xref: /linux/block/blk-merge.c (revision d27656d02d85078c63f060fca9c5d99794791a75)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Functions related to segment and merge handling
4  */
5 #include <linux/kernel.h>
6 #include <linux/module.h>
7 #include <linux/bio.h>
8 #include <linux/blkdev.h>
9 #include <linux/blk-integrity.h>
10 #include <linux/scatterlist.h>
11 #include <linux/part_stat.h>
12 
13 #include <trace/events/block.h>
14 
15 #include "blk.h"
16 #include "blk-mq-sched.h"
17 #include "blk-rq-qos.h"
18 #include "blk-throttle.h"
19 
20 static inline void bio_get_first_bvec(struct bio *bio, struct bio_vec *bv)
21 {
22 	*bv = mp_bvec_iter_bvec(bio->bi_io_vec, bio->bi_iter);
23 }
24 
25 static inline void bio_get_last_bvec(struct bio *bio, struct bio_vec *bv)
26 {
27 	struct bvec_iter iter = bio->bi_iter;
28 	int idx;
29 
30 	bio_get_first_bvec(bio, bv);
31 	if (bv->bv_len == bio->bi_iter.bi_size)
32 		return;		/* this bio only has a single bvec */
33 
34 	bio_advance_iter(bio, &iter, iter.bi_size);
35 
36 	if (!iter.bi_bvec_done)
37 		idx = iter.bi_idx - 1;
38 	else	/* in the middle of bvec */
39 		idx = iter.bi_idx;
40 
41 	*bv = bio->bi_io_vec[idx];
42 
43 	/*
44 	 * iter.bi_bvec_done records actual length of the last bvec
45 	 * if this bio ends in the middle of one io vector
46 	 */
47 	if (iter.bi_bvec_done)
48 		bv->bv_len = iter.bi_bvec_done;
49 }
50 
51 static inline bool bio_will_gap(struct request_queue *q,
52 		struct request *prev_rq, struct bio *prev, struct bio *next)
53 {
54 	struct bio_vec pb, nb;
55 
56 	if (!bio_has_data(prev) || !queue_virt_boundary(q))
57 		return false;
58 
59 	/*
60 	 * Don't merge if the 1st bio starts with non-zero offset, otherwise it
61 	 * is quite difficult to respect the sg gap limit.  We work hard to
62 	 * merge a huge number of small single bios in case of mkfs.
63 	 */
64 	if (prev_rq)
65 		bio_get_first_bvec(prev_rq->bio, &pb);
66 	else
67 		bio_get_first_bvec(prev, &pb);
68 	if (pb.bv_offset & queue_virt_boundary(q))
69 		return true;
70 
71 	/*
72 	 * We don't need to worry about the situation that the merged segment
73 	 * ends in unaligned virt boundary:
74 	 *
75 	 * - if 'pb' ends aligned, the merged segment ends aligned
76 	 * - if 'pb' ends unaligned, the next bio must include
77 	 *   one single bvec of 'nb', otherwise the 'nb' can't
78 	 *   merge with 'pb'
79 	 */
80 	bio_get_last_bvec(prev, &pb);
81 	bio_get_first_bvec(next, &nb);
82 	if (biovec_phys_mergeable(q, &pb, &nb))
83 		return false;
84 	return __bvec_gap_to_prev(q, &pb, nb.bv_offset);
85 }
86 
87 static inline bool req_gap_back_merge(struct request *req, struct bio *bio)
88 {
89 	return bio_will_gap(req->q, req, req->biotail, bio);
90 }
91 
92 static inline bool req_gap_front_merge(struct request *req, struct bio *bio)
93 {
94 	return bio_will_gap(req->q, NULL, bio, req->bio);
95 }
96 
97 static struct bio *blk_bio_discard_split(struct request_queue *q,
98 					 struct bio *bio,
99 					 struct bio_set *bs,
100 					 unsigned *nsegs)
101 {
102 	unsigned int max_discard_sectors, granularity;
103 	int alignment;
104 	sector_t tmp;
105 	unsigned split_sectors;
106 
107 	*nsegs = 1;
108 
109 	/* Zero-sector (unknown) and one-sector granularities are the same.  */
110 	granularity = max(q->limits.discard_granularity >> 9, 1U);
111 
112 	max_discard_sectors = min(q->limits.max_discard_sectors,
113 			bio_allowed_max_sectors(q));
114 	max_discard_sectors -= max_discard_sectors % granularity;
115 
116 	if (unlikely(!max_discard_sectors)) {
117 		/* XXX: warn */
118 		return NULL;
119 	}
120 
121 	if (bio_sectors(bio) <= max_discard_sectors)
122 		return NULL;
123 
124 	split_sectors = max_discard_sectors;
125 
126 	/*
127 	 * If the next starting sector would be misaligned, stop the discard at
128 	 * the previous aligned sector.
