1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Functions related to segment and merge handling 4 */ 5 #include <linux/kernel.h> 6 #include <linux/module.h> 7 #include <linux/bio.h> 8 #include <linux/blkdev.h> 9 #include <linux/blk-integrity.h> 10 #include <linux/scatterlist.h> 11 #include <linux/part_stat.h> 12 #include <linux/blk-cgroup.h> 13 14 #include <trace/events/block.h> 15 16 #include "blk.h" 17 #include "blk-mq-sched.h" 18 #include "blk-rq-qos.h" 19 #include "blk-throttle.h" 20 21 static inline void bio_get_first_bvec(struct bio *bio, struct bio_vec *bv) 22 { 23 *bv = mp_bvec_iter_bvec(bio->bi_io_vec, bio->bi_iter); 24 } 25 26 static inline void bio_get_last_bvec(struct bio *bio, struct bio_vec *bv) 27 { 28 struct bvec_iter iter = bio->bi_iter; 29 int idx; 30 31 bio_get_first_bvec(bio, bv); 32 if (bv->bv_len == bio->bi_iter.bi_size) 33 return; /* this bio only has a single bvec */ 34 35 bio_advance_iter(bio, &iter, iter.bi_size); 36 37 if (!iter.bi_bvec_done) 38 idx = iter.bi_idx - 1; 39 else /* in the middle of bvec */ 40 idx = iter.bi_idx; 41 42 *bv = bio->bi_io_vec[idx]; 43 44 /* 45 * iter.bi_bvec_done records actual length of the last bvec 46 * if this bio ends in the middle of one io vector 47 */ 48 if (iter.bi_bvec_done) 49 bv->bv_len = iter.bi_bvec_done; 50 } 51 52 static inline bool bio_will_gap(struct request_queue *q, 53 struct request *prev_rq, struct bio *prev, struct bio *next) 54 { 55 struct bio_vec pb, nb; 56 57 if (!bio_has_data(prev) || !queue_virt_boundary(q)) 58 return false; 59 60 /* 61 * Don't merge if the 1st bio starts with non-zero offset, otherwise it 62 * is quite difficult to respect the sg gap limit. We work hard to 63 * merge a huge number of small single bios in case of mkfs. 64 */ 65 if (prev_rq) 66 bio_get_first_bvec(prev_rq->bio, &pb); 67 else 68 bio_get_first_bvec(prev, &pb); 69 if (pb.bv_offset & queue_virt_boundary(q)) 70 return true; 71 72 /* 73 * We don't need to worry about the situation that the merged segment 74 * ends in unaligned virt boundary: 75 * 76 * - if 'pb' ends aligned, the merged segment ends aligned 77 * - if 'pb' ends unaligned, the next bio must include 78 * one single bvec of 'nb', otherwise the 'nb' can't 79 * merge with 'pb' 80 */ 81 bio_get_last_bvec(prev, &pb); 82 bio_get_first_bvec(next, &nb); 83 if (biovec_phys_mergeable(q, &pb, &nb)) 84 return false; 85 return __bvec_gap_to_prev(&q->limits, &pb, nb.bv_offset); 86 } 87 88 static inline bool req_gap_back_merge(struct request *req, struct bio *bio) 89 { 90 return bio_will_gap(req->q, req, req->biotail, bio); 91 } 92 93 static inline bool req_gap_front_merge(struct request *req, struct bio *bio) 94 { 95 return bio_will_gap(req->q, NULL, bio, req->bio); 96 } 97 98 /* 99 * The max size one bio can handle is UINT_MAX becasue bvec_iter.bi_size 100 * is defined as 'unsigned int', meantime it has to be aligned to with the 101 * logical block size, which is the minimum accepted unit by hardware. 102 */ 103 static unsigned int bio_allowed_max_sectors(const struct queue_limits *lim) 104 { 105 return round_down(UINT_MAX, lim->logical_block_size) >> SECTOR_SHIFT; 106 } 107 108 static struct bio *bio_submit_split(struct bio *bio, int split_sectors) 109 { 110 if (unlikely(split_sectors < 0)) 111 goto error; 112 113 if (split_sectors) { 114 struct bio *split; 115 116 split = bio_split(bio, split_sectors, GFP_NOIO, 117 &bio->bi_bdev->bd_disk->bio_split); 118 if (IS_ERR(split)) { 119 split_sectors = PTR_ERR(split); 120 goto error; 121 } 122 split->bi_opf |= REQ_NOMERGE; 123 blkcg_bio_issue_init(split); 124 bio_chain(split, bio); 125 trace_block_split(split, bio->bi_iter.bi_sector); 126 WARN_ON_ONCE(bio_zone_write_plugging(bio)); 127 submit_bio_noacct(bio); 128 return split; 129 } 130 131 return bio; 132 error: 133 bio->bi_status = errno_to_blk_status(split_sectors); 134 bio_endio(bio); 135 return NULL; 136 } 137 138 struct bio *bio_split_discard(struct bio *bio, const struct queue_limits *lim, 139 unsigned *nsegs) 140 { 141 unsigned int max_discard_sectors, granularity; 142 sector_t tmp; 143 unsigned split_sectors; 144 145 *nsegs = 1; 146 147 granularity = max(lim->discard_granularity >> 9, 1U); 148 149 max_discard_sectors = 150 min(lim->max_discard_sectors, bio_allowed_max_sectors(lim)); 151 max_discard_sectors -= max_discard_sectors % granularity; 152 if (unlikely(!max_discard_sectors)) 153 return bio; 154 155 if (bio_sectors(bio) <= max_discard_sectors) 156 return bio; 157 158 split_sectors = max_discard_sectors; 159 160 /* 161 * If the next starting sector would be misaligned, stop the discard at 162 * the previous aligned sector. 