1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Functions related to segment and merge handling 4 */ 5 #include <linux/kernel.h> 6 #include <linux/module.h> 7 #include <linux/bio.h> 8 #include <linux/blkdev.h> 9 #include <linux/blk-integrity.h> 10 #include <linux/scatterlist.h> 11 #include <linux/part_stat.h> 12 #include <linux/blk-cgroup.h> 13 14 #include <trace/events/block.h> 15 16 #include "blk.h" 17 #include "blk-mq-sched.h" 18 #include "blk-rq-qos.h" 19 #include "blk-throttle.h" 20 21 static inline void bio_get_first_bvec(struct bio *bio, struct bio_vec *bv) 22 { 23 *bv = mp_bvec_iter_bvec(bio->bi_io_vec, bio->bi_iter); 24 } 25 26 static inline void bio_get_last_bvec(struct bio *bio, struct bio_vec *bv) 27 { 28 struct bvec_iter iter = bio->bi_iter; 29 int idx; 30 31 bio_get_first_bvec(bio, bv); 32 if (bv->bv_len == bio->bi_iter.bi_size) 33 return; /* this bio only has a single bvec */ 34 35 bio_advance_iter(bio, &iter, iter.bi_size); 36 37 if (!iter.bi_bvec_done) 38 idx = iter.bi_idx - 1; 39 else /* in the middle of bvec */ 40 idx = iter.bi_idx; 41 42 *bv = bio->bi_io_vec[idx]; 43 44 /* 45 * iter.bi_bvec_done records actual length of the last bvec 46 * if this bio ends in the middle of one io vector 47 */ 48 if (iter.bi_bvec_done) 49 bv->bv_len = iter.bi_bvec_done; 50 } 51 52 static inline bool bio_will_gap(struct request_queue *q, 53 struct request *prev_rq, struct bio *prev, struct bio *next) 54 { 55 struct bio_vec pb, nb; 56 57 if (!bio_has_data(prev) || !queue_virt_boundary(q)) 58 return false; 59 60 /* 61 * Don't merge if the 1st bio starts with non-zero offset, otherwise it 62 * is quite difficult to respect the sg gap limit. We work hard to 63 * merge a huge number of small single bios in case of mkfs. 64 */ 65 if (prev_rq) 66 bio_get_first_bvec(prev_rq->bio, &pb); 67 else 68 bio_get_first_bvec(prev, &pb); 69 if (pb.bv_offset & queue_virt_boundary(q)) 70 return true; 71 72 /* 73 * We don't need to worry about the situation that the merged segment 74 * ends in unaligned virt boundary: 75 * 76 * - if 'pb' ends aligned, the merged segment ends aligned 77 * - if 'pb' ends unaligned, the next bio must include 78 * one single bvec of 'nb', otherwise the 'nb' can't 79 * merge with 'pb' 80 */ 81 bio_get_last_bvec(prev, &pb); 82 bio_get_first_bvec(next, &nb); 83 if (biovec_phys_mergeable(q, &pb, &nb)) 84 return false; 85 return __bvec_gap_to_prev(&q->limits, &pb, nb.bv_offset); 86 } 87 88 static inline bool req_gap_back_merge(struct request *req, struct bio *bio) 89 { 90 return bio_will_gap(req->q, req, req->biotail, bio); 91 } 92 93 static inline bool req_gap_front_merge(struct request *req, struct bio *bio) 94 { 95 return bio_will_gap(req->q, NULL, bio, req->bio); 96 } 97 98 /* 99 * The max size one bio can handle is UINT_MAX becasue bvec_iter.bi_size 100 * is defined as 'unsigned int', meantime it has to be aligned to with the 101 * logical block size, which is the minimum accepted unit by hardware. 102 */ 103 static unsigned int bio_allowed_max_sectors(const struct queue_limits *lim) 104 { 105 return round_down(UINT_MAX, lim->logical_block_size) >> SECTOR_SHIFT; 106 } 107 108 static struct bio *bio_submit_split(struct bio *bio, int split_sectors) 109 { 110 if (unlikely(split_sectors < 0)) { 111 bio->bi_status = errno_to_blk_status(split_sectors); 112 bio_endio(bio); 113 return NULL; 114 } 115 116 if (split_sectors) { 117 struct bio *split; 118 119 split = bio_split(bio, split_sectors, GFP_NOIO, 120 &bio->bi_bdev->bd_disk->bio_split); 121 split->bi_opf |= REQ_NOMERGE; 122 blkcg_bio_issue_init(split); 123 bio_chain(split, bio); 124 trace_block_split(split, bio->bi_iter.bi_sector); 125 WARN_ON_ONCE(bio_zone_write_plugging(bio)); 126 submit_bio_noacct(bio); 127 return split; 128 } 129 130 return bio; 131 } 132 133 struct bio *bio_split_discard(struct bio *bio, const struct queue_limits *lim, 134 unsigned *nsegs) 135 { 136 unsigned int max_discard_sectors, granularity; 137 sector_t tmp; 138 unsigned split_sectors; 139 140 *nsegs = 1; 141 142 granularity = max(lim->discard_granularity >> 9, 1U); 143 144 max_discard_sectors = 145 min(lim->max_discard_sectors, bio_allowed_max_sectors(lim)); 146 max_discard_sectors -= max_discard_sectors % granularity; 147 if (unlikely(!max_discard_sectors)) 148 return bio; 149 150 if (bio_sectors(bio) <= max_discard_sectors) 151 return bio; 152 153 split_sectors = max_discard_sectors; 154 155 /* 156 * If the next starting sector would be misaligned, stop the discard at 157 * the previous aligned sector. 