xref: /linux/block/blk-merge.c (revision a1a9b71ebd6582c94090ee5b70fb3eabf7088f22)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Functions related to segment and merge handling
4  */
5 #include <linux/kernel.h>
6 #include <linux/module.h>
7 #include <linux/bio.h>
8 #include <linux/blkdev.h>
9 #include <linux/blk-integrity.h>
10 #include <linux/scatterlist.h>
11 #include <linux/part_stat.h>
12 #include <linux/blk-cgroup.h>
13 
14 #include <trace/events/block.h>
15 
16 #include "blk.h"
17 #include "blk-mq-sched.h"
18 #include "blk-rq-qos.h"
19 #include "blk-throttle.h"
20 
21 static inline void bio_get_first_bvec(struct bio *bio, struct bio_vec *bv)
22 {
23 	*bv = mp_bvec_iter_bvec(bio->bi_io_vec, bio->bi_iter);
24 }
25 
26 static inline void bio_get_last_bvec(struct bio *bio, struct bio_vec *bv)
27 {
28 	struct bvec_iter iter = bio->bi_iter;
29 	int idx;
30 
31 	bio_get_first_bvec(bio, bv);
32 	if (bv->bv_len == bio->bi_iter.bi_size)
33 		return;		/* this bio only has a single bvec */
34 
35 	bio_advance_iter(bio, &iter, iter.bi_size);
36 
37 	if (!iter.bi_bvec_done)
38 		idx = iter.bi_idx - 1;
39 	else	/* in the middle of bvec */
40 		idx = iter.bi_idx;
41 
42 	*bv = bio->bi_io_vec[idx];
43 
44 	/*
45 	 * iter.bi_bvec_done records actual length of the last bvec
46 	 * if this bio ends in the middle of one io vector
47 	 */
48 	if (iter.bi_bvec_done)
49 		bv->bv_len = iter.bi_bvec_done;
50 }
51 
52 static inline bool bio_will_gap(struct request_queue *q,
53 		struct request *prev_rq, struct bio *prev, struct bio *next)
54 {
55 	struct bio_vec pb, nb;
56 
57 	if (!bio_has_data(prev) || !queue_virt_boundary(q))
58 		return false;
59 
60 	/*
61 	 * Don't merge if the 1st bio starts with non-zero offset, otherwise it
62 	 * is quite difficult to respect the sg gap limit.  We work hard to
63 	 * merge a huge number of small single bios in case of mkfs.
64 	 */
65 	if (prev_rq)
66 		bio_get_first_bvec(prev_rq->bio, &pb);
67 	else
68 		bio_get_first_bvec(prev, &pb);
69 	if (pb.bv_offset & queue_virt_boundary(q))
70 		return true;
71 
72 	/*
73 	 * We don't need to worry about the situation that the merged segment
74 	 * ends in unaligned virt boundary:
75 	 *
76 	 * - if 'pb' ends aligned, the merged segment ends aligned
77 	 * - if 'pb' ends unaligned, the next bio must include
78 	 *   one single bvec of 'nb', otherwise the 'nb' can't
79 	 *   merge with 'pb'
80 	 */
81 	bio_get_last_bvec(prev, &pb);
82 	bio_get_first_bvec(next, &nb);
83 	if (biovec_phys_mergeable(q, &pb, &nb))
84 		return false;
85 	return __bvec_gap_to_prev(q, &pb, nb.bv_offset);
86 }
87 
88 static inline bool req_gap_back_merge(struct request *req, struct bio *bio)
89 {
90 	return bio_will_gap(req->q, req, req->biotail, bio);
91 }
92 
93 static inline bool req_gap_front_merge(struct request *req, struct bio *bio)
94 {
95 	return bio_will_gap(req->q, NULL, bio, req->bio);
96 }
97 
98 static struct bio *blk_bio_discard_split(struct request_queue *q,
99 					 struct bio *bio,
100 					 struct bio_set *bs,
101 					 unsigned *nsegs)
102 {
103 	unsigned int max_discard_sectors, granularity;
104 	int alignment;
105 	sector_t tmp;
106 	unsigned split_sectors;
107 
108 	*nsegs = 1;
109 
110 	/* Zero-sector (unknown) and one-sector granularities are the same.  */
111 	granularity = max(q->limits.discard_granularity >> 9, 1U);
112 
113 	max_discard_sectors = min(q->limits.max_discard_sectors,
114 			bio_allowed_max_sectors(q));
115 	max_discard_sectors -= max_discard_sectors % granularity;
116 
117 	if (unlikely(!max_discard_sectors)) {
118 		/* XXX: warn */
119 		return NULL;
120 	}
121 
122 	if (bio_sectors(bio) <= max_discard_sectors)
123 		return NULL;
124 
125 	split_sectors = max_discard_sectors;
126 
127 	/*
128 	 * If the next starting sector would be misaligned, stop the discard at
129 	 * the previous aligned sector.