163 */ 164 tmp = bio->bi_iter.bi_sector + split_sectors - 165 ((lim->discard_alignment >> 9) % granularity); 166 tmp = sector_div(tmp, granularity); 167 168 if (split_sectors > tmp) 169 split_sectors -= tmp; 170 171 return bio_submit_split(bio, split_sectors); 172 } 173 174 static inline unsigned int blk_boundary_sectors(const struct queue_limits *lim, 175 bool is_atomic) 176 { 177 /* 178 * chunk_sectors must be a multiple of atomic_write_boundary_sectors if 179 * both non-zero. 180 */ 181 if (is_atomic && lim->atomic_write_boundary_sectors) 182 return lim->atomic_write_boundary_sectors; 183 184 return lim->chunk_sectors; 185 } 186 187 /* 188 * Return the maximum number of sectors from the start of a bio that may be 189 * submitted as a single request to a block device. If enough sectors remain, 190 * align the end to the physical block size. Otherwise align the end to the 191 * logical block size. This approach minimizes the number of non-aligned 192 * requests that are submitted to a block device if the start of a bio is not 193 * aligned to a physical block boundary. 194 */ 195 static inline unsigned get_max_io_size(struct bio *bio, 196 const struct queue_limits *lim) 197 { 198 unsigned pbs = lim->physical_block_size >> SECTOR_SHIFT; 199 unsigned lbs = lim->logical_block_size >> SECTOR_SHIFT; 200 bool is_atomic = bio->bi_opf & REQ_ATOMIC; 201 unsigned boundary_sectors = blk_boundary_sectors(lim, is_atomic); 202 unsigned max_sectors, start, end; 203 204 /* 205 * We ignore lim->max_sectors for atomic writes because it may less 206 * than the actual bio size, which we cannot tolerate. 207 */ 208 if (bio_op(bio) == REQ_OP_WRITE_ZEROES) 209 max_sectors = lim->max_write_zeroes_sectors; 210 else if (is_atomic) 211 max_sectors = lim->atomic_write_max_sectors; 212 else 213 max_sectors = lim->max_sectors; 214 215 if (boundary_sectors) { 216 max_sectors = min(max_sectors, 217 blk_boundary_sectors_left(bio->bi_iter.bi_sector, 218 boundary_sectors)); 219 } 220 221 start = bio->bi_iter.bi_sector & (pbs - 1); 222 end = (start + max_sectors) & ~(pbs - 1); 223 if (end > start) 224 return end - start; 225 return max_sectors & ~(lbs - 1); 226 } 227 228 /** 229 * get_max_segment_size() - maximum number of bytes to add as a single segment 230 * @lim: Request queue limits. 231 * @paddr: address of the range to add 232 * @len: maximum length available to add at @paddr 233 * 234 * Returns the maximum number of bytes of the range starting at @paddr that can 235 * be added to a single segment. 236 */ 237 static inline unsigned get_max_segment_size(const struct queue_limits *lim, 238 phys_addr_t paddr, unsigned int len) 239 { 240 /* 241 * Prevent an overflow if mask = ULONG_MAX and offset = 0 by adding 1 242 * after having calculated the minimum. 243 */ 244 return min_t(unsigned long, len, 245 min(lim->seg_boundary_mask - (lim->seg_boundary_mask & paddr), 246 (unsigned long)lim->max_segment_size - 1) + 1); 247 } 248 249 /** 250 * bvec_split_segs - verify whether or not a bvec should be split in the middle 251 * @lim: [in] queue limits to split based on 252 * @bv: [in] bvec to examine 253 * @nsegs: [in,out] Number of segments in the bio being built. Incremented 254 * by the number of segments from @bv that may be appended to that 255 * bio without exceeding @max_segs 256 * @bytes: [in,out] Number of bytes in the bio being built. Incremented 257 * by the number of bytes from @bv that may be appended to that 258 * bio without exceeding @max_bytes 259 * @max_segs: [in] upper bound for *@nsegs 260 * @max_bytes: [in] upper bound for *@bytes 261 * 262 * When splitting a bio, it can happen that a bvec is encountered that is too 263 * big to fit in a single segment and hence that it has to be split in the 264 * middle. This function verifies whether or not that should happen. The value 265 * %true is returned if and only if appending the entire @bv to a bio with 266 * *@nsegs segments and *@sectors sectors would make that bio unacceptable for 267 * the block driver. 268 */ 269 static bool bvec_split_segs(const struct queue_limits *lim, 270 const struct bio_vec *bv, unsigned *nsegs, unsigned *bytes, 271 unsigned max_segs, unsigned max_bytes) 272 { 273 unsigned max_len = min(max_bytes, UINT_MAX) - *bytes; 274 unsigned len = min(bv->bv_len, max_len); 275 unsigned total_len = 0; 276 unsigned seg_size = 0; 277 278 while (len && *nsegs < max_segs) { 279 seg_size = get_max_segment_size(lim, bvec_phys(bv) + total_len, len); 280 281 (*nsegs)++; 282 total_len += seg_size; 283 len -= seg_size; 284 285 if ((bv->bv_offset + total_len) & lim->virt_boundary_mask) 286 break; 287 } 288 289 *bytes += total_len; 290 291 /* tell the caller to split the bvec if it is too big to fit */ 292 return len > 0 || bv->bv_len > max_len; 293 } 294 295 