xref: /linux/block/blk-merge.c (revision baaa68a9796ef2cadfe5caaf4c730412eda0f31c)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Functions related to segment and merge handling
4  */
5 #include <linux/kernel.h>
6 #include <linux/module.h>
7 #include <linux/bio.h>
8 #include <linux/blkdev.h>
9 #include <linux/blk-integrity.h>
10 #include <linux/scatterlist.h>
11 #include <linux/part_stat.h>
12 #include <linux/blk-cgroup.h>
13 
14 #include <trace/events/block.h>
15 
16 #include "blk.h"
17 #include "blk-mq-sched.h"
18 #include "blk-rq-qos.h"
19 #include "blk-throttle.h"
20 
21 static inline void bio_get_first_bvec(struct bio *bio, struct bio_vec *bv)
22 {
23 	*bv = mp_bvec_iter_bvec(bio->bi_io_vec, bio->bi_iter);
24 }
25 
26 static inline void bio_get_last_bvec(struct bio *bio, struct bio_vec *bv)
27 {
28 	struct bvec_iter iter = bio->bi_iter;
29 	int idx;
30 
31 	bio_get_first_bvec(bio, bv);
32 	if (bv->bv_len == bio->bi_iter.bi_size)
33 		return;		/* this bio only has a single bvec */
34 
35 	bio_advance_iter(bio, &iter, iter.bi_size);
36 
37 	if (!iter.bi_bvec_done)
38 		idx = iter.bi_idx - 1;
39 	else	/* in the middle of bvec */
40 		idx = iter.bi_idx;
41 
42 	*bv = bio->bi_io_vec[idx];
43 
44 	/*
45 	 * iter.bi_bvec_done records actual length of the last bvec
46 	 * if this bio ends in the middle of one io vector
47 	 */
48 	if (iter.bi_bvec_done)
49 		bv->bv_len = iter.bi_bvec_done;
50 }
51 
52 static inline bool bio_will_gap(struct request_queue *q,
53 		struct request *prev_rq, struct bio *prev, struct bio *next)
54 {
55 	struct bio_vec pb, nb;
56 
57 	if (!bio_has_data(prev) || !queue_virt_boundary(q))
58 		return false;
59 
60 	/*
61 	 * Don't merge if the 1st bio starts with non-zero offset, otherwise it
62 	 * is quite difficult to respect the sg gap limit.  We work hard to
63 	 * merge a huge number of small single bios in case of mkfs.
64 	 */
65 	if (prev_rq)
66 		bio_get_first_bvec(prev_rq->bio, &pb);
67 	else
68 		bio_get_first_bvec(prev, &pb);
69 	if (pb.bv_offset & queue_virt_boundary(q))
70 		return true;
71 
72 	/*
73 	 * We don't need to worry about the situation that the merged segment
74 	 * ends in unaligned virt boundary:
75 	 *
76 	 * - if 'pb' ends aligned, the merged segment ends aligned
77 	 * - if 'pb' ends unaligned, the next bio must include
78 	 *   one single bvec of 'nb', otherwise the 'nb' can't
79 	 *   merge with 'pb'
80 	 */
81 	bio_get_last_bvec(prev, &pb);
82 	bio_get_first_bvec(next, &nb);
83 	if (biovec_phys_mergeable(q, &pb, &nb))
84 		return false;
85 	return __bvec_gap_to_prev(q, &pb, nb.bv_offset);
86 }
87 
88 static inline bool req_gap_back_merge(struct request *req, struct bio *bio)
89 {
90 	return bio_will_gap(req->q, req, req->biotail, bio);
91 }
92 
93 static inline bool req_gap_front_merge(struct request *req, struct bio *bio)
94 {
95 	return bio_will_gap(req->q, NULL, bio, req->bio);
96 }
97 
98 static struct bio *blk_bio_discard_split(struct request_queue *q,
99 					 struct bio *bio,
100 					 struct bio_set *bs,
101 					 unsigned *nsegs)
102 {
103 	unsigned int max_discard_sectors, granularity;
104 	int alignment;
105 	sector_t tmp;
106 	unsigned split_sectors;
107 
108 	*nsegs = 1;
109 
110 	/* Zero-sector (unknown) and one-sector granularities are the same.  */
111 	granularity = max(q->limits.discard_granularity >> 9, 1U);
112 
113 	max_discard_sectors = min(q->limits.max_discard_sectors,
114 			bio_allowed_max_sectors(q));
115 	max_discard_sectors -= max_discard_sectors % granularity;
116 
117 	if (unlikely(!max_discard_sectors)) {
118 		/* XXX: warn */
119 		return NULL;
120 	}
121 
122 	if (bio_sectors(bio) <= max_discard_sectors)
123 		return NULL;
124 
125 	split_sectors = max_discard_sectors;
126 
127 	/*
128 	 * If the next starting sector would be misaligned, stop the discard at
129 	 * the previous aligned sector.
