xref: /linux/block/blk-merge.c (revision c0c914eca7f251c70facc37dfebeaf176601918d)
1 /*
2  * Functions related to segment and merge handling
3  */
4 #include <linux/kernel.h>
5 #include <linux/module.h>
6 #include <linux/bio.h>
7 #include <linux/blkdev.h>
8 #include <linux/scatterlist.h>
9 
10 #include <trace/events/block.h>
11 
12 #include "blk.h"
13 
14 static struct bio *blk_bio_discard_split(struct request_queue *q,
15 					 struct bio *bio,
16 					 struct bio_set *bs,
17 					 unsigned *nsegs)
18 {
19 	unsigned int max_discard_sectors, granularity;
20 	int alignment;
21 	sector_t tmp;
22 	unsigned split_sectors;
23 
24 	*nsegs = 1;
25 
26 	/* Zero-sector (unknown) and one-sector granularities are the same.  */
27 	granularity = max(q->limits.discard_granularity >> 9, 1U);
28 
29 	max_discard_sectors = min(q->limits.max_discard_sectors, UINT_MAX >> 9);
30 	max_discard_sectors -= max_discard_sectors % granularity;
31 
32 	if (unlikely(!max_discard_sectors)) {
33 		/* XXX: warn */
34 		return NULL;
35 	}
36 
37 	if (bio_sectors(bio) <= max_discard_sectors)
38 		return NULL;
39 
40 	split_sectors = max_discard_sectors;
41 
42 	/*
43 	 * If the next starting sector would be misaligned, stop the discard at
44 	 * the previous aligned sector.
45 	 */
46 	alignment = (q->limits.discard_alignment >> 9) % granularity;
47 
48 	tmp = bio->bi_iter.bi_sector + split_sectors - alignment;
49 	tmp = sector_div(tmp, granularity);
50 
51 	if (split_sectors > tmp)
52 		split_sectors -= tmp;
53 
54 	return bio_split(bio, split_sectors, GFP_NOIO, bs);
55 }
56 
57 static struct bio *blk_bio_write_same_split(struct request_queue *q,
58 					    struct bio *bio,
59 					    struct bio_set *bs,
60 					    unsigned *nsegs)
61 {
62 	*nsegs = 1;
63 
64 	if (!q->limits.max_write_same_sectors)
65 		return NULL;
66 
67 	if (bio_sectors(bio) <= q->limits.max_write_same_sectors)
68 		return NULL;
69 
70 	return bio_split(bio, q->limits.max_write_same_sectors, GFP_NOIO, bs);
71 }
72 
73 static inline unsigned get_max_io_size(struct request_queue *q,
74 				       struct bio *bio)
75 {
76 	unsigned sectors = blk_max_size_offset(q, bio->bi_iter.bi_sector);
77 	unsigned mask = queue_logical_block_size(q) - 1;
78 
79 	/* aligned to logical block size */
80 	sectors &= ~(mask >> 9);
81 
82 	return sectors;
83 }
84 
85 static struct bio *blk_bio_segment_split(struct request_queue *q,
86 					 struct bio *bio,
87 					 struct bio_set *bs,
88 					 unsigned *segs)
89 {
90 	struct bio_vec bv, bvprv, *bvprvp = NULL;
91 	struct bvec_iter iter;
92 	unsigned seg_size = 0, nsegs = 0, sectors = 0;
93 	unsigned front_seg_size = bio->bi_seg_front_size;
94 	bool do_split = true;
95 	struct bio *new = NULL;
96 	const unsigned max_sectors = get_max_io_size(q, bio);
97 
98 	bio_for_each_segment(bv, bio, iter) {
99 		/*
100 		 * If the queue doesn't support SG gaps and adding this
101 		 * offset would create a gap, disallow it.
102 		 */
103 		if (bvprvp && bvec_gap_to_prev(q, bvprvp, bv.bv_offset))
104 			goto split;
105 
106 		if (sectors + (bv.bv_len >> 9) > max_sectors) {
107 			/*
108 			 * Consider this a new segment if we're splitting in
109 			 * the middle of this vector.