129 	 */
130 	alignment = (q->limits.discard_alignment >> 9) % granularity;
131 
132 	tmp = bio->bi_iter.bi_sector + split_sectors - alignment;
133 	tmp = sector_div(tmp, granularity);
134 
135 	if (split_sectors > tmp)
136 		split_sectors -= tmp;
137 
138 	return bio_split(bio, split_sectors, GFP_NOIO, bs);
139 }
140 
141 static struct bio *blk_bio_write_zeroes_split(struct request_queue *q,
142 		struct bio *bio, struct bio_set *bs, unsigned *nsegs)
143 {
144 	*nsegs = 0;
145 
146 	if (!q->limits.max_write_zeroes_sectors)
147 		return NULL;
148 
149 	if (bio_sectors(bio) <= q->limits.max_write_zeroes_sectors)
150 		return NULL;
151 
152 	return bio_split(bio, q->limits.max_write_zeroes_sectors, GFP_NOIO, bs);
153 }
154 
155 static struct bio *blk_bio_write_same_split(struct request_queue *q,
156 					    struct bio *bio,
157 					    struct bio_set *bs,
158 					    unsigned *nsegs)
159 {
160 	*nsegs = 1;
161 
162 	if (!q->limits.max_write_same_sectors)
163 		return NULL;
164 
165 	if (bio_sectors(bio) <= q->limits.max_write_same_sectors)
166 		return NULL;
167 
168 	return bio_split(bio, q->limits.max_write_same_sectors, GFP_NOIO, bs);
169 }
170 
171 /*
172  * Return the maximum number of sectors from the start of a bio that may be
173  * submitted as a single request to a block device. If enough sectors remain,
174  * align the end to the physical block size. Otherwise align the end to the
175  * logical block size. This approach minimizes the number of non-aligned
176  * requests that are submitted to a block device if the start of a bio is not
177  * aligned to a physical block boundary.
178  */
179 static inline unsigned get_max_io_size(struct request_queue *q,
180 				       struct bio *bio)
181 {
182 	unsigned sectors = blk_max_size_offset(q, bio->bi_iter.bi_sector, 0);
183 	unsigned max_sectors = sectors;
184 	unsigned pbs = queue_physical_block_size(q) >> SECTOR_SHIFT;
185 	unsigned lbs = queue_logical_block_size(q) >> SECTOR_SHIFT;
186 	unsigned start_offset = bio->bi_iter.bi_sector & (pbs - 1);
187 
188 	max_sectors += start_offset;
189 	max_sectors &= ~(pbs - 1);
190 	if (max_sectors > start_offset)
191 		return max_sectors - start_offset;
192 
193 	return sectors & ~(lbs - 1);
194 }
195 
196 static inline unsigned get_max_segment_size(const struct request_queue *q,
197 					    struct page *start_page,
198 					    unsigned long offset)
199 {
200 	unsigned long mask = queue_segment_boundary(q);
201 
202 	offset = mask & (page_to_phys(start_page) + offset);
203 
204 	/*
205 	 * overflow may be triggered in case of zero page physical address
206 	 * on 32bit arch, use queue's max segment size when that happens.
207 	 */
208 	return min_not_zero(mask - offset + 1,
209 			(unsigned long)queue_max_segment_size(q));
210 }
211 
212 /**
213  * bvec_split_segs - verify whether or not a bvec should be split in the middle
214  * @q:        [in] request queue associated with the bio associated with @bv
215  * @bv:       [in] bvec to examine
216  * @nsegs:    [in,out] Number of segments in the bio being built. Incremented
217  *            by the number of segments from @bv that may be appended to that
218  *            bio without exceeding @max_segs
219  * @sectors:  [in,out] Number of sectors in the bio being built. Incremented
220  *            by the number of sectors from @bv that may be appended to that
221  *            bio without exceeding @max_sectors
222  * @max_segs: [in] upper bound for *@nsegs
223  * @max_sectors: [in] upper bound for *@sectors
224  *
225  * When splitting a bio, it can happen that a bvec is encountered that is too
226  * big to fit in a single segment and hence that it has to be split in the
227  * middle. This function verifies whether or not that should happen. The value
228  * %true is returned if and only if appending the entire @bv to a bio with
229  * *@nsegs segments and *@sectors sectors would make that bio unacceptable for
230  * the block driver.
231  */
232 static bool bvec_split_segs(const struct request_queue *q,
233 			    const struct bio_vec *bv, unsigned *nsegs,
234 			    unsigned *sectors, unsigned max_segs,
235 			    unsigned max_sectors)
236 {
237 	unsigned max_len = (min(max_sectors, UINT_MAX >> 9) - *sectors) << 9;
238 	unsigned len = min(bv->bv_len, max_len);
239 	unsigned total_len = 0;
240 	unsigned seg_size = 0;
241 
242 	while (len && *nsegs < max_segs) {
243 		seg_size = get_max_segment_size(q, bv->bv_page,
244 						bv->bv_offset + total_len);
245 		seg_size = min(seg_size, len);
246 
247 		(*nsegs)++;
248 		total_len += seg_size;
249 		len -= seg_size;
250 
251 		if ((bv->bv_offset + total_len) & queue_virt_boundary(q))
252 			break;
253 	}
254 
255 	*sectors += total_len >> 9;
256 
257 	/* tell the caller to split the bvec if it is too big to fit */
258 	return len > 0 || bv->bv_len > max_len;
259 }
260 
261 /**
262  * blk_bio_segment_split - split a bio in two bios
263  * @q:    [in] request queue pointer
264  * @bio:  [in] bio to be split
265  * @bs:	  [in] bio set to allocate the clone from
266  * @segs: [out] number of segments in the bio with the first half of the sectors
267  *
268  * Clone @bio, update the bi_iter of the clone to represent the first sectors
269  * of @bio and update @bio->bi_iter to represent the remaining sectors. The
270  * following is guaranteed for the cloned bio:
271  * - That it has at most get_max_io_size(@q, @bio) sectors.
272  * - That it has at most queue_max_segments(@q) segments.
273  *
274  * Except for discard requests the cloned bio will point at the bi_io_vec of
275  * the original bio. It is the responsibility of the caller to ensure that the
276  * original bio is not freed before the cloned bio. The caller is also
277  * responsible for ensuring that @bs is only destroyed after processing of the
278  * split bio has finished.