130 	 */
131 	alignment = (q->limits.discard_alignment >> 9) % granularity;
132 
133 	tmp = bio->bi_iter.bi_sector + split_sectors - alignment;
134 	tmp = sector_div(tmp, granularity);
135 
136 	if (split_sectors > tmp)
137 		split_sectors -= tmp;
138 
139 	return bio_split(bio, split_sectors, GFP_NOIO, bs);
140 }
141 
142 static struct bio *blk_bio_write_zeroes_split(struct request_queue *q,
143 		struct bio *bio, struct bio_set *bs, unsigned *nsegs)
144 {
145 	*nsegs = 0;
146 
147 	if (!q->limits.max_write_zeroes_sectors)
148 		return NULL;
149 
150 	if (bio_sectors(bio) <= q->limits.max_write_zeroes_sectors)
151 		return NULL;
152 
153 	return bio_split(bio, q->limits.max_write_zeroes_sectors, GFP_NOIO, bs);
154 }
155 
156 static struct bio *blk_bio_write_same_split(struct request_queue *q,
157 					    struct bio *bio,
158 					    struct bio_set *bs,
159 					    unsigned *nsegs)
160 {
161 	*nsegs = 1;
162 
163 	if (!q->limits.max_write_same_sectors)
164 		return NULL;
165 
166 	if (bio_sectors(bio) <= q->limits.max_write_same_sectors)
167 		return NULL;
168 
169 	return bio_split(bio, q->limits.max_write_same_sectors, GFP_NOIO, bs);
170 }
171 
172 /*
173  * Return the maximum number of sectors from the start of a bio that may be
174  * submitted as a single request to a block device. If enough sectors remain,
175  * align the end to the physical block size. Otherwise align the end to the
176  * logical block size. This approach minimizes the number of non-aligned
177  * requests that are submitted to a block device if the start of a bio is not
178  * aligned to a physical block boundary.
179  */
180 static inline unsigned get_max_io_size(struct request_queue *q,
181 				       struct bio *bio)
182 {
183 	unsigned sectors = blk_max_size_offset(q, bio->bi_iter.bi_sector, 0);
184 	unsigned max_sectors = sectors;
185 	unsigned pbs = queue_physical_block_size(q) >> SECTOR_SHIFT;
186 	unsigned lbs = queue_logical_block_size(q) >> SECTOR_SHIFT;
187 	unsigned start_offset = bio->bi_iter.bi_sector & (pbs - 1);
188 
189 	max_sectors += start_offset;
190 	max_sectors &= ~(pbs - 1);
191 	if (max_sectors > start_offset)
192 		return max_sectors - start_offset;
193 
194 	return sectors & ~(lbs - 1);
195 }
196 
197 static inline unsigned get_max_segment_size(const struct request_queue *q,
198 					    struct page *start_page,
199 					    unsigned long offset)
200 {
201 	unsigned long mask = queue_segment_boundary(q);
202 
203 	offset = mask & (page_to_phys(start_page) + offset);
204 
205 	/*
206 	 * overflow may be triggered in case of zero page physical address
207 	 * on 32bit arch, use queue's max segment size when that happens.
208 	 */
209 	return min_not_zero(mask - offset + 1,
210 			(unsigned long)queue_max_segment_size(q));
211 }
212 
213 /**
214  * bvec_split_segs - verify whether or not a bvec should be split in the middle
215  * @q:        [in] request queue associated with the bio associated with @bv
216  * @bv:       [in] bvec to examine
217  * @nsegs:    [in,out] Number of segments in the bio being built. Incremented
218  *            by the number of segments from @bv that may be appended to that
219  *            bio without exceeding @max_segs
220  * @sectors:  [in,out] Number of sectors in the bio being built. Incremented
221  *            by the number of sectors from @bv that may be appended to that
222  *            bio without exceeding @max_sectors
223  * @max_segs: [in] upper bound for *@nsegs
224  * @max_sectors: [in] upper bound for *@sectors
225  *
226  * When splitting a bio, it can happen that a bvec is encountered that is too
227  * big to fit in a single segment and hence that it has to be split in the
228  * middle. This function verifies whether or not that should happen. The value
229  * %true is returned if and only if appending the entire @bv to a bio with
230  * *@nsegs segments and *@sectors sectors would make that bio unacceptable for
231  * the block driver.
232  */
233 static bool bvec_split_segs(const struct request_queue *q,
234 			    const struct bio_vec *bv, unsigned *nsegs,
235 			    unsigned *sectors, unsigned max_segs,
236 			    unsigned max_sectors)
237 {
238 	unsigned max_len = (min(max_sectors, UINT_MAX >> 9) - *sectors) << 9;
239 	unsigned len = min(bv->bv_len, max_len);
240 	unsigned total_len = 0;
241 	unsigned seg_size = 0;
242 
243 	while (len && *nsegs < max_segs) {
244 		seg_size = get_max_segment_size(q, bv->bv_page,
245 						bv->bv_offset + total_len);
246 		seg_size = min(seg_size, len);
247 
248 		(*nsegs)++;
249 		total_len += seg_size;
250 		len -= seg_size;
251 
252 		if ((bv->bv_offset + total_len) & queue_virt_boundary(q))
253 			break;
254 	}
255 
256 	*sectors += total_len >> 9;
257 
258 	/* tell the caller to split the bvec if it is too big to fit */
259 	return len > 0 || bv->bv_len > max_len;
260 }
261 
262 /**
263  * blk_bio_segment_split - split a bio in two bios
264  * @q:    [in] request queue pointer
265  * @bio:  [in] bio to be split
266  * @bs:	  [in] bio set to allocate the clone from
267  * @segs: [out] number of segments in the bio with the first half of the sectors
268  *
269  * Clone @bio, update the bi_iter of the clone to represent the first sectors
270  * of @bio and update @bio->bi_iter to represent the remaining sectors. The
271  * following is guaranteed for the cloned bio:
272  * - That it has at most get_max_io_size(@q, @bio) sectors.
273  * - That it has at most queue_max_segments(@q) segments.
274  *
275  * Except for discard requests the cloned bio will point at the bi_io_vec of
276  * the original bio. It is the responsibility of the caller to ensure that the
277  * original bio is not freed before the cloned bio. The caller is also
278  * responsible for ensuring that @bs is only destroyed after processing of the
279  * split bio has finished.
