1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Functions related to segment and merge handling 4 */ 5 #include <linux/kernel.h> 6 #include <linux/module.h> 7 #include <linux/bio.h> 8 #include <linux/blkdev.h> 9 #include <linux/blk-integrity.h> 10 #include <linux/scatterlist.h> 11 #include <linux/part_stat.h> 12 #include <linux/blk-cgroup.h> 13 14 #include <trace/events/block.h> 15 16 #include "blk.h" 17 #include "blk-mq-sched.h" 18 #include "blk-rq-qos.h" 19 #include "blk-throttle.h" 20 21 static inline void bio_get_first_bvec(struct bio *bio, struct bio_vec *bv) 22 { 23 *bv = mp_bvec_iter_bvec(bio->bi_io_vec, bio->bi_iter); 24 } 25 26 static inline void bio_get_last_bvec(struct bio *bio, struct bio_vec *bv) 27 { 28 struct bvec_iter iter = bio->bi_iter; 29 int idx; 30 31 bio_get_first_bvec(bio, bv); 32 if (bv->bv_len == bio->bi_iter.bi_size) 33 return; /* this bio only has a single bvec */ 34 35 bio_advance_iter(bio, &iter, iter.bi_size); 36 37 if (!iter.bi_bvec_done) 38 idx = iter.bi_idx - 1; 39 else /* in the middle of bvec */ 40 idx = iter.bi_idx; 41 42 *bv = bio->bi_io_vec[idx]; 43 44 /* 45 * iter.bi_bvec_done records actual length of the last bvec 46 * if this bio ends in the middle of one io vector 47 */ 48 if (iter.bi_bvec_done) 49 bv->bv_len = iter.bi_bvec_done; 50 } 51 52 static inline bool bio_will_gap(struct request_queue *q, 53 struct request *prev_rq, struct bio *prev, struct bio *next) 54 { 55 struct bio_vec pb, nb; 56 57 if (!bio_has_data(prev) || !queue_virt_boundary(q)) 58 return false; 59 60 /* 61 * Don't merge if the 1st bio starts with non-zero offset, otherwise it 62 * is quite difficult to respect the sg gap limit. We work hard to 63 * merge a huge number of small single bios in case of mkfs. 64 */ 65 if (prev_rq) 66 bio_get_first_bvec(prev_rq->bio, &pb); 67 else 68 bio_get_first_bvec(prev, &pb); 69 if (pb.bv_offset & queue_virt_boundary(q)) 70 return true; 71 72 /* 73 * We don't need to worry about the situation that the merged segment 74 * ends in unaligned virt boundary: 75 * 76 * - if 'pb' ends aligned, the merged segment ends aligned 77 * - if 'pb' ends unaligned, the next bio must include 78 * one single bvec of 'nb', otherwise the 'nb' can't 79 * merge with 'pb' 80 */ 81 bio_get_last_bvec(prev, &pb); 82 bio_get_first_bvec(next, &nb); 83 if (biovec_phys_mergeable(q, &pb, &nb)) 84 return false; 85 return __bvec_gap_to_prev(q, &pb, nb.bv_offset); 86 } 87 88 static inline bool req_gap_back_merge(struct request *req, struct bio *bio) 89 { 90 return bio_will_gap(req->q, req, req->biotail, bio); 91 } 92 93 static inline bool req_gap_front_merge(struct request *req, struct bio *bio) 94 { 95 return bio_will_gap(req->q, NULL, bio, req->bio); 96 } 97 98 static struct bio *blk_bio_discard_split(struct request_queue *q, 99 struct bio *bio, 100 struct bio_set *bs, 101 unsigned *nsegs) 102 { 103 unsigned int max_discard_sectors, granularity; 104 int alignment; 105 sector_t tmp; 106 unsigned split_sectors; 107 108 *nsegs = 1; 109 110 /* Zero-sector (unknown) and one-sector granularities are the same. */ 111 granularity = max(q->limits.discard_granularity >> 9, 1U); 112 113 max_discard_sectors = min(q->limits.max_discard_sectors, 114 bio_allowed_max_sectors(q)); 115 max_discard_sectors -= max_discard_sectors % granularity; 116 117 if (unlikely(!max_discard_sectors)) { 118 /* XXX: warn */ 119 return NULL; 120 } 121 122 if (bio_sectors(bio) <= max_discard_sectors) 123 return NULL; 124 125 split_sectors = max_discard_sectors; 126 127 /* 128 * If the next starting sector would be misaligned, stop the discard at 129 * the previous aligned sector. 130 */ 131 alignment = (q->limits.discard_alignment >> 9) % granularity; 132 133 tmp = bio->bi_iter.bi_sector + split_sectors - alignment; 134 tmp = sector_div(tmp, granularity); 135 136 if (split_sectors > tmp) 137 split_sectors -= tmp; 138 139 return bio_split(bio, split_sectors, GFP_NOIO, bs); 140 } 141 142 static struct bio *blk_bio_write_zeroes_split(struct request_queue *q, 143 struct bio *bio, struct bio_set *bs, unsigned *nsegs) 144 { 145 *nsegs = 0; 146 147 if (!q->limits.max_write_zeroes_sectors) 148 return NULL; 149 150 if (bio_sectors(bio) <= q->limits.max_write_zeroes_sectors) 151 return NULL; 152 153 return bio_split(bio, q->limits.max_write_zeroes_sectors, GFP_NOIO, bs); 154 } 155 156 static struct bio *blk_bio_write_same_split(struct request_queue *q, 157 struct bio *bio, 158 struct bio_set *bs, 159 unsigned *nsegs) 160 { 161 *nsegs = 1; 162 163 if (!q->limits.max_write_same_sectors) 164 return NULL; 165 166 if (bio_sectors(bio) <= q->limits.max_write_same_sectors) 167 return NULL; 168 169 return bio_split(bio, q->limits.max_write_same_sectors, GFP_NOIO, bs); 170 } 171 172 /* 173 * Return the maximum number of sectors from the start of a bio that may be 174 * submitted as a single request to a block device. If enough sectors remain, 175 * align the end to the physical block size. Otherwise align the end to the 176 * logical block size. This approach minimizes the number of non-aligned 177 * requests that are submitted to a block device if the start of a bio is not 178 * aligned to a physical block boundary. 179 */ 180 static inline unsigned get_max_io_size(struct request_queue *q, 181 struct bio *bio) 182 { 183 unsigned sectors = blk_max_size_offset(q, bio->bi_iter.bi_sector, 0); 184 unsigned max_sectors = sectors; 185 unsigned pbs = queue_physical_block_size(q) >> SECTOR_SHIFT; 186 unsigned lbs = queue_logical_block_size(q) >> SECTOR_SHIFT; 187 unsigned start_offset = bio->bi_iter.bi_sector & (pbs - 1); 188 189 max_sectors += start_offset; 190 max_sectors &= ~(pbs - 1); 191 if (max_sectors > start_offset) 192 return max_sectors - start_offset; 193 194 return sectors & ~(lbs - 1); 195 } 196 197 static inline unsigned get_max_segment_size(const struct request_queue *q, 198 struct page *start_page, 199 unsigned long offset) 200 { 201 unsigned long mask = queue_segment_boundary(q); 202 203 offset = mask & (page_to_phys(start_page) + offset); 204 205 /* 206 * overflow may be triggered in case of zero page physical address 207 * on 32bit arch, use queue's max segment size when that happens. 208 */ 209 return min_not_zero(mask - offset + 1, 210 (unsigned long)queue_max_segment_size(q)); 211 } 212 213 /** 214 * bvec_split_segs - verify whether or not a bvec should be split in the middle 215 * @q: [in] request queue associated with the bio associated with @bv 216 * @bv: [in] bvec to examine 217 * @nsegs: [in,out] Number of segments in the bio being built. Incremented 218 * by the number of segments from @bv that may be appended to that 219 * bio without exceeding @max_segs 220 * @sectors: [in,out] Number of sectors in the bio being built. Incremented 221 * by the number of sectors from @bv that may be appended to that 222 * bio without exceeding @max_sectors 223 * @max_segs: [in] upper bound for *@nsegs 224 * @max_sectors: [in] upper bound for *@sectors 225 * 226 * When splitting a bio, it can happen that a bvec is encountered that is too 227 * big to fit in a single segment and hence that it has to be split in the 228 * middle. This function verifies whether or not that should happen. The value 229 * %true is returned if and only if appending the entire @bv to a bio with 230 * *@nsegs segments and *@sectors sectors would make that bio unacceptable for 231 * the block driver. 232 */ 233 static bool bvec_split_segs(const struct request_queue *q, 234 const struct bio_vec *bv, unsigned *nsegs, 235 unsigned *sectors, unsigned max_segs, 236 unsigned max_sectors) 237 { 238 unsigned max_len = (min(max_sectors, UINT_MAX >> 9) - *sectors) << 9; 239 unsigned len = min(bv->bv_len, max_len); 240 unsigned total_len = 0; 241 unsigned seg_size = 0; 242 243 while (len && *nsegs < max_segs) { 244 seg_size = get_max_segment_size(q, bv->bv_page, 245 bv->bv_offset + total_len); 246 seg_size = min(seg_size, len); 247 248 (*nsegs)++; 249 total_len += seg_size; 250 len -= seg_size; 251 252 if ((bv->bv_offset + total_len) & queue_virt_boundary(q)) 253 break; 254 } 255 256 *sectors += total_len >> 9; 257 258 /* tell the caller to split the bvec if it is too big to fit */ 259 return len > 0 || bv->bv_len > max_len; 260 } 261 262 /** 263 * blk_bio_segment_split - split a bio in two bios 264 * @q: [in] request queue pointer 265 * @bio: [in] bio to be split 266 * @bs: [in] bio set to allocate the clone from 267 * @segs: [out] number of segments in the bio with the first half of the sectors 268 * 269 * Clone @bio, update the bi_iter of the clone to represent the first sectors 270 * of @bio and update @bio->bi_iter to represent the remaining sectors. The 271 * following is guaranteed for the cloned bio: 272 * - That it has at most get_max_io_size(@q, @bio) sectors. 