279  */
280 static struct bio *blk_bio_segment_split(struct request_queue *q,
281 					 struct bio *bio,
282 					 struct bio_set *bs,
283 					 unsigned *segs)
284 {
285 	struct bio_vec bv, bvprv, *bvprvp = NULL;
286 	struct bvec_iter iter;
287 	unsigned nsegs = 0, sectors = 0;
288 	const unsigned max_sectors = get_max_io_size(q, bio);
289 	const unsigned max_segs = queue_max_segments(q);
290 
291 	bio_for_each_bvec(bv, bio, iter) {
292 		/*
293 		 * If the queue doesn't support SG gaps and adding this
294 		 * offset would create a gap, disallow it.
295 		 */
296 		if (bvprvp && bvec_gap_to_prev(q, bvprvp, bv.bv_offset))
297 			goto split;
298 
299 		if (nsegs < max_segs &&
300 		    sectors + (bv.bv_len >> 9) <= max_sectors &&
301 		    bv.bv_offset + bv.bv_len <= PAGE_SIZE) {
302 			nsegs++;
303 			sectors += bv.bv_len >> 9;
304 		} else if (bvec_split_segs(q, &bv, &nsegs, &sectors, max_segs,
305 					 max_sectors)) {
306 			goto split;
307 		}
308 
309 		bvprv = bv;
310 		bvprvp = &bvprv;
311 	}
312 
313 	*segs = nsegs;
314 	return NULL;
315 split:
316 	*segs = nsegs;
317 
318 	/*
319 	 * Bio splitting may cause subtle trouble such as hang when doing sync
320 	 * iopoll in direct IO routine. Given performance gain of iopoll for
321 	 * big IO can be trival, disable iopoll when split needed.
322 	 */
323 	bio_clear_polled(bio);
324 	return bio_split(bio, sectors, GFP_NOIO, bs);
325 }
326 
327 /**
328  * __blk_queue_split - split a bio and submit the second half
329  * @q:       [in] request_queue new bio is being queued at
330  * @bio:     [in, out] bio to be split
331  * @nr_segs: [out] number of segments in the first bio
332  *
333  * Split a bio into two bios, chain the two bios, submit the second half and
334  * store a pointer to the first half in *@bio. If the second bio is still too
335  * big it will be split by a recursive call to this function. Since this
336  * function may allocate a new bio from q->bio_split, it is the responsibility
337  * of the caller to ensure that q->bio_split is only released after processing
338  * of the split bio has finished.
339  */
340 void __blk_queue_split(struct request_queue *q, struct bio **bio,
341 		       unsigned int *nr_segs)
342 {
343 	struct bio *split = NULL;
344 
345 	switch (bio_op(*bio)) {
346 	case REQ_OP_DISCARD:
347 	case REQ_OP_SECURE_ERASE:
348 		split = blk_bio_discard_split(q, *bio, &q->bio_split, nr_segs);
349 		break;
350 	case REQ_OP_WRITE_ZEROES:
351 		split = blk_bio_write_zeroes_split(q, *bio, &q->bio_split,
352 				nr_segs);
353 		break;
354 	case REQ_OP_WRITE_SAME:
355 		split = blk_bio_write_same_split(q, *bio, &q->bio_split,
356 				nr_segs);
357 		break;
358 	default:
359 		split = blk_bio_segment_split(q, *bio, &q->bio_split, nr_segs);
360 		break;
361 	}
362 
363 	if (split) {
364 		/* there isn't chance to merge the splitted bio */
365 		split->bi_opf |= REQ_NOMERGE;
366 
367 		bio_chain(split, *bio);
368 		trace_block_split(split, (*bio)->bi_iter.bi_sector);
369 		submit_bio_noacct(*bio);
370 		*bio = split;
371 
372 		blk_throtl_charge_bio_split(*bio);
373 	}
374 }
375 
376 /**
377  * blk_queue_split - split a bio and submit the second half
378  * @bio: [in, out] bio to be split
379  *
380  * Split a bio into two bios, chains the two bios, submit the second half and
381  * store a pointer to the first half in *@bio. Since this function may allocate
382  * a new bio from q->bio_split, it is the responsibility of the caller to ensure
383  * that q->bio_split is only released after processing of the split bio has
384  * finished.
385  */
386 void blk_queue_split(struct bio **bio)
387 {
388 	struct request_queue *q = bdev_get_queue((*bio)->bi_bdev);
389 	unsigned int nr_segs;
390 
391 	if (blk_may_split(q, *bio))
392 		__blk_queue_split(q, bio, &nr_segs);
393 }
394 EXPORT_SYMBOL(blk_queue_split);
395 
396 unsigned int blk_recalc_rq_segments(struct request *rq)
397 {
398 	unsigned int nr_phys_segs = 0;
399 	unsigned int nr_sectors = 0;
400 	struct req_iterator iter;
401 	struct bio_vec bv;
402 
403 	if (!rq->bio)
404 		return 0;
405 
406 	switch (bio_op(rq->bio)) {
407 	case REQ_OP_DISCARD:
408 	case REQ_OP_SECURE_ERASE:
409 		if (queue_max_discard_segments(rq->q) > 1) {
410 			struct bio *bio = rq->bio;
411 
412 			for_each_bio(bio)
413 				nr_phys_segs++;
414 			return nr_phys_segs;
415 		}
416 		return 1;
417 	case REQ_OP_WRITE_ZEROES:
418 		return 0;
419 	case REQ_OP_WRITE_SAME:
420 		return 1;
421 	}
422 
423 	rq_for_each_bvec(bv, rq, iter)
424 		bvec_split_segs(rq->q, &bv, &nr_phys_segs, &nr_sectors,
425 				UINT_MAX, UINT_MAX);
426 	return nr_phys_segs;
427 }
428 
429 static inline struct scatterlist *blk_next_sg(struct scatterlist **sg,
430 		struct scatterlist *sglist)
431 {
432 	if (!*sg)
433 		return sglist;
434 
435 	/*
436 	 * If the driver previously mapped a shorter list, we could see a
437 	 * termination bit prematurely unless it fully inits the sg table
438 	 * on each mapping. We KNOW that there must be more entries here
439 	 * or the driver would be buggy, so force clear the termination bit
440 	 * to avoid doing a full sg_init_table() in drivers for each command.