static unsigned int bio_split_alignment(struct bio *bio, 296 const struct queue_limits *lim) 297 { 298 if (op_is_write(bio_op(bio)) && lim->zone_write_granularity) 299 return lim->zone_write_granularity; 300 return lim->logical_block_size; 301 } 302 303 /** 304 * bio_split_rw_at - check if and where to split a read/write bio 305 * @bio: [in] bio to be split 306 * @lim: [in] queue limits to split based on 307 * @segs: [out] number of segments in the bio with the first half of the sectors 308 * @max_bytes: [in] maximum number of bytes per bio 309 * 310 * Find out if @bio needs to be split to fit the queue limits in @lim and a 311 * maximum size of @max_bytes. Returns a negative error number if @bio can't be 312 * split, 0 if the bio doesn't have to be split, or a positive sector offset if 313 * @bio needs to be split. 314 */ 315 int bio_split_rw_at(struct bio *bio, const struct queue_limits *lim, 316 unsigned *segs, unsigned max_bytes) 317 { 318 struct bio_vec bv, bvprv, *bvprvp = NULL; 319 struct bvec_iter iter; 320 unsigned nsegs = 0, bytes = 0; 321 322 bio_for_each_bvec(bv, bio, iter) { 323 /* 324 * If the queue doesn't support SG gaps and adding this 325 * offset would create a gap, disallow it. 326 */ 327 if (bvprvp && bvec_gap_to_prev(lim, bvprvp, bv.bv_offset)) 328 goto split; 329 330 if (nsegs < lim->max_segments && 331 bytes + bv.bv_len <= max_bytes && 332 bv.bv_offset + bv.bv_len <= PAGE_SIZE) { 333 nsegs++; 334 bytes += bv.bv_len; 335 } else { 336 if (bvec_split_segs(lim, &bv, &nsegs, &bytes, 337 lim->max_segments, max_bytes)) 338 goto split; 339 } 340 341 bvprv = bv; 342 bvprvp = &bvprv; 343 } 344 345 *segs = nsegs; 346 return 0; 347 split: 348 if (bio->bi_opf & REQ_ATOMIC) 349 return -EINVAL; 350 351 /* 352 * We can't sanely support splitting for a REQ_NOWAIT bio. End it 353 * with EAGAIN if splitting is required and return an error pointer. 354 */ 355 if (bio->bi_opf & REQ_NOWAIT) 356 return -EAGAIN; 357 358 *segs = nsegs; 359 360 /* 361 * Individual bvecs might not be logical block aligned. Round down the 362 * split size so that each bio is properly block size aligned, even if 363 * we do not use the full hardware limits. 364 */ 365 bytes = ALIGN_DOWN(bytes, bio_split_alignment(bio, lim)); 366 367 /* 368 * Bio splitting may cause subtle trouble such as hang when doing sync 369 * iopoll in direct IO routine. Given performance gain of iopoll for 370 * big IO can be trival, disable iopoll when split needed. 371 */ 372 bio_clear_polled(bio); 373 return bytes >> SECTOR_SHIFT; 374 } 375 EXPORT_SYMBOL_GPL(bio_split_rw_at); 376 377 struct bio *bio_split_rw(struct bio *bio, const struct queue_limits *lim, 378 unsigned *nr_segs) 379 { 380 return bio_submit_split(bio, 381 bio_split_rw_at(bio, lim, nr_segs, 382 get_max_io_size(bio, lim) << SECTOR_SHIFT)); 383 } 384 385 /* 386 * REQ_OP_ZONE_APPEND bios must never be split by the block layer. 387 * 388 * But we want the nr_segs calculation provided by bio_split_rw_at, and having 389 * a good sanity check that the submitter built the bio correctly is nice to 390 * have as well. 391 */ 392 struct bio *bio_split_zone_append(struct bio *bio, 393 const struct queue_limits *lim, unsigned *nr_segs) 394 { 395 int split_sectors; 396 397 split_sectors = bio_split_rw_at(bio, lim, nr_segs, 398 lim->max_zone_append_sectors << SECTOR_SHIFT); 399 if (WARN_ON_ONCE(split_sectors > 0)) 400 split_sectors = -EINVAL; 401 return bio_submit_split(bio, split_sectors); 402 } 403 404 struct bio *bio_split_write_zeroes(struct bio *bio, 405 const struct queue_limits *lim, unsigned *nsegs) 406 { 407 unsigned int max_sectors = get_max_io_size(bio, lim); 408 409 *nsegs = 0; 410 411 /* 412 * An unset limit should normally not happen, as bio submission is keyed 413 * off having a non-zero limit. But SCSI can clear the limit in the 414 * I/O completion handler, and we can race and see this. Splitting to a 415 * zero limit obviously doesn't make sense, so band-aid it here. 416 */ 417 if (!max_sectors) 418 return bio; 419 if (bio_sectors(bio) <= max_sectors) 420 return bio; 421 return bio_submit_split(bio, max_sectors); 422 } 423 424 /** 425 * bio_split_to_limits - split a bio to fit the queue limits 426 * @bio: bio to be split 427 * 428 * Check if @bio needs splitting based on the queue limits of @bio->bi_bdev, and 429 * if so split off a bio fitting the limits from the beginning of @bio and 430 * return it. @bio is shortened to the remainder and re-submitted. 431 * 432 * The split bio is allocated from @q->bio_split, which is provided by the 433 * block layer. 