273 * - That it has at most queue_max_segments(@q) segments. 274 * 275 * Except for discard requests the cloned bio will point at the bi_io_vec of 276 * the original bio. It is the responsibility of the caller to ensure that the 277 * original bio is not freed before the cloned bio. The caller is also 278 * responsible for ensuring that @bs is only destroyed after processing of the 279 * split bio has finished. 280 */ 281 static struct bio *blk_bio_segment_split(struct request_queue *q, 282 struct bio *bio, 283 struct bio_set *bs, 284 unsigned *segs) 285 { 286 struct bio_vec bv, bvprv, *bvprvp = NULL; 287 struct bvec_iter iter; 288 unsigned nsegs = 0, sectors = 0; 289 const unsigned max_sectors = get_max_io_size(q, bio); 290 const unsigned max_segs = queue_max_segments(q); 291 292 bio_for_each_bvec(bv, bio, iter) { 293 /* 294 * If the queue doesn't support SG gaps and adding this 295 * offset would create a gap, disallow it. 296 */ 297 if (bvprvp && bvec_gap_to_prev(q, bvprvp, bv.bv_offset)) 298 goto split; 299 300 if (nsegs < max_segs && 301 sectors + (bv.bv_len >> 9) <= max_sectors && 302 bv.bv_offset + bv.bv_len <= PAGE_SIZE) { 303 nsegs++; 304 sectors += bv.bv_len >> 9; 305 } else if (bvec_split_segs(q, &bv, &nsegs, §ors, max_segs, 306 max_sectors)) { 307 goto split; 308 } 309 310 bvprv = bv; 311 bvprvp = &bvprv; 312 } 313 314 *segs = nsegs; 315 return NULL; 316 split: 317 *segs = nsegs; 318 319 /* 320 * Bio splitting may cause subtle trouble such as hang when doing sync 321 * iopoll in direct IO routine. Given performance gain of iopoll for 322 * big IO can be trival, disable iopoll when split needed. 323 */ 324 bio_clear_polled(bio); 325 return bio_split(bio, sectors, GFP_NOIO, bs); 326 } 327 328 /** 329 * __blk_queue_split - split a bio and submit the second half 330 * @q: [in] request_queue new bio is being queued at 331 * @bio: [in, out] bio to be split 332 * @nr_segs: [out] number of segments in the first bio 333 * 334 * Split a bio into two bios, chain the two bios, submit the second half and 335 * store a pointer to the first half in *@bio. If the second bio is still too 336 * big it will be split by a recursive call to this function. Since this 337 * function may allocate a new bio from q->bio_split, it is the responsibility 338 * of the caller to ensure that q->bio_split is only released after processing 339 * of the split bio has finished. 340 */ 341 void __blk_queue_split(struct request_queue *q, struct bio **bio, 342 unsigned int *nr_segs) 343 { 344 struct bio *split = NULL; 345 346 switch (bio_op(*bio)) { 347 case REQ_OP_DISCARD: 348 case REQ_OP_SECURE_ERASE: 349 split = blk_bio_discard_split(q, *bio, &q->bio_split, nr_segs); 350 break; 351 case REQ_OP_WRITE_ZEROES: 352 split = blk_bio_write_zeroes_split(q, *bio, &q->bio_split, 353 nr_segs); 354 break; 355 case REQ_OP_WRITE_SAME: 356 split = blk_bio_write_same_split(q, *bio, &q->bio_split, 357 nr_segs); 358 break; 359 default: 360 split = blk_bio_segment_split(q, *bio, &q->bio_split, nr_segs); 361 break; 362 } 363 364 if (split) { 365 /* there isn't chance to merge the splitted bio */ 366 split->bi_opf |= REQ_NOMERGE; 367 368 bio_chain(split, *bio); 369 trace_block_split(split, (*bio)->bi_iter.bi_sector); 370 submit_bio_noacct(*bio); 371 *bio = split; 372 } 373 } 374 375 /** 376 * blk_queue_split - split a bio and submit the second half 377 * @bio: [in, out] bio to be split 378 * 379 * Split a bio into two bios, chains the two bios, submit the second half and 380 * store a pointer to the first half in *@bio. Since this function may allocate 381 * a new bio from q->bio_split, it is the responsibility of the caller to ensure 382 * that q->bio_split is only released after processing of the split bio has 383 * finished. 