280  */
281 static struct bio *blk_bio_segment_split(struct request_queue *q,
282 					 struct bio *bio,
283 					 struct bio_set *bs,
284 					 unsigned *segs)
285 {
286 	struct bio_vec bv, bvprv, *bvprvp = NULL;
287 	struct bvec_iter iter;
288 	unsigned nsegs = 0, sectors = 0;
289 	const unsigned max_sectors = get_max_io_size(q, bio);
290 	const unsigned max_segs = queue_max_segments(q);
291 
292 	bio_for_each_bvec(bv, bio, iter) {
293 		/*
294 		 * If the queue doesn't support SG gaps and adding this
295 		 * offset would create a gap, disallow it.
296 		 */
297 		if (bvprvp && bvec_gap_to_prev(q, bvprvp, bv.bv_offset))
298 			goto split;
299 
300 		if (nsegs < max_segs &&
301 		    sectors + (bv.bv_len >> 9) <= max_sectors &&
302 		    bv.bv_offset + bv.bv_len <= PAGE_SIZE) {
303 			nsegs++;
304 			sectors += bv.bv_len >> 9;
305 		} else if (bvec_split_segs(q, &bv, &nsegs, &sectors, max_segs,
306 					 max_sectors)) {
307 			goto split;
308 		}
309 
310 		bvprv = bv;
311 		bvprvp = &bvprv;
312 	}
313 
314 	*segs = nsegs;
315 	return NULL;
316 split:
317 	*segs = nsegs;
318 
319 	/*
320 	 * Bio splitting may cause subtle trouble such as hang when doing sync
321 	 * iopoll in direct IO routine. Given performance gain of iopoll for
322 	 * big IO can be trival, disable iopoll when split needed.
323 	 */
324 	bio_clear_polled(bio);
325 	return bio_split(bio, sectors, GFP_NOIO, bs);
326 }
327 
328 /**
329  * __blk_queue_split - split a bio and submit the second half
330  * @q:       [in] request_queue new bio is being queued at
331  * @bio:     [in, out] bio to be split
332  * @nr_segs: [out] number of segments in the first bio
333  *
334  * Split a bio into two bios, chain the two bios, submit the second half and
335  * store a pointer to the first half in *@bio. If the second bio is still too
336  * big it will be split by a recursive call to this function. Since this
337  * function may allocate a new bio from q->bio_split, it is the responsibility
338  * of the caller to ensure that q->bio_split is only released after processing
339  * of the split bio has finished.
340  */
341 void __blk_queue_split(struct request_queue *q, struct bio **bio,
342 		       unsigned int *nr_segs)
343 {
344 	struct bio *split = NULL;
345 
346 	switch (bio_op(*bio)) {
347 	case REQ_OP_DISCARD:
348 	case REQ_OP_SECURE_ERASE:
349 		split = blk_bio_discard_split(q, *bio, &q->bio_split, nr_segs);
350 		break;
351 	case REQ_OP_WRITE_ZEROES:
352 		split = blk_bio_write_zeroes_split(q, *bio, &q->bio_split,
353 				nr_segs);
354 		break;
355 	case REQ_OP_WRITE_SAME:
356 		split = blk_bio_write_same_split(q, *bio, &q->bio_split,
357 				nr_segs);
358 		break;
359 	default:
360 		split = blk_bio_segment_split(q, *bio, &q->bio_split, nr_segs);
361 		break;
362 	}
363 
364 	if (split) {
365 		/* there isn't chance to merge the splitted bio */
366 		split->bi_opf |= REQ_NOMERGE;
367 
368 		bio_chain(split, *bio);
369 		trace_block_split(split, (*bio)->bi_iter.bi_sector);
370 		submit_bio_noacct(*bio);
371 		*bio = split;
372 	}
373 }
374 
375 /**
376  * blk_queue_split - split a bio and submit the second half
377  * @bio: [in, out] bio to be split
378  *
379  * Split a bio into two bios, chains the two bios, submit the second half and
380  * store a pointer to the first half in *@bio. Since this function may allocate
381  * a new bio from q->bio_split, it is the responsibility of the caller to ensure
382  * that q->bio_split is only released after processing of the split bio has
383  * finished.
384  */
385 void blk_queue_split(struct bio **bio)
386 {
387 	struct request_queue *q = bdev_get_queue((*bio)->bi_bdev);
388 	unsigned int nr_segs;
389 
390 	if (blk_may_split(q, *bio))
391 		__blk_queue_split(q, bio, &nr_segs);
392 }
393 EXPORT_SYMBOL(blk_queue_split);
394 
395 unsigned int blk_recalc_rq_segments(struct request *rq)
396 {
397 	unsigned int nr_phys_segs = 0;
398 	unsigned int nr_sectors = 0;
399 	struct req_iterator iter;
400 	struct bio_vec bv;
401 
402 	if (!rq->bio)
403 		return 0;
404 
405 	switch (bio_op(rq->bio)) {
406 	case REQ_OP_DISCARD:
407 	case REQ_OP_SECURE_ERASE:
408 		if (queue_max_discard_segments(rq->q) > 1) {
409 			struct bio *bio = rq->bio;
410 
411 			for_each_bio(bio)
412 				nr_phys_segs++;
413 			return nr_phys_segs;
414 		}
415 		return 1;
416 	case REQ_OP_WRITE_ZEROES:
417 		return 0;
418 	case REQ_OP_WRITE_SAME:
419 		return 1;
420 	}
421 
422 	rq_for_each_bvec(bv, rq, iter)
423 		bvec_split_segs(rq->q, &bv, &nr_phys_segs, &nr_sectors,
424 				UINT_MAX, UINT_MAX);
425 	return nr_phys_segs;
426 }
427 
428 static inline struct scatterlist *blk_next_sg(struct scatterlist **sg,
429 		struct scatterlist *sglist)
430 {
431 	if (!*sg)
432 		return sglist;
433 
434 	/*
435 	 * If the driver previously mapped a shorter list, we could see a
436 	 * termination bit prematurely unless it fully inits the sg table
437 	 * on each mapping. We KNOW that there must be more entries here
438 	 * or the driver would be buggy, so force clear the termination bit
439 	 * to avoid doing a full sg_init_table() in drivers for each command.