158 */ 159 tmp = bio->bi_iter.bi_sector + split_sectors - 160 ((lim->discard_alignment >> 9) % granularity); 161 tmp = sector_div(tmp, granularity); 162 163 if (split_sectors > tmp) 164 split_sectors -= tmp; 165 166 return bio_submit_split(bio, split_sectors); 167 } 168 169 struct bio *bio_split_write_zeroes(struct bio *bio, 170 const struct queue_limits *lim, unsigned *nsegs) 171 { 172 *nsegs = 0; 173 if (!lim->max_write_zeroes_sectors) 174 return bio; 175 if (bio_sectors(bio) <= lim->max_write_zeroes_sectors) 176 return bio; 177 return bio_submit_split(bio, lim->max_write_zeroes_sectors); 178 } 179 180 static inline unsigned int blk_boundary_sectors(const struct queue_limits *lim, 181 bool is_atomic) 182 { 183 /* 184 * chunk_sectors must be a multiple of atomic_write_boundary_sectors if 185 * both non-zero. 186 */ 187 if (is_atomic && lim->atomic_write_boundary_sectors) 188 return lim->atomic_write_boundary_sectors; 189 190 return lim->chunk_sectors; 191 } 192 193 /* 194 * Return the maximum number of sectors from the start of a bio that may be 195 * submitted as a single request to a block device. If enough sectors remain, 196 * align the end to the physical block size. Otherwise align the end to the 197 * logical block size. This approach minimizes the number of non-aligned 198 * requests that are submitted to a block device if the start of a bio is not 199 * aligned to a physical block boundary. 200 */ 201 static inline unsigned get_max_io_size(struct bio *bio, 202 const struct queue_limits *lim) 203 { 204 unsigned pbs = lim->physical_block_size >> SECTOR_SHIFT; 205 unsigned lbs = lim->logical_block_size >> SECTOR_SHIFT; 206 bool is_atomic = bio->bi_opf & REQ_ATOMIC; 207 unsigned boundary_sectors = blk_boundary_sectors(lim, is_atomic); 208 unsigned max_sectors, start, end; 209 210 /* 211 * We ignore lim->max_sectors for atomic writes because it may less 212 * than the actual bio size, which we cannot tolerate. 213 */ 214 if (is_atomic) 215 max_sectors = lim->atomic_write_max_sectors; 216 else 217 max_sectors = lim->max_sectors; 218 219 if (boundary_sectors) { 220 max_sectors = min(max_sectors, 221 blk_boundary_sectors_left(bio->bi_iter.bi_sector, 222 boundary_sectors)); 223 } 224 225 start = bio->bi_iter.bi_sector & (pbs - 1); 226 end = (start + max_sectors) & ~(pbs - 1); 227 if (end > start) 228 return end - start; 229 return max_sectors & ~(lbs - 1); 230 } 231 232 /** 233 * get_max_segment_size() - maximum number of bytes to add as a single segment 234 * @lim: Request queue limits. 235 * @paddr: address of the range to add 236 * @len: maximum length available to add at @paddr 237 * 238 * Returns the maximum number of bytes of the range starting at @paddr that can 239 * be added to a single segment. 240 */ 241 static inline unsigned get_max_segment_size(const struct queue_limits *lim, 242 phys_addr_t paddr, unsigned int len) 243 { 244 /* 245 * Prevent an overflow if mask = ULONG_MAX and offset = 0 by adding 1 246 * after having calculated the minimum. 247 */ 248 return min_t(unsigned long, len, 249 min(lim->seg_boundary_mask - (lim->seg_boundary_mask & paddr), 250 (unsigned long)lim->max_segment_size - 1) + 1); 251 } 252 253 /** 254 * bvec_split_segs - verify whether or not a bvec should be split in the middle 255 * @lim: [in] queue limits to split based on 256 * @bv: [in] bvec to examine 257 * @nsegs: [in,out] Number of segments in the bio being built. Incremented 258 * by the number of segments from @bv that may be appended to that 259 * bio without exceeding @max_segs 260 * @bytes: [in,out] Number of bytes in the bio being built. Incremented 261 * by the number of bytes from @bv that may be appended to that 262 * bio without exceeding @max_bytes 263 * @max_segs: [in] upper bound for *@nsegs 264 * @max_bytes: [in] upper bound for *@bytes 265 * 266 * When splitting a bio, it can happen that a bvec is encountered that is too 267 * big to fit in a single segment and hence that it has to be split in the 268 * middle. This function verifies whether or not that should happen. The value 269 * %true is returned if and only if appending the entire @bv to a bio with 270 * *@nsegs segments and *@sectors sectors would make that bio unacceptable for 271 * the block driver. 