 768 /* 769 * For non-mq, this has to be called with the request spinlock acquired. 770 * For mq with scheduling, the appropriate queue wide lock should be held. 771 */ 772 static struct request *attempt_merge(struct request_queue *q, 773 struct request *req, struct request *next) 774 { 775 if (!rq_mergeable(req) || !rq_mergeable(next)) 776 return NULL; 777 778 if (req_op(req) != req_op(next)) 779 return NULL; 780 781 if (rq_data_dir(req) != rq_data_dir(next)) 782 return NULL; 783 784 if (req->ioprio != next->ioprio) 785 return NULL; 786 787 /* 788 * If we are allowed to merge, then append bio list 789 * from next to rq and release next. merge_requests_fn 790 * will have updated segment counts, update sector 791 * counts here. Handle DISCARDs separately, as they 792 * have separate settings. 793 */ 794 795 switch (blk_try_req_merge(req, next)) { 796 case ELEVATOR_DISCARD_MERGE: 797 if (!req_attempt_discard_merge(q, req, next)) 798 return NULL; 799 break; 800 case ELEVATOR_BACK_MERGE: 801 if (!ll_merge_requests_fn(q, req, next)) 802 return NULL; 803 break; 804 default: 805 return NULL; 806 } 807 808 /* 809 * If failfast settings disagree or any of the two is already 810 * a mixed merge, mark both as mixed before proceeding. This 811 * makes sure that all involved bios have mixable attributes 812 * set properly. 813 */ 814 if (((req->rq_flags | next->rq_flags) & RQF_MIXED_MERGE) || 815 (req->cmd_flags & REQ_FAILFAST_MASK) != 816 (next->cmd_flags & REQ_FAILFAST_MASK)) { 817 blk_rq_set_mixed_merge(req); 818 blk_rq_set_mixed_merge(next); 819 } 820 821 /* 822 * At this point we have either done a back merge or front merge. We 823 * need the smaller start_time_ns of the merged requests to be the 824 * current request for accounting purposes. 825 */ 826 if (next->start_time_ns < req->start_time_ns) 827 req->start_time_ns = next->start_time_ns; 828 829 req->biotail->bi_next = next->bio; 830 req->biotail = next->biotail; 831 832 req->__data_len += blk_rq_bytes(next); 833 834 if (!blk_discard_mergable(req)) 835 elv_merge_requests(q, req, next); 836 837 /* 838 * 'next' is going away, so update stats accordingly 839 */ 840 blk_account_io_merge_request(next); 841 842 trace_block_rq_merge(next); 843 844 /* 845 * ownership of bio passed from next to req, return 'next' for 846 * the caller to free 847 */ 848 next->bio = NULL; 849 return next; 850 } 851 852 static struct request *attempt_back_merge(struct request_queue *q, 853 struct request *rq) 854 { 855 struct request *next = elv_latter_request(q, rq); 856 857 if (next) 858 return attempt_merge(q, rq, next); 859 860 return NULL; 861 } 862 863 static struct request *attempt_front_merge(struct request_queue *q, 864 struct request *rq) 865 { 866 struct request *prev = elv_former_request(q, rq); 867 868 if (prev) 869 return attempt_merge(q, prev, rq); 870 871 return NULL; 872 } 873 874 /* 875 * Try to merge 'next' into 'rq'. Return true if the merge happened, false 876 * otherwise. The caller is responsible for freeing 'next' if the merge 877 * happened. 878 */ 879 bool blk_attempt_req_merge(struct request_queue *q, struct request *rq, 880 struct request *next) 881 { 882 return attempt_merge(q, rq, next); 883 } 884 885 bool blk_rq_merge_ok(struct request *rq, struct bio *bio) 886 { 887 if (!rq_mergeable(rq) || !bio_mergeable(bio)) 888 return false; 889 890 if (req_op(rq) != bio_op(bio)) 891 return false; 892 893 /* different data direction or already started, don't merge */ 894 if (bio_data_dir(bio) != rq_data_dir(rq)) 895 return false; 896 897 /* don't merge across cgroup boundaries */ 898 if (!blk_cgroup_mergeable(rq, bio)) 899 return false; 900 901 /* only merge integrity