130 	 */
131 	alignment = (q->limits.discard_alignment >> 9) % granularity;
132 
133 	tmp = bio->bi_iter.bi_sector + split_sectors - alignment;
134 	tmp = sector_div(tmp, granularity);
135 
136 	if (split_sectors > tmp)
137 		split_sectors -= tmp;
138 
139 	return bio_split(bio, split_sectors, GFP_NOIO, bs);
140 }
141 
142 static struct bio *blk_bio_write_zeroes_split(struct request_queue *q,
143 		struct bio *bio, struct bio_set *bs, unsigned *nsegs)
144 {
145 	*nsegs = 0;
146 
147 	if (!q->limits.max_write_zeroes_sectors)
148 		return NULL;
149 
150 	if (bio_sectors(bio) <= q->limits.max_write_zeroes_sectors)
151 		return NULL;
152 
153 	return bio_split(bio, q->limits.max_write_zeroes_sectors, GFP_NOIO, bs);
154 }
155 
156 /*
157  * Return the maximum number of sectors from the start of a bio that may be
158  * submitted as a single request to a block device. If enough sectors remain,
159  * align the end to the physical block size. Otherwise align the end to the
160  * logical block size. This approach minimizes the number of non-aligned
161  * requests that are submitted to a block device if the start of a bio is not
162  * aligned to a physical block boundary.
163  */
164 static inline unsigned get_max_io_size(struct request_queue *q,
165 				       struct bio *bio)
166 {
167 	unsigned sectors = blk_max_size_offset(q, bio->bi_iter.bi_sector, 0);
168 	unsigned max_sectors = sectors;
169 	unsigned pbs = queue_physical_block_size(q) >> SECTOR_SHIFT;
170 	unsigned lbs = queue_logical_block_size(q) >> SECTOR_SHIFT;
171 	unsigned start_offset = bio->bi_iter.bi_sector & (pbs - 1);
172 
173 	max_sectors += start_offset;
174 	max_sectors &= ~(pbs - 1);
175 	if (max_sectors > start_offset)
176 		return max_sectors - start_offset;
177 
178 	return sectors & ~(lbs - 1);
179 }
180 
181 static inline unsigned get_max_segment_size(const struct request_queue *q,
182 					    struct page *start_page,
183 					    unsigned long offset)
184 {
185 	unsigned long mask = queue_segment_boundary(q);
186 
187 	offset = mask & (page_to_phys(start_page) + offset);
188 
189 	/*
190 	 * overflow may be triggered in case of zero page physical address
191 	 * on 32bit arch, use queue's max segment size when that happens.
192 	 */
193 	return min_not_zero(mask - offset + 1,
194 			(unsigned long)queue_max_segment_size(q));
195 }
196 
197 /**
198  * bvec_split_segs - verify whether or not a bvec should be split in the middle
199  * @q:        [in] request queue associated with the bio associated with @bv
200  * @bv:       [in] bvec to examine
201  * @nsegs:    [in,out] Number of segments in the bio being built. Incremented
202  *            by the number of segments from @bv that may be appended to that
203  *            bio without exceeding @max_segs
204  * @sectors:  [in,out] Number of sectors in the bio being built. Incremented
205  *            by the number of sectors from @bv that may be appended to that
206  *            bio without exceeding @max_sectors
207  * @max_segs: [in] upper bound for *@nsegs
208  * @max_sectors: [in] upper bound for *@sectors
209  *
210  * When splitting a bio, it can happen that a bvec is encountered that is too
211  * big to fit in a single segment and hence that it has to be split in the
212  * middle. This function verifies whether or not that should happen. The value
213  * %true is returned if and only if appending the entire @bv to a bio with
214  * *@nsegs segments and *@sectors sectors would make that bio unacceptable for
215  * the block driver.
216  */
217 static bool bvec_split_segs(const struct request_queue *q,
218 			    const struct bio_vec *bv, unsigned *nsegs,
219 			    unsigned *sectors, unsigned max_segs,
220 			    unsigned max_sectors)
221 {
222 	unsigned max_len = (min(max_sectors, UINT_MAX >> 9) - *sectors) << 9;
223 	unsigned len = min(bv->bv_len, max_len);
224 	unsigned total_len = 0;
225 	unsigned seg_size = 0;
226 
227 	while (len && *nsegs < max_segs) {
228 		seg_size = get_max_segment_size(q, bv->bv_page,
229 						bv->bv_offset + total_len);
230 		seg_size = min(seg_size, len);
231 
232 		(*nsegs)++;
233 		total_len += seg_size;
234 		len -= seg_size;
235 
236 		if ((bv->bv_offset + total_len) & queue_virt_boundary(q))
237 			break;
238 	}
239 
240 	*sectors += total_len >> 9;
241 
242 	/* tell the caller to split the bvec if it is too big to fit */
243 	return len > 0 || bv->bv_len > max_len;
244 }
245 
246 /**
247  * blk_bio_segment_split - split a bio in two bios
248  * @q:    [in] request queue pointer
249  * @bio:  [in] bio to be split
250  * @bs:	  [in] bio set to allocate the clone from
251  * @segs: [out] number of segments in the bio with the first half of the sectors
252  *
253  * Clone @bio, update the bi_iter of the clone to represent the first sectors
254  * of @bio and update @bio->bi_iter to represent the remaining sectors. The
255  * following is guaranteed for the cloned bio:
256  * - That it has at most get_max_io_size(@q, @bio) sectors.
257  * - That it has at most queue_max_segments(@q) segments.
258  *
259  * Except for discard requests the cloned bio will point at the bi_io_vec of
260  * the original bio. It is the responsibility of the caller to ensure that the
261  * original bio is not freed before the cloned bio. The caller is also
262  * responsible for ensuring that @bs is only destroyed after processing of the
263  * split bio has finished.