384 */ 385 void blk_queue_split(struct bio **bio) 386 { 387 struct request_queue *q = bdev_get_queue((*bio)->bi_bdev); 388 unsigned int nr_segs; 389 390 if (blk_may_split(q, *bio)) 391 __blk_queue_split(q, bio, &nr_segs); 392 } 393 EXPORT_SYMBOL(blk_queue_split); 394 395 unsigned int blk_recalc_rq_segments(struct request *rq) 396 { 397 unsigned int nr_phys_segs = 0; 398 unsigned int nr_sectors = 0; 399 struct req_iterator iter; 400 struct bio_vec bv; 401 402 if (!rq->bio) 403 return 0; 404 405 switch (bio_op(rq->bio)) { 406 case REQ_OP_DISCARD: 407 case REQ_OP_SECURE_ERASE: 408 if (queue_max_discard_segments(rq->q) > 1) { 409 struct bio *bio = rq->bio; 410 411 for_each_bio(bio) 412 nr_phys_segs++; 413 return nr_phys_segs; 414 } 415 return 1; 416 case REQ_OP_WRITE_ZEROES: 417 return 0; 418 case REQ_OP_WRITE_SAME: 419 return 1; 420 } 421 422 rq_for_each_bvec(bv, rq, iter) 423 bvec_split_segs(rq->q, &bv, &nr_phys_segs, &nr_sectors, 424 UINT_MAX, UINT_MAX); 425 return nr_phys_segs; 426 } 427 428 static inline struct scatterlist *blk_next_sg(struct scatterlist **sg, 429 struct scatterlist *sglist) 430 { 431 if (!*sg) 432 return sglist; 433 434 /* 435 * If the driver previously mapped a shorter list, we could see a 436 * termination bit prematurely unless it fully inits the sg table 437 * on each mapping. We KNOW that there must be more entries here 438 * or the driver would be buggy, so force clear the termination bit 439 * to avoid doing a full sg_init_table() in drivers for each command. 440 */ 441 sg_unmark_end(*sg); 442 return sg_next(*sg); 443 } 444 445 static unsigned blk_bvec_map_sg(struct request_queue *q, 446 struct bio_vec *bvec, struct scatterlist *sglist, 447 struct scatterlist **sg) 448 { 449 unsigned nbytes = bvec->bv_len; 450 unsigned nsegs = 0, total = 0; 451 452 while (nbytes > 0) { 453 unsigned offset = bvec->bv_offset + total; 454 unsigned len = min(get_max_segment_size(q, bvec->bv_page, 455 offset), nbytes); 456 struct page *page = bvec->bv_page; 457 458 /* 459 * Unfortunately a fair number of drivers barf on scatterlists 460 * that have an offset larger than PAGE_SIZE, despite other 461 * subsystems dealing with that invariant just fine. For now 462 * stick to the legacy format where we never present those from 463 * the block layer, but the code below should be removed once 464 * these offenders (mostly MMC/SD drivers) are fixed. 465 */ 466 page += (offset >> PAGE_SHIFT); 467 offset &= ~PAGE_MASK; 468 469 *sg = blk_next_sg(sg, sglist); 470 sg_set_page(*sg, page, len, offset); 471 472 total += len; 473 nbytes -= len; 474 nsegs++; 475 } 476 477 return nsegs; 478 } 479 480 static inline int __blk_bvec_map_sg(struct bio_vec bv, 481 struct scatterlist *sglist, struct scatterlist **sg) 482 { 483 *sg = blk_next_sg(sg, sglist); 484 sg_set_page(*sg, bv.bv_page, bv.bv_len, bv.bv_offset); 485 return 1; 486 } 487 488 /* only try to merge bvecs into one sg if they are from two bios */ 489 static inline bool 490 __blk_segment_map_sg_merge(struct request_queue *q, struct bio_vec *bvec, 491 struct bio_vec *bvprv, struct scatterlist **sg) 492 { 493 494 int nbytes = bvec->bv_len; 495 496 if (!*sg) 497 return false; 498 499 if ((*sg)->length + nbytes > queue_max_segment_size(q)) 500 return false; 501 502 if (!biovec_phys_mergeable(q, bvprv, bvec)) 503 return false; 504 505 (*sg)->length += nbytes; 506 507 return true; 508 } 509 510 static int __blk_bios_map_sg(struct request_queue *q, struct bio *bio, 511 struct scatterlist *sglist, 512 struct scatterlist **sg) 513 { 514 struct bio_vec bvec, bvprv = { NULL }; 515 struct bvec_iter iter; 516 int nsegs = 0; 517 bool new_bio = false; 518 519 for_each_bio(bio) { 520 bio_for_each_bvec(bvec, bio, iter) { 521 /* 522 * Only try to merge bvecs from two bios given we 523 * have done bio internal merge when adding pages 524 * to bio 525 */ 526 if (new_bio && 527 __blk_segment_map_sg_merge(q, &bvec, &bvprv, sg)) 528 goto next_bvec; 529 530 if (bvec.bv_offset + bvec.bv_len <= PAGE_SIZE) 531 nsegs += __blk_bvec_map_sg(bvec, sglist, sg); 532 else 533 nsegs += blk_bvec_map_sg(q, &bvec, sglist, sg); 534 next_bvec: 535 new_bio = false; 536 } 537 if (likely(bio->bi_iter.bi_size)) { 538 bvprv = bvec; 539 new_bio = true; 540 } 541 } 542 543 return nsegs; 544 } 545 546 /* 547 * map a request to scatterlist, return number of sg entries setup. Caller 548 * must make sure sg can hold rq->nr_phys_segments entries 549 */ 550 int __blk_rq_map_sg(struct request_queue *q, struct request *rq, 551 struct scatterlist *sglist, struct scatterlist **last_sg) 552 { 553 int nsegs = 0; 554 555 if (rq->rq_flags & RQF_SPECIAL_PAYLOAD) 556 nsegs = __blk_bvec_map_sg(rq->special_vec, sglist, last_sg); 557 else if (rq->bio && bio_op(rq->bio) == REQ_OP_WRITE_SAME) 558 nsegs = __blk_bvec_map_sg(bio_iovec(rq->bio), sglist, last_sg); 559 else if (rq->bio) 560 nsegs = __blk_bios_map_sg(q, rq->bio, sglist, last_sg); 