xref: /linux/block/blk-merge.c (revision 8f5b5f78113e881cb8570c961b0dc42b218a1b9e)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Functions related to segment and merge handling
4  */
5 #include <linux/kernel.h>
6 #include <linux/module.h>
7 #include <linux/bio.h>
8 #include <linux/blkdev.h>
9 #include <linux/blk-integrity.h>
10 #include <linux/scatterlist.h>
11 #include <linux/part_stat.h>
12 #include <linux/blk-cgroup.h>
13 
14 #include <trace/events/block.h>
15 
16 #include "blk.h"
17 #include "blk-mq-sched.h"
18 #include "blk-rq-qos.h"
19 #include "blk-throttle.h"
20 
21 static inline void bio_get_first_bvec(struct bio *bio, struct bio_vec *bv)
22 {
23 	*bv = mp_bvec_iter_bvec(bio->bi_io_vec, bio->bi_iter);
24 }
25 
26 static inline void bio_get_last_bvec(struct bio *bio, struct bio_vec *bv)
27 {
28 	struct bvec_iter iter = bio->bi_iter;
29 	int idx;
30 
31 	bio_get_first_bvec(bio, bv);
32 	if (bv->bv_len == bio->bi_iter.bi_size)
33 		return;		/* this bio only has a single bvec */
34 
35 	bio_advance_iter(bio, &iter, iter.bi_size);
36 
37 	if (!iter.bi_bvec_done)
38 		idx = iter.bi_idx - 1;
39 	else	/* in the middle of bvec */
40 		idx = iter.bi_idx;
41 
42 	*bv = bio->bi_io_vec[idx];
43 
44 	/*
45 	 * iter.bi_bvec_done records actual length of the last bvec
46 	 * if this bio ends in the middle of one io vector
47 	 */
48 	if (iter.bi_bvec_done)
49 		bv->bv_len = iter.bi_bvec_done;
50 }
51 
52 static inline bool bio_will_gap(struct request_queue *q,
53 		struct request *prev_rq, struct bio *prev, struct bio *next)
54 {
55 	struct bio_vec pb, nb;
56 
57 	if (!bio_has_data(prev) || !queue_virt_boundary(q))
58 		return false;
59 
60 	/*
61 	 * Don't merge if the 1st bio starts with non-zero offset, otherwise it
62 	 * is quite difficult to respect the sg gap limit.  We work hard to
63 	 * merge a huge number of small single bios in case of mkfs.
64 	 */
65 	if (prev_rq)
66 		bio_get_first_bvec(prev_rq->bio, &pb);
67 	else
68 		bio_get_first_bvec(prev, &pb);
69 	if (pb.bv_offset & queue_virt_boundary(q))
70 		return true;
71 
72 	/*
73 	 * We don't need to worry about the situation that the merged segment
74 	 * ends in unaligned virt boundary:
75 	 *
76 	 * - if 'pb' ends aligned, the merged segment ends aligned
77 	 * - if 'pb' ends unaligned, the next bio must include
78 	 *   one single bvec of 'nb', otherwise the 'nb' can't
79 	 *   merge with 'pb'
80 	 */
81 	bio_get_last_bvec(prev, &pb);
82 	bio_get_first_bvec(next, &nb);
83 	if (biovec_phys_mergeable(q, &pb, &nb))
84 		return false;
85 	return __bvec_gap_to_prev(&q->limits, &pb, nb.bv_offset);
86 }
87 
88 static inline bool req_gap_back_merge(struct request *req, struct bio *bio)
89 {
90 	return bio_will_gap(req->q, req, req->biotail, bio);
91 }
92 
93 static inline bool req_gap_front_merge(struct request *req, struct bio *bio)
94 {
95 	return bio_will_gap(req->q, NULL, bio, req->bio);
96 }
97 
98 /*
99  * The max size one bio can handle is UINT_MAX becasue bvec_iter.bi_size
100  * is defined as 'unsigned int', meantime it has to be aligned to with the
101  * logical block size, which is the minimum accepted unit by hardware.