264  */
265 static struct bio *blk_bio_segment_split(struct request_queue *q,
266 					 struct bio *bio,
267 					 struct bio_set *bs,
268 					 unsigned *segs)
269 {
270 	struct bio_vec bv, bvprv, *bvprvp = NULL;
271 	struct bvec_iter iter;
272 	unsigned nsegs = 0, sectors = 0;
273 	const unsigned max_sectors = get_max_io_size(q, bio);
274 	const unsigned max_segs = queue_max_segments(q);
275 
276 	bio_for_each_bvec(bv, bio, iter) {
277 		/*
278 		 * If the queue doesn't support SG gaps and adding this
279 		 * offset would create a gap, disallow it.
280 		 */
281 		if (bvprvp && bvec_gap_to_prev(q, bvprvp, bv.bv_offset))
282 			goto split;
283 
284 		if (nsegs < max_segs &&
285 		    sectors + (bv.bv_len >> 9) <= max_sectors &&
286 		    bv.bv_offset + bv.bv_len <= PAGE_SIZE) {
287 			nsegs++;
288 			sectors += bv.bv_len >> 9;
289 		} else if (bvec_split_segs(q, &bv, &nsegs, &sectors, max_segs,
290 					 max_sectors)) {
291 			goto split;
292 		}
293 
294 		bvprv = bv;
295 		bvprvp = &bvprv;
296 	}
297 
298 	*segs = nsegs;
299 	return NULL;
300 split:
301 	*segs = nsegs;
302 
303 	/*
304 	 * Bio splitting may cause subtle trouble such as hang when doing sync
305 	 * iopoll in direct IO routine. Given performance gain of iopoll for
306 	 * big IO can be trival, disable iopoll when split needed.
307 	 */
308 	bio_clear_polled(bio);
309 	return bio_split(bio, sectors, GFP_NOIO, bs);
310 }
311 
312 /**
313  * __blk_queue_split - split a bio and submit the second half
314  * @q:       [in] request_queue new bio is being queued at
315  * @bio:     [in, out] bio to be split
316  * @nr_segs: [out] number of segments in the first bio
317  *
318  * Split a bio into two bios, chain the two bios, submit the second half and
319  * store a pointer to the first half in *@bio. If the second bio is still too
320  * big it will be split by a recursive call to this function. Since this
321  * function may allocate a new bio from q->bio_split, it is the responsibility
322  * of the caller to ensure that q->bio_split is only released after processing
323  * of the split bio has finished.
324  */
325 void __blk_queue_split(struct request_queue *q, struct bio **bio,
326 		       unsigned int *nr_segs)
327 {
328 	struct bio *split = NULL;
329 
330 	switch (bio_op(*bio)) {
331 	case REQ_OP_DISCARD:
332 	case REQ_OP_SECURE_ERASE:
333 		split = blk_bio_discard_split(q, *bio, &q->bio_split, nr_segs);
334 		break;
335 	case REQ_OP_WRITE_ZEROES:
336 		split = blk_bio_write_zeroes_split(q, *bio, &q->bio_split,
337 				nr_segs);
338 		break;
339 	default:
340 		split = blk_bio_segment_split(q, *bio, &q->bio_split, nr_segs);
341 		break;
342 	}
343 
344 	if (split) {
345 		/* there isn't chance to merge the splitted bio */
346 		split->bi_opf |= REQ_NOMERGE;
347 
348 		bio_chain(split, *bio);
349 		trace_block_split(split, (*bio)->bi_iter.bi_sector);
350 		submit_bio_noacct(*bio);
351 		*bio = split;
352 	}
353 }
354 
355 /**
356  * blk_queue_split - split a bio and submit the second half
357  * @bio: [in, out] bio to be split
358  *
359  * Split a bio into two bios, chains the two bios, submit the second half and
360  * store a pointer to the first half in *@bio. Since this function may allocate
361  * a new bio from q->bio_split, it is the responsibility of the caller to ensure
362  * that q->bio_split is only released after processing of the split bio has
363  * finished.
364  */
365 void blk_queue_split(struct bio **bio)
366 {
367 	struct request_queue *q = bdev_get_queue((*bio)->bi_bdev);
368 	unsigned int nr_segs;
369 
370 	if (blk_may_split(q, *bio))
371 		__blk_queue_split(q, bio, &nr_segs);
372 }
373 EXPORT_SYMBOL(blk_queue_split);
374 
375 unsigned int blk_recalc_rq_segments(struct request *rq)
376 {
377 	unsigned int nr_phys_segs = 0;
378 	unsigned int nr_sectors = 0;
379 	struct req_iterator iter;
380 	struct bio_vec bv;
381 
382 	if (!rq->bio)
383 		return 0;
384 
385 	switch (bio_op(rq->bio)) {
386 	case REQ_OP_DISCARD:
387 	case REQ_OP_SECURE_ERASE:
388 		if (queue_max_discard_segments(rq->q) > 1) {
389 			struct bio *bio = rq->bio;
390 
391 			for_each_bio(bio)
392 				nr_phys_segs++;
393 			return nr_phys_segs;
394 		}
395 		return 1;
396 	case REQ_OP_WRITE_ZEROES:
397 		return 0;
398 	}
399 
400 	rq_for_each_bvec(bv, rq, iter)
401 		bvec_split_segs(rq->q, &bv, &nr_phys_segs, &nr_sectors,
402 				UINT_MAX, UINT_MAX);
403 	return nr_phys_segs;
404 }
405 
406 static inline struct scatterlist *blk_next_sg(struct scatterlist **sg,
407 		struct scatterlist *sglist)
408 {
409 	if (!*sg)
410 		return sglist;
411 
412 	/*
413 	 * If the driver previously mapped a shorter list, we could see a
414 	 * termination bit prematurely unless it fully inits the sg table
415 	 * on each mapping. We KNOW that there must be more entries here
416 	 * or the driver would be buggy, so force clear the termination bit
417 	 * to avoid doing a full sg_init_table() in drivers for each command.