434 */ 435 struct bio *bio_split_to_limits(struct bio *bio) 436 { 437 unsigned int nr_segs; 438 439 return __bio_split_to_limits(bio, bdev_limits(bio->bi_bdev), &nr_segs); 440 } 441 EXPORT_SYMBOL(bio_split_to_limits); 442 443 unsigned int blk_recalc_rq_segments(struct request *rq) 444 { 445 unsigned int nr_phys_segs = 0; 446 unsigned int bytes = 0; 447 struct req_iterator iter; 448 struct bio_vec bv; 449 450 if (!rq->bio) 451 return 0; 452 453 switch (bio_op(rq->bio)) { 454 case REQ_OP_DISCARD: 455 case REQ_OP_SECURE_ERASE: 456 if (queue_max_discard_segments(rq->q) > 1) { 457 struct bio *bio = rq->bio; 458 459 for_each_bio(bio) 460 nr_phys_segs++; 461 return nr_phys_segs; 462 } 463 return 1; 464 case REQ_OP_WRITE_ZEROES: 465 return 0; 466 default: 467 break; 468 } 469 470 rq_for_each_bvec(bv, rq, iter) 471 bvec_split_segs(&rq->q->limits, &bv, &nr_phys_segs, &bytes, 472 UINT_MAX, UINT_MAX); 473 return nr_phys_segs; 474 } 475 476 static inline struct scatterlist *blk_next_sg(struct scatterlist **sg, 477 struct scatterlist *sglist) 478 { 479 if (!*sg) 480 return sglist; 481 482 /* 483 * If the driver previously mapped a shorter list, we could see a 484 * termination bit prematurely unless it fully inits the sg table 485 * on each mapping. We KNOW that there must be more entries here 486 * or the driver would be buggy, so force clear the termination bit 487 * to avoid doing a full sg_init_table() in drivers for each command. 488 */ 489 sg_unmark_end(*sg); 490 return sg_next(*sg); 491 } 492 493 static unsigned blk_bvec_map_sg(struct request_queue *q, 494 struct bio_vec *bvec, struct scatterlist *sglist, 495 struct scatterlist **sg) 496 { 497 unsigned nbytes = bvec->bv_len; 498 unsigned nsegs = 0, total = 0; 499 500 while (nbytes > 0) { 501 unsigned offset = bvec->bv_offset + total; 502 unsigned len = get_max_segment_size(&q->limits, 503 bvec_phys(bvec) + total, nbytes); 504 struct page *page = bvec->bv_page; 505 506 /* 507 * Unfortunately a fair number of drivers barf on scatterlists 508 * that have an offset larger than PAGE_SIZE, despite other 509 * subsystems dealing with that invariant just fine. For now 510 * stick to the legacy format where we never present those from 511 * the block layer, but the code below should be removed once 512 * these offenders (mostly MMC/SD drivers) are fixed. 513 */ 514 page += (offset >> PAGE_SHIFT); 515 offset &= ~PAGE_MASK; 516 517 *sg = blk_next_sg(sg, sglist); 518 sg_set_page(*sg, page, len, offset); 519 520 total += len; 521 nbytes -= len; 522 nsegs++; 523 } 524 525 return nsegs; 526 } 527 528 static inline int __blk_bvec_map_sg(struct bio_vec bv, 529 struct scatterlist *sglist, struct scatterlist **sg) 530 { 531 *sg = blk_next_sg(sg, sglist); 532 sg_set_page(*sg, bv.bv_page, bv.bv_len, bv.bv_offset); 533 return 1; 534 } 535 536 /* only try to merge bvecs into one sg if they are from two bios */ 537 static inline bool 538 __blk_segment_map_sg_merge(struct request_queue *q, struct bio_vec *bvec, 539 struct bio_vec *bvprv, struct scatterlist **sg) 540 { 541 542 int nbytes = bvec->bv_len; 543 544 if (!*sg) 545 return false; 546 547 if ((*sg)->length + nbytes > queue_max_segment_size(q)) 548 return false; 549 550 if (!biovec_phys_mergeable(q, bvprv, bvec)) 551 return false; 552 553 (*sg)->length += nbytes; 554 555 return true; 556 } 557 558 static int __blk_bios_map_sg(struct request_queue *q, struct bio *bio, 559 struct scatterlist *sglist, 560 struct scatterlist **sg) 561 { 562 struct bio_vec bvec, bvprv = { NULL }; 563 struct bvec_iter iter; 564 int nsegs = 0; 565 bool new_bio = false; 566 567 for_each_bio(bio) { 568 bio_for_each_bvec(bvec, bio, iter) { 569 /* 570 * Only try to merge bvecs from two bios given we 571 * have done bio internal merge when adding pages 572 * to bio 573 */ 574 if (new_bio && 575 __blk_segment_map_sg_merge(q, &bvec, &bvprv, sg)) 576 goto next_bvec; 577 578 if (bvec.bv_offset + bvec.bv_len <= PAGE_SIZE) 579 nsegs += __blk_bvec_map_sg(bvec, sglist, sg); 580 else 581 nsegs += blk_bvec_map_sg(q, &bvec, sglist, sg); 582 next_bvec: 583 new_bio = false; 584 } 585 if (likely(bio->bi_iter.bi_size)) { 586 bvprv = bvec; 587 new_bio = true; 588 } 589 } 590 591 return nsegs; 592 } 593 594 /* 595 * map a request to scatterlist, return number of sg entries setup. Caller 596 * must make sure sg can hold rq->nr_phys_segments entries 597 */ 598 int __blk_rq_map_sg(struct request_queue *q, struct request *rq, 599 struct scatterlist *sglist, struct scatterlist **last_sg) 600 { 601 int nsegs = 0; 602 603 if (rq->rq_flags & RQF_SPECIAL_PAYLOAD) 604 nsegs = __blk_bvec_map_sg(rq->special_vec, sglist, last_sg); 605 else if (rq->bio) 606 nsegs = __blk_bios_map_sg(q, rq->bio, sglist, last_sg); 607 608 if (*last_sg) 609 sg_mark_end(*last_sg); 610 611 /* 612 * Something must have been wrong if the figured number of 613 * segment is bigger than number of req's physical segments 614 */ 615 WARN_ON(nsegs > blk_rq_nr_phys_segments(rq)); 616 617 return nsegs; 618 } 619 EXPORT_SYMBOL(__blk_rq_map_sg); 620 621 static inline unsigned int blk_rq_get_max_sectors(struct request *rq, 622 sector_t offset) 623 { 624 struct request_queue *q = rq->q; 625 struct queue_limits *lim = &q->limits; 626 unsigned int max_sectors, boundary_sectors; 627 bool is_atomic = rq->cmd_flags & REQ_ATOMIC; 628 629 if (blk_rq_is_passthrough(rq)) 630 return q->limits.max_hw_sectors; 631 632 boundary_sectors = blk_boundary_sectors(lim, is_atomic); 633 max_sectors = blk_queue_get_max_sectors(rq); 634 635 if (!boundary_sectors || 636 req_op(rq) == REQ_OP_DISCARD || 637 req_op(rq) == REQ_OP_SECURE_ERASE) 638 return max_sectors; 639 return min(max_sectors, 640 blk_boundary_sectors_left(offset, boundary_sectors)); 641 } 642 643 static inline int ll_new_hw_segment(struct request *req, struct bio *bio, 644 unsigned int nr_phys_segs) 645 { 646 if (!blk_cgroup_mergeable(req, bio)) 647 goto no_merge; 648 649 if (blk_integrity_merge_bio(req->q, req, bio) == false) 650 goto no_merge; 651 652 /* discard request merge won't add new segment */ 653 if (req_op(req) == REQ_OP_DISCARD) 654 return 1; 655 656 if (req->nr_phys_segments + nr_phys_segs > blk_rq_get_max_segments(req)) 657 goto no_merge; 658 659 /* 660 * This will form the start of a new hw segment. Bump both 661 * counters. 662 */ 663 req->nr_phys_segments += nr_phys_segs; 664 if (bio_integrity(bio)) 665 req->nr_integrity_segments += blk_rq_count_integrity_sg(req->q, 666 bio); 667 return 1; 668 669 no_merge: 670 req_set_nomerge(req->q, req); 671 return 0; 672 } 673 674 int ll_back_merge_fn(struct request *req, struct bio *bio, unsigned int nr_segs) 675 { 676 if (req_gap_back_merge(req, bio)) 677 return 0; 678 if (blk_integrity_rq(req) && 679 integrity_req_gap_back_merge(req, bio)) 680 return 0; 681 if (!bio_crypt_ctx_back_mergeable(req, bio)) 682 return 0; 683 if (blk_rq_sectors(req) + bio_sectors(bio) > 684 blk_rq_get_max_sectors(req, blk_rq_pos(req))) { 685 req_set_nomerge(req->q, req); 686 return 0; 687 } 688 689 return ll_new_hw_segment(req, bio, nr_segs); 690 } 691 692 static int ll_front_merge_fn(struct request *req, struct bio *bio, 693 unsigned int nr_segs) 694 { 695 if (req_gap_front_merge(req, bio)) 696 return 0; 697 if (blk_integrity_rq(req) && 698 integrity_req_gap_front_merge(req, bio)) 699 return 0; 700 if (!bio_crypt_ctx_front_mergeable(req, bio)) 701 return 0; 702 if (blk_rq_sectors(req) + bio_sectors(bio) > 703 blk_rq_get_max_sectors(req, bio->bi_iter.bi_sector)) { 704 req_set_nomerge(req->q, req); 705 return 0; 706 } 707 708 return ll_new_hw_segment(req, bio, nr_segs); 709 } 710 711 static bool req_attempt_discard_merge(struct request_queue *q, struct request *req, 712 struct request *next) 713 { 714 unsigned short segments = blk_rq_nr_discard_segments(req); 715 716 if (segments >= queue_max_discard_segments(q)) 717 goto no_merge; 718 if (blk_rq_sectors(req) + bio_sectors(next->bio) > 719 blk_rq_get_max_sectors(req, blk_rq_pos(req))) 720 goto no_merge; 721 722 req->nr_phys_segments = segments + blk_rq_nr_discard_segments(next); 723 return true; 724 no_merge: 725 req_set_nomerge(q, req); 726 return false; 727 } 728 729 static int ll_merge_requests_fn(struct request_queue *q, struct request *req, 730 struct request *next) 731 { 732 int total_phys_segments; 733 734 if (req_gap_back_merge(req, next->bio)) 735 return 0; 736 737 /* 738 * Will it become too large? 739 */ 740 if ((blk_rq_sectors(req) + blk_rq_sectors(next)) > 741 blk_rq_get_max_sectors(req, blk_rq_pos(req))) 742 return 0; 743 744 total_phys_segments = req->nr_phys_segments + next->nr_phys_segments; 745 if (total_phys_segments > blk_rq_get_max_segments(req)) 746 return 0; 747 748 if (!blk_cgroup_mergeable(req, next->bio)) 749 return 0; 750 751 if (blk_integrity_merge_rq(q, req, next) == false) 752 return 0; 753 754 if (!bio_crypt_ctx_merge_rq(req, next)) 755 return 0; 756 757 /* Merge is OK... */ 758 req->nr_phys_segments = total_phys_segments; 759 req->nr_integrity_segments += next->nr_integrity_segments; 760 return 1; 761 } 762 763 /** 764 * blk_rq_set_mixed_merge - mark a request as mixed merge 765 * @rq: request to mark as mixed merge 766 * 767 * Description: 768 * @rq is about to be mixed merged. Make sure the attributes 769 * which can be mixed are set in each bio and mark @rq as mixed 770 * merged. 