102  */
103 static unsigned int bio_allowed_max_sectors(const struct queue_limits *lim)
104 {
105 	return round_down(UINT_MAX, lim->logical_block_size) >> SECTOR_SHIFT;
106 }
107 
108 static struct bio *bio_split_discard(struct bio *bio,
109 				     const struct queue_limits *lim,
110 				     unsigned *nsegs, struct bio_set *bs)
111 {
112 	unsigned int max_discard_sectors, granularity;
113 	sector_t tmp;
114 	unsigned split_sectors;
115 
116 	*nsegs = 1;
117 
118 	granularity = max(lim->discard_granularity >> 9, 1U);
119 
120 	max_discard_sectors =
121 		min(lim->max_discard_sectors, bio_allowed_max_sectors(lim));
122 	max_discard_sectors -= max_discard_sectors % granularity;
123 	if (unlikely(!max_discard_sectors))
124 		return NULL;
125 
126 	if (bio_sectors(bio) <= max_discard_sectors)
127 		return NULL;
128 
129 	split_sectors = max_discard_sectors;
130 
131 	/*
132 	 * If the next starting sector would be misaligned, stop the discard at
133 	 * the previous aligned sector.
134 	 */
135 	tmp = bio->bi_iter.bi_sector + split_sectors -
136 		((lim->discard_alignment >> 9) % granularity);
137 	tmp = sector_div(tmp, granularity);
138 
139 	if (split_sectors > tmp)
140 		split_sectors -= tmp;
141 
142 	return bio_split(bio, split_sectors, GFP_NOIO, bs);
143 }
144 
145 static struct bio *bio_split_write_zeroes(struct bio *bio,
146 					  const struct queue_limits *lim,
147 					  unsigned *nsegs, struct bio_set *bs)
148 {
149 	*nsegs = 0;
150 	if (!lim->max_write_zeroes_sectors)
151 		return NULL;
152 	if (bio_sectors(bio) <= lim->max_write_zeroes_sectors)
153 		return NULL;
154 	return bio_split(bio, lim->max_write_zeroes_sectors, GFP_NOIO, bs);
155 }
156 
157 /*
158  * Return the maximum number of sectors from the start of a bio that may be
159  * submitted as a single request to a block device. If enough sectors remain,
160  * align the end to the physical block size. Otherwise align the end to the
161  * logical block size. This approach minimizes the number of non-aligned
162  * requests that are submitted to a block device if the start of a bio is not
163  * aligned to a physical block boundary.
164  */
165 static inline unsigned get_max_io_size(struct bio *bio,
166 				       const struct queue_limits *lim)
167 {
168 	unsigned pbs = lim->physical_block_size >> SECTOR_SHIFT;
169 	unsigned lbs = lim->logical_block_size >> SECTOR_SHIFT;
170 	unsigned max_sectors = lim->max_sectors, start, end;
171 
172 	if (lim->chunk_sectors) {
173 		max_sectors = min(max_sectors,
174 			blk_chunk_sectors_left(bio->bi_iter.bi_sector,
175 					       lim->chunk_sectors));
176 	}
177 
178 	start = bio->bi_iter.bi_sector & (pbs - 1);
179 	end = (start + max_sectors) & ~(pbs - 1);
180 	if (end > start)
181 		return end - start;
182 	return max_sectors & ~(lbs - 1);
183 }
184 
185 /**
186  * get_max_segment_size() - maximum number of bytes to add as a single segment
187  * @lim: Request queue limits.
188  * @start_page: See below.
189  * @offset: Offset from @start_page where to add a segment.
190  *
191  * Returns the maximum number of bytes that can be added as a single segment.
192  */
193 static inline unsigned get_max_segment_size(const struct queue_limits *lim,
194 		struct page *start_page, unsigned long offset)
195 {
196 	unsigned long mask = lim->seg_boundary_mask;
197 
198 	offset = mask & (page_to_phys(start_page) + offset);
199 
200 	/*
201 	 * Prevent an overflow if mask = ULONG_MAX and offset = 0 by adding 1
202 	 * after having calculated the minimum.
203 	 */
204 	return min(mask - offset, (unsigned long)lim->max_segment_size - 1) + 1;
205 }
206 
207 /**
208  * bvec_split_segs - verify whether or not a bvec should be split in the middle
209  * @lim:      [in] queue limits to split based on
210  * @bv:       [in] bvec to examine
211  * @nsegs:    [in,out] Number of segments in the bio being built. Incremented
212  *            by the number of segments from @bv that may be appended to that
213  *            bio without exceeding @max_segs
214  * @bytes:    [in,out] Number of bytes in the bio being built. Incremented
215  *            by the number of bytes from @bv that may be appended to that
216  *            bio without exceeding @max_bytes
217  * @max_segs: [in] upper bound for *@nsegs
218  * @max_bytes: [in] upper bound for *@bytes
219  *
220  * When splitting a bio, it can happen that a bvec is encountered that is too
221  * big to fit in a single segment and hence that it has to be split in the
222  * middle. This function verifies whether or not that should happen. The value
223  * %true is returned if and only if appending the entire @bv to a bio with
224  * *@nsegs segments and *@sectors sectors would make that bio unacceptable for
225  * the block driver.