272 */ 273 static bool bvec_split_segs(const struct queue_limits *lim, 274 const struct bio_vec *bv, unsigned *nsegs, unsigned *bytes, 275 unsigned max_segs, unsigned max_bytes) 276 { 277 unsigned max_len = min(max_bytes, UINT_MAX) - *bytes; 278 unsigned len = min(bv->bv_len, max_len); 279 unsigned total_len = 0; 280 unsigned seg_size = 0; 281 282 while (len && *nsegs < max_segs) { 283 seg_size = get_max_segment_size(lim, bvec_phys(bv) + total_len, len); 284 285 (*nsegs)++; 286 total_len += seg_size; 287 len -= seg_size; 288 289 if ((bv->bv_offset + total_len) & lim->virt_boundary_mask) 290 break; 291 } 292 293 *bytes += total_len; 294 295 /* tell the caller to split the bvec if it is too big to fit */ 296 return len > 0 || bv->bv_len > max_len; 297 } 298 299 /** 300 * bio_split_rw_at - check if and where to split a read/write bio 301 * @bio: [in] bio to be split 302 * @lim: [in] queue limits to split based on 303 * @segs: [out] number of segments in the bio with the first half of the sectors 304 * @max_bytes: [in] maximum number of bytes per bio 305 * 306 * Find out if @bio needs to be split to fit the queue limits in @lim and a 307 * maximum size of @max_bytes. Returns a negative error number if @bio can't be 308 * split, 0 if the bio doesn't have to be split, or a positive sector offset if 309 * @bio needs to be split. 310 */ 311 int bio_split_rw_at(struct bio *bio, const struct queue_limits *lim, 312 unsigned *segs, unsigned max_bytes) 313 { 314 struct bio_vec bv, bvprv, *bvprvp = NULL; 315 struct bvec_iter iter; 316 unsigned nsegs = 0, bytes = 0; 317 318 bio_for_each_bvec(bv, bio, iter) { 319 /* 320 * If the queue doesn't support SG gaps and adding this 321 * offset would create a gap, disallow it. 322 */ 323 if (bvprvp && bvec_gap_to_prev(lim, bvprvp, bv.bv_offset)) 324 goto split; 325 326 if (nsegs < lim->max_segments && 327 bytes + bv.bv_len <= max_bytes && 328 bv.bv_offset + bv.bv_len <= PAGE_SIZE) { 329 nsegs++; 330 bytes += bv.bv_len; 331 } else { 332 if (bvec_split_segs(lim, &bv, &nsegs, &bytes, 333 lim->max_segments, max_bytes)) 334 goto split; 335 } 336 337 bvprv = bv; 338 bvprvp = &bvprv; 339 } 340 341 *segs = nsegs; 342 return 0; 343 split: 344 if (bio->bi_opf & REQ_ATOMIC) 345 return -EINVAL; 346 347 /* 348 * We can't sanely support splitting for a REQ_NOWAIT bio. End it 349 * with EAGAIN if splitting is required and return an error pointer. 350 */ 351 if (bio->bi_opf & REQ_NOWAIT) 352 return -EAGAIN; 353 354 *segs = nsegs; 355 356 /* 357 * Individual bvecs might not be logical block aligned. Round down the 358 * split size so that each bio is properly block size aligned, even if 359 * we do not use the full hardware limits. 360 */ 361 bytes = ALIGN_DOWN(bytes, lim->logical_block_size); 362 363 /* 364 * Bio splitting may cause subtle trouble such as hang when doing sync 365 * iopoll in direct IO routine. Given performance gain of iopoll for 366 * big IO can be trival, disable iopoll when split needed. 367 */ 368 bio_clear_polled(bio); 369 return bytes >> SECTOR_SHIFT; 370 } 371 EXPORT_SYMBOL_GPL(bio_split_rw_at); 372 373 struct bio *bio_split_rw(struct bio *bio, const struct queue_limits *lim, 374 unsigned *nr_segs) 375 { 376 return bio_submit_split(bio, 377 bio_split_rw_at(bio, lim, nr_segs, 378 get_max_io_size(bio, lim) << SECTOR_SHIFT)); 379 } 380 381 /* 382 * REQ_OP_ZONE_APPEND bios must never be split by the block layer. 383 * 384 * But we want the nr_segs calculation provided by bio_split_rw_at, and having 385 * a good sanity check that the submitter built the bio correctly is nice to 386 * have as well. 387 */ 388 struct bio *bio_split_zone_append(struct bio *bio, 389 const struct queue_limits *lim, unsigned *nr_segs) 390 { 391 unsigned int max_sectors = queue_limits_max_zone_append_sectors(lim); 392 int split_sectors; 393 394 split_sectors = bio_split_rw_at(bio, lim, nr_segs, 395 max_sectors << SECTOR_SHIFT); 396 if (WARN_ON_ONCE(split_sectors > 0)) 397 split_sectors = -EINVAL; 398 return bio_submit_split(bio, split_sectors); 399 } 400 401 /** 402 * bio_split_to_limits - split a bio to fit the queue limits 403 * @bio: bio to be split 404 * 405 * Check if @bio needs splitting based on the queue limits of @bio->bi_bdev, and 406 * if so split off a bio fitting the limits from the beginning of @bio and 407 * return it. @bio is shortened to the remainder and re-submitted. 408 * 409 * The split bio is allocated from @q->bio_split, which is provided by the 410 * block layer. 411 */ 412 struct bio *bio_split_to_limits(struct bio *bio) 413 { 414 const struct queue_limits *lim = &bdev_get_queue(bio->bi_bdev)->limits; 415 unsigned int nr_segs; 416 417 return __bio_split_to_limits(bio, lim, &nr_segs); 418 } 419 EXPORT_SYMBOL(bio_split_to_limits); 420 421 unsigned int blk_recalc_rq_segments(struct request *rq) 422 { 423 unsigned int nr_phys_segs = 0; 424 unsigned int bytes = 0; 425 struct req_iterator iter; 426 struct bio_vec bv; 427 428 if (!rq->bio) 429 return 0; 430 431 switch (bio_op(rq->bio)) { 432 case REQ_OP_DISCARD: 433 case REQ_OP_SECURE_ERASE: 434 if (queue_max_discard_segments(rq->q) > 1) { 435 struct bio *bio = rq->bio; 436 437 for_each_bio(bio) 438 nr_phys_segs++; 439 return nr_phys_segs; 440 } 441 return 1; 442 case REQ_OP_WRITE_ZEROES: 443 return 0; 444 default: 445 break; 446 } 447 448 rq_for_each_bvec(bv, rq, iter) 449 bvec_split_segs(&rq->q->limits, &bv, &nr_phys_segs, &bytes, 450 UINT_MAX, UINT_MAX); 451 return nr_phys_segs; 452 } 453 454 static inline struct scatterlist *blk_next_sg(struct scatterlist **sg, 455 struct scatterlist *sglist) 456 { 457 if (!