561 562 if (*last_sg) 563 sg_mark_end(*last_sg); 564 565 /* 566 * Something must have been wrong if the figured number of 567 * segment is bigger than number of req's physical segments 568 */ 569 WARN_ON(nsegs > blk_rq_nr_phys_segments(rq)); 570 571 return nsegs; 572 } 573 EXPORT_SYMBOL(__blk_rq_map_sg); 574 575 static inline unsigned int blk_rq_get_max_segments(struct request *rq) 576 { 577 if (req_op(rq) == REQ_OP_DISCARD) 578 return queue_max_discard_segments(rq->q); 579 return queue_max_segments(rq->q); 580 } 581 582 static inline unsigned int blk_rq_get_max_sectors(struct request *rq, 583 sector_t offset) 584 { 585 struct request_queue *q = rq->q; 586 587 if (blk_rq_is_passthrough(rq)) 588 return q->limits.max_hw_sectors; 589 590 if (!q->limits.chunk_sectors || 591 req_op(rq) == REQ_OP_DISCARD || 592 req_op(rq) == REQ_OP_SECURE_ERASE) 593 return blk_queue_get_max_sectors(q, req_op(rq)); 594 595 return min(blk_max_size_offset(q, offset, 0), 596 blk_queue_get_max_sectors(q, req_op(rq))); 597 } 598 599 static inline int ll_new_hw_segment(struct request *req, struct bio *bio, 600 unsigned int nr_phys_segs) 601 { 602 if (!blk_cgroup_mergeable(req, bio)) 603 goto no_merge; 604 605 if (blk_integrity_merge_bio(req->q, req, bio) == false) 606 goto no_merge; 607 608 /* discard request merge won't add new segment */ 609 if (req_op(req) == REQ_OP_DISCARD) 610 return 1; 611 612 if (req->nr_phys_segments + nr_phys_segs > blk_rq_get_max_segments(req)) 613 goto no_merge; 614 615 /* 616 * This will form the start of a new hw segment. Bump both 617 * counters. 618 */ 619 req->nr_phys_segments += nr_phys_segs; 620 return 1; 621 622 no_merge: 623 req_set_nomerge(req->q, req); 624 return 0; 625 } 626 627 int ll_back_merge_fn(struct request *req, struct bio *bio, unsigned int nr_segs) 628 { 629 if (req_gap_back_merge(req, bio)) 630 return 0; 631 if (blk_integrity_rq(req) && 632 integrity_req_gap_back_merge(req, bio)) 633 return 0; 634 if (!bio_crypt_ctx_back_mergeable(req, bio)) 635 return 0; 636 if (blk_rq_sectors(req) + bio_sectors(bio) > 637 blk_rq_get_max_sectors(req, blk_rq_pos(req))) { 638 req_set_nomerge(req->q, req); 639 return 0; 640 } 641 642 return ll_new_hw_segment(req, bio, nr_segs); 643 } 644 645 static int ll_front_merge_fn(struct request *req, struct bio *bio, 646 unsigned int nr_segs) 647 { 648 if (req_gap_front_merge(req, bio)) 649 return 0; 650 if (blk_integrity_rq(req) && 651 integrity_req_gap_front_merge(req, bio)) 652 return 0; 653 if (!bio_crypt_ctx_front_mergeable(req, bio)) 654 return 0; 655 if (blk_rq_sectors(req) + bio_sectors(bio) > 656 blk_rq_get_max_sectors(req, bio->bi_iter.bi_sector)) { 657 req_set_nomerge(req->q, req); 658 return 0; 659 } 660 661 return ll_new_hw_segment(req, bio, nr_segs); 662 } 663 664 static bool req_attempt_discard_merge(struct request_queue *q, struct request *req, 665 struct request *next) 666 { 667 unsigned short segments = blk_rq_nr_discard_segments(req); 668 669 if (segments >= queue_max_discard_segments(q)) 670 goto no_merge; 671 if (blk_rq_sectors(req) + bio_sectors(next->bio) > 672 blk_rq_get_max_sectors(req, blk_rq_pos(req))) 673 goto no_merge; 674 675 req->nr_phys_segments = segments + blk_rq_nr_discard_segments(next); 676 return true; 677 no_merge: 678 req_set_nomerge(q, req); 679 return false; 680 } 681 682 static int ll_merge_requests_fn(struct request_queue *q, struct request *req, 683 struct request *next) 684 { 685 int total_phys_segments; 686 687 if (req_gap_back_merge(req, next->bio)) 688 return 0; 689 690 /* 691 * Will it become too large? 692 */ 693 if ((blk_rq_sectors(req) + blk_rq_sectors(next)) > 694 blk_rq_get_max_sectors(req, blk_rq_pos(req))) 695 return 0; 696 697 total_phys_segments = req->nr_phys_segments + next->nr_phys_segments; 698 if (total_phys_segments > blk_rq_get_max_segments(req)) 699 return 0; 700 701 if (!blk_cgroup_mergeable(req, next->bio)) 702 return 0; 703 704 if (blk_integrity_merge_rq(q, req, next) == false) 705 return 0; 706 707 if (!bio_crypt_ctx_merge_rq(req, next)) 708 return 0; 709 710 /* Merge is OK... */ 711 req->nr_phys_segments = total_phys_segments; 712 return 1; 713 } 714 715 /** 716 * blk_rq_set_mixed_merge - mark a request as mixed merge 717 * @rq: request to mark as mixed merge 718 * 719 * Description: 720 * @rq is about to be mixed merged. Make sure the attributes 721 * which can be mixed are set in each bio and mark @rq as mixed 722 * merged. 