226  */
227 static bool bvec_split_segs(const struct queue_limits *lim,
228 		const struct bio_vec *bv, unsigned *nsegs, unsigned *bytes,
229 		unsigned max_segs, unsigned max_bytes)
230 {
231 	unsigned max_len = min(max_bytes, UINT_MAX) - *bytes;
232 	unsigned len = min(bv->bv_len, max_len);
233 	unsigned total_len = 0;
234 	unsigned seg_size = 0;
235 
236 	while (len && *nsegs < max_segs) {
237 		seg_size = get_max_segment_size(lim, bv->bv_page,
238 						bv->bv_offset + total_len);
239 		seg_size = min(seg_size, len);
240 
241 		(*nsegs)++;
242 		total_len += seg_size;
243 		len -= seg_size;
244 
245 		if ((bv->bv_offset + total_len) & lim->virt_boundary_mask)
246 			break;
247 	}
248 
249 	*bytes += total_len;
250 
251 	/* tell the caller to split the bvec if it is too big to fit */
252 	return len > 0 || bv->bv_len > max_len;
253 }
254 
255 /**
256  * bio_split_rw - split a bio in two bios
257  * @bio:  [in] bio to be split
258  * @lim:  [in] queue limits to split based on
259  * @segs: [out] number of segments in the bio with the first half of the sectors
260  * @bs:	  [in] bio set to allocate the clone from
261  * @max_bytes: [in] maximum number of bytes per bio
262  *
263  * Clone @bio, update the bi_iter of the clone to represent the first sectors
264  * of @bio and update @bio->bi_iter to represent the remaining sectors. The
265  * following is guaranteed for the cloned bio:
266  * - That it has at most @max_bytes worth of data
267  * - That it has at most queue_max_segments(@q) segments.
268  *
269  * Except for discard requests the cloned bio will point at the bi_io_vec of
270  * the original bio. It is the responsibility of the caller to ensure that the
271  * original bio is not freed before the cloned bio. The caller is also
272  * responsible for ensuring that @bs is only destroyed after processing of the
273  * split bio has finished.
274  */
275 struct bio *bio_split_rw(struct bio *bio, const struct queue_limits *lim,
276 		unsigned *segs, struct bio_set *bs, unsigned max_bytes)
277 {
278 	struct bio_vec bv, bvprv, *bvprvp = NULL;
279 	struct bvec_iter iter;
280 	unsigned nsegs = 0, bytes = 0;
281 
282 	bio_for_each_bvec(bv, bio, iter) {
283 		/*
284 		 * If the queue doesn't support SG gaps and adding this
285 		 * offset would create a gap, disallow it.
286 		 */
287 		if (bvprvp && bvec_gap_to_prev(lim, bvprvp, bv.bv_offset))
288 			goto split;
289 
290 		if (nsegs < lim->max_segments &&
291 		    bytes + bv.bv_len <= max_bytes &&
292 		    bv.bv_offset + bv.bv_len <= PAGE_SIZE) {
293 			nsegs++;
294 			bytes += bv.bv_len;
295 		} else {
296 			if (bvec_split_segs(lim, &bv, &nsegs, &bytes,
297 					lim->max_segments, max_bytes))
298 				goto split;
299 		}
300 
301 		bvprv = bv;
302 		bvprvp = &bvprv;
303 	}
304 
305 	*segs = nsegs;
306 	return NULL;
307 split:
308 	/*
309 	 * We can't sanely support splitting for a REQ_NOWAIT bio. End it
310 	 * with EAGAIN if splitting is required and return an error pointer.
311 	 */
312 	if (bio->bi_opf & REQ_NOWAIT) {
313 		bio->bi_status = BLK_STS_AGAIN;
314 		bio_endio(bio);
315 		return ERR_PTR(-EAGAIN);
316 	}
317 
318 	*segs = nsegs;
319 
320 	/*
321 	 * Individual bvecs might not be logical block aligned. Round down the
322 	 * split size so that each bio is properly block size aligned, even if
323 	 * we do not use the full hardware limits.
324 	 */
325 	bytes = ALIGN_DOWN(bytes, lim->logical_block_size);
326 
327 	/*
328 	 * Bio splitting may cause subtle trouble such as hang when doing sync
329 	 * iopoll in direct IO routine. Given performance gain of iopoll for
330 	 * big IO can be trival, disable iopoll when split needed.