110 			 */
111 			if (nsegs < queue_max_segments(q) &&
112 			    sectors < max_sectors) {
113 				nsegs++;
114 				sectors = max_sectors;
115 			}
116 			if (sectors)
117 				goto split;
118 			/* Make this single bvec as the 1st segment */
119 		}
120 
121 		if (bvprvp && blk_queue_cluster(q)) {
122 			if (seg_size + bv.bv_len > queue_max_segment_size(q))
123 				goto new_segment;
124 			if (!BIOVEC_PHYS_MERGEABLE(bvprvp, &bv))
125 				goto new_segment;
126 			if (!BIOVEC_SEG_BOUNDARY(q, bvprvp, &bv))
127 				goto new_segment;
128 
129 			seg_size += bv.bv_len;
130 			bvprv = bv;
131 			bvprvp = &bvprv;
132 			sectors += bv.bv_len >> 9;
133 
134 			if (nsegs == 1 && seg_size > front_seg_size)
135 				front_seg_size = seg_size;
136 			continue;
137 		}
138 new_segment:
139 		if (nsegs == queue_max_segments(q))
140 			goto split;
141 
142 		nsegs++;
143 		bvprv = bv;
144 		bvprvp = &bvprv;
145 		seg_size = bv.bv_len;
146 		sectors += bv.bv_len >> 9;
147 
148 		if (nsegs == 1 && seg_size > front_seg_size)
149 			front_seg_size = seg_size;
150 	}
151 
152 	do_split = false;
153 split:
154 	*segs = nsegs;
155 
156 	if (do_split) {
157 		new = bio_split(bio, sectors, GFP_NOIO, bs);
158 		if (new)
159 			bio = new;
160 	}
161 
162 	bio->bi_seg_front_size = front_seg_size;
163 	if (seg_size > bio->bi_seg_back_size)
164 		bio->bi_seg_back_size = seg_size;
165 
166 	return do_split ? new : NULL;
167 }
168 
169 void blk_queue_split(struct request_queue *q, struct bio **bio,
170 		     struct bio_set *bs)
171 {
172 	struct bio *split, *res;
173 	unsigned nsegs;
174 
175 	if ((*bio)->bi_rw & REQ_DISCARD)
176 		split = blk_bio_discard_split(q, *bio, bs, &nsegs);
177 	else if ((*bio)->bi_rw & REQ_WRITE_SAME)
178 		split = blk_bio_write_same_split(q, *bio, bs, &nsegs);
179 	else
180 		split = blk_bio_segment_split(q, *bio, q->bio_split, &nsegs);
181 
182 	/* physical segments can be figured out during splitting */
183 	res = split ? split : *bio;
184 	res->bi_phys_segments = nsegs;
185 	bio_set_flag(res, BIO_SEG_VALID);
186 
187 	if (split) {
188 		/* there isn't chance to merge the splitted bio */
189 		split->bi_rw |= REQ_NOMERGE;
190 
191 		bio_chain(split, *bio);
192 		trace_block_split(q, split, (*bio)->bi_iter.bi_sector);
193 		generic_make_request(*bio);
194 		*bio = split;
195 	}
196 }
197 EXPORT_SYMBOL(blk_queue_split);
198 
199 static unsigned int __blk_recalc_rq_segments(struct request_queue *q,
200 					     struct bio *bio,
201 					     bool no_sg_merge)
202 {
203 	struct bio_vec bv, bvprv = { NULL };
204 	int cluster, prev = 0;
205 	unsigned int seg_size, nr_phys_segs;
206 	struct bio *fbio, *bbio;
207 	struct bvec_iter iter;
208 
209 	if (!bio)
210 		return 0;
211 
212 	/*
213 	 * This should probably be returning 0, but blk_add_request_payload()
214 	 * (Christoph!!!!)