440 	 */
441 	sg_unmark_end(*sg);
442 	return sg_next(*sg);
443 }
444 
445 static unsigned blk_bvec_map_sg(struct request_queue *q,
446 		struct bio_vec *bvec, struct scatterlist *sglist,
447 		struct scatterlist **sg)
448 {
449 	unsigned nbytes = bvec->bv_len;
450 	unsigned nsegs = 0, total = 0;
451 
452 	while (nbytes > 0) {
453 		unsigned offset = bvec->bv_offset + total;
454 		unsigned len = min(get_max_segment_size(q, bvec->bv_page,
455 					offset), nbytes);
456 		struct page *page = bvec->bv_page;
457 
458 		/*
459 		 * Unfortunately a fair number of drivers barf on scatterlists
460 		 * that have an offset larger than PAGE_SIZE, despite other
461 		 * subsystems dealing with that invariant just fine.  For now
462 		 * stick to the legacy format where we never present those from
463 		 * the block layer, but the code below should be removed once
464 		 * these offenders (mostly MMC/SD drivers) are fixed.
465 		 */
466 		page += (offset >> PAGE_SHIFT);
467 		offset &= ~PAGE_MASK;
468 
469 		*sg = blk_next_sg(sg, sglist);
470 		sg_set_page(*sg, page, len, offset);
471 
472 		total += len;
473 		nbytes -= len;
474 		nsegs++;
475 	}
476 
477 	return nsegs;
478 }
479 
480 static inline int __blk_bvec_map_sg(struct bio_vec bv,
481 		struct scatterlist *sglist, struct scatterlist **sg)
482 {
483 	*sg = blk_next_sg(sg, sglist);
484 	sg_set_page(*sg, bv.bv_page, bv.bv_len, bv.bv_offset);
485 	return 1;
486 }
487 
488 /* only try to merge bvecs into one sg if they are from two bios */
489 static inline bool
490 __blk_segment_map_sg_merge(struct request_queue *q, struct bio_vec *bvec,
491 			   struct bio_vec *bvprv, struct scatterlist **sg)
492 {
493 
494 	int nbytes = bvec->bv_len;
495 
496 	if (!*sg)
497 		return false;
498 
499 	if ((*sg)->length + nbytes > queue_max_segment_size(q))
500 		return false;
501 
502 	if (!biovec_phys_mergeable(q, bvprv, bvec))
503 		return false;
504 
505 	(*sg)->length += nbytes;
506 
507 	return true;
508 }
509 
510 static int __blk_bios_map_sg(struct request_queue *q, struct bio *bio,
511 			     struct scatterlist *sglist,
512 			     struct scatterlist **sg)
513 {
514 	struct bio_vec bvec, bvprv = { NULL };
515 	struct bvec_iter iter;
516 	int nsegs = 0;
517 	bool new_bio = false;
518 
519 	for_each_bio(bio) {
520 		bio_for_each_bvec(bvec, bio, iter) {
521 			/*
522 			 * Only try to merge bvecs from two bios given we
523 			 * have done bio internal merge when adding pages
524 			 * to bio
525 			 */
526 			if (new_bio &&
527 			    __blk_segment_map_sg_merge(q, &bvec, &bvprv, sg))
528 				goto next_bvec;
529 
530 			if (bvec.bv_offset + bvec.bv_len <= PAGE_SIZE)
531 				nsegs += __blk_bvec_map_sg(bvec, sglist, sg);
532 			else
533 				nsegs += blk_bvec_map_sg(q, &bvec, sglist, sg);
534  next_bvec:
535 			new_bio = false;
536 		}
537 		if (likely(bio->bi_iter.bi_size)) {
538 			bvprv = bvec;
539 			new_bio = true;
540 		}
541 	}
542 
543 	return nsegs;
544 }
545 
546 /*
547  * map a request to scatterlist, return number of sg entries setup. Caller
548  * must make sure sg can hold rq->nr_phys_segments entries
549  */
550 int __blk_rq_map_sg(struct request_queue *q, struct request *rq,
551 		struct scatterlist *sglist, struct scatterlist **last_sg)
552 {
553 	int nsegs = 0;
554 
555 	if (rq->rq_flags & RQF_SPECIAL_PAYLOAD)
556 		nsegs = __blk_bvec_map_sg(rq->special_vec, sglist, last_sg);
557 	else if (rq->bio && bio_op(rq->bio) == REQ_OP_WRITE_SAME)
558 		nsegs = __blk_bvec_map_sg(bio_iovec(rq->bio), sglist, last_sg);
559 	else if (rq->bio)
560 		nsegs = __blk_bios_map_sg(q, rq->bio, sglist, last_sg);
561 
562 	if (*last_sg)
563 		sg_mark_end(*last_sg);
564 
565 	/*
566 	 * Something must have been wrong if the figured number of
567 	 * segment is bigger than number of req's physical segments
568 	 */
569 	WARN_ON(nsegs > blk_rq_nr_phys_segments(rq));
570 
571 	return nsegs;
572 }
573 EXPORT_SYMBOL(__blk_rq_map_sg);
574 
575 static inline unsigned int blk_rq_get_max_segments(struct request *rq)
576 {
577 	if (req_op(rq) == REQ_OP_DISCARD)
578 		return queue_max_discard_segments(rq->q);
579 	return queue_max_segments(rq->q);
580 }
581 
582 static inline unsigned int blk_rq_get_max_sectors(struct request *rq,
583 						  sector_t offset)
584 {
585 	struct request_queue *q = rq->q;
586 
587 	if (blk_rq_is_passthrough(rq))
588 		return q->limits.max_hw_sectors;
589 
590 	if (!q->limits.chunk_sectors ||
591 	    req_op(rq) == REQ_OP_DISCARD ||
592 	    req_op(rq) == REQ_OP_SECURE_ERASE)
593 		return blk_queue_get_max_sectors(q, req_op(rq));
594 
595 	return min(blk_max_size_offset(q, offset, 0),
596 			blk_queue_get_max_sectors(q, req_op(rq)));
597 }
598 
599 static inline int ll_new_hw_segment(struct request *req, struct bio *bio,
600 		unsigned int nr_phys_segs)
601 {
602 	if (!blk_cgroup_mergeable(req, bio))
603 		goto no_merge;
604 
605 	if (blk_integrity_merge_bio(req->q, req, bio) == false)
606 		goto no_merge;
607 
608 	/* discard request merge won't add new segment */
609 	if (req_op(req) == REQ_OP_DISCARD)
610 		return 1;
611 
612 	if (req->nr_phys_segments + nr_phys_segs > blk_rq_get_max_segments(req))
613 		goto no_merge;
614 
615 	/*
616 	 * This will form the start of a new hw segment.  Bump both
617 	 * counters.