418 	 */
419 	sg_unmark_end(*sg);
420 	return sg_next(*sg);
421 }
422 
423 static unsigned blk_bvec_map_sg(struct request_queue *q,
424 		struct bio_vec *bvec, struct scatterlist *sglist,
425 		struct scatterlist **sg)
426 {
427 	unsigned nbytes = bvec->bv_len;
428 	unsigned nsegs = 0, total = 0;
429 
430 	while (nbytes > 0) {
431 		unsigned offset = bvec->bv_offset + total;
432 		unsigned len = min(get_max_segment_size(q, bvec->bv_page,
433 					offset), nbytes);
434 		struct page *page = bvec->bv_page;
435 
436 		/*
437 		 * Unfortunately a fair number of drivers barf on scatterlists
438 		 * that have an offset larger than PAGE_SIZE, despite other
439 		 * subsystems dealing with that invariant just fine.  For now
440 		 * stick to the legacy format where we never present those from
441 		 * the block layer, but the code below should be removed once
442 		 * these offenders (mostly MMC/SD drivers) are fixed.
443 		 */
444 		page += (offset >> PAGE_SHIFT);
445 		offset &= ~PAGE_MASK;
446 
447 		*sg = blk_next_sg(sg, sglist);
448 		sg_set_page(*sg, page, len, offset);
449 
450 		total += len;
451 		nbytes -= len;
452 		nsegs++;
453 	}
454 
455 	return nsegs;
456 }
457 
458 static inline int __blk_bvec_map_sg(struct bio_vec bv,
459 		struct scatterlist *sglist, struct scatterlist **sg)
460 {
461 	*sg = blk_next_sg(sg, sglist);
462 	sg_set_page(*sg, bv.bv_page, bv.bv_len, bv.bv_offset);
463 	return 1;
464 }
465 
466 /* only try to merge bvecs into one sg if they are from two bios */
467 static inline bool
468 __blk_segment_map_sg_merge(struct request_queue *q, struct bio_vec *bvec,
469 			   struct bio_vec *bvprv, struct scatterlist **sg)
470 {
471 
472 	int nbytes = bvec->bv_len;
473 
474 	if (!*sg)
475 		return false;
476 
477 	if ((*sg)->length + nbytes > queue_max_segment_size(q))
478 		return false;
479 
480 	if (!biovec_phys_mergeable(q, bvprv, bvec))
481 		return false;
482 
483 	(*sg)->length += nbytes;
484 
485 	return true;
486 }
487 
488 static int __blk_bios_map_sg(struct request_queue *q, struct bio *bio,
489 			     struct scatterlist *sglist,
490 			     struct scatterlist **sg)
491 {
492 	struct bio_vec bvec, bvprv = { NULL };
493 	struct bvec_iter iter;
494 	int nsegs = 0;
495 	bool new_bio = false;
496 
497 	for_each_bio(bio) {
498 		bio_for_each_bvec(bvec, bio, iter) {
499 			/*
500 			 * Only try to merge bvecs from two bios given we
501 			 * have done bio internal merge when adding pages
502 			 * to bio
503 			 */
504 			if (new_bio &&
505 			    __blk_segment_map_sg_merge(q, &bvec, &bvprv, sg))
506 				goto next_bvec;
507 
508 			if (bvec.bv_offset + bvec.bv_len <= PAGE_SIZE)
509 				nsegs += __blk_bvec_map_sg(bvec, sglist, sg);
510 			else
511 				nsegs += blk_bvec_map_sg(q, &bvec, sglist, sg);
512  next_bvec:
513 			new_bio = false;
514 		}
515 		if (likely(bio->bi_iter.bi_size)) {
516 			bvprv = bvec;
517 			new_bio = true;
518 		}
519 	}
520 
521 	return nsegs;
522 }
523 
524 /*
525  * map a request to scatterlist, return number of sg entries setup. Caller
526  * must make sure sg can hold rq->nr_phys_segments entries
527  */
528 int __blk_rq_map_sg(struct request_queue *q, struct request *rq,
529 		struct scatterlist *sglist, struct scatterlist **last_sg)
530 {
531 	int nsegs = 0;
532 
533 	if (rq->rq_flags & RQF_SPECIAL_PAYLOAD)
534 		nsegs = __blk_bvec_map_sg(rq->special_vec, sglist, last_sg);
535 	else if (rq->bio)
536 		nsegs = __blk_bios_map_sg(q, rq->bio, sglist, last_sg);
537 
538 	if (*last_sg)
539 		sg_mark_end(*last_sg);
540 
541 	/*
542 	 * Something must have been wrong if the figured number of
543 	 * segment is bigger than number of req's physical segments
544 	 */
545 	WARN_ON(nsegs > blk_rq_nr_phys_segments(rq));
546 
547 	return nsegs;
548 }
549 EXPORT_SYMBOL(__blk_rq_map_sg);
550 
551 static inline unsigned int blk_rq_get_max_segments(struct request *rq)
552 {
553 	if (req_op(rq) == REQ_OP_DISCARD)
554 		return queue_max_discard_segments(rq->q);
555 	return queue_max_segments(rq->q);
556 }
557 
558 static inline unsigned int blk_rq_get_max_sectors(struct request *rq,