723 */ 724 void blk_rq_set_mixed_merge(struct request *rq) 725 { 726 unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK; 727 struct bio *bio; 728 729 if (rq->rq_flags & RQF_MIXED_MERGE) 730 return; 731 732 /* 733 * @rq will no longer represent mixable attributes for all the 734 * contained bios. It will just track those of the first one. 735 * Distributes the attributs to each bio. 736 */ 737 for (bio = rq->bio; bio; bio = bio->bi_next) { 738 WARN_ON_ONCE((bio->bi_opf & REQ_FAILFAST_MASK) && 739 (bio->bi_opf & REQ_FAILFAST_MASK) != ff); 740 bio->bi_opf |= ff; 741 } 742 rq->rq_flags |= RQF_MIXED_MERGE; 743 } 744 745 static void blk_account_io_merge_request(struct request *req) 746 { 747 if (blk_do_io_stat(req)) { 748 part_stat_lock(); 749 part_stat_inc(req->part, merges[op_stat_group(req_op(req))]); 750 part_stat_unlock(); 751 } 752 } 753 754 static enum elv_merge blk_try_req_merge(struct request *req, 755 struct request *next) 756 { 757 if (blk_discard_mergable(req)) 758 return ELEVATOR_DISCARD_MERGE; 759 else if (blk_rq_pos(req) + blk_rq_sectors(req) == blk_rq_pos(next)) 760 return ELEVATOR_BACK_MERGE; 761 762 return ELEVATOR_NO_MERGE; 763 } 764 765 static inline bool blk_write_same_mergeable(struct bio *a, struct bio *b) 766 { 767 if (bio_page(a) == bio_page(b) && bio_offset(a) == bio_offset(b)) 768 return true; 769 return false; 770 } 771 772 /* 773 * For non-mq, this has to be called with the request spinlock acquired. 774 * For mq with scheduling, the appropriate queue wide lock should be held. 775 */ 776 static struct request *attempt_merge(struct request_queue *q, 777 struct request *req, struct request *next) 778 { 779 if (!rq_mergeable(req) || !rq_mergeable(next)) 780 return NULL; 781 782 if (req_op(req) != req_op(next)) 783 return NULL; 784 785 if (rq_data_dir(req) != rq_data_dir(next)) 786 return NULL; 787 788 if (req_op(req) == REQ_OP_WRITE_SAME && 789 !blk_write_same_mergeable(req->bio, next->bio)) 790 return NULL; 791 792 /* 793 * Don't allow merge of different write hints, or for a hint with 794 * non-hint IO. 795 */ 796 if (req->write_hint != next->write_hint) 797 return NULL; 798 799 if (req->ioprio != next->ioprio) 800 return NULL; 801 802 /* 803 * If we are allowed to merge, then append bio list 804 * from next to rq and release next. merge_requests_fn 805 * will have updated segment counts, update sector 806 * counts here. Handle DISCARDs separately, as they 807 * have separate settings. 808 */ 809 810 switch (blk_try_req_merge(req, next)) { 811 case ELEVATOR_DISCARD_MERGE: 812 if (!req_attempt_discard_merge(q, req, next)) 813 return NULL; 814 break; 815 case ELEVATOR_BACK_MERGE: 816 if (!ll_merge_requests_fn(q, req, next)) 817 return NULL; 818 break; 819 default: 820 return NULL; 821 } 822 823 /* 824 * If failfast settings disagree or any of the two is already 825 * a mixed merge, mark both as mixed before proceeding. This 826 * makes sure that all involved bios have mixable attributes 827 * set properly. 828 */ 829 if (((req->rq_flags | next->rq_flags) & RQF_MIXED_MERGE) || 830 (req->cmd_flags & REQ_FAILFAST_MASK) != 831 (next->cmd_flags & REQ_FAILFAST_MASK)) { 832 blk_rq_set_mixed_merge(req); 833 blk_rq_set_mixed_merge(next); 834 } 835 836 /* 837 * At this point we have either done a back merge or front merge. We 838 * need the smaller start_time_ns of the merged requests to be the 839 * current request for accounting purposes. 840 */ 841 if (next->start_time_ns < req->start_time_ns) 842 req->start_time_ns = next->start_time_ns; 843 844 req->biotail->bi_next = next->bio; 845 req->biotail = next->biotail; 846 847 req->__data_len += blk_rq_bytes(next); 848 849 if (!blk_discard_mergable(req)) 850 elv_merge_requests(q, req, next); 851 852 /* 853 * 'next' is going away, so update stats accordingly 854 */ 855 blk_account_io_merge_request(next); 856 857 trace_block_rq_merge(next); 858 859 /* 860 * ownership of bio passed from next to req, return 'next' for 861 * the caller to free 862 */ 863 next->bio = NULL; 864 return next; 865 } 866 867 static struct request *attempt_back_merge(struct request_queue *q, 868 struct request *rq) 869 { 870 struct request *next = elv_latter_request(q, rq); 871 872 if (next) 873 return attempt_merge(q, rq, next); 874 875 return NULL; 876 } 877 878 static struct request *attempt_front_merge(struct request_queue *q, 879 struct request *rq) 880 { 881 struct request *prev = elv_former_request(q, rq); 882 883 if (prev) 884 return attempt_merge(q, prev, rq); 885 886 return NULL; 887 } 888 889 /* 890 * Try to merge 'next' into 'rq'. Return true if the merge happened, false 891 * otherwise. The caller is responsible for freeing 'next' if the merge 892 * happened. 