618 	 */
619 	req->nr_phys_segments += nr_phys_segs;
620 	return 1;
621 
622 no_merge:
623 	req_set_nomerge(req->q, req);
624 	return 0;
625 }
626 
627 int ll_back_merge_fn(struct request *req, struct bio *bio, unsigned int nr_segs)
628 {
629 	if (req_gap_back_merge(req, bio))
630 		return 0;
631 	if (blk_integrity_rq(req) &&
632 	    integrity_req_gap_back_merge(req, bio))
633 		return 0;
634 	if (!bio_crypt_ctx_back_mergeable(req, bio))
635 		return 0;
636 	if (blk_rq_sectors(req) + bio_sectors(bio) >
637 	    blk_rq_get_max_sectors(req, blk_rq_pos(req))) {
638 		req_set_nomerge(req->q, req);
639 		return 0;
640 	}
641 
642 	return ll_new_hw_segment(req, bio, nr_segs);
643 }
644 
645 static int ll_front_merge_fn(struct request *req, struct bio *bio,
646 		unsigned int nr_segs)
647 {
648 	if (req_gap_front_merge(req, bio))
649 		return 0;
650 	if (blk_integrity_rq(req) &&
651 	    integrity_req_gap_front_merge(req, bio))
652 		return 0;
653 	if (!bio_crypt_ctx_front_mergeable(req, bio))
654 		return 0;
655 	if (blk_rq_sectors(req) + bio_sectors(bio) >
656 	    blk_rq_get_max_sectors(req, bio->bi_iter.bi_sector)) {
657 		req_set_nomerge(req->q, req);
658 		return 0;
659 	}
660 
661 	return ll_new_hw_segment(req, bio, nr_segs);
662 }
663 
664 static bool req_attempt_discard_merge(struct request_queue *q, struct request *req,
665 		struct request *next)
666 {
667 	unsigned short segments = blk_rq_nr_discard_segments(req);
668 
669 	if (segments >= queue_max_discard_segments(q))
670 		goto no_merge;
671 	if (blk_rq_sectors(req) + bio_sectors(next->bio) >
672 	    blk_rq_get_max_sectors(req, blk_rq_pos(req)))
673 		goto no_merge;
674 
675 	req->nr_phys_segments = segments + blk_rq_nr_discard_segments(next);
676 	return true;
677 no_merge:
678 	req_set_nomerge(q, req);
679 	return false;
680 }
681 
682 static int ll_merge_requests_fn(struct request_queue *q, struct request *req,
683 				struct request *next)
684 {
685 	int total_phys_segments;
686 
687 	if (req_gap_back_merge(req, next->bio))
688 		return 0;
689 
690 	/*
691 	 * Will it become too large?
692 	 */
693 	if ((blk_rq_sectors(req) + blk_rq_sectors(next)) >
694 	    blk_rq_get_max_sectors(req, blk_rq_pos(req)))
695 		return 0;
696 
697 	total_phys_segments = req->nr_phys_segments + next->nr_phys_segments;
698 	if (total_phys_segments > blk_rq_get_max_segments(req))
699 		return 0;
700 
701 	if (!blk_cgroup_mergeable(req, next->bio))
702 		return 0;
703 
704 	if (blk_integrity_merge_rq(q, req, next) == false)
705 		return 0;
706 
707 	if (!bio_crypt_ctx_merge_rq(req, next))
708 		return 0;
709 
710 	/* Merge is OK... */
711 	req->nr_phys_segments = total_phys_segments;
712 	return 1;
713 }
714 
715 /**
716  * blk_rq_set_mixed_merge - mark a request as mixed merge
717  * @rq: request to mark as mixed merge
718  *
719  * Description:
720  *     @rq is about to be mixed merged.  Make sure the attributes
721  *     which can be mixed are set in each bio and mark @rq as mixed
722  *     merged.