441 	 */
442 	sg_unmark_end(*sg);
443 	return sg_next(*sg);
444 }
445 
446 static unsigned blk_bvec_map_sg(struct request_queue *q,
447 		struct bio_vec *bvec, struct scatterlist *sglist,
448 		struct scatterlist **sg)
449 {
450 	unsigned nbytes = bvec->bv_len;
451 	unsigned nsegs = 0, total = 0;
452 
453 	while (nbytes > 0) {
454 		unsigned offset = bvec->bv_offset + total;
455 		unsigned len = min(get_max_segment_size(q, bvec->bv_page,
456 					offset), nbytes);
457 		struct page *page = bvec->bv_page;
458 
459 		/*
460 		 * Unfortunately a fair number of drivers barf on scatterlists
461 		 * that have an offset larger than PAGE_SIZE, despite other
462 		 * subsystems dealing with that invariant just fine.  For now
463 		 * stick to the legacy format where we never present those from
464 		 * the block layer, but the code below should be removed once
465 		 * these offenders (mostly MMC/SD drivers) are fixed.
466 		 */
467 		page += (offset >> PAGE_SHIFT);
468 		offset &= ~PAGE_MASK;
469 
470 		*sg = blk_next_sg(sg, sglist);
471 		sg_set_page(*sg, page, len, offset);
472 
473 		total += len;
474 		nbytes -= len;
475 		nsegs++;
476 	}
477 
478 	return nsegs;
479 }
480 
481 static inline int __blk_bvec_map_sg(struct bio_vec bv,
482 		struct scatterlist *sglist, struct scatterlist **sg)
483 {
484 	*sg = blk_next_sg(sg, sglist);
485 	sg_set_page(*sg, bv.bv_page, bv.bv_len, bv.bv_offset);
486 	return 1;
487 }
488 
489 /* only try to merge bvecs into one sg if they are from two bios */
490 static inline bool
491 __blk_segment_map_sg_merge(struct request_queue *q, struct bio_vec *bvec,
492 			   struct bio_vec *bvprv, struct scatterlist **sg)
493 {
494 
495 	int nbytes = bvec->bv_len;
496 
497 	if (!*sg)
498 		return false;
499 
500 	if ((*sg)->length + nbytes > queue_max_segment_size(q))
501 		return false;
502 
503 	if (!biovec_phys_mergeable(q, bvprv, bvec))
504 		return false;
505 
506 	(*sg)->length += nbytes;
507 
508 	return true;
509 }
510 
511 static int __blk_bios_map_sg(struct request_queue *q, struct bio *bio,
512 			     struct scatterlist *sglist,
513 			     struct scatterlist **sg)
514 {
515 	struct bio_vec bvec, bvprv = { NULL };
516 	struct bvec_iter iter;
517 	int nsegs = 0;
518 	bool new_bio = false;
519 
520 	for_each_bio(bio) {
521 		bio_for_each_bvec(bvec, bio, iter) {
522 			/*
523 			 * Only try to merge bvecs from two bios given we
524 			 * have done bio internal merge when adding pages
525 			 * to bio
526 			 */
527 			if (new_bio &&
528 			    __blk_segment_map_sg_merge(q, &bvec, &bvprv, sg))
529 				goto next_bvec;
530 
531 			if (bvec.bv_offset + bvec.bv_len <= PAGE_SIZE)
532 				nsegs += __blk_bvec_map_sg(bvec, sglist, sg);
533 			else
534 				nsegs += blk_bvec_map_sg(q, &bvec, sglist, sg);
535  next_bvec:
536 			new_bio = false;
537 		}
538 		if (likely(bio->bi_iter.bi_size)) {
539 			bvprv = bvec;
540 			new_bio = true;
541 		}
542 	}
543 
544 	return nsegs;
545 }
546 
547 /*
548  * map a request to scatterlist, return number of sg entries setup. Caller
549  * must make sure sg can hold rq->nr_phys_segments entries
550  */
551 int __blk_rq_map_sg(struct request_queue *q, struct request *rq,
552 		struct scatterlist *sglist, struct scatterlist **last_sg)
553 {
554 	int nsegs = 0;
555 
556 	if (rq->rq_flags & RQF_SPECIAL_PAYLOAD)
557 		nsegs = __blk_bvec_map_sg(rq->special_vec, sglist, last_sg);
558 	else if (rq->bio && bio_op(rq->bio) == REQ_OP_WRITE_SAME)
559 		nsegs = __blk_bvec_map_sg(bio_iovec(rq->bio), sglist, last_sg);
560 	else if (rq->bio)
561 		nsegs = __blk_bios_map_sg(q, rq->bio, sglist, last_sg);
562 
563 	if (*last_sg)
564 		sg_mark_end(*last_sg);
565 
566 	/*
567 	 * Something must have been wrong if the figured number of
568 	 * segment is bigger than number of req's physical segments
569 	 */
570 	WARN_ON(nsegs > blk_rq_nr_phys_segments(rq));
571 
572 	return nsegs;
573 }
574 EXPORT_SYMBOL(__blk_rq_map_sg);
575 
576 static inline unsigned int blk_rq_get_max_segments(struct request *rq)
577 {
578 	if (req_op(rq) == REQ_OP_DISCARD)