215 	 */
216 	if (bio->bi_rw & REQ_DISCARD)
217 		return 1;
218 
219 	if (bio->bi_rw & REQ_WRITE_SAME)
220 		return 1;
221 
222 	fbio = bio;
223 	cluster = blk_queue_cluster(q);
224 	seg_size = 0;
225 	nr_phys_segs = 0;
226 	for_each_bio(bio) {
227 		bio_for_each_segment(bv, bio, iter) {
228 			/*
229 			 * If SG merging is disabled, each bio vector is
230 			 * a segment
231 			 */
232 			if (no_sg_merge)
233 				goto new_segment;
234 
235 			if (prev && cluster) {
236 				if (seg_size + bv.bv_len
237 				    > queue_max_segment_size(q))
238 					goto new_segment;
239 				if (!BIOVEC_PHYS_MERGEABLE(&bvprv, &bv))
240 					goto new_segment;
241 				if (!BIOVEC_SEG_BOUNDARY(q, &bvprv, &bv))
242 					goto new_segment;
243 
244 				seg_size += bv.bv_len;
245 				bvprv = bv;
246 				continue;
247 			}
248 new_segment:
249 			if (nr_phys_segs == 1 && seg_size >
250 			    fbio->bi_seg_front_size)
251 				fbio->bi_seg_front_size = seg_size;
252 
253 			nr_phys_segs++;
254 			bvprv = bv;
255 			prev = 1;
256 			seg_size = bv.bv_len;
257 		}
258 		bbio = bio;
259 	}
260 
261 	if (nr_phys_segs == 1 && seg_size > fbio->bi_seg_front_size)
262 		fbio->bi_seg_front_size = seg_size;
263 	if (seg_size > bbio->bi_seg_back_size)
264 		bbio->bi_seg_back_size = seg_size;
265 
266 	return nr_phys_segs;
267 }
268 
269 void blk_recalc_rq_segments(struct request *rq)
270 {
271 	bool no_sg_merge = !!test_bit(QUEUE_FLAG_NO_SG_MERGE,
272 			&rq->q->queue_flags);
273 
274 	rq->nr_phys_segments = __blk_recalc_rq_segments(rq->q, rq->bio,
275 			no_sg_merge);
276 }
277 
278 void blk_recount_segments(struct request_queue *q, struct bio *bio)
279 {
280 	unsigned short seg_cnt;
281 
282 	/* estimate segment number by bi_vcnt for non-cloned bio */
283 	if (bio_flagged(bio, BIO_CLONED))
284 		seg_cnt = bio_segments(bio);
285 	else
286 		seg_cnt = bio->bi_vcnt;
287 
288 	if (test_bit(QUEUE_FLAG_NO_SG_MERGE, &q->queue_flags) &&
289 			(seg_cnt < queue_max_segments(q)))
290 		bio->bi_phys_segments = seg_cnt;
291 	else {
292 		struct bio *nxt = bio->bi_next;
293 
294 		bio->bi_next = NULL;
295 		bio->bi_phys_segments = __blk_recalc_rq_segments(q, bio, false);
296 		bio->bi_next = nxt;
297 	}
298 
299 	bio_set_flag(bio, BIO_SEG_VALID);
300 }
301 EXPORT_SYMBOL(blk_recount_segments);
302 
303 static int blk_phys_contig_segment(struct request_queue *q, struct bio *bio,
304 				   struct bio *nxt)
305 {
306 	struct bio_vec end_bv = { NULL }, nxt_bv;
307 
308 	if (!blk_queue_cluster(q))
309 		return 0;
310 
311 	if (bio->bi_seg_back_size + nxt->bi_seg_front_size >
312 	    queue_max_segment_size(q))
313 		return 0;
314 
315 	if (!bio_has_data(bio))
316 		return 1;
317 
318 	bio_get_last_bvec(bio, &end_bv);
319 	bio_get_first_bvec(nxt, &nxt_bv);
320 
321 	if (!BIOVEC_PHYS_MERGEABLE(&end_bv, &nxt_bv))
322 		return 0;
323 
324 	/*
325 	 * bio and nxt are contiguous in memory; check if the queue allows
326 	 * these two to be merged into one
327 	 */
328 	if (BIOVEC_SEG_BOUNDARY(q, &end_bv, &nxt_bv))
329 		return 1;
330 
331 	return 0;
332 }
333 
334 static inline void
335 __blk_segment_map_sg(struct request_queue *q, struct bio_vec *bvec,
336 		     struct scatterlist *sglist, struct bio_vec *bvprv,
337 		     struct scatterlist **sg, int *nsegs, int *cluster)
338 {
339 
340 	int nbytes = bvec->bv_len;
341 
342 	if (*sg && *cluster) {
343 		if ((*sg)->length + nbytes > queue_max_segment_size(q))
344 			goto new_segment;
345 
346 		if (!BIOVEC_PHYS_MERGEABLE(bvprv, bvec))
347 			goto new_segment;
348 		if (!BIOVEC_SEG_BOUNDARY(q, bvprv, bvec))
349 			goto new_segment;
350 
351 		(*sg)->length += nbytes;
352 	} else {
353 new_segment:
354 		if (!*sg)
355 			*sg = sglist;
356 		else {
357 			/*
358 			 * If the driver previously mapped a shorter
359 			 * list, we could see a termination bit
360 			 * prematurely unless it fully inits the sg
361 			 * table on each mapping. We KNOW that there
362 			 * must be more entries here or the driver
363 			 * would be buggy, so force clear the
364 			 * termination bit to avoid doing a full
365 			 * sg_init_table() in drivers for each command.