723  */
724 void blk_rq_set_mixed_merge(struct request *rq)
725 {
726 	unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK;
727 	struct bio *bio;
728 
729 	if (rq->rq_flags & RQF_MIXED_MERGE)
730 		return;
731 
732 	/*
733 	 * @rq will no longer represent mixable attributes for all the
734 	 * contained bios.  It will just track those of the first one.
735 	 * Distributes the attributs to each bio.
736 	 */
737 	for (bio = rq->bio; bio; bio = bio->bi_next) {
738 		WARN_ON_ONCE((bio->bi_opf & REQ_FAILFAST_MASK) &&
739 			     (bio->bi_opf & REQ_FAILFAST_MASK) != ff);
740 		bio->bi_opf |= ff;
741 	}
742 	rq->rq_flags |= RQF_MIXED_MERGE;
743 }
744 
745 static void blk_account_io_merge_request(struct request *req)
746 {
747 	if (blk_do_io_stat(req)) {
748 		part_stat_lock();
749 		part_stat_inc(req->part, merges[op_stat_group(req_op(req))]);
750 		part_stat_unlock();
751 	}
752 }
753 
754 static enum elv_merge blk_try_req_merge(struct request *req,
755 					struct request *next)
756 {
757 	if (blk_discard_mergable(req))
758 		return ELEVATOR_DISCARD_MERGE;
759 	else if (blk_rq_pos(req) + blk_rq_sectors(req) == blk_rq_pos(next))
760 		return ELEVATOR_BACK_MERGE;
761 
762 	return ELEVATOR_NO_MERGE;
763 }
764 
765 static inline bool blk_write_same_mergeable(struct bio *a, struct bio *b)
766 {
767 	if (bio_page(a) == bio_page(b) && bio_offset(a) == bio_offset(b))
768 		return true;
769 	return false;
770 }
771 
772 /*
773  * For non-mq, this has to be called with the request spinlock acquired.
774  * For mq with scheduling, the appropriate queue wide lock should be held.
775  */
776 static struct request *attempt_merge(struct request_queue *q,
777 				     struct request *req, struct request *next)
778 {
779 	if (!rq_mergeable(req) || !rq_mergeable(next))
780 		return NULL;
781 
782 	if (req_op(req) != req_op(next))
783 		return NULL;
784 
785 	if (rq_data_dir(req) != rq_data_dir(next))
786 		return NULL;
787 
788 	if (req_op(req) == REQ_OP_WRITE_SAME &&
789 	    !blk_write_same_mergeable(req->bio, next->bio))
790 		return NULL;
791 
792 	/*
793 	 * Don't allow merge of different write hints, or for a hint with
794 	 * non-hint IO.
795 	 */
796 	if (req->write_hint != next->write_hint)
797 		return NULL;
798 
799 	if (req->ioprio != next->ioprio)
800 		return NULL;
801 
802 	/*
803 	 * If we are allowed to merge, then append bio list
804 	 * from next to rq and release next. merge_requests_fn
805 	 * will have updated segment counts, update sector
806 	 * counts here. Handle DISCARDs separately, as they
807 	 * have separate settings.
808 	 */
809 
810 	switch (blk_try_req_merge(req, next)) {
811 	case ELEVATOR_DISCARD_MERGE:
812 		if (!req_attempt_discard_merge(q, req, next))
813 			return NULL;
814 		break;
815 	case ELEVATOR_BACK_MERGE:
816 		if (!ll_merge_requests_fn(q, req, next))
817 			return NULL;
818 		break;
819 	default:
820 		return NULL;
821 	}
822 
823 	/*
824 	 * If failfast settings disagree or any of the two is already
825 	 * a mixed merge, mark both as mixed before proceeding.  This
826 	 * makes sure that all involved bios have mixable attributes
827 	 * set properly.
828 	 */
829 	if (((req->rq_flags | next->rq_flags) & RQF_MIXED_MERGE) ||
830 	    (req->cmd_flags & REQ_FAILFAST_MASK) !=
831 	    (next->cmd_flags & REQ_FAILFAST_MASK)) {
832 		blk_rq_set_mixed_merge(req);
833 		blk_rq_set_mixed_merge(next);
834 	}
835 
836 	/*
837 	 * At this point we have either done a back merge or front merge. We
838 	 * need the smaller start_time_ns of the merged requests to be the
839 	 * current request for accounting purposes.
840 	 */
841 	if (next->start_time_ns < req->start_time_ns)
842 		req->start_time_ns = next->start_time_ns;
843 
844 	req->biotail->bi_next = next->bio;
845 	req->biotail = next->biotail;
846 
847 	req->__data_len += blk_rq_bytes(next);
848 
849 	if (!blk_discard_mergable(req))
850 		elv_merge_requests(q, req, next);
851 
852 	/*
853 	 * 'next' is going away, so update stats accordingly
854 	 */
855 	blk_account_io_merge_request(next);
856 
857 	trace_block_rq_merge(next);
858 
859 	/*
860 	 * ownership of bio passed from next to req, return 'next' for
861 	 * the caller to free
862 	 */
863 	next->bio = NULL;
864 	return next;
865 }
866 
867 static struct request *attempt_back_merge(struct request_queue *q,
868 		struct request *rq)
869 {
870 	struct request *next = elv_latter_request(q, rq);
871 
872 	if (next)
873 		return attempt_merge(q, rq, next);
874 
875 	return NULL;
876 }
877 
878 static struct request *attempt_front_merge(struct request_queue *q,
879 		struct request *rq)
880 {
881 	struct request *prev = elv_former_request(q, rq);
882 
883 	if (prev)
884 		return attempt_merge(q, prev, rq);
885 
886 	return NULL;
887 }
888 
889 /*
890  * Try to merge 'next' into 'rq'. Return true if the merge happened, false
891  * otherwise. The caller is responsible for freeing 'next' if the merge
892  * happened.