771 */ 772 static void blk_rq_set_mixed_merge(struct request *rq) 773 { 774 blk_opf_t ff = rq->cmd_flags & REQ_FAILFAST_MASK; 775 struct bio *bio; 776 777 if (rq->rq_flags & RQF_MIXED_MERGE) 778 return; 779 780 /* 781 * @rq will no longer represent mixable attributes for all the 782 * contained bios. It will just track those of the first one. 783 * Distributes the attributs to each bio. 784 */ 785 for (bio = rq->bio; bio; bio = bio->bi_next) { 786 WARN_ON_ONCE((bio->bi_opf & REQ_FAILFAST_MASK) && 787 (bio->bi_opf & REQ_FAILFAST_MASK) != ff); 788 bio->bi_opf |= ff; 789 } 790 rq->rq_flags |= RQF_MIXED_MERGE; 791 } 792 793 static inline blk_opf_t bio_failfast(const struct bio *bio) 794 { 795 if (bio->bi_opf & REQ_RAHEAD) 796 return REQ_FAILFAST_MASK; 797 798 return bio->bi_opf & REQ_FAILFAST_MASK; 799 } 800 801 /* 802 * After we are marked as MIXED_MERGE, any new RA bio has to be updated 803 * as failfast, and request's failfast has to be updated in case of 804 * front merge. 805 */ 806 static inline void blk_update_mixed_merge(struct request *req, 807 struct bio *bio, bool front_merge) 808 { 809 if (req->rq_flags & RQF_MIXED_MERGE) { 810 if (bio->bi_opf & REQ_RAHEAD) 811 bio->bi_opf |= REQ_FAILFAST_MASK; 812 813 if (front_merge) { 814 req->cmd_flags &= ~REQ_FAILFAST_MASK; 815 req->cmd_flags |= bio->bi_opf & REQ_FAILFAST_MASK; 816 } 817 } 818 } 819 820 static void blk_account_io_merge_request(struct request *req) 821 { 822 if (req->rq_flags & RQF_IO_STAT) { 823 part_stat_lock(); 824 part_stat_inc(req->part, merges[op_stat_group(req_op(req))]); 825 part_stat_local_dec(req->part, 826 in_flight[op_is_write(req_op(req))]); 827 part_stat_unlock(); 828 } 829 } 830 831 static enum elv_merge blk_try_req_merge(struct request *req, 832 struct request *next) 833 { 834 if (blk_discard_mergable(req)) 835 return ELEVATOR_DISCARD_MERGE; 836 else if (blk_rq_pos(req) + blk_rq_sectors(req) == blk_rq_pos(next)) 837 return ELEVATOR_BACK_MERGE; 838 839 return ELEVATOR_NO_MERGE; 840 } 841 842 static bool blk_atomic_write_mergeable_rq_bio(struct request *rq, 843 struct bio *bio) 844 { 845 return (rq->cmd_flags & REQ_ATOMIC) == (bio->bi_opf & REQ_ATOMIC); 846 } 847 848 static bool blk_atomic_write_mergeable_rqs(struct request *rq, 849 struct request *next) 850 { 851 return (rq->cmd_flags & REQ_ATOMIC) == (next->cmd_flags & REQ_ATOMIC); 852 } 853 854 /* 855 * For non-mq, this has to be called with the request spinlock acquired. 856 * For mq with scheduling, the appropriate queue wide lock should be held. 857 */ 858 static struct request *attempt_merge(struct request_queue *q, 859 struct request *req, struct request *next) 860 { 861 if (!rq_mergeable(req) || !rq_mergeable(next)) 862 return NULL; 863 864 if (req_op(req) != req_op(next)) 865 return NULL; 866 867 if (rq_data_dir(req) != rq_data_dir(next)) 868 return NULL; 869 870 if (req->bio && next->bio) { 871 /* Don't merge requests with different write hints. */ 872 if (req->bio->bi_write_hint != next->bio->bi_write_hint) 873 return NULL; 874 if (req->bio->bi_ioprio != next->bio->bi_ioprio) 875 return NULL; 876 } 877 878 if (!blk_atomic_write_mergeable_rqs(req, next)) 879 return NULL; 880 881 /* 882 * If we are allowed to merge, then append bio list 883 * from next to rq and release next. merge_requests_fn 884 * will have updated segment counts, update sector 885 * counts here. Handle DISCARDs separately, as they 886 * have separate settings. 887 */ 888 889 switch (blk_try_req_merge(req, next)) { 890 case ELEVATOR_DISCARD_MERGE: 891 if (!req_attempt_discard_merge(q, req, next)) 892 return NULL; 893 break; 894 case ELEVATOR_BACK_MERGE: 895 if (!ll_merge_requests_fn(q, req, next)) 896 return NULL; 897 break; 898 default: 899 return NULL; 900 } 901 902 /* 903 * If failfast settings disagree or any of the two is already 904 * a mixed merge, mark both as mixed before proceeding. This 905 * makes sure that all involved bios have mixable attributes 906 * set properly. 907 */ 908 if (((req->rq_flags | next->rq_flags) & RQF_MIXED_MERGE) || 909 (req->cmd_flags & REQ_FAILFAST_MASK) != 910 (next->cmd_flags & REQ_FAILFAST_MASK)) { 911 blk_rq_set_mixed_merge(req); 912 blk_rq_set_mixed_merge(next); 913 } 914 915 /* 916 * At this point we have either done a back merge or front merge. We 917 * need the smaller start_time_ns of the merged requests to be the 918 * current request for accounting purposes. 