579 		return queue_max_discard_segments(rq->q);
580 	return queue_max_segments(rq->q);
581 }
582 
583 static inline unsigned int blk_rq_get_max_sectors(struct request *rq,
584 						  sector_t offset)
585 {
586 	struct request_queue *q = rq->q;
587 
588 	if (blk_rq_is_passthrough(rq))
589 		return q->limits.max_hw_sectors;
590 
591 	if (!q->limits.chunk_sectors ||
592 	    req_op(rq) == REQ_OP_DISCARD ||
593 	    req_op(rq) == REQ_OP_SECURE_ERASE)
594 		return blk_queue_get_max_sectors(q, req_op(rq));
595 
596 	return min(blk_max_size_offset(q, offset, 0),
597 			blk_queue_get_max_sectors(q, req_op(rq)));
598 }
599 
600 static inline int ll_new_hw_segment(struct request *req, struct bio *bio,
601 		unsigned int nr_phys_segs)
602 {
603 	if (blk_integrity_merge_bio(req->q, req, bio) == false)
604 		goto no_merge;
605 
606 	/* discard request merge won't add new segment */
607 	if (req_op(req) == REQ_OP_DISCARD)
608 		return 1;
609 
610 	if (req->nr_phys_segments + nr_phys_segs > blk_rq_get_max_segments(req))
611 		goto no_merge;
612 
613 	/*
614 	 * This will form the start of a new hw segment.  Bump both
615 	 * counters.
616 	 */
617 	req->nr_phys_segments += nr_phys_segs;
618 	return 1;
619 
620 no_merge:
621 	req_set_nomerge(req->q, req);
622 	return 0;
623 }
624 
625 int ll_back_merge_fn(struct request *req, struct bio *bio, unsigned int nr_segs)
626 {
627 	if (req_gap_back_merge(req, bio))
628 		return 0;
629 	if (blk_integrity_rq(req) &&
630 	    integrity_req_gap_back_merge(req, bio))
631 		return 0;
632 	if (!bio_crypt_ctx_back_mergeable(req, bio))
633 		return 0;
634 	if (blk_rq_sectors(req) + bio_sectors(bio) >
635 	    blk_rq_get_max_sectors(req, blk_rq_pos(req))) {
636 		req_set_nomerge(req->q, req);
637 		return 0;
638 	}
639 
640 	return ll_new_hw_segment(req, bio, nr_segs);
641 }
642 
643 static int ll_front_merge_fn(struct request *req, struct bio *bio,
644 		unsigned int nr_segs)
645 {
646 	if (req_gap_front_merge(req, bio))
647 		return 0;
648 	if (blk_integrity_rq(req) &&
649 	    integrity_req_gap_front_merge(req, bio))
650 		return 0;
651 	if (!bio_crypt_ctx_front_mergeable(req, bio))
652 		return 0;
653 	if (blk_rq_sectors(req) + bio_sectors(bio) >
654 	    blk_rq_get_max_sectors(req, bio->bi_iter.bi_sector)) {
655 		req_set_nomerge(req->q, req);
656 		return 0;
657 	}
658 
659 	return ll_new_hw_segment(req, bio, nr_segs);
660 }
661 
662 static bool req_attempt_discard_merge(struct request_queue *q, struct request *req,
663 		struct request *next)
664 {
665 	unsigned short segments = blk_rq_nr_discard_segments(req);
666 
667 	if (segments >= queue_max_discard_segments(q))
668 		goto no_merge;
669 	if (blk_rq_sectors(req) + bio_sectors(next->bio) >
670 	    blk_rq_get_max_sectors(req, blk_rq_pos(req)))
671 		goto no_merge;
672 
673 	req->nr_phys_segments = segments + blk_rq_nr_discard_segments(next);
674 	return true;
675 no_merge:
676 	req_set_nomerge(q, req);
677 	return false;
678 }
679 
680 static int ll_merge_requests_fn(struct request_queue *q, struct request *req,
681 				struct request *next)
682 {
683 	int total_phys_segments;
684 
685 	if (req_gap_back_merge(req, next->bio))
686 		return 0;
687 
688 	/*
689 	 * Will it become too large?
690 	 */
691 	if ((blk_rq_sectors(req) + blk_rq_sectors(next)) >
692 	    blk_rq_get_max_sectors(req, blk_rq_pos(req)))
693 		return 0;
694 
695 	total_phys_segments = req->nr_phys_segments + next->nr_phys_segments;
696 	if (total_phys_segments > blk_rq_get_max_segments(req))
697 		return 0;
698 
699 	if (blk_integrity_merge_rq(q, req, next) == false)
700 		return 0;
701 
702 	if (!bio_crypt_ctx_merge_rq(req, next))
703 		return 0;
704 
705 	/* Merge is OK... */
706 	req->nr_phys_segments = total_phys_segments;
707 	return 1;
708 }
709 
710 /**
711  * blk_rq_set_mixed_merge - mark a request as mixed merge
712  * @rq: request to mark as mixed merge
713  *
714  * Description:
715  *     @rq is about to be mixed merged.  Make sure the attributes
716  *     which can be mixed are set in each bio and mark @rq as mixed
717  *     merged.