366 			 */
367 			sg_unmark_end(*sg);
368 			*sg = sg_next(*sg);
369 		}
370 
371 		sg_set_page(*sg, bvec->bv_page, nbytes, bvec->bv_offset);
372 		(*nsegs)++;
373 	}
374 	*bvprv = *bvec;
375 }
376 
377 static int __blk_bios_map_sg(struct request_queue *q, struct bio *bio,
378 			     struct scatterlist *sglist,
379 			     struct scatterlist **sg)
380 {
381 	struct bio_vec bvec, bvprv = { NULL };
382 	struct bvec_iter iter;
383 	int nsegs, cluster;
384 
385 	nsegs = 0;
386 	cluster = blk_queue_cluster(q);
387 
388 	if (bio->bi_rw & REQ_DISCARD) {
389 		/*
390 		 * This is a hack - drivers should be neither modifying the
391 		 * biovec, nor relying on bi_vcnt - but because of
392 		 * blk_add_request_payload(), a discard bio may or may not have
393 		 * a payload we need to set up here (thank you Christoph) and
394 		 * bi_vcnt is really the only way of telling if we need to.
395 		 */
396 
397 		if (bio->bi_vcnt)
398 			goto single_segment;
399 
400 		return 0;
401 	}
402 
403 	if (bio->bi_rw & REQ_WRITE_SAME) {
404 single_segment:
405 		*sg = sglist;
406 		bvec = bio_iovec(bio);
407 		sg_set_page(*sg, bvec.bv_page, bvec.bv_len, bvec.bv_offset);
408 		return 1;
409 	}
410 
411 	for_each_bio(bio)
412 		bio_for_each_segment(bvec, bio, iter)
413 			__blk_segment_map_sg(q, &bvec, sglist, &bvprv, sg,
414 					     &nsegs, &cluster);
415 
416 	return nsegs;
417 }
418 
419 /*
420  * map a request to scatterlist, return number of sg entries setup. Caller
421  * must make sure sg can hold rq->nr_phys_segments entries
422  */
423 int blk_rq_map_sg(struct request_queue *q, struct request *rq,
424 		  struct scatterlist *sglist)
425 {
426 	struct scatterlist *sg = NULL;
427 	int nsegs = 0;
428 
429 	if (rq->bio)
430 		nsegs = __blk_bios_map_sg(q, rq->bio, sglist, &sg);
431 
432 	if (unlikely(rq->cmd_flags & REQ_COPY_USER) &&
433 	    (blk_rq_bytes(rq) & q->dma_pad_mask)) {
434 		unsigned int pad_len =
435 			(q->dma_pad_mask & ~blk_rq_bytes(rq)) + 1;
436 
437 		sg->length += pad_len;
438 		rq->extra_len += pad_len;
439 	}
440 
441 	if (q->dma_drain_size && q->dma_drain_needed(rq)) {
442 		if (rq->cmd_flags & REQ_WRITE)
443 			memset(q->dma_drain_buffer, 0, q->dma_drain_size);
444 
445 		sg_unmark_end(sg);
446 		sg = sg_next(sg);
447 		sg_set_page(sg, virt_to_page(q->dma_drain_buffer),
448 			    q->dma_drain_size,
449 			    ((unsigned long)q->dma_drain_buffer) &
450 			    (PAGE_SIZE - 1));
451 		nsegs++;
452 		rq->extra_len += q->dma_drain_size;
453 	}
454 
455 	if (sg)
456 		sg_mark_end(sg);
457 
458 	/*
459 	 * Something must have been wrong if the figured number of
460 	 * segment is bigger than number of req's physical segments
461 	 */
462 	WARN_ON(nsegs > rq->nr_phys_segments);
463 
464 	return nsegs;
465 }
466 EXPORT_SYMBOL(blk_rq_map_sg);