919 */ 920 if (next->start_time_ns < req->start_time_ns) 921 req->start_time_ns = next->start_time_ns; 922 923 req->biotail->bi_next = next->bio; 924 req->biotail = next->biotail; 925 926 req->__data_len += blk_rq_bytes(next); 927 928 if (!blk_discard_mergable(req)) 929 elv_merge_requests(q, req, next); 930 931 blk_crypto_rq_put_keyslot(next); 932 933 /* 934 * 'next' is going away, so update stats accordingly 935 */ 936 blk_account_io_merge_request(next); 937 938 trace_block_rq_merge(next); 939 940 /* 941 * ownership of bio passed from next to req, return 'next' for 942 * the caller to free 943 */ 944 next->bio = NULL; 945 return next; 946 } 947 948 static struct request *attempt_back_merge(struct request_queue *q, 949 struct request *rq) 950 { 951 struct request *next = elv_latter_request(q, rq); 952 953 if (next) 954 return attempt_merge(q, rq, next); 955 956 return NULL; 957 } 958 959 static struct request *attempt_front_merge(struct request_queue *q, 960 struct request *rq) 961 { 962 struct request *prev = elv_former_request(q, rq); 963 964 if (prev) 965 return attempt_merge(q, prev, rq); 966 967 return NULL; 968 } 969 970 /* 971 * Try to merge 'next' into 'rq'. Return true if the merge happened, false 972 * otherwise. The caller is responsible for freeing 'next' if the merge 973 * happened. 974 */ 975 bool blk_attempt_req_merge(struct request_queue *q, struct request *rq, 976 struct request *next) 977 { 978 return attempt_merge(q, rq, next); 979 } 980 981 bool blk_rq_merge_ok(struct request *rq, struct bio *bio) 982 { 983 if (!rq_mergeable(rq) || !bio_mergeable(bio)) 984 return false; 985 986 if (req_op(rq) != bio_op(bio)) 987 return false; 988 989 /* different data direction or already started, don't merge */ 990 if (bio_data_dir(bio) != rq_data_dir(rq)) 991 return false; 992 993 /* don't merge across cgroup boundaries */ 994 if (!blk_cgroup_mergeable(rq, bio)) 995 return false; 996 997 /* only merge integrity protected bio into ditto rq */ 998 if (blk_integrity_merge_bio(rq->q, rq, bio) == false) 999 return false; 1000 1001 /* Only merge if the crypt contexts are compatible */ 1002 if (!bio_crypt_rq_ctx_compatible(rq, bio)) 1003 return false; 1004 1005 if (rq->bio) { 1006 /* Don't merge requests with different write hints. */ 1007 if (rq->bio->bi_write_hint != bio->bi_write_hint) 1008 return false; 1009 if (rq->bio->bi_ioprio != bio->bi_ioprio) 1010 return false; 1011 } 1012 1013 if (blk_atomic_write_mergeable_rq_bio(rq, bio) == false) 1014 return false; 1015 1016 return true; 1017 } 1018 1019 enum elv_merge blk_try_merge(struct request *rq, struct bio *bio) 1020 { 1021 if (blk_discard_mergable(rq)) 1022 return ELEVATOR_DISCARD_MERGE; 1023 else if (blk_rq_pos(rq) + blk_rq_sectors(rq) == bio->bi_iter.bi_sector) 1024 return ELEVATOR_BACK_MERGE; 1025 else if (blk_rq_pos(rq) - bio_sectors(bio) == bio->bi_iter.bi_sector) 1026 return ELEVATOR_FRONT_MERGE; 1027 return ELEVATOR_NO_MERGE; 1028 } 1029 1030 static void blk_account_io_merge_bio(struct request *req) 1031 { 1032 if (req->rq_flags & RQF_IO_STAT) { 1033 part_stat_lock(); 1034 part_stat_inc(req->part, merges[op_stat_group(req_op(req))]); 1035 part_stat_unlock(); 1036 } 1037 } 1038 1039 enum bio_merge_status bio_attempt_back_merge(struct request *req, 1040 struct bio *bio, unsigned int nr_segs) 1041 { 1042 const blk_opf_t ff = bio_failfast(bio); 1043 1044 if (!ll_back_merge_fn(req, bio, nr_segs)) 1045 return BIO_MERGE_FAILED; 1046 1047 trace_block_bio_backmerge(bio); 1048 rq_qos_merge(req->q, req, bio); 1049 1050 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff) 1051 blk_rq_set_mixed_merge(req); 1052 1053 blk_update_mixed_merge(req, bio, false); 1054 1055 if (req->rq_flags & RQF_ZONE_WRITE_PLUGGING) 1056 blk_zone_write_plug_bio_merged(bio); 1057 1058 req->biotail->bi_next = bio; 1059 req->biotail = bio; 1060 req->__data_len += bio->bi_iter.bi_size; 1061 1062 bio_crypt_free_ctx(bio); 1063 1064 blk_account_io_merge_bio(req); 1065 return BIO_MERGE_OK; 1066 } 1067 1068 static enum bio_merge_status bio_attempt_front_merge(struct request *req, 1069 struct bio *bio, unsigned int nr_segs) 1070 { 1071 const blk_opf_t ff = bio_failfast(bio); 1072 1073 /* 1074 * A front merge for writes to sequential zones of a zoned block device 1075 * can happen only if the user submitted writes out of order. Do not 1076 * merge such write to let it fail. 1077 */ 1078 if (req->rq_flags & RQF_ZONE_WRITE_PLUGGING) 1079 return BIO_MERGE_FAILED; 1080 1081 if (!ll_front_merge_fn(req, bio, nr_segs)) 1082 return BIO_MERGE_FAILED; 1083 1084 trace_block_bio_frontmerge(bio); 1085 rq_qos_merge(req->q, req, bio); 1086 1087 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff) 1088 blk_rq_set_mixed_merge(req); 1089 1090 blk_update_mixed_merge(req, bio, true); 1091 1092 bio->bi_next = req->bio; 1093 req->bio = bio; 1094 1095 req->__sector = bio->bi_iter.bi_sector; 1096 req->__data_len += bio->bi_iter.bi_size; 1097 1098 bio_crypt_do_front_merge(req, bio); 1099 1100 blk_account_io_merge_bio(req); 1101 return BIO_MERGE_OK; 1102 } 1103 1104 static enum bio_merge_status bio_attempt_discard_merge(struct request_queue *q, 1105 struct request *req, struct bio *bio) 1106 { 1107 unsigned short segments = blk_rq_nr_discard_segments(req); 1108 1109 if (segments >= queue_max_discard_segments(q)) 1110 goto no_merge; 1111 if (blk_rq_sectors(req) + bio_sectors(bio) > 1112 blk_rq_get_max_sectors(req, blk_rq_pos(req))) 1113 goto no_merge; 1114 1115 rq_qos_merge(q, req, bio); 1116 1117 req->biotail->bi_next = bio; 1118 req->biotail = bio; 1119 req->__data_len += bio->bi_iter.bi_size; 1120 req->nr_phys_segments = segments + 1; 1121 1122 blk_account_io_merge_bio(req); 1123 return BIO_MERGE_OK; 1124 no_merge: 1125 req_set_nomerge(q, req); 1126 return BIO_MERGE_FAILED; 1127 } 1128 1129 static enum bio_merge_status blk_attempt_bio_merge(struct request_queue *q, 1130 struct request *rq, 1131 struct bio *bio, 1132 unsigned int nr_segs, 1133 bool sched_allow_merge) 1134 { 1135 if (!blk_rq_merge_ok(rq, bio)) 1136 return BIO_MERGE_NONE; 1137 1138 switch (blk_try_merge(rq, bio)) { 1139 case ELEVATOR_BACK_MERGE: 1140 if (!sched_allow_merge || blk_mq_sched_allow_merge(q, rq, bio)) 1141 return bio_attempt_back_merge(rq, bio, nr_segs); 1142 break; 1143 case ELEVATOR_FRONT_MERGE: 1144 if (!sched_allow_merge || blk_mq_sched_allow_merge(q, rq, bio)) 1145 return bio_attempt_front_merge(rq, bio, nr_segs); 1146 break; 1147 case ELEVATOR_DISCARD_MERGE: 1148 return bio_attempt_discard_merge(q, rq, bio); 1149 default: 1150 return BIO_MERGE_NONE; 1151 } 1152 1153 return BIO_MERGE_FAILED; 1154 } 1155 1156 /** 1157 * blk_attempt_plug_merge - try to merge with %current's plugged list 1158 * @q: request_queue new bio is being queued at 1159 * @bio: new bio being queued 1160 * @nr_segs: number of segments in @bio 1161 * from the passed in @q already in the plug list 1162 * 1163 * Determine whether @bio being queued on @q can be merged with the previous 1164 * request on %current's plugged list. Returns %true if merge was successful, 1165 * otherwise %false. 1166 * 1167 * Plugging coalesces IOs from the same issuer for the same purpose without 1168 * going through @q->queue_lock. As such it's more of an issuing mechanism 1169 * than scheduling, and the request, while may have elvpriv data, is not 1170 * added on the elevator at this point. In addition, we don't have 1171 * reliable access to the elevator outside queue lock. Only check basic 1172 * merging parameters without querying the elevator. 1173 * 1174 * Caller must ensure !blk_queue_nomerges(q) beforehand. 1175 */ 1176 bool blk_attempt_plug_merge(struct request_queue *q, struct bio *bio, 1177 unsigned int nr_segs) 1178 { 1179 struct blk_plug *plug = current->plug; 1180 struct request *rq; 1181 1182 if (!plug || rq_list_empty(&plug->mq_list)) 1183 return false; 1184 1185 rq_list_for_each(&plug->mq_list, rq) { 1186 if (rq->q == q) { 1187 if (blk_attempt_bio_merge(q, rq, bio, nr_segs, false) == 1188 BIO_MERGE_OK) 1189 return true; 1190 break; 1191 } 1192 1193 /* 1194 * Only keep iterating plug list for merges if we have multiple 1195 * queues 1196 */ 1197 if (!plug->multiple_queues) 1198 break; 1199 } 1200 return false; 1201 } 1202 1203 /* 1204 * Iterate list of requests and see if we can merge this bio with any 1205 * of them. 1206 */ 1207 bool blk_bio_list_merge(struct request_queue *q, struct list_head *list, 1208 struct bio *bio, unsigned int nr_segs) 1209 { 1210 struct request *rq; 1211 int checked = 8; 1212 1213 list_for_each_entry_reverse(rq, list, queuelist) { 1214 if (!checked--) 1215 break; 1216 1217 switch (blk_attempt_bio_merge(q, rq, bio, nr_segs, true)) { 1218 case BIO_MERGE_NONE: 1219 continue; 1220 case BIO_MERGE_OK: 1221 return true; 1222 case BIO_MERGE_FAILED: 1223 return false; 1224 } 1225 1226 } 1227 1228 return false; 1229 } 1230 EXPORT_SYMBOL_GPL(blk_bio_list_merge); 1231 1232 bool blk_mq_sched_try_merge(struct request_queue *q, struct bio *bio, 1233 unsigned int nr_segs, struct request **merged_request) 1234 { 1235 struct request *rq; 1236 1237 switch (elv_merge(q, &rq, bio)) { 1238 case ELEVATOR_BACK_MERGE: 1239 if (!blk_mq_sched_allow_merge(q, rq, bio)) 1240 return false; 1241 if (bio_attempt_back_merge(rq, bio, nr_segs) != BIO_MERGE_OK) 1242 return false; 1243 *merged_request = attempt_back_merge(q, rq); 1244 if (!*merged_request) 1245 elv_merged_request(q, rq, ELEVATOR_BACK_MERGE); 1246 return true; 1247 case ELEVATOR_FRONT_MERGE: 1248 if (!blk_mq_sched_allow_merge(q, rq, bio)) 1249 return false; 1250 if (bio_attempt_front_merge(rq, bio, nr_segs) != BIO_MERGE_OK) 1251 return false; 1252 *merged_request = attempt_front_merge(q, rq); 1253 if (!*merged_request) 1254 elv_merged_request(q, rq, ELEVATOR_FRONT_MERGE); 1255 return true; 1256 case ELEVATOR_DISCARD_MERGE: 1257 return bio_attempt_discard_merge(q, rq, bio) == BIO_MERGE_OK; 1258 default: 1259 return false; 1260 } 1261 } 1262 EXPORT_SYMBOL_GPL(blk_mq_sched_try_merge); 1263