718  */
719 void blk_rq_set_mixed_merge(struct request *rq)
720 {
721 	unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK;
722 	struct bio *bio;
723 
724 	if (rq->rq_flags & RQF_MIXED_MERGE)
725 		return;
726 
727 	/*
728 	 * @rq will no longer represent mixable attributes for all the
729 	 * contained bios.  It will just track those of the first one.
730 	 * Distributes the attributs to each bio.
731 	 */
732 	for (bio = rq->bio; bio; bio = bio->bi_next) {
733 		WARN_ON_ONCE((bio->bi_opf & REQ_FAILFAST_MASK) &&
734 			     (bio->bi_opf & REQ_FAILFAST_MASK) != ff);
735 		bio->bi_opf |= ff;
736 	}
737 	rq->rq_flags |= RQF_MIXED_MERGE;
738 }
739 
740 static void blk_account_io_merge_request(struct request *req)
741 {
742 	if (blk_do_io_stat(req)) {
743 		part_stat_lock();
744 		part_stat_inc(req->part, merges[op_stat_group(req_op(req))]);
745 		part_stat_unlock();
746 	}
747 }
748 
749 static enum elv_merge blk_try_req_merge(struct request *req,
750 					struct request *next)
751 {
752 	if (blk_discard_mergable(req))
753 		return ELEVATOR_DISCARD_MERGE;
754 	else if (blk_rq_pos(req) + blk_rq_sectors(req) == blk_rq_pos(next))
755 		return ELEVATOR_BACK_MERGE;
756 
757 	return ELEVATOR_NO_MERGE;
758 }
759 
760 static inline bool blk_write_same_mergeable(struct bio *a, struct bio *b)
761 {
762 	if (bio_page(a) == bio_page(b) && bio_offset(a) == bio_offset(b))
763 		return true;
764 	return false;
765 }
766 
767 /*
768  * For non-mq, this has to be called with the request spinlock acquired.
769  * For mq with scheduling, the appropriate queue wide lock should be held.
770  */
771 static struct request *attempt_merge(struct request_queue *q,
772 				     struct request *req, struct request *next)
773 {
774 	if (!rq_mergeable(req) || !rq_mergeable(next))
775 		return NULL;
776 
777 	if (req_op(req) != req_op(next))
778 		return NULL;
779 
780 	if (rq_data_dir(req) != rq_data_dir(next))
781 		return NULL;
782 
783 	if (req_op(req) == REQ_OP_WRITE_SAME &&
784 	    !blk_write_same_mergeable(req->bio, next->bio))
785 		return NULL;
786 
787 	/*
788 	 * Don't allow merge of different write hints, or for a hint with
789 	 * non-hint IO.
790 	 */
791 	if (req->write_hint != next->write_hint)
792 		return NULL;
793 
794 	if (req->ioprio != next->ioprio)
795 		return NULL;
796 
797 	/*
798 	 * If we are allowed to merge, then append bio list
799 	 * from next to rq and release next. merge_requests_fn
800 	 * will have updated segment counts, update sector
801 	 * counts here. Handle DISCARDs separately, as they
802 	 * have separate settings.
803 	 */
804 
805 	switch (blk_try_req_merge(req, next)) {
806 	case ELEVATOR_DISCARD_MERGE:
807 		if (!req_attempt_discard_merge(q, req, next))
808 			return NULL;
809 		break;
810 	case ELEVATOR_BACK_MERGE:
811 		if (!ll_merge_requests_fn(q, req, next))
812 			return NULL;
813 		break;
814 	default:
815 		return NULL;
816 	}
817 
818 	/*
819 	 * If failfast settings disagree or any of the two is already
820 	 * a mixed merge, mark both as mixed before proceeding.  This
821 	 * makes sure that all involved bios have mixable attributes
822 	 * set properly.
823 	 */
824 	if (((req->rq_flags | next->rq_flags) & RQF_MIXED_MERGE) ||
825 	    (req->cmd_flags & REQ_FAILFAST_MASK) !=
826 	    (next->cmd_flags & REQ_FAILFAST_MASK)) {
827 		blk_rq_set_mixed_merge(req);
828 		blk_rq_set_mixed_merge(next);
829 	}
830 
831 	/*
832 	 * At this point we have either done a back merge or front merge. We
833 	 * need the smaller start_time_ns of the merged requests to be the
834 	 * current request for accounting purposes.
835 	 */
836 	if (next->start_time_ns < req->start_time_ns)
837 		req->start_time_ns = next->start_time_ns;
838 
839 	req->biotail->bi_next = next->bio;
840 	req->biotail = next->biotail;
841 
842 	req->__data_len += blk_rq_bytes(next);
843 
844 	if (!blk_discard_mergable(req))
845 		elv_merge_requests(q, req, next);
846 
847 	/*
848 	 * 'next' is going away, so update stats accordingly
849 	 */
850 	blk_account_io_merge_request(next);
851 
852 	trace_block_rq_merge(next);
853 
854 	/*
855 	 * ownership of bio passed from next to req, return 'next' for
856 	 * the caller to free
857 	 */
858 	next->bio = NULL;
859 	return next;
860 }
861 
862 static struct request *attempt_back_merge(struct request_queue *q,
863 		struct request *rq)
864 {
865 	struct request *next = elv_latter_request(q, rq);
866 
867 	if (next)
868 		return attempt_merge(q, rq, next);
869 
870 	return NULL;
871 }
872 
873 static struct request *attempt_front_merge(struct request_queue *q,
874 		struct request *rq)
875 {
876 	struct request *prev = elv_former_request(q, rq);
877 
878 	if (prev)
879 		return attempt_merge(q, prev, rq);
880 
881 	return NULL;
882 }
883 
884 /*
885  * Try to merge 'next' into 'rq'. Return true if the merge happened, false
886  * otherwise. The caller is responsible for freeing 'next' if the merge
887  * happened.