467 
468 static inline int ll_new_hw_segment(struct request_queue *q,
469 				    struct request *req,
470 				    struct bio *bio)
471 {
472 	int nr_phys_segs = bio_phys_segments(q, bio);
473 
474 	if (req->nr_phys_segments + nr_phys_segs > queue_max_segments(q))
475 		goto no_merge;
476 
477 	if (blk_integrity_merge_bio(q, req, bio) == false)
478 		goto no_merge;
479 
480 	/*
481 	 * This will form the start of a new hw segment.  Bump both
482 	 * counters.
483 	 */
484 	req->nr_phys_segments += nr_phys_segs;
485 	return 1;
486 
487 no_merge:
488 	req->cmd_flags |= REQ_NOMERGE;
489 	if (req == q->last_merge)
490 		q->last_merge = NULL;
491 	return 0;
492 }
493 
494 int ll_back_merge_fn(struct request_queue *q, struct request *req,
495 		     struct bio *bio)
496 {
497 	if (req_gap_back_merge(req, bio))
498 		return 0;
499 	if (blk_integrity_rq(req) &&
500 	    integrity_req_gap_back_merge(req, bio))
501 		return 0;
502 	if (blk_rq_sectors(req) + bio_sectors(bio) >
503 	    blk_rq_get_max_sectors(req)) {
504 		req->cmd_flags |= REQ_NOMERGE;
505 		if (req == q->last_merge)
506 			q->last_merge = NULL;
507 		return 0;
508 	}
509 	if (!bio_flagged(req->biotail, BIO_SEG_VALID))
510 		blk_recount_segments(q, req->biotail);
511 	if (!bio_flagged(bio, BIO_SEG_VALID))
512 		blk_recount_segments(q, bio);
513 
514 	return ll_new_hw_segment(q, req, bio);
515 }
516 
517 int ll_front_merge_fn(struct request_queue *q, struct request *req,
518 		      struct bio *bio)
519 {
520 
521 	if (req_gap_front_merge(req, bio))
522 		return 0;
523 	if (blk_integrity_rq(req) &&
524 	    integrity_req_gap_front_merge(req, bio))
525 		return 0;
526 	if (blk_rq_sectors(req) + bio_sectors(bio) >
527 	    blk_rq_get_max_sectors(req)) {
528 		req->cmd_flags |= REQ_NOMERGE;
529 		if (req == q->last_merge)
530 			q->last_merge = NULL;
531 		return 0;
532 	}
533 	if (!bio_flagged(bio, BIO_SEG_VALID))
534 		blk_recount_segments(q, bio);
535 	if (!bio_flagged(req->bio, BIO_SEG_VALID))
536 		blk_recount_segments(q, req->bio);
537 
538 	return ll_new_hw_segment(q, req, bio);
539 }
540 
541 /*
542  * blk-mq uses req->special to carry normal driver per-request payload, it
543  * does not indicate a prepared command that we cannot merge with.
544  */
545 static bool req_no_special_merge(struct request *req)
546 {
547 	struct request_queue *q = req->q;
548 
549 	return !q->mq_ops && req->special;
550 }
551 
552 static int ll_merge_requests_fn(struct request_queue *q, struct request *req,
553 				struct request *next)
554 {
555 	int total_phys_segments;
556 	unsigned int seg_size =
557 		req->biotail->bi_seg_back_size + next->bio->bi_seg_front_size;
558 
559 	/*
560 	 * First check if the either of the requests are re-queued
561 	 * requests.  Can't merge them if they are.