893 */ 894 bool blk_attempt_req_merge(struct request_queue *q, struct request *rq, 895 struct request *next) 896 { 897 return attempt_merge(q, rq, next); 898 } 899 900 bool blk_rq_merge_ok(struct request *rq, struct bio *bio) 901 { 902 if (!rq_mergeable(rq) || !bio_mergeable(bio)) 903 return false; 904 905 if (req_op(rq) != bio_op(bio)) 906 return false; 907 908 /* different data direction or already started, don't merge */ 909 if (bio_data_dir(bio) != rq_data_dir(rq)) 910 return false; 911 912 /* don't merge across cgroup boundaries */ 913 if (!blk_cgroup_mergeable(rq, bio)) 914 return false; 915 916 /* only merge integrity protected bio into ditto rq */ 917 if (blk_integrity_merge_bio(rq->q, rq, bio) == false) 918 return false; 919 920 /* Only merge if the crypt contexts are compatible */ 921 if (!bio_crypt_rq_ctx_compatible(rq, bio)) 922 return false; 923 924 /* must be using the same buffer */ 925 if (req_op(rq) == REQ_OP_WRITE_SAME && 926 !blk_write_same_mergeable(rq->bio, bio)) 927 return false; 928 929 /* 930 * Don't allow merge of different write hints, or for a hint with 931 * non-hint IO. 932 */ 933 if (rq->write_hint != bio->bi_write_hint) 934 return false; 935 936 if (rq->ioprio != bio_prio(bio)) 937 return false; 938 939 return true; 940 } 941 942 enum elv_merge blk_try_merge(struct request *rq, struct bio *bio) 943 { 944 if (blk_discard_mergable(rq)) 945 return ELEVATOR_DISCARD_MERGE; 946 else if (blk_rq_pos(rq) + blk_rq_sectors(rq) == bio->bi_iter.bi_sector) 947 return ELEVATOR_BACK_MERGE; 948 else if (blk_rq_pos(rq) - bio_sectors(bio) == bio->bi_iter.bi_sector) 949 return ELEVATOR_FRONT_MERGE; 950 return ELEVATOR_NO_MERGE; 951 } 952 953 static void blk_account_io_merge_bio(struct request *req) 954 { 955 if (!blk_do_io_stat(req)) 956 return; 957 958 part_stat_lock(); 959 part_stat_inc(req->part, merges[op_stat_group(req_op(req))]); 960 part_stat_unlock(); 961 } 962 963 enum bio_merge_status { 964 BIO_MERGE_OK, 965 BIO_MERGE_NONE, 966 BIO_MERGE_FAILED, 967 }; 968 969 static enum bio_merge_status bio_attempt_back_merge(struct request *req, 970 struct bio *bio, unsigned int nr_segs) 971 { 972 const int ff = bio->bi_opf & REQ_FAILFAST_MASK; 973 974 if (!ll_back_merge_fn(req, bio, nr_segs)) 975 return BIO_MERGE_FAILED; 976 977 trace_block_bio_backmerge(bio); 978 rq_qos_merge(req->q, req, bio); 979 980 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff) 981 blk_rq_set_mixed_merge(req); 982 983 req->biotail->bi_next = bio; 984 req->biotail = bio; 985 req->__data_len += bio->bi_iter.bi_size; 986 987 bio_crypt_free_ctx(bio); 988 989 blk_account_io_merge_bio(req); 990 return BIO_MERGE_OK; 991 } 992 993 static enum bio_merge_status bio_attempt_front_merge(struct request *req, 994 struct bio *bio, unsigned int nr_segs) 995 { 996 const int ff = bio->bi_opf & REQ_FAILFAST_MASK; 997 998 if (!ll_front_merge_fn(req, bio, nr_segs)) 999 return BIO_MERGE_FAILED; 1000 1001 trace_block_bio_frontmerge(bio); 1002 rq_qos_merge(req->q, req, bio); 1003 1004 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff) 1005 blk_rq_set_mixed_merge(req); 1006 1007 bio->bi_next = req->bio; 1008 req->bio = bio; 1009 1010 req->__sector = bio->bi_iter.bi_sector; 1011 req->__data_len += bio->bi_iter.bi_size; 1012 1013 bio_crypt_do_front_merge(req, bio); 1014 1015 blk_account_io_merge_bio(req); 1016 return BIO_MERGE_OK; 1017 } 1018 1019 static enum bio_merge_status bio_attempt_discard_merge(struct request_queue *q, 1020 struct request *req, struct bio *bio) 1021 { 1022 unsigned short segments = blk_rq_nr_discard_segments(req); 1023 1024 if (segments >= queue_max_discard_segments(q)) 1025 goto no_merge; 1026 if (blk_rq_sectors(req) + bio_sectors(bio) > 1027 blk_rq_get_max_sectors(req, blk_rq_pos(req))) 1028 goto no_merge; 1029 1030 rq_qos_merge(q, req, bio); 1031 1032 req->biotail->bi_next = bio; 1033 req->biotail = bio; 1034 req->__data_len += bio->bi_iter.bi_size; 1035 req->nr_phys_segments = segments + 1; 1036 1037 blk_account_io_merge_bio(req); 1038 return BIO_MERGE_OK; 1039 no_merge: 1040 req_set_nomerge(q, req); 1041 return BIO_MERGE_FAILED; 1042 } 1043 1044 static enum bio_merge_status blk_attempt_bio_merge(struct request_queue *q, 1045 struct request *rq, 1046 struct bio *bio, 1047 unsigned int nr_segs, 1048 bool sched_allow_merge) 1049 { 1050 if (!blk_rq_merge_ok(rq, bio)) 1051 return BIO_MERGE_NONE; 1052 1053 switch (blk_try_merge(rq, bio)) { 1054 case ELEVATOR_BACK_MERGE: 1055 if (!sched_allow_merge || blk_mq_sched_allow_merge(q, rq, bio)) 1056 return bio_attempt_back_merge(rq, bio, nr_segs); 1057 break; 1058 case ELEVATOR_FRONT_MERGE: 1059 if (!sched_allow_merge || blk_mq_sched_allow_merge(q, rq, bio)) 1060 return bio_attempt_front_merge(rq, bio, nr_segs); 1061 break; 1062 case ELEVATOR_DISCARD_MERGE: 1063 return bio_attempt_discard_merge(q, rq, bio); 1064 default: 1065 return BIO_MERGE_NONE; 1066 } 1067 1068 return BIO_MERGE_FAILED; 1069 } 1070 1071 /** 1072 * blk_attempt_plug_merge - try to merge with %current's plugged list 1073 * @q: request_queue new bio is being queued at 1074 * @bio: new bio being queued 1075 * @nr_segs: number of segments in @bio 1076 * from the passed in @q already in the plug list 1077 * 1078 * Determine whether @bio being queued on @q can be merged with the previous 1079 * request on %current's plugged list. Returns %true if merge was successful, 1080 * otherwise %false. 1081 * 1082 * Plugging coalesces IOs from the same issuer for the same purpose without 1083 * going through @q->queue_lock. As such it's more of an issuing mechanism 1084 * than scheduling, and the request, while may have elvpriv data, is not 1085 * added on the elevator at this point. In addition, we don't have 1086 * reliable access to the elevator outside queue lock. Only check basic 1087 * merging parameters without querying the elevator. 1088 * 1089 * Caller must ensure !blk_queue_nomerges(q) beforehand. 1090 */ 1091 bool blk_attempt_plug_merge(struct request_queue *q, struct bio *bio, 1092 unsigned int nr_segs) 1093 { 1094 struct blk_plug *plug; 1095 struct request *rq; 1096 1097 plug = blk_mq_plug(q, bio); 1098 if (!plug || rq_list_empty(plug->mq_list)) 1099 return false; 1100 1101 rq_list_for_each(&plug->mq_list, rq) { 1102 if (rq->q == q) { 1103 if (blk_attempt_bio_merge(q, rq, bio, nr_segs, false) == 1104 BIO_MERGE_OK) 1105 return true; 1106 break; 1107 } 1108 1109 /* 1110 * Only keep iterating plug list for merges if we have multiple 1111 * queues 1112 */ 1113 if (!plug->multiple_queues) 1114 break; 1115 } 1116 return false; 1117 } 1118 1119 /* 1120 * Iterate list of requests and see if we can merge this bio with any 1121 * of them. 1122 */ 1123 bool blk_bio_list_merge(struct request_queue *q, struct list_head *list, 1124 struct bio *bio, unsigned int nr_segs) 1125 { 1126 struct request *rq; 1127 int checked = 8; 1128 1129 list_for_each_entry_reverse(rq, list, queuelist) { 1130 if (!checked--) 1131 break; 1132 1133 switch (blk_attempt_bio_merge(q, rq, bio, nr_segs, true)) { 1134 case BIO_MERGE_NONE: 1135 continue; 1136 case BIO_MERGE_OK: 1137 return true; 1138 case BIO_MERGE_FAILED: 1139 return false; 1140 } 1141 1142 } 1143 1144 return false; 1145 } 1146 EXPORT_SYMBOL_GPL(blk_bio_list_merge); 1147 1148 bool blk_mq_sched_try_merge(struct request_queue *q, struct bio *bio, 1149 unsigned int nr_segs, struct request **merged_request) 1150 { 1151 struct request *rq; 1152 1153 switch (elv_merge(q, &rq, bio)) { 1154 case ELEVATOR_BACK_MERGE: 1155 if (!blk_mq_sched_allow_merge(q, rq, bio)) 1156 return false; 1157 if (bio_attempt_back_merge(rq, bio, nr_segs) != BIO_MERGE_OK) 1158 return false; 1159 *merged_request = attempt_back_merge(q, rq); 1160 if (!*merged_request) 1161 elv_merged_request(q, rq, ELEVATOR_BACK_MERGE); 1162 return true; 1163 case ELEVATOR_FRONT_MERGE: 1164 if (!blk_mq_sched_allow_merge(q, rq, bio)) 1165 return false; 1166 if (bio_attempt_front_merge(rq, bio, nr_segs) != BIO_MERGE_OK) 1167 return false; 1168 *merged_request = attempt_front_merge(q, rq); 1169 if (!*merged_request) 1170 elv_merged_request(q, rq, ELEVATOR_FRONT_MERGE); 1171 return true; 1172 case ELEVATOR_DISCARD_MERGE: 1173 return bio_attempt_discard_merge(q, rq, bio) == BIO_MERGE_OK; 1174 default: 1175 return false; 1176 } 1177 } 1178 EXPORT_SYMBOL_GPL(blk_mq_sched_try_merge); 1179