*sg) 458 return sglist; 459 460 /* 461 * If the driver previously mapped a shorter list, we could see a 462 * termination bit prematurely unless it fully inits the sg table 463 * on each mapping. We KNOW that there must be more entries here 464 * or the driver would be buggy, so force clear the termination bit 465 * to avoid doing a full sg_init_table() in drivers for each command. 466 */ 467 sg_unmark_end(*sg); 468 return sg_next(*sg); 469 } 470 471 static unsigned blk_bvec_map_sg(struct request_queue *q, 472 struct bio_vec *bvec, struct scatterlist *sglist, 473 struct scatterlist **sg) 474 { 475 unsigned nbytes = bvec->bv_len; 476 unsigned nsegs = 0, total = 0; 477 478 while (nbytes > 0) { 479 unsigned offset = bvec->bv_offset + total; 480 unsigned len = get_max_segment_size(&q->limits, 481 bvec_phys(bvec) + total, nbytes); 482 struct page *page = bvec->bv_page; 483 484 /* 485 * Unfortunately a fair number of drivers barf on scatterlists 486 * that have an offset larger than PAGE_SIZE, despite other 487 * subsystems dealing with that invariant just fine. For now 488 * stick to the legacy format where we never present those from 489 * the block layer, but the code below should be removed once 490 * these offenders (mostly MMC/SD drivers) are fixed. 491 */ 492 page += (offset >> PAGE_SHIFT); 493 offset &= ~PAGE_MASK; 494 495 *sg = blk_next_sg(sg, sglist); 496 sg_set_page(*sg, page, len, offset); 497 498 total += len; 499 nbytes -= len; 500 nsegs++; 501 } 502 503 return nsegs; 504 } 505 506 static inline int __blk_bvec_map_sg(struct bio_vec bv, 507 struct scatterlist *sglist, struct scatterlist **sg) 508 { 509 *sg = blk_next_sg(sg, sglist); 510 sg_set_page(*sg, bv.bv_page, bv.bv_len, bv.bv_offset); 511 return 1; 512 } 513 514 /* only try to merge bvecs into one sg if they are from two bios */ 515 static inline bool 516 __blk_segment_map_sg_merge(struct request_queue *q, struct bio_vec *bvec, 517 struct bio_vec *bvprv, struct scatterlist **sg) 518 { 519 520 int nbytes = bvec->bv_len; 521 522 if (!*sg) 523 return false; 524 525 if ((*sg)->length + nbytes > queue_max_segment_size(q)) 526 return false; 527 528 if (!biovec_phys_mergeable(q, bvprv, bvec)) 529 return false; 530 531 (*sg)->length += nbytes; 532 533 return true; 534 } 535 536 static int __blk_bios_map_sg(struct request_queue *q, struct bio *bio, 537 struct scatterlist *sglist, 538 struct scatterlist **sg) 539 { 540 struct bio_vec bvec, bvprv = { NULL }; 541 struct bvec_iter iter; 542 int nsegs = 0; 543 bool new_bio = false; 544 545 for_each_bio(bio) { 546 bio_for_each_bvec(bvec, bio, iter) { 547 /* 548 * Only try to merge bvecs from two bios given we 549 * have done bio internal merge when adding pages 550 * to bio 551 */ 552 if (new_bio && 553 __blk_segment_map_sg_merge(q, &bvec, &bvprv, sg)) 554 goto next_bvec; 555 556 if (bvec.bv_offset + bvec.bv_len <= PAGE_SIZE) 557 nsegs += __blk_bvec_map_sg(bvec, sglist, sg); 558 else 559 nsegs += blk_bvec_map_sg(q, &bvec, sglist, sg); 560 next_bvec: 561 new_bio = false; 562 } 563 if (likely(bio->bi_iter.bi_size)) { 564 bvprv = bvec; 565 new_bio = true; 566 } 567 } 568 569 return nsegs; 570 } 571 572 /* 573 * map a request to scatterlist, return number of sg entries setup. Caller 574 * must make sure sg can hold rq->nr_phys_segments entries 575 */ 576 int __blk_rq_map_sg(struct request_queue *q, struct request *rq, 577 struct scatterlist *sglist, struct scatterlist **last_sg) 578 { 579 int nsegs = 0; 580 581 if (rq->rq_flags & RQF_SPECIAL_PAYLOAD) 582 nsegs = __blk_bvec_map_sg(rq->special_vec, sglist, last_sg); 583 else if (rq->bio) 584 nsegs = __blk_bios_map_sg(q, rq->bio, sglist, last_sg); 585 586 if (*last_sg) 587 sg_mark_end(*last_sg); 588 589 /* 590 * Something must have been wrong if the figured number of 591 * segment is bigger than number of req's physical segments 592 */ 593 WARN_ON(nsegs > blk_rq_nr_phys_segments(rq)); 594 595 return nsegs; 596 } 597 EXPORT_SYMBOL(__blk_rq_map_sg); 598 599 static inline unsigned int blk_rq_get_max_sectors(struct request *rq, 600 sector_t