893  */
894 bool blk_attempt_req_merge(struct request_queue *q, struct request *rq,
895 			   struct request *next)
896 {
897 	return attempt_merge(q, rq, next);
898 }
899 
900 bool blk_rq_merge_ok(struct request *rq, struct bio *bio)
901 {
902 	if (!rq_mergeable(rq) || !bio_mergeable(bio))
903 		return false;
904 
905 	if (req_op(rq) != bio_op(bio))
906 		return false;
907 
908 	/* different data direction or already started, don't merge */
909 	if (bio_data_dir(bio) != rq_data_dir(rq))
910 		return false;
911 
912 	/* don't merge across cgroup boundaries */
913 	if (!blk_cgroup_mergeable(rq, bio))
914 		return false;
915 
916 	/* only merge integrity protected bio into ditto rq */
917 	if (blk_integrity_merge_bio(rq->q, rq, bio) == false)
918 		return false;
919 
920 	/* Only merge if the crypt contexts are compatible */
921 	if (!bio_crypt_rq_ctx_compatible(rq, bio))
922 		return false;
923 
924 	/* must be using the same buffer */
925 	if (req_op(rq) == REQ_OP_WRITE_SAME &&
926 	    !blk_write_same_mergeable(rq->bio, bio))
927 		return false;
928 
929 	/*
930 	 * Don't allow merge of different write hints, or for a hint with
931 	 * non-hint IO.
932 	 */
933 	if (rq->write_hint != bio->bi_write_hint)
934 		return false;
935 
936 	if (rq->ioprio != bio_prio(bio))
937 		return false;
938 
939 	return true;
940 }
941 
942 enum elv_merge blk_try_merge(struct request *rq, struct bio *bio)
943 {
944 	if (blk_discard_mergable(rq))
945 		return ELEVATOR_DISCARD_MERGE;
946 	else if (blk_rq_pos(rq) + blk_rq_sectors(rq) == bio->bi_iter.bi_sector)
947 		return ELEVATOR_BACK_MERGE;
948 	else if (blk_rq_pos(rq) - bio_sectors(bio) == bio->bi_iter.bi_sector)
949 		return ELEVATOR_FRONT_MERGE;
950 	return ELEVATOR_NO_MERGE;
951 }
952 
953 static void blk_account_io_merge_bio(struct request *req)
954 {
955 	if (!blk_do_io_stat(req))
956 		return;
957 
958 	part_stat_lock();
959 	part_stat_inc(req->part, merges[op_stat_group(req_op(req))]);
960 	part_stat_unlock();
961 }
962 
963 enum bio_merge_status {
964 	BIO_MERGE_OK,
965 	BIO_MERGE_NONE,
966 	BIO_MERGE_FAILED,
967 };
968 
969 static enum bio_merge_status bio_attempt_back_merge(struct request *req,
970 		struct bio *bio, unsigned int nr_segs)
971 {
972 	const int ff = bio->bi_opf & REQ_FAILFAST_MASK;
973 
974 	if (!ll_back_merge_fn(req, bio, nr_segs))
975 		return BIO_MERGE_FAILED;
976 
977 	trace_block_bio_backmerge(bio);
978 	rq_qos_merge(req->q, req, bio);
979 
980 	if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
981 		blk_rq_set_mixed_merge(req);
982 
983 	req->biotail->bi_next = bio;
984 	req->biotail = bio;
985 	req->__data_len += bio->bi_iter.bi_size;
986 
987 	bio_crypt_free_ctx(bio);
988 
989 	blk_account_io_merge_bio(req);
990 	return BIO_MERGE_OK;
991 }
992 
993 static enum bio_merge_status bio_attempt_front_merge(struct request *req,
994 		struct bio *bio, unsigned int nr_segs)
995 {
996 	const int ff = bio->bi_opf & REQ_FAILFAST_MASK;
997 
998 	if (!ll_front_merge_fn(req, bio, nr_segs))
999 		return BIO_MERGE_FAILED;
1000 
1001 	trace_block_bio_frontmerge(bio);
1002 	rq_qos_merge(req->q, req, bio);
1003 
1004 	if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1005 		blk_rq_set_mixed_merge(req);
1006 
1007 	bio->bi_next = req->bio;
1008 	req->bio = bio;
1009 
1010 	req->__sector = bio->bi_iter.bi_sector;
1011 	req->__data_len += bio->bi_iter.bi_size;
1012 
1013 	bio_crypt_do_front_merge(req, bio);
1014 
1015 	blk_account_io_merge_bio(req);
1016 	return BIO_MERGE_OK;
1017 }
1018 
1019 static enum bio_merge_status bio_attempt_discard_merge(struct request_queue *q,
1020 		struct request *req, struct bio *bio)
1021 {
1022 	unsigned short segments = blk_rq_nr_discard_segments(req);
1023 
1024 	if (segments >= queue_max_discard_segments(q))
1025 		goto no_merge;
1026 	if (blk_rq_sectors(req) + bio_sectors(bio) >
1027 	    blk_rq_get_max_sectors(req, blk_rq_pos(req)))
1028 		goto no_merge;
1029 
1030 	rq_qos_merge(q, req, bio);
1031 
1032 	req->biotail->bi_next = bio;
1033 	req->biotail = bio;
1034 	req->__data_len += bio->bi_iter.bi_size;
1035 	req->nr_phys_segments = segments + 1;
1036 
1037 	blk_account_io_merge_bio(req);
1038 	return BIO_MERGE_OK;
1039 no_merge:
1040 	req_set_nomerge(q, req);
1041 	return BIO_MERGE_FAILED;
1042 }
1043 
1044 static enum bio_merge_status blk_attempt_bio_merge(struct request_queue *q,