559 						  sector_t offset)
560 {
561 	struct request_queue *q = rq->q;
562 
563 	if (blk_rq_is_passthrough(rq))
564 		return q->limits.max_hw_sectors;
565 
566 	if (!q->limits.chunk_sectors ||
567 	    req_op(rq) == REQ_OP_DISCARD ||
568 	    req_op(rq) == REQ_OP_SECURE_ERASE)
569 		return blk_queue_get_max_sectors(q, req_op(rq));
570 
571 	return min(blk_max_size_offset(q, offset, 0),
572 			blk_queue_get_max_sectors(q, req_op(rq)));
573 }
574 
575 static inline int ll_new_hw_segment(struct request *req, struct bio *bio,
576 		unsigned int nr_phys_segs)
577 {
578 	if (!blk_cgroup_mergeable(req, bio))
579 		goto no_merge;
580 
581 	if (blk_integrity_merge_bio(req->q, req, bio) == false)
582 		goto no_merge;
583 
584 	/* discard request merge won't add new segment */
585 	if (req_op(req) == REQ_OP_DISCARD)
586 		return 1;
587 
588 	if (req->nr_phys_segments + nr_phys_segs > blk_rq_get_max_segments(req))
589 		goto no_merge;
590 
591 	/*
592 	 * This will form the start of a new hw segment.  Bump both
593 	 * counters.
594 	 */
595 	req->nr_phys_segments += nr_phys_segs;
596 	return 1;
597 
598 no_merge:
599 	req_set_nomerge(req->q, req);
600 	return 0;
601 }
602 
603 int ll_back_merge_fn(struct request *req, struct bio *bio, unsigned int nr_segs)
604 {
605 	if (req_gap_back_merge(req, bio))
606 		return 0;
607 	if (blk_integrity_rq(req) &&
608 	    integrity_req_gap_back_merge(req, bio))
609 		return 0;
610 	if (!bio_crypt_ctx_back_mergeable(req, bio))
611 		return 0;
612 	if (blk_rq_sectors(req) + bio_sectors(bio) >
613 	    blk_rq_get_max_sectors(req, blk_rq_pos(req))) {
614 		req_set_nomerge(req->q, req);
615 		return 0;
616 	}
617 
618 	return ll_new_hw_segment(req, bio, nr_segs);
619 }
620 
621 static int ll_front_merge_fn(struct request *req, struct bio *bio,
622 		unsigned int nr_segs)
623 {
624 	if (req_gap_front_merge(req, bio))
625 		return 0;
626 	if (blk_integrity_rq(req) &&
627 	    integrity_req_gap_front_merge(req, bio))
628 		return 0;
629 	if (!bio_crypt_ctx_front_mergeable(req, bio))
630 		return 0;
631 	if (blk_rq_sectors(req) + bio_sectors(bio) >
632 	    blk_rq_get_max_sectors(req, bio->bi_iter.bi_sector)) {
633 		req_set_nomerge(req->q, req);
634 		return 0;
635 	}
636 
637 	return ll_new_hw_segment(req, bio, nr_segs);
638 }
639 
640 static bool req_attempt_discard_merge(struct request_queue *q, struct request *req,
641 		struct request *next)
642 {
643 	unsigned short segments = blk_rq_nr_discard_segments(req);
644 
645 	if (segments >= queue_max_discard_segments(q))
646 		goto no_merge;
647 	if (blk_rq_sectors(req) + bio_sectors(next->bio) >
648 	    blk_rq_get_max_sectors(req, blk_rq_pos(req)))
649 		goto no_merge;
650 
651 	req->nr_phys_segments = segments + blk_rq_nr_discard_segments(next);
652 	return true;
653 no_merge:
654 	req_set_nomerge(q, req);
655 	return false;
656 }
657 
658 static int ll_merge_requests_fn(struct request_queue *q, struct request *req,
659 				struct request *next)
660 {
661 	int total_phys_segments;
662 
663 	if (req_gap_back_merge(req, next->bio))
664 		return 0;
665 
666 	/*
667 	 * Will it become too large?
668 	 */
669 	if ((blk_rq_sectors(req) + blk_rq_sectors(next)) >
670 	    blk_rq_get_max_sectors(req, blk_rq_pos(req)))
671 		return 0;
672 
673 	total_phys_segments = req->nr_phys_segments + next->nr_phys_segments;
674 	if (total_phys_segments > blk_rq_get_max_segments(req))
675 		return 0;
676 
677 	if (!blk_cgroup_mergeable(req, next->bio))
678 		return 0;
679 
680 	if (blk_integrity_merge_rq(q, req, next) == false)
681 		return 0;
682 
683 	if (!bio_crypt_ctx_merge_rq(req, next))
684 		return 0;
685 
686 	/* Merge is OK... */
687 	req->nr_phys_segments = total_phys_segments;
688 	return 1;
689 }
690 
691 /**
692  * blk_rq_set_mixed_merge - mark a request as mixed merge
693  * @rq: request to mark as mixed merge
694  *
695  * Description:
696  *     @rq is about to be mixed merged.  Make sure the attributes
697  *     which can be mixed are set in each bio and mark @rq as mixed
698  *     merged.