offset) 601 { 602 struct request_queue *q = rq->q; 603 struct queue_limits *lim = &q->limits; 604 unsigned int max_sectors, boundary_sectors; 605 bool is_atomic = rq->cmd_flags & REQ_ATOMIC; 606 607 if (blk_rq_is_passthrough(rq)) 608 return q->limits.max_hw_sectors; 609 610 boundary_sectors = blk_boundary_sectors(lim, is_atomic); 611 max_sectors = blk_queue_get_max_sectors(rq); 612 613 if (!boundary_sectors || 614 req_op(rq) == REQ_OP_DISCARD || 615 req_op(rq) == REQ_OP_SECURE_ERASE) 616 return max_sectors; 617 return min(max_sectors, 618 blk_boundary_sectors_left(offset, boundary_sectors)); 619 } 620 621 static inline int ll_new_hw_segment(struct request *req, struct bio *bio, 622 unsigned int nr_phys_segs) 623 { 624 if (!blk_cgroup_mergeable(req, bio)) 625 goto no_merge; 626 627 if (blk_integrity_merge_bio(req->q, req, bio) == false) 628 goto no_merge; 629 630 /* discard request merge won't add new segment */ 631 if (req_op(req) == REQ_OP_DISCARD) 632 return 1; 633 634 if (req->nr_phys_segments + nr_phys_segs > blk_rq_get_max_segments(req)) 635 goto no_merge; 636 637 /* 638 * This will form the start of a new hw segment. Bump both 639 * counters. 640 */ 641 req->nr_phys_segments += nr_phys_segs; 642 if (bio_integrity(bio)) 643 req->nr_integrity_segments += blk_rq_count_integrity_sg(req->q, 644 bio); 645 return 1; 646 647 no_merge: 648 req_set_nomerge(req->q, req); 649 return 0; 650 } 651 652 int ll_back_merge_fn(struct request *req, struct bio *bio, unsigned int nr_segs) 653 { 654 if (req_gap_back_merge(req, bio)) 655 return 0; 656 if (blk_integrity_rq(req) && 657 integrity_req_gap_back_merge(req, bio)) 658 return 0; 659 if (!bio_crypt_ctx_back_mergeable(req, bio)) 660 return 0; 661 if (blk_rq_sectors(req) + bio_sectors(bio) > 662 blk_rq_get_max_sectors(req, blk_rq_pos(req))) { 663 req_set_nomerge(req->q, req); 664 return 0; 665 } 666 667 return ll_new_hw_segment(req, bio, nr_segs); 668 } 669 670 static int ll_front_merge_fn(struct request *req, struct bio *bio, 671 unsigned int nr_segs) 672 { 673 if (req_gap_front_merge(req, bio)) 674 return 0; 675 if (blk_integrity_rq(req) && 676 integrity_req_gap_front_merge(req, bio)) 677 return 0; 678 if (!bio_crypt_ctx_front_mergeable(req, bio)) 679 return 0; 680 if (blk_rq_sectors(req) + bio_sectors(bio) > 681 blk_rq_get_max_sectors(req, bio->bi_iter.bi_sector)) { 682 req_set_nomerge(req->q, req); 683 return 0; 684 } 685 686 return ll_new_hw_segment(req, bio, nr_segs); 687 } 688 689 static bool req_attempt_discard_merge(struct request_queue *q, struct request *req, 690 struct request *next) 691 { 692 unsigned short segments = blk_rq_nr_discard_segments(req); 693 694 if (segments >= queue_max_discard_segments(q)) 695 goto no_merge; 696 if (blk_rq_sectors(req) + bio_sectors(next->bio) > 697 blk_rq_get_max_sectors(req, blk_rq_pos(req))) 698 goto no_merge; 699 700 req->nr_phys_segments = segments + blk_rq_nr_discard_segments(next); 701 return true; 702 no_merge: 703 req_set_nomerge(q, req); 704 return false; 705 } 706 707 static int ll_merge_requests_fn(struct request_queue *q, struct request *req, 708 struct request *next) 709 { 710 int total_phys_segments; 711 712 if (req_gap_back_merge(req, next->bio)) 713 return 0; 714 715 /* 716 * Will it become too large? 717 */ 718 if ((blk_rq_sectors(req) + blk_rq_sectors(next)) > 719 blk_rq_get_max_sectors(req, blk_rq_pos(req))) 720 return 0; 721 722 total_phys_segments = req->nr_phys_segments + next->nr_phys_segments; 723 if (total_phys_segments > blk_rq_get_max_segments(req)) 724 return 0; 725 726 if (!blk_cgroup_mergeable(req, next->bio)) 727 return 0; 728 729 if (blk_integrity_merge_rq(q, req, next) == false) 730 return 0; 731 732 if (!bio_crypt_ctx_merge_rq(req, next)) 733 return 0; 734 735 /* Merge is OK... */ 736 req->nr_phys_segments = total_phys_segments; 737 req->nr_integrity_segments += next->nr_integrity_segments; 738 return 1; 739 } 740 741 /** 742 * blk_rq_set_mixed_merge - mark a request as mixed merge 743 * @rq: request to mark as mixed merge 744 * 745 * Description: 746 * @rq is about to be mixed merged. Make sure the attributes 747 * which can be mixed are set in each bio and mark @rq as mixed 748 * merged. 