888  */
889 bool blk_attempt_req_merge(struct request_queue *q, struct request *rq,
890 			   struct request *next)
891 {
892 	return attempt_merge(q, rq, next);
893 }
894 
895 bool blk_rq_merge_ok(struct request *rq, struct bio *bio)
896 {
897 	if (!rq_mergeable(rq) || !bio_mergeable(bio))
898 		return false;
899 
900 	if (req_op(rq) != bio_op(bio))
901 		return false;
902 
903 	/* different data direction or already started, don't merge */
904 	if (bio_data_dir(bio) != rq_data_dir(rq))
905 		return false;
906 
907 	/* only merge integrity protected bio into ditto rq */
908 	if (blk_integrity_merge_bio(rq->q, rq, bio) == false)
909 		return false;
910 
911 	/* Only merge if the crypt contexts are compatible */
912 	if (!bio_crypt_rq_ctx_compatible(rq, bio))
913 		return false;
914 
915 	/* must be using the same buffer */
916 	if (req_op(rq) == REQ_OP_WRITE_SAME &&
917 	    !blk_write_same_mergeable(rq->bio, bio))
918 		return false;
919 
920 	/*
921 	 * Don't allow merge of different write hints, or for a hint with
922 	 * non-hint IO.
923 	 */
924 	if (rq->write_hint != bio->bi_write_hint)
925 		return false;
926 
927 	if (rq->ioprio != bio_prio(bio))
928 		return false;
929 
930 	return true;
931 }
932 
933 enum elv_merge blk_try_merge(struct request *rq, struct bio *bio)
934 {
935 	if (blk_discard_mergable(rq))
936 		return ELEVATOR_DISCARD_MERGE;
937 	else if (blk_rq_pos(rq) + blk_rq_sectors(rq) == bio->bi_iter.bi_sector)
938 		return ELEVATOR_BACK_MERGE;
939 	else if (blk_rq_pos(rq) - bio_sectors(bio) == bio->bi_iter.bi_sector)
940 		return ELEVATOR_FRONT_MERGE;
941 	return ELEVATOR_NO_MERGE;
942 }
943 
944 static void blk_account_io_merge_bio(struct request *req)
945 {
946 	if (!blk_do_io_stat(req))
947 		return;
948 
949 	part_stat_lock();
950 	part_stat_inc(req->part, merges[op_stat_group(req_op(req))]);
951 	part_stat_unlock();
952 }
953 
954 enum bio_merge_status {
955 	BIO_MERGE_OK,
956 	BIO_MERGE_NONE,
957 	BIO_MERGE_FAILED,
958 };
959 
960 static enum bio_merge_status bio_attempt_back_merge(struct request *req,
961 		struct bio *bio, unsigned int nr_segs)
962 {
963 	const int ff = bio->bi_opf & REQ_FAILFAST_MASK;
964 
965 	if (!ll_back_merge_fn(req, bio, nr_segs))
966 		return BIO_MERGE_FAILED;
967 
968 	trace_block_bio_backmerge(bio);
969 	rq_qos_merge(req->q, req, bio);
970 
971 	if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
972 		blk_rq_set_mixed_merge(req);
973 
974 	req->biotail->bi_next = bio;
975 	req->biotail = bio;
976 	req->__data_len += bio->bi_iter.bi_size;
977 
978 	bio_crypt_free_ctx(bio);
979 
980 	blk_account_io_merge_bio(req);
981 	return BIO_MERGE_OK;
982 }
983 
984 static enum bio_merge_status bio_attempt_front_merge(struct request *req,
985 		struct bio *bio, unsigned int nr_segs)
986 {
987 	const int ff = bio->bi_opf & REQ_FAILFAST_MASK;
988 
989 	if (!ll_front_merge_fn(req, bio, nr_segs))
990 		return BIO_MERGE_FAILED;
991 
992 	trace_block_bio_frontmerge(bio);
993 	rq_qos_merge(req->q, req, bio);
994 
995 	if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
996 		blk_rq_set_mixed_merge(req);
997 
998 	bio->bi_next = req->bio;
999 	req->bio = bio;
1000 
1001 	req->__sector = bio->bi_iter.bi_sector;
1002 	req->__data_len += bio->bi_iter.bi_size;
1003 
1004 	bio_crypt_do_front_merge(req, bio);
1005 
1006 	blk_account_io_merge_bio(req);
1007 	return BIO_MERGE_OK;
1008 }
1009 
1010 static enum bio_merge_status bio_attempt_discard_merge(struct request_queue *q,
1011 		struct request *req, struct bio *bio)
1012 {
1013 	unsigned short segments = blk_rq_nr_discard_segments(req);
1014 
1015 	if (segments >= queue_max_discard_segments(q))
1016 		goto no_merge;
1017 	if (blk_rq_sectors(req) + bio_sectors(bio) >
1018 	    blk_rq_get_max_sectors(req, blk_rq_pos(req)))
1019 		goto no_merge;
1020 
1021 	rq_qos_merge(q, req, bio);
1022 
1023 	req->biotail->bi_next = bio;
1024 	req->biotail = bio;
1025 	req->__data_len += bio->bi_iter.bi_size;
1026 	req->nr_phys_segments = segments + 1;
1027 
1028 	blk_account_io_merge_bio(req);
1029 	return BIO_MERGE_OK;
1030 no_merge:
1031 	req_set_nomerge(q, req);
1032 	return BIO_MERGE_FAILED;
1033 }
1034 
1035 static enum bio_merge_status blk_attempt_bio_merge(struct request_queue *q,