699  */
700 void blk_rq_set_mixed_merge(struct request *rq)
701 {
702 	unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK;
703 	struct bio *bio;
704 
705 	if (rq->rq_flags & RQF_MIXED_MERGE)
706 		return;
707 
708 	/*
709 	 * @rq will no longer represent mixable attributes for all the
710 	 * contained bios.  It will just track those of the first one.
711 	 * Distributes the attributs to each bio.
712 	 */
713 	for (bio = rq->bio; bio; bio = bio->bi_next) {
714 		WARN_ON_ONCE((bio->bi_opf & REQ_FAILFAST_MASK) &&
715 			     (bio->bi_opf & REQ_FAILFAST_MASK) != ff);
716 		bio->bi_opf |= ff;
717 	}
718 	rq->rq_flags |= RQF_MIXED_MERGE;
719 }
720 
721 static void blk_account_io_merge_request(struct request *req)
722 {
723 	if (blk_do_io_stat(req)) {
724 		part_stat_lock();
725 		part_stat_inc(req->part, merges[op_stat_group(req_op(req))]);
726 		part_stat_unlock();
727 	}
728 }
729 
730 static enum elv_merge blk_try_req_merge(struct request *req,
731 					struct request *next)
732 {
733 	if (blk_discard_mergable(req))
734 		return ELEVATOR_DISCARD_MERGE;
735 	else if (blk_rq_pos(req) + blk_rq_sectors(req) == blk_rq_pos(next))
736 		return ELEVATOR_BACK_MERGE;
737 
738 	return ELEVATOR_NO_MERGE;
739 }
740 
741 /*
742  * For non-mq, this has to be called with the request spinlock acquired.
743  * For mq with scheduling, the appropriate queue wide lock should be held.
744  */
745 static struct request *attempt_merge(struct request_queue *q,
746 				     struct request *req, struct request *next)
747 {
748 	if (!rq_mergeable(req) || !rq_mergeable(next))
749 		return NULL;
750 
751 	if (req_op(req) != req_op(next))
752 		return NULL;
753 
754 	if (rq_data_dir(req) != rq_data_dir(next))
755 		return NULL;
756 
757 	if (req->ioprio != next->ioprio)
758 		return NULL;
759 
760 	/*
761 	 * If we are allowed to merge, then append bio list
762 	 * from next to rq and release next. merge_requests_fn
763 	 * will have updated segment counts, update sector
764 	 * counts here. Handle DISCARDs separately, as they
765 	 * have separate settings.
766 	 */
767 
768 	switch (blk_try_req_merge(req, next)) {
769 	case ELEVATOR_DISCARD_MERGE:
770 		if (!req_attempt_discard_merge(q, req, next))
771 			return NULL;
772 		break;
773 	case ELEVATOR_BACK_MERGE:
774 		if (!ll_merge_requests_fn(q, req, next))
775 			return NULL;
776 		break;
777 	default:
778 		return NULL;
779 	}
780 
781 	/*
782 	 * If failfast settings disagree or any of the two is already
783 	 * a mixed merge, mark both as mixed before proceeding.  This
784 	 * makes sure that all involved bios have mixable attributes
785 	 * set properly.
786 	 */
787 	if (((req->rq_flags | next->rq_flags) & RQF_MIXED_MERGE) ||
788 	    (req->cmd_flags & REQ_FAILFAST_MASK) !=
789 	    (next->cmd_flags & REQ_FAILFAST_MASK)) {
790 		blk_rq_set_mixed_merge(req);
791 		blk_rq_set_mixed_merge(next);
792 	}
793 
794 	/*
795 	 * At this point we have either done a back merge or front merge. We
796 	 * need the smaller start_time_ns of the merged requests to be the
797 	 * current request for accounting purposes.
798 	 */
799 	if (next->start_time_ns < req->start_time_ns)
800 		req->start_time_ns = next->start_time_ns;
801 
802 	req->biotail->bi_next = next->bio;
803 	req->biotail = next->biotail;
804 
805 	req->__data_len += blk_rq_bytes(next);
806 
807 	if (!blk_discard_mergable(req))
808 		elv_merge_requests(q, req, next);
809 
810 	/*
811 	 * 'next' is going away, so update stats accordingly
812 	 */
813 	blk_account_io_merge_request(next);
814 
815 	trace_block_rq_merge(next);
816 
817 	/*
818 	 * ownership of bio passed from next to req, return 'next' for
819 	 * the caller to free
820 	 */
821 	next->bio = NULL;
822 	return next;
823 }
824 
825 static struct request *attempt_back_merge(struct request_queue *q,
826 		struct request *rq)
827 {
828 	struct request *next = elv_latter_request(q, rq);
829 
830 	if (next)
831 		return attempt_merge(q, rq, next);
832 
833 	return NULL;
834 }
835 
836 static struct request *attempt_front_merge(struct request_queue *q,
837 		struct request *rq)
838 {
839 	struct request *prev = elv_former_request(q, rq);
840 
841 	if (prev)
842 		return attempt_merge(q, prev, rq);
843 
844 	return NULL;
845 }
846 
847 /*
848  * Try to merge 'next' into 'rq'. Return true if the merge happened, false
849  * otherwise. The caller is responsible for freeing 'next' if the merge
850  * happened.