1045 						   struct request *rq,
1046 						   struct bio *bio,
1047 						   unsigned int nr_segs,
1048 						   bool sched_allow_merge)
1049 {
1050 	if (!blk_rq_merge_ok(rq, bio))
1051 		return BIO_MERGE_NONE;
1052 
1053 	switch (blk_try_merge(rq, bio)) {
1054 	case ELEVATOR_BACK_MERGE:
1055 		if (!sched_allow_merge || blk_mq_sched_allow_merge(q, rq, bio))
1056 			return bio_attempt_back_merge(rq, bio, nr_segs);
1057 		break;
1058 	case ELEVATOR_FRONT_MERGE:
1059 		if (!sched_allow_merge || blk_mq_sched_allow_merge(q, rq, bio))
1060 			return bio_attempt_front_merge(rq, bio, nr_segs);
1061 		break;
1062 	case ELEVATOR_DISCARD_MERGE:
1063 		return bio_attempt_discard_merge(q, rq, bio);
1064 	default:
1065 		return BIO_MERGE_NONE;
1066 	}
1067 
1068 	return BIO_MERGE_FAILED;
1069 }
1070 
1071 /**
1072  * blk_attempt_plug_merge - try to merge with %current's plugged list
1073  * @q: request_queue new bio is being queued at
1074  * @bio: new bio being queued
1075  * @nr_segs: number of segments in @bio
1076  * from the passed in @q already in the plug list
1077  *
1078  * Determine whether @bio being queued on @q can be merged with the previous
1079  * request on %current's plugged list.  Returns %true if merge was successful,
1080  * otherwise %false.
1081  *
1082  * Plugging coalesces IOs from the same issuer for the same purpose without
1083  * going through @q->queue_lock.  As such it's more of an issuing mechanism
1084  * than scheduling, and the request, while may have elvpriv data, is not
1085  * added on the elevator at this point.  In addition, we don't have
1086  * reliable access to the elevator outside queue lock.  Only check basic
1087  * merging parameters without querying the elevator.
1088  *
1089  * Caller must ensure !blk_queue_nomerges(q) beforehand.
1090  */
1091 bool blk_attempt_plug_merge(struct request_queue *q, struct bio *bio,
1092 		unsigned int nr_segs)
1093 {
1094 	struct blk_plug *plug;
1095 	struct request *rq;
1096 
1097 	plug = blk_mq_plug(q, bio);
1098 	if (!plug || rq_list_empty(plug->mq_list))
1099 		return false;
1100 
1101 	rq_list_for_each(&plug->mq_list, rq) {
1102 		if (rq->q == q) {
1103 			if (blk_attempt_bio_merge(q, rq, bio, nr_segs, false) ==
1104 			    BIO_MERGE_OK)
1105 				return true;
1106 			break;
1107 		}
1108 
1109 		/*
1110 		 * Only keep iterating plug list for merges if we have multiple
1111 		 * queues
1112 		 */
1113 		if (!plug->multiple_queues)
1114 			break;
1115 	}
1116 	return false;
1117 }
1118 
1119 /*
1120  * Iterate list of requests and see if we can merge this bio with any
1121  * of them.
1122  */
1123 bool blk_bio_list_merge(struct request_queue *q, struct list_head *list,
1124 			struct bio *bio, unsigned int nr_segs)
1125 {
1126 	struct request *rq;
1127 	int checked = 8;
1128 
1129 	list_for_each_entry_reverse(rq, list, queuelist) {
1130 		if (!checked--)
1131 			break;
1132 
1133 		switch (blk_attempt_bio_merge(q, rq, bio, nr_segs, true)) {
1134 		case BIO_MERGE_NONE:
1135 			continue;
1136 		case BIO_MERGE_OK:
1137 			return true;
1138 		case BIO_MERGE_FAILED:
1139 			return false;
1140 		}
1141 
1142 	}
1143 
1144 	return false;
1145 }
1146 EXPORT_SYMBOL_GPL(blk_bio_list_merge);
1147 
1148 bool blk_mq_sched_try_merge(struct request_queue *q, struct bio *bio,
1149 		unsigned int nr_segs, struct request **merged_request)
1150 {
1151 	struct request *rq;
1152 
1153 	switch (elv_merge(q, &rq, bio)) {
1154 	case ELEVATOR_BACK_MERGE:
1155 		if (!blk_mq_sched_allow_merge(q, rq, bio))
1156 			return false;
1157 		if (bio_attempt_back_merge(rq, bio, nr_segs) != BIO_MERGE_OK)
1158 			return false;
1159 		*merged_request = attempt_back_merge(q, rq);
1160 		if (!*merged_request)
1161 			elv_merged_request(q, rq, ELEVATOR_BACK_MERGE);
1162 		return true;
1163 	case ELEVATOR_FRONT_MERGE:
1164 		if (!blk_mq_sched_allow_merge(q, rq, bio))
1165 			return false;
1166 		if (bio_attempt_front_merge(rq, bio, nr_segs) != BIO_MERGE_OK)
1167 			return false;
1168 		*merged_request = attempt_front_merge(q, rq);
1169 		if (!*merged_request)
1170 			elv_merged_request(q, rq, ELEVATOR_FRONT_MERGE);
1171 		return true;
1172 	case ELEVATOR_DISCARD_MERGE:
1173 		return bio_attempt_discard_merge(q, rq, bio) == BIO_MERGE_OK;
1174 	default:
1175 		return false;
1176 	}
1177 }
1178 EXPORT_SYMBOL_GPL(blk_mq_sched_try_merge);
1179