1036 						   struct request *rq,
1037 						   struct bio *bio,
1038 						   unsigned int nr_segs,
1039 						   bool sched_allow_merge)
1040 {
1041 	if (!blk_rq_merge_ok(rq, bio))
1042 		return BIO_MERGE_NONE;
1043 
1044 	switch (blk_try_merge(rq, bio)) {
1045 	case ELEVATOR_BACK_MERGE:
1046 		if (!sched_allow_merge || blk_mq_sched_allow_merge(q, rq, bio))
1047 			return bio_attempt_back_merge(rq, bio, nr_segs);
1048 		break;
1049 	case ELEVATOR_FRONT_MERGE:
1050 		if (!sched_allow_merge || blk_mq_sched_allow_merge(q, rq, bio))
1051 			return bio_attempt_front_merge(rq, bio, nr_segs);
1052 		break;
1053 	case ELEVATOR_DISCARD_MERGE:
1054 		return bio_attempt_discard_merge(q, rq, bio);
1055 	default:
1056 		return BIO_MERGE_NONE;
1057 	}
1058 
1059 	return BIO_MERGE_FAILED;
1060 }
1061 
1062 /**
1063  * blk_attempt_plug_merge - try to merge with %current's plugged list
1064  * @q: request_queue new bio is being queued at
1065  * @bio: new bio being queued
1066  * @nr_segs: number of segments in @bio
1067  * from the passed in @q already in the plug list
1068  *
1069  * Determine whether @bio being queued on @q can be merged with the previous
1070  * request on %current's plugged list.  Returns %true if merge was successful,
1071  * otherwise %false.
1072  *
1073  * Plugging coalesces IOs from the same issuer for the same purpose without
1074  * going through @q->queue_lock.  As such it's more of an issuing mechanism
1075  * than scheduling, and the request, while may have elvpriv data, is not
1076  * added on the elevator at this point.  In addition, we don't have
1077  * reliable access to the elevator outside queue lock.  Only check basic
1078  * merging parameters without querying the elevator.
1079  *
1080  * Caller must ensure !blk_queue_nomerges(q) beforehand.
1081  */
1082 bool blk_attempt_plug_merge(struct request_queue *q, struct bio *bio,
1083 		unsigned int nr_segs)
1084 {
1085 	struct blk_plug *plug;
1086 	struct request *rq;
1087 
1088 	plug = blk_mq_plug(q, bio);
1089 	if (!plug || rq_list_empty(plug->mq_list))
1090 		return false;
1091 
1092 	/* check the previously added entry for a quick merge attempt */
1093 	rq = rq_list_peek(&plug->mq_list);
1094 	if (rq->q == q) {
1095 		if (blk_attempt_bio_merge(q, rq, bio, nr_segs, false) ==
1096 				BIO_MERGE_OK)
1097 			return true;
1098 	}
1099 	return false;
1100 }
1101 
1102 /*
1103  * Iterate list of requests and see if we can merge this bio with any
1104  * of them.
1105  */
1106 bool blk_bio_list_merge(struct request_queue *q, struct list_head *list,
1107 			struct bio *bio, unsigned int nr_segs)
1108 {
1109 	struct request *rq;
1110 	int checked = 8;
1111 
1112 	list_for_each_entry_reverse(rq, list, queuelist) {
1113 		if (!checked--)
1114 			break;
1115 
1116 		switch (blk_attempt_bio_merge(q, rq, bio, nr_segs, true)) {
1117 		case BIO_MERGE_NONE:
1118 			continue;
1119 		case BIO_MERGE_OK:
1120 			return true;
1121 		case BIO_MERGE_FAILED:
1122 			return false;
1123 		}
1124 
1125 	}
1126 
1127 	return false;
1128 }
1129 EXPORT_SYMBOL_GPL(blk_bio_list_merge);
1130 
1131 bool blk_mq_sched_try_merge(struct request_queue *q, struct bio *bio,
1132 		unsigned int nr_segs, struct request **merged_request)
1133 {
1134 	struct request *rq;
1135 
1136 	switch (elv_merge(q, &rq, bio)) {
1137 	case ELEVATOR_BACK_MERGE:
1138 		if (!blk_mq_sched_allow_merge(q, rq, bio))
1139 			return false;
1140 		if (bio_attempt_back_merge(rq, bio, nr_segs) != BIO_MERGE_OK)
1141 			return false;
1142 		*merged_request = attempt_back_merge(q, rq);
1143 		if (!*merged_request)
1144 			elv_merged_request(q, rq, ELEVATOR_BACK_MERGE);
1145 		return true;
1146 	case ELEVATOR_FRONT_MERGE:
1147 		if (!blk_mq_sched_allow_merge(q, rq, bio))
1148 			return false;
1149 		if (bio_attempt_front_merge(rq, bio, nr_segs) != BIO_MERGE_OK)
1150 			return false;
1151 		*merged_request = attempt_front_merge(q, rq);
1152 		if (!*merged_request)
1153 			elv_merged_request(q, rq, ELEVATOR_FRONT_MERGE);
1154 		return true;
1155 	case ELEVATOR_DISCARD_MERGE:
1156 		return bio_attempt_discard_merge(q, rq, bio) == BIO_MERGE_OK;
1157 	default:
1158 		return false;
1159 	}
1160 }
1161 EXPORT_SYMBOL_GPL(blk_mq_sched_try_merge);
1162