protected bio into ditto rq */ 902 if (blk_integrity_merge_bio(rq->q, rq, bio) == false) 903 return false; 904 905 /* Only merge if the crypt contexts are compatible */ 906 if (!bio_crypt_rq_ctx_compatible(rq, bio)) 907 return false; 908 909 if (rq->ioprio != bio_prio(bio)) 910 return false; 911 912 return true; 913 } 914 915 enum elv_merge blk_try_merge(struct request *rq, struct bio *bio) 916 { 917 if (blk_discard_mergable(rq)) 918 return ELEVATOR_DISCARD_MERGE; 919 else if (blk_rq_pos(rq) + blk_rq_sectors(rq) == bio->bi_iter.bi_sector) 920 return ELEVATOR_BACK_MERGE; 921 else if (blk_rq_pos(rq) - bio_sectors(bio) == bio->bi_iter.bi_sector) 922 return ELEVATOR_FRONT_MERGE; 923 return ELEVATOR_NO_MERGE; 924 } 925 926 static void blk_account_io_merge_bio(struct request *req) 927 { 928 if (!blk_do_io_stat(req)) 929 return; 930 931 part_stat_lock(); 932 part_stat_inc(req->part, merges[op_stat_group(req_op(req))]); 933 part_stat_unlock(); 934 } 935 936 enum bio_merge_status { 937 BIO_MERGE_OK, 938 BIO_MERGE_NONE, 939 BIO_MERGE_FAILED, 940 }; 941 942 static enum bio_merge_status bio_attempt_back_merge(struct request *req, 943 struct bio *bio, unsigned int nr_segs) 944 { 945 const blk_opf_t ff = bio->bi_opf & REQ_FAILFAST_MASK; 946 947 if (!ll_back_merge_fn(req, bio, nr_segs)) 948 return BIO_MERGE_FAILED; 949 950 trace_block_bio_backmerge(bio); 951 rq_qos_merge(req->q, req, bio); 952 953 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff) 954 blk_rq_set_mixed_merge(req); 955 956 req->biotail->bi_next = bio; 957 req->biotail = bio; 958 req->__data_len += bio->bi_iter.bi_size; 959 960 bio_crypt_free_ctx(bio); 961 962 blk_account_io_merge_bio(req); 963 return BIO_MERGE_OK; 964 } 965 966 static enum bio_merge_status bio_attempt_front_merge(struct request *req, 967 struct bio *bio, unsigned int nr_segs) 968 { 969 const blk_opf_t ff = bio->bi_opf & REQ_FAILFAST_MASK; 970 971 if (!ll_front_merge_fn(req, bio, nr_segs)) 972 return BIO_MERGE_FAILED; 973 974 trace_block_bio_frontmerge(bio); 975 rq_qos_merge(req->q, req, bio); 976 977 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff) 978 blk_rq_set_mixed_merge(req); 979 980 bio->bi_next = req->bio; 981 req->bio = bio; 982 983 req->__sector = bio->bi_iter.bi_sector; 984 req->__data_len += bio->bi_iter.bi_size; 985 986 bio_crypt_do_front_merge(req, bio); 987 988 blk_account_io_merge_bio(req); 989 return BIO_MERGE_OK; 990 } 991 992 static enum bio_merge_status bio_attempt_discard_merge(struct request_queue *q, 993 struct request *req, struct bio *bio) 994 { 995 unsigned short segments = blk_rq_nr_discard_segments(req); 996 997 if (segments >= queue_max_discard_segments(q)) 998 goto no_merge; 999 if (blk_rq_sectors(req) + bio_sectors(bio) > 1000 blk_rq_get_max_sectors(req, blk_rq_pos(req))) 1001 goto no_merge; 1002 1003 rq_qos_merge(q, req, bio); 1004 1005 req->biotail->bi_next = bio; 1006 req->biotail = bio; 1007 req->__data_len += bio->bi_iter.bi_size; 1008 req->nr_phys_segments = segments + 1; 1009 1010 blk_account_io_merge_bio(req); 1011 return BIO_MERGE_OK; 1012 no_merge: 1013 req_set_nomerge(q, req); 1014 return BIO_MERGE_FAILED; 1015 } 1016 1017 static enum bio_merge_status blk_attempt_bio_merge(struct request_queue *q, 1018 struct request *rq, 1019 struct bio *bio, 1020 unsigned int nr_segs, 1021 bool sched_allow_merge) 1022 { 1023 if (!blk_rq_merge_ok(rq, bio)) 1024 return BIO_MERGE_NONE; 1025 1026 switch (blk_try_merge(rq, bio)) { 1027 case ELEVATOR_BACK_MERGE: 1028 if (!sched_allow_merge || blk_mq_sched_allow_merge(q, rq, bio)) 1029 return bio_attempt_back_merge(rq, bio, nr_segs); 1030 break; 1031 case ELEVATOR_FRONT_MERGE: 1032 if (!sched_allow_merge || blk_mq_sched_allow_merge(q, rq, bio)) 1033 return bio_attempt_front_merge(rq, bio, nr_segs); 1034 break; 1035 case ELEVATOR_DISCARD_MERGE: 1036 return bio_attempt_discard_merge(q, rq, bio); 1037 default: 1038 return BIO_MERGE_NONE; 1039 } 1040 1041 return BIO_MERGE_FAILED; 1042 } 1043 1044 /** 1045 * blk_attempt_plug_merge - try to merge with %current's plugged list 1046 * @q: request_queue new bio is being queued at 1047 * @bio: new bio being queued 1048 * @nr_segs: number of segments in @bio 1049 * from the passed in @q already in the plug list 1050 * 1051 * Determine whether @bio being queued on @q can be merged with the previous 1052 * request on %current's plugged list. Returns %true if merge was successful, 1053 * otherwise %false. 1054 * 1055 * Plugging coalesces IOs from the same issuer for the same purpose without 1056 * going through @q->queue_lock. As such it's more of an issuing mechanism 1057 * than scheduling, and the request, while may have elvpriv data, is not 1058 * added on the elevator at this point. In addition, we don't have 1059 * reliable access to the elevator outside queue lock. Only check basic 1060 * merging parameters without querying the elevator. 1061 * 1062 * Caller must ensure !blk_queue_nomerges(q) beforehand. 1063 */ 1064 bool blk_attempt_plug_merge(struct request_queue *q, struct bio *bio, 1065 unsigned int nr_segs) 1066 { 1067 struct blk_plug *plug; 1068 struct request *rq; 1069 1070 plug = blk_mq_plug(bio); 1071 if (!plug || rq_list_empty(plug->mq_list)) 1072 return false; 1073 1074 rq_list_for_each(&plug->mq_list, rq) { 1075 if (rq->q == q) { 1076 if (blk_attempt_bio_merge(q, rq, bio, nr_segs, false) == 1077 BIO_MERGE_OK) 1078 return true; 1079 break; 1080 } 1081 1082 /* 1083 * Only keep iterating plug list for merges if we have multiple 1084 * queues 1085 */ 1086 if (!plug->multiple_queues) 1087 break; 1088 } 1089 return false; 1090 } 1091 1092 /* 1093 * Iterate list of requests and see if we can merge this bio with any 1094 * of them. 1095 */ 1096 bool blk_bio_list_merge(struct request_queue *q, struct list_head *list, 1097 struct bio *bio, unsigned int nr_segs) 1098 { 1099 struct request *rq; 1100 int checked = 8; 1101 1102 list_for_each_entry_reverse(rq, list, queuelist) { 1103 if (!checked--) 1104 break; 1105 1106 switch (blk_attempt_bio_merge(q, rq, bio, nr_segs, true)) { 1107 case BIO_MERGE_NONE: 1108 continue; 1109 case BIO_MERGE_OK: 1110 return true; 1111 case BIO_MERGE_FAILED: 1112 return false; 1113 } 1114 1115 } 1116 1117 return false; 1118 } 1119 EXPORT_SYMBOL_GPL(blk_bio_list_merge); 1120 1121 bool blk_mq_sched_try_merge(struct request_queue *q, struct bio *bio, 1122 unsigned int nr_segs, struct request **merged_request) 1123 { 1124 struct request *rq; 1125 1126 switch (elv_merge(q, &rq, bio)) { 1127 case ELEVATOR_BACK_MERGE: 1128 if (!blk_mq_sched_allow_merge(q, rq, bio)) 1129 return false; 1130 if (bio_attempt_back_merge(rq, bio, nr_segs) != BIO_MERGE_OK) 1131 return false; 1132 *merged_request = attempt_back_merge(q, rq); 1133 if (!*merged_request) 1134 elv_merged_request(q, rq, ELEVATOR_BACK_MERGE); 1135 return true; 1136 case ELEVATOR_FRONT_MERGE: 1137 if (!blk_mq_sched_allow_merge(q, rq, bio)) 1138 return false; 1139 if (bio_attempt_front_merge(rq, bio, nr_segs) != BIO_MERGE_OK) 1140 return false; 1141 *merged_request = attempt_front_merge(q, rq); 1142 if (!*merged_request) 1143 elv_merged_request(q, rq, ELEVATOR_FRONT_MERGE); 1144 return true; 1145 case ELEVATOR_DISCARD_MERGE: 1146 return bio_attempt_discard_merge(q, rq, bio) == BIO_MERGE_OK; 1147 default: 1148 return false; 1149 } 1150 } 1151 EXPORT_SYMBOL_GPL(blk_mq_sched_try_merge); 1152