749 */ 750 static void blk_rq_set_mixed_merge(struct request *rq) 751 { 752 blk_opf_t ff = rq->cmd_flags & REQ_FAILFAST_MASK; 753 struct bio *bio; 754 755 if (rq->rq_flags & RQF_MIXED_MERGE) 756 return; 757 758 /* 759 * @rq will no longer represent mixable attributes for all the 760 * contained bios. It will just track those of the first one. 761 * Distributes the attributs to each bio. 762 */ 763 for (bio = rq->bio; bio; bio = bio->bi_next) { 764 WARN_ON_ONCE((bio->bi_opf & REQ_FAILFAST_MASK) && 765 (bio->bi_opf & REQ_FAILFAST_MASK) != ff); 766 bio->bi_opf |= ff; 767 } 768 rq->rq_flags |= RQF_MIXED_MERGE; 769 } 770 771 static inline blk_opf_t bio_failfast(const struct bio *bio) 772 { 773 if (bio->bi_opf & REQ_RAHEAD) 774 return REQ_FAILFAST_MASK; 775 776 return bio->bi_opf & REQ_FAILFAST_MASK; 777 } 778 779 /* 780 * After we are marked as MIXED_MERGE, any new RA bio has to be updated 781 * as failfast, and request's failfast has to be updated in case of 782 * front merge. 783 */ 784 static inline void blk_update_mixed_merge(struct request *req, 785 struct bio *bio, bool front_merge) 786 { 787 if (req->rq_flags & RQF_MIXED_MERGE) { 788 if (bio->bi_opf & REQ_RAHEAD) 789 bio->bi_opf |= REQ_FAILFAST_MASK; 790 791 if (front_merge) { 792 req->cmd_flags &= ~REQ_FAILFAST_MASK; 793 req->cmd_flags |= bio->bi_opf & REQ_FAILFAST_MASK; 794 } 795 } 796 } 797 798 static void blk_account_io_merge_request(struct request *req) 799 { 800 if (blk_do_io_stat(req)) { 801 part_stat_lock(); 802 part_stat_inc(req->part, merges[op_stat_group(req_op(req))]); 803 part_stat_local_dec(req->part, 804 in_flight[op_is_write(req_op(req))]); 805 part_stat_unlock(); 806 } 807 } 808 809 static enum elv_merge blk_try_req_merge(struct request *req, 810 struct request *next) 811 { 812 if (blk_discard_mergable(req)) 813 return ELEVATOR_DISCARD_MERGE; 814 else if (blk_rq_pos(req) + blk_rq_sectors(req) == blk_rq_pos(next)) 815 return ELEVATOR_BACK_MERGE; 816 817 return ELEVATOR_NO_MERGE; 818 } 819 820 static bool blk_atomic_write_mergeable_rq_bio(struct request *rq, 821 struct bio *bio) 822 { 823 return (rq->cmd_flags & REQ_ATOMIC) == (bio->bi_opf & REQ_ATOMIC); 824 } 825 826 static bool blk_atomic_write_mergeable_rqs(struct request *rq, 827 struct request *next) 828 { 829 return (rq->cmd_flags & REQ_ATOMIC) == (next->cmd_flags & REQ_ATOMIC); 830 } 831 832 /* 833 * For non-mq, this has to be called with the request spinlock acquired. 834 * For mq with scheduling, the appropriate queue wide lock should be held. 835 */ 836 static struct request *attempt_merge(struct request_queue *q, 837 struct request *req, struct request *next) 838 { 839 if (!rq_mergeable(req) || !rq_mergeable(next)) 840 return NULL; 841 842 if (req_op(req) != req_op(next)) 843 return NULL; 844 845 if (rq_data_dir(req) != rq_data_dir(next)) 846 return NULL; 847 848 /* Don't merge requests with different write hints. */ 849 if (req->write_hint != next->write_hint) 850 return NULL; 851 852 if (req->ioprio != next->ioprio) 853 return NULL; 854 855 if (!blk_atomic_write_mergeable_rqs(req, next)) 856 return NULL; 857 858 /* 859 * If we are allowed to merge, then append bio list 860 * from next to rq and release next. merge_requests_fn 861 * will have updated segment counts, update sector 862 * counts here. Handle DISCARDs separately, as they 863 * have separate settings. 864 */ 865 866 switch (blk_try_req_merge(req, next)) { 867 case ELEVATOR_DISCARD_MERGE: 868 if (!req_attempt_discard_merge(q, req, next)) 869 return NULL; 870 break; 871 case ELEVATOR_BACK_MERGE: 872 if (!ll_merge_requests_fn(q, req, next)) 873 return NULL; 874 break; 875 default: 876 return NULL; 877 } 878 879 /* 880 * If failfast settings disagree or any of the two is already 881 * a mixed merge, mark both as mixed before proceeding. This 882 * makes sure that all involved bios have mixable attributes 883 * set properly. 884 */ 885 if (((req->rq_flags | next->rq_flags) & RQF_MIXED_MERGE) || 886 (req->cmd_flags & REQ_FAILFAST_MASK) != 887 (next->cmd_flags & REQ_FAILFAST_MASK)) { 888 blk_rq_set_mixed_merge(req); 889 blk_rq_set_mixed_merge(next); 890 } 891 892 /* 893 * At this point we have either done a back merge or front merge. We 894 * need the smaller start_time_ns of the merged requests to be the 895 * current request for accounting purposes. 896 */ 897 if (next->start_time_ns < req->start_time_ns) 898 req->start_time_ns = next->start_time_ns; 899 900 req->biotail->bi_next = next->bio; 901 req->biotail = next->biotail; 902 903 req->__data_len += blk_rq_bytes(next); 904 905 if (!blk_discard_mergable(req)) 906 elv_merge_requests(q, req, next); 907 908 blk_crypto_rq_put_keyslot(next); 909 910 /* 911 * 'next' is going away, so update stats accordingly 912 */ 913 blk_account_io_merge_request(next); 914 915 trace_block_rq_merge(next); 916 917 /* 918 * ownership of bio passed from next to req, return 'next' for 919 * the caller to free 920 */ 921 next->bio = NULL; 922 return next; 923 } 924 925 static struct request *attempt_back_merge(struct request_queue *q, 926 struct request *rq) 927 { 928 struct request *next = elv_latter_request(q, rq); 929 930 if (next) 931 return attempt_merge(q, rq, next); 932 933 return NULL; 934 } 935 936 static struct request *attempt_front_merge(struct request_queue *q, 937 struct request *rq) 938 { 939 struct request *prev = elv_former_request(q, rq); 940 941 if (prev) 942 return attempt_merge(q, prev, rq); 943 944 return NULL; 945 } 946 947 /* 948 * Try to merge 'next' into 'rq'. Return true if the merge happened, false 949 * otherwise. The caller is responsible for freeing 'next' if the merge 950 * happened. 