851  */
852 bool blk_attempt_req_merge(struct request_queue *q, struct request *rq,
853 			   struct request *next)
854 {
855 	return attempt_merge(q, rq, next);
856 }
857 
858 bool blk_rq_merge_ok(struct request *rq, struct bio *bio)
859 {
860 	if (!rq_mergeable(rq) || !bio_mergeable(bio))
861 		return false;
862 
863 	if (req_op(rq) != bio_op(bio))
864 		return false;
865 
866 	/* different data direction or already started, don't merge */
867 	if (bio_data_dir(bio) != rq_data_dir(rq))
868 		return false;
869 
870 	/* don't merge across cgroup boundaries */
871 	if (!blk_cgroup_mergeable(rq, bio))
872 		return false;
873 
874 	/* only merge integrity protected bio into ditto rq */
875 	if (blk_integrity_merge_bio(rq->q, rq, bio) == false)
876 		return false;
877 
878 	/* Only merge if the crypt contexts are compatible */
879 	if (!bio_crypt_rq_ctx_compatible(rq, bio))
880 		return false;
881 
882 	if (rq->ioprio != bio_prio(bio))
883 		return false;
884 
885 	return true;
886 }
887 
888 enum elv_merge blk_try_merge(struct request *rq, struct bio *bio)
889 {
890 	if (blk_discard_mergable(rq))
891 		return ELEVATOR_DISCARD_MERGE;
892 	else if (blk_rq_pos(rq) + blk_rq_sectors(rq) == bio->bi_iter.bi_sector)
893 		return ELEVATOR_BACK_MERGE;
894 	else if (blk_rq_pos(rq) - bio_sectors(bio) == bio->bi_iter.bi_sector)
895 		return ELEVATOR_FRONT_MERGE;
896 	return ELEVATOR_NO_MERGE;
897 }
898 
899 static void blk_account_io_merge_bio(struct request *req)
900 {
901 	if (!blk_do_io_stat(req))
902 		return;
903 
904 	part_stat_lock();
905 	part_stat_inc(req->part, merges[op_stat_group(req_op(req))]);
906 	part_stat_unlock();
907 }
908 
909 enum bio_merge_status {
910 	BIO_MERGE_OK,
911 	BIO_MERGE_NONE,
912 	BIO_MERGE_FAILED,
913 };
914 
915 static enum bio_merge_status bio_attempt_back_merge(struct request *req,
916 		struct bio *bio, unsigned int nr_segs)
917 {
918 	const int ff = bio->bi_opf & REQ_FAILFAST_MASK;
919 
920 	if (!ll_back_merge_fn(req, bio, nr_segs))
921 		return BIO_MERGE_FAILED;
922 
923 	trace_block_bio_backmerge(bio);
924 	rq_qos_merge(req->q, req, bio);
925 
926 	if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
927 		blk_rq_set_mixed_merge(req);
928 
929 	req->biotail->bi_next = bio;
930 	req->biotail = bio;
931 	req->__data_len += bio->bi_iter.bi_size;
932 
933 	bio_crypt_free_ctx(bio);
934 
935 	blk_account_io_merge_bio(req);
936 	return BIO_MERGE_OK;
937 }
938 
939 static enum bio_merge_status bio_attempt_front_merge(struct request *req,
940 		struct bio *bio, unsigned int nr_segs)
941 {
942 	const int ff = bio->bi_opf & REQ_FAILFAST_MASK;
943 
944 	if (!ll_front_merge_fn(req, bio, nr_segs))
945 		return BIO_MERGE_FAILED;
946 
947 	trace_block_bio_frontmerge(bio);
948 	rq_qos_merge(req->q, req, bio);
949 
950 	if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
951 		blk_rq_set_mixed_merge(req);
952 
953 	bio->bi_next = req->bio;
954 	req->bio = bio;
955 
956 	req->__sector = bio->bi_iter.bi_sector;
957 	req->__data_len += bio->bi_iter.bi_size;
958 
959 	bio_crypt_do_front_merge(req, bio);
960 
961 	blk_account_io_merge_bio(req);
962 	return BIO_MERGE_OK;
963 }
964 
965 static enum bio_merge_status bio_attempt_discard_merge(struct request_queue *q,
966 		struct request *req, struct bio *bio)
967 {
968 	unsigned short segments = blk_rq_nr_discard_segments(req);
969 
970 	if (segments >= queue_max_discard_segments(q))
971 		goto no_merge;
972 	if (blk_rq_sectors(req) + bio_sectors(bio) >
973 	    blk_rq_get_max_sectors(req, blk_rq_pos(req)))
974 		goto no_merge;
975 
976 	rq_qos_merge(q, req, bio);
977 
978 	req->biotail->bi_next = bio;
979 	req->biotail = bio;
980 	req->__data_len += bio->bi_iter.bi_size;
981 	req->nr_phys_segments = segments + 1;
982 
983 	blk_account_io_merge_bio(req);
984 	return BIO_MERGE_OK;
985 no_merge:
986 	req_set_nomerge(q, req);
987 	return BIO_MERGE_FAILED;
988 }
989 
990 static enum bio_merge_status blk_attempt_bio_merge(struct request_queue *q,
991 						   struct request *rq,
992 						   struct bio *bio,
993 						   unsigned int nr_segs,
994 						   bool sched_allow_merge)
995 {
996 	if (!blk_rq_merge_ok(rq, bio))
997 		return BIO_MERGE_NONE;
998 
999 	switch (blk_try_merge(rq, bio)) {
1000 	case ELEVATOR_BACK_MERGE:
1001 		if (!sched_allow_merge || blk_mq_sched_allow_merge(q, rq, bio))
1002 			return bio_attempt_back_merge(rq, bio, nr_segs);
1003 		break;
1004 	case ELEVATOR_FRONT_MERGE:
1005 		if (!sched_allow_merge || blk_mq_sched_allow_merge(q, rq, bio))
1006 			return bio_attempt_front_merge(rq, bio, nr_segs);
1007 		break;
1008 	case ELEVATOR_DISCARD_MERGE:
1009 		return bio_attempt_discard_merge(q, rq, bio);
1010 	default:
1011 		return BIO_MERGE_NONE;
1012 	}
1013 
1014 	return BIO_MERGE_FAILED;
1015 }
1016 
1017 /**
1018  * blk_attempt_plug_merge - try to merge with %current's plugged list
1019  * @q: request_queue new bio is being queued at
1020  * @bio: new bio being queued
1021  * @nr_segs: number of segments in @bio
1022  * from the passed in @q already in the plug list
1023  *
1024  * Determine whether @bio being queued on @q can be merged with the previous
1025  * request on %current's plugged list.  Returns %true if merge was successful,
1026  * otherwise %false.