562 	 */
563 	if (req_no_special_merge(req) || req_no_special_merge(next))
564 		return 0;
565 
566 	if (req_gap_back_merge(req, next->bio))
567 		return 0;
568 
569 	/*
570 	 * Will it become too large?
571 	 */
572 	if ((blk_rq_sectors(req) + blk_rq_sectors(next)) >
573 	    blk_rq_get_max_sectors(req))
574 		return 0;
575 
576 	total_phys_segments = req->nr_phys_segments + next->nr_phys_segments;
577 	if (blk_phys_contig_segment(q, req->biotail, next->bio)) {
578 		if (req->nr_phys_segments == 1)
579 			req->bio->bi_seg_front_size = seg_size;
580 		if (next->nr_phys_segments == 1)
581 			next->biotail->bi_seg_back_size = seg_size;
582 		total_phys_segments--;
583 	}
584 
585 	if (total_phys_segments > queue_max_segments(q))
586 		return 0;
587 
588 	if (blk_integrity_merge_rq(q, req, next) == false)
589 		return 0;
590 
591 	/* Merge is OK... */
592 	req->nr_phys_segments = total_phys_segments;
593 	return 1;
594 }
595 
596 /**
597  * blk_rq_set_mixed_merge - mark a request as mixed merge
598  * @rq: request to mark as mixed merge
599  *
600  * Description:
601  *     @rq is about to be mixed merged.  Make sure the attributes
602  *     which can be mixed are set in each bio and mark @rq as mixed
603  *     merged.
604  */
605 void blk_rq_set_mixed_merge(struct request *rq)
606 {
607 	unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK;
608 	struct bio *bio;
609 
610 	if (rq->cmd_flags & REQ_MIXED_MERGE)
611 		return;
612 
613 	/*
614 	 * @rq will no longer represent mixable attributes for all the
615 	 * contained bios.  It will just track those of the first one.
616 	 * Distributes the attributs to each bio.
617 	 */
618 	for (bio = rq->bio; bio; bio = bio->bi_next) {
619 		WARN_ON_ONCE((bio->bi_rw & REQ_FAILFAST_MASK) &&
620 			     (bio->bi_rw & REQ_FAILFAST_MASK) != ff);
621 		bio->bi_rw |= ff;
622 	}
623 	rq->cmd_flags |= REQ_MIXED_MERGE;
624 }
625 
626 static void blk_account_io_merge(struct request *req)
627 {
628 	if (blk_do_io_stat(req)) {
629 		struct hd_struct *part;
630 		int cpu;
631 
632 		cpu = part_stat_lock();
633 		part = req->part;
634 
635 		part_round_stats(cpu, part);
636 		part_dec_in_flight(part, rq_data_dir(req));
637 
638 		hd_struct_put(part);
639 		part_stat_unlock();
640 	}
641 }
642 
643 /*
644  * Has to be called with the request spinlock acquired
645  */
646 static int attempt_merge(struct request_queue *q, struct request *req,
647 			  struct request *next)
648 {
649 	if (!rq_mergeable(req) || !rq_mergeable(next))
650 		return 0;
651 
652 	if (!blk_check_merge_flags(req->cmd_flags, next->cmd_flags))
653 		return 0;
654 
655 	/*
656 	 * not contiguous
657 	 */
658 	if (blk_rq_pos(req) + blk_rq_sectors(req) != blk_rq_pos(next))
659 		return 0;
660 
661 	if (rq_data_dir(req) != rq_data_dir(next)
662 	    || req->rq_disk != next->rq_disk
663 	    || req_no_special_merge(next))
664 		return 0;
665 
666 	if (req->cmd_flags & REQ_WRITE_SAME &&
667 	    !blk_write_same_mergeable(req->bio, next->bio))
668 		return 0;
669 
670 	/*
671 	 * If we are allowed to merge, then append bio list
672 	 * from next to rq and release next. merge_requests_fn
673 	 * will have updated segment counts, update sector
674 	 * counts here.