951 */ 952 bool blk_attempt_req_merge(struct request_queue *q, struct request *rq, 953 struct request *next) 954 { 955 return attempt_merge(q, rq, next); 956 } 957 958 bool blk_rq_merge_ok(struct request *rq, struct bio *bio) 959 { 960 if (!rq_mergeable(rq) || !bio_mergeable(bio)) 961 return false; 962 963 if (req_op(rq) != bio_op(bio)) 964 return false; 965 966 /* different data direction or already started, don't merge */ 967 if (bio_data_dir(bio) != rq_data_dir(rq)) 968 return false; 969 970 /* don't merge across cgroup boundaries */ 971 if (!blk_cgroup_mergeable(rq, bio)) 972 return false; 973 974 /* only merge integrity protected bio into ditto rq */ 975 if (blk_integrity_merge_bio(rq->q, rq, bio) == false) 976 return false; 977 978 /* Only merge if the crypt contexts are compatible */ 979 if (!bio_crypt_rq_ctx_compatible(rq, bio)) 980 return false; 981 982 /* Don't merge requests with different write hints. */ 983 if (rq->write_hint != bio->bi_write_hint) 984 return false; 985 986 if (rq->ioprio != bio_prio(bio)) 987 return false; 988 989 if (blk_atomic_write_mergeable_rq_bio(rq, bio) == false) 990 return false; 991 992 return true; 993 } 994 995 enum elv_merge blk_try_merge(struct request *rq, struct bio *bio) 996 { 997 if (blk_discard_mergable(rq)) 998 return ELEVATOR_DISCARD_MERGE; 999 else if (blk_rq_pos(rq) + blk_rq_sectors(rq) == bio->bi_iter.bi_sector) 1000 return ELEVATOR_BACK_MERGE; 1001 else if (blk_rq_pos(rq) - bio_sectors(bio) == bio->bi_iter.bi_sector) 1002 return ELEVATOR_FRONT_MERGE; 1003 return ELEVATOR_NO_MERGE; 1004 } 1005 1006 static void blk_account_io_merge_bio(struct request *req) 1007 { 1008 if (!blk_do_io_stat(req)) 1009 return; 1010 1011 part_stat_lock(); 1012 part_stat_inc(req->part, merges[op_stat_group(req_op(req))]); 1013 part_stat_unlock(); 1014 } 1015 1016 enum bio_merge_status bio_attempt_back_merge(struct request *req, 1017 struct bio *bio, unsigned int nr_segs) 1018 { 1019 const blk_opf_t ff = bio_failfast(bio); 1020 1021 if (!ll_back_merge_fn(req, bio, nr_segs)) 1022 return BIO_MERGE_FAILED; 1023 1024 trace_block_bio_backmerge(bio); 1025 rq_qos_merge(req->q, req, bio); 1026 1027 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff) 1028 blk_rq_set_mixed_merge(req); 1029 1030 blk_update_mixed_merge(req, bio, false); 1031 1032 if (req->rq_flags & RQF_ZONE_WRITE_PLUGGING) 1033 blk_zone_write_plug_bio_merged(bio); 1034 1035 req->biotail->bi_next = bio; 1036 req->biotail = bio; 1037 req->__data_len += bio->bi_iter.bi_size; 1038 1039 bio_crypt_free_ctx(bio); 1040 1041 blk_account_io_merge_bio(req); 1042 return BIO_MERGE_OK; 1043 } 1044 1045 static enum bio_merge_status bio_attempt_front_merge(struct request *req, 1046 struct bio *bio, unsigned int nr_segs) 1047 { 1048 const blk_opf_t ff = bio_failfast(bio); 1049 1050 /* 1051 * A front merge for writes to sequential zones of a zoned block device 1052 * can happen only if the user submitted writes out of order. Do not 1053 * merge such write to let it fail. 1054 */ 1055 if (req->rq_flags & RQF_ZONE_WRITE_PLUGGING) 1056 return BIO_MERGE_FAILED; 1057 1058 if (!ll_front_merge_fn(req, bio, nr_segs)) 1059 return BIO_MERGE_FAILED; 1060 1061 trace_block_bio_frontmerge(bio); 1062 rq_qos_merge(req->q, req, bio); 1063 1064 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff) 1065 blk_rq_set_mixed_merge(req); 1066 1067 blk_update_mixed_merge(req, bio, true); 1068 1069 bio->bi_next = req->bio; 1070 req->bio = bio; 1071 1072 req->__sector = bio->bi_iter.bi_sector; 1073 req->__data_len += bio->bi_iter.bi_size; 1074 1075 bio_crypt_do_front_merge(req, bio); 1076 1077 blk_account_io_merge_bio(req); 1078 return BIO_MERGE_OK; 1079 } 1080 1081 static enum bio_merge_status bio_attempt_discard_merge(struct request_queue *q, 1082 struct request *req, struct bio *bio) 1083 { 1084 unsigned short segments = blk_rq_nr_discard_segments(req); 1085 1086 if (segments >= queue_max_discard_segments(q)) 1087 goto no_merge; 1088 if (blk_rq_sectors(req) + bio_sectors(bio) > 