1027  *
1028  * Plugging coalesces IOs from the same issuer for the same purpose without
1029  * going through @q->queue_lock.  As such it's more of an issuing mechanism
1030  * than scheduling, and the request, while may have elvpriv data, is not
1031  * added on the elevator at this point.  In addition, we don't have
1032  * reliable access to the elevator outside queue lock.  Only check basic
1033  * merging parameters without querying the elevator.
1034  *
1035  * Caller must ensure !blk_queue_nomerges(q) beforehand.
1036  */
1037 bool blk_attempt_plug_merge(struct request_queue *q, struct bio *bio,
1038 		unsigned int nr_segs)
1039 {
1040 	struct blk_plug *plug;
1041 	struct request *rq;
1042 
1043 	plug = blk_mq_plug(q, bio);
1044 	if (!plug || rq_list_empty(plug->mq_list))
1045 		return false;
1046 
1047 	rq_list_for_each(&plug->mq_list, rq) {
1048 		if (rq->q == q) {
1049 			if (blk_attempt_bio_merge(q, rq, bio, nr_segs, false) ==
1050 			    BIO_MERGE_OK)
1051 				return true;
1052 			break;
1053 		}
1054 
1055 		/*
1056 		 * Only keep iterating plug list for merges if we have multiple
1057 		 * queues
1058 		 */
1059 		if (!plug->multiple_queues)
1060 			break;
1061 	}
1062 	return false;
1063 }
1064 
1065 /*
1066  * Iterate list of requests and see if we can merge this bio with any
1067  * of them.
1068  */
1069 bool blk_bio_list_merge(struct request_queue *q, struct list_head *list,
1070 			struct bio *bio, unsigned int nr_segs)
1071 {
1072 	struct request *rq;
1073 	int checked = 8;
1074 
1075 	list_for_each_entry_reverse(rq, list, queuelist) {
1076 		if (!checked--)
1077 			break;
1078 
1079 		switch (blk_attempt_bio_merge(q, rq, bio, nr_segs, true)) {
1080 		case BIO_MERGE_NONE:
1081 			continue;
1082 		case BIO_MERGE_OK:
1083 			return true;
1084 		case BIO_MERGE_FAILED:
1085 			return false;
1086 		}
1087 
1088 	}
1089 
1090 	return false;
1091 }
1092 EXPORT_SYMBOL_GPL(blk_bio_list_merge);
1093 
1094 bool blk_mq_sched_try_merge(struct request_queue *q, struct bio *bio,
1095 		unsigned int nr_segs, struct request **merged_request)
1096 {
1097 	struct request *rq;
1098 
1099 	switch (elv_merge(q, &rq, bio)) {
1100 	case ELEVATOR_BACK_MERGE:
1101 		if (!blk_mq_sched_allow_merge(q, rq, bio))
1102 			return false;
1103 		if (bio_attempt_back_merge(rq, bio, nr_segs) != BIO_MERGE_OK)
1104 			return false;
1105 		*merged_request = attempt_back_merge(q, rq);
1106 		if (!*merged_request)
1107 			elv_merged_request(q, rq, ELEVATOR_BACK_MERGE);
1108 		return true;
1109 	case ELEVATOR_FRONT_MERGE:
1110 		if (!blk_mq_sched_allow_merge(q, rq, bio))
1111 			return false;
1112 		if (bio_attempt_front_merge(rq, bio, nr_segs) != BIO_MERGE_OK)
1113 			return false;
1114 		*merged_request = attempt_front_merge(q, rq);
1115 		if (!*merged_request)
1116 			elv_merged_request(q, rq, ELEVATOR_FRONT_MERGE);
1117 		return true;
1118 	case ELEVATOR_DISCARD_MERGE:
1119 		return bio_attempt_discard_merge(q, rq, bio) == BIO_MERGE_OK;
1120 	default:
1121 		return false;
1122 	}
1123 }
1124 EXPORT_SYMBOL_GPL(blk_mq_sched_try_merge);
1125