675 	 */
676 	if (!ll_merge_requests_fn(q, req, next))
677 		return 0;
678 
679 	/*
680 	 * If failfast settings disagree or any of the two is already
681 	 * a mixed merge, mark both as mixed before proceeding.  This
682 	 * makes sure that all involved bios have mixable attributes
683 	 * set properly.
684 	 */
685 	if ((req->cmd_flags | next->cmd_flags) & REQ_MIXED_MERGE ||
686 	    (req->cmd_flags & REQ_FAILFAST_MASK) !=
687 	    (next->cmd_flags & REQ_FAILFAST_MASK)) {
688 		blk_rq_set_mixed_merge(req);
689 		blk_rq_set_mixed_merge(next);
690 	}
691 
692 	/*
693 	 * At this point we have either done a back merge
694 	 * or front merge. We need the smaller start_time of
695 	 * the merged requests to be the current request
696 	 * for accounting purposes.
697 	 */
698 	if (time_after(req->start_time, next->start_time))
699 		req->start_time = next->start_time;
700 
701 	req->biotail->bi_next = next->bio;
702 	req->biotail = next->biotail;
703 
704 	req->__data_len += blk_rq_bytes(next);
705 
706 	elv_merge_requests(q, req, next);
707 
708 	/*
709 	 * 'next' is going away, so update stats accordingly
710 	 */
711 	blk_account_io_merge(next);
712 
713 	req->ioprio = ioprio_best(req->ioprio, next->ioprio);
714 	if (blk_rq_cpu_valid(next))
715 		req->cpu = next->cpu;
716 
717 	/* owner-ship of bio passed from next to req */
718 	next->bio = NULL;
719 	__blk_put_request(q, next);
720 	return 1;
721 }
722 
723 int attempt_back_merge(struct request_queue *q, struct request *rq)
724 {
725 	struct request *next = elv_latter_request(q, rq);
726 
727 	if (next)
728 		return attempt_merge(q, rq, next);
729 
730 	return 0;
731 }
732 
733 int attempt_front_merge(struct request_queue *q, struct request *rq)
734 {
735 	struct request *prev = elv_former_request(q, rq);
736 
737 	if (prev)
738 		return attempt_merge(q, prev, rq);
739 
740 	return 0;
741 }
742 
743 int blk_attempt_req_merge(struct request_queue *q, struct request *rq,
744 			  struct request *next)
745 {
746 	return attempt_merge(q, rq, next);
747 }
748 
749 bool blk_rq_merge_ok(struct request *rq, struct bio *bio)
750 {
751 	if (!rq_mergeable(rq) || !bio_mergeable(bio))
752 		return false;
753 
754 	if (!blk_check_merge_flags(rq->cmd_flags, bio->bi_rw))
755 		return false;
756 
757 	/* different data direction or already started, don't merge */
758 	if (bio_data_dir(bio) != rq_data_dir(rq))
759 		return false;
760 
761 	/* must be same device and not a special request */
762 	if (rq->rq_disk != bio->bi_bdev->bd_disk || req_no_special_merge(rq))
763 		return false;
764 
765 	/* only merge integrity protected bio into ditto rq */
766 	if (blk_integrity_merge_bio(rq->q, rq, bio) == false)
767 		return false;
768 
769 	/* must be using the same buffer */
770 	if (rq->cmd_flags & REQ_WRITE_SAME &&
771 	    !blk_write_same_mergeable(rq->bio, bio))
772 		return false;
773 
774 	return true;
775 }
776 
777 int blk_try_merge(struct request *rq, struct bio *bio)
778 {
779 	if (blk_rq_pos(rq) + blk_rq_sectors(rq) == bio->bi_iter.bi_sector)
780 		return ELEVATOR_BACK_MERGE;
781 	else if (blk_rq_pos(rq) - bio_sectors(bio) == bio->bi_iter.bi_sector)
782 		return ELEVATOR_FRONT_MERGE;
783 	return ELEVATOR_NO_MERGE;
784 }
785