1089 blk_rq_get_max_sectors(req, blk_rq_pos(req))) 1090 goto no_merge; 1091 1092 rq_qos_merge(q, req, bio); 1093 1094 req->biotail->bi_next = bio; 1095 req->biotail = bio; 1096 req->__data_len += bio->bi_iter.bi_size; 1097 req->nr_phys_segments = segments + 1; 1098 1099 blk_account_io_merge_bio(req); 1100 return BIO_MERGE_OK; 1101 no_merge: 1102 req_set_nomerge(q, req); 1103 return BIO_MERGE_FAILED; 1104 } 1105 1106 static enum bio_merge_status blk_attempt_bio_merge(struct request_queue *q, 1107 struct request *rq, 1108 struct bio *bio, 1109 unsigned int nr_segs, 1110 bool sched_allow_merge) 1111 { 1112 if (!blk_rq_merge_ok(rq, bio)) 1113 return BIO_MERGE_NONE; 1114 1115 switch (blk_try_merge(rq, bio)) { 1116 case ELEVATOR_BACK_MERGE: 1117 if (!sched_allow_merge || blk_mq_sched_allow_merge(q, rq, bio)) 1118 return bio_attempt_back_merge(rq, bio, nr_segs); 1119 break; 1120 case ELEVATOR_FRONT_MERGE: 1121 if (!sched_allow_merge || blk_mq_sched_allow_merge(q, rq, bio)) 1122 return bio_attempt_front_merge(rq, bio, nr_segs); 1123 break; 1124 case ELEVATOR_DISCARD_MERGE: 1125 return bio_attempt_discard_merge(q, rq, bio); 1126 default: 1127 return BIO_MERGE_NONE; 1128 } 1129 1130 return BIO_MERGE_FAILED; 1131 } 1132 1133 /** 1134 * blk_attempt_plug_merge - try to merge with %current's plugged list 1135 * @q: request_queue new bio is being queued at 1136 * @bio: new bio being queued 1137 * @nr_segs: number of segments in @bio 1138 * from the passed in @q already in the plug list 1139 * 1140 * Determine whether @bio being queued on @q can be merged with the previous 1141 * request on %current's plugged list. Returns %true if merge was successful, 1142 * otherwise %false. 1143 * 1144 * Plugging coalesces IOs from the same issuer for the same purpose without 1145 * going through @q->queue_lock. As such it's more of an issuing mechanism 1146 * than scheduling, and the request, while may have elvpriv data, is not 1147 * added on the elevator at this point. In addition, we don't have 1148 * reliable access to the elevator outside queue lock. Only check basic 1149 * merging parameters without querying the elevator. 1150 * 1151 * Caller must ensure !blk_queue_nomerges(q) beforehand. 1152 */ 1153 bool blk_attempt_plug_merge(struct request_queue *q, struct bio *bio, 1154 unsigned int nr_segs) 1155 { 1156 struct blk_plug *plug = current->plug; 1157 struct request *rq; 1158 1159 if (!plug || rq_list_empty(plug->mq_list)) 1160 return false; 1161 1162 rq_list_for_each(&plug->mq_list, rq) { 1163 if (rq->q == q) { 1164 if (blk_attempt_bio_merge(q, rq, bio, nr_segs, false) == 1165 BIO_MERGE_OK) 1166 return true; 1167 break; 1168 } 1169 1170 /* 1171 * Only keep iterating plug list for merges if we have multiple 1172 * queues 1173 */ 1174 if (!plug->multiple_queues) 1175 break; 1176 } 1177 return false; 1178 } 1179 1180 /* 1181 * Iterate list of requests and see if we can merge this bio with any 1182 * of them. 1183 */ 1184 bool blk_bio_list_merge(struct request_queue *q, struct list_head *list, 1185 struct bio *bio, unsigned int nr_segs) 1186 { 1187 struct request *rq; 1188 int checked = 8; 1189 1190 list_for_each_entry_reverse(rq, list, queuelist) { 1191 if (!checked--) 1192 break; 1193 1194 switch (blk_attempt_bio_merge(q, rq, bio, nr_segs, true)) { 1195 case BIO_MERGE_NONE: 1196 continue; 1197 case BIO_MERGE_OK: 1198 return true; 1199 case BIO_MERGE_FAILED: 1200 return false; 1201 } 1202 1203 } 1204 1205 return false; 1206 } 1207 EXPORT_SYMBOL_GPL(blk_bio_list_merge); 1208 1209 bool blk_mq_sched_try_merge(struct request_queue *q, struct bio *bio, 1210 unsigned int nr_segs, struct request **merged_request) 1211 { 1212 struct request *rq; 1213 1214 switch (elv_merge(q, &rq, bio)) { 1215 case ELEVATOR_BACK_MERGE: 1216 if (!blk_mq_sched_allow_merge(q, rq, bio)) 1217 return false; 1218 if (bio_attempt_back_merge(rq, bio, nr_segs) != BIO_MERGE_OK) 1219 return false; 1220 *merged_request = attempt_back_merge(q, rq); 1221 if (!*merged_request) 1222 elv_merged_request(q, rq, ELEVATOR_BACK_MERGE); 1223 return true; 1224 case ELEVATOR_FRONT_MERGE: 1225 if (!blk_mq_sched_allow_merge(q, rq, bio)) 1226 return false; 1227 if (bio_attempt_front_merge(rq, bio, nr_segs) != BIO_MERGE_OK) 1228 return false; 1229 *merged_request = attempt_front_merge(q, rq); 1230 if (!*merged_request) 1231 elv_merged_request(q, rq, ELEVATOR_FRONT_MERGE); 1232 return true; 1233 case ELEVATOR_DISCARD_MERGE: 1234 return bio_attempt_discard_merge(q, rq, bio) == BIO_MERGE_OK; 1235 default: 1236 return false; 1237 } 1238 } 1239 EXPORT_SYMBOL_GPL(blk_mq_sched_try_merge); 1240