331 	 */
332 	bio_clear_polled(bio);
333 	return bio_split(bio, bytes >> SECTOR_SHIFT, GFP_NOIO, bs);
334 }
335 EXPORT_SYMBOL_GPL(bio_split_rw);
336 
337 /**
338  * __bio_split_to_limits - split a bio to fit the queue limits
339  * @bio:     bio to be split
340  * @lim:     queue limits to split based on
341  * @nr_segs: returns the number of segments in the returned bio
342  *
343  * Check if @bio needs splitting based on the queue limits, and if so split off
344  * a bio fitting the limits from the beginning of @bio and return it.  @bio is
345  * shortened to the remainder and re-submitted.
346  *
347  * The split bio is allocated from @q->bio_split, which is provided by the
348  * block layer.
349  */
350 struct bio *__bio_split_to_limits(struct bio *bio,
351 				  const struct queue_limits *lim,
352 				  unsigned int *nr_segs)
353 {
354 	struct bio_set *bs = &bio->bi_bdev->bd_disk->bio_split;
355 	struct bio *split;
356 
357 	switch (bio_op(bio)) {
358 	case REQ_OP_DISCARD:
359 	case REQ_OP_SECURE_ERASE:
360 		split = bio_split_discard(bio, lim, nr_segs, bs);
361 		break;
362 	case REQ_OP_WRITE_ZEROES:
363 		split = bio_split_write_zeroes(bio, lim, nr_segs, bs);
364 		break;
365 	default:
366 		split = bio_split_rw(bio, lim, nr_segs, bs,
367 				get_max_io_size(bio, lim) << SECTOR_SHIFT);
368 		if (IS_ERR(split))
369 			return NULL;
370 		break;
371 	}
372 
373 	if (split) {
374 		/* there isn't chance to merge the split bio */
375 		split->bi_opf |= REQ_NOMERGE;
376 
377 		blkcg_bio_issue_init(split);
378 		bio_chain(split, bio);
379 		trace_block_split(split, bio->bi_iter.bi_sector);
380 		WARN_ON_ONCE(bio_zone_write_plugging(bio));
381 		submit_bio_noacct(bio);
382 		return split;
383 	}
384 	return bio;
385 }
386 
387 /**
388  * bio_split_to_limits - split a bio to fit the queue limits
389  * @bio:     bio to be split
390  *
391  * Check if @bio needs splitting based on the queue limits of @bio->bi_bdev, and
392  * if so split off a bio fitting the limits from the beginning of @bio and
393  * return it.  @bio is shortened to the remainder and re-submitted.
394  *
395  * The split bio is allocated from @q->bio_split, which is provided by the
396  * block layer.
397  */
398 struct bio *bio_split_to_limits(struct bio *bio)
399 {
400 	const struct queue_limits *lim = &bdev_get_queue(bio->bi_bdev)->limits;
401 	unsigned int nr_segs;
402 
403 	if (bio_may_exceed_limits(bio, lim))
404 		return __bio_split_to_limits(bio, lim, &nr_segs);
405 	return bio;
406 }
407 EXPORT_SYMBOL(bio_split_to_limits);
408 
409 unsigned int blk_recalc_rq_segments(struct request *rq)
410 {
411 	unsigned int nr_phys_segs = 0;
412 	unsigned int bytes = 0;
413 	struct req_iterator iter;
414 	struct bio_vec bv;
415 
416 	if (!rq->bio)
417 		return 0;
418 
419 	switch (bio_op(rq->bio)) {
420 	case REQ_OP_DISCARD:
421 	case REQ_OP_SECURE_ERASE:
422 		if (queue_max_discard_segments(rq->q) > 1) {
423 			struct bio *bio = rq->bio;
424 
425 			for_each_bio(bio)
426 				nr_phys_segs++;
427 			return nr_phys_segs;
428 		}
429 		return 1;
430 	case REQ_OP_WRITE_ZEROES:
431 		return 0;
432 	default:
433 		break;
434 	}
435 
436 	rq_for_each_bvec(bv, rq, iter)
437 		bvec_split_segs(&rq->q->limits, &bv, &nr_phys_segs, &bytes,
438 				UINT_MAX, UINT_MAX);
439 	return nr_phys_segs;
440 }
441 
442 static inline struct scatterlist *blk_next_sg(struct scatterlist **sg,
443 		struct scatterlist *sglist)
444 {
445 	if (!*sg)
446 		return sglist;
447 
448 	/*
449 	 * If the driver previously mapped a shorter list, we could see a
450 	 * termination bit prematurely unless it fully inits the sg table
451 	 * on each mapping. We KNOW that there must be more entries here
452 	 * or the driver would be buggy, so force clear the termination bit
453 	 * to avoid doing a full sg_init_table() in drivers for each command.
454 	 */
455 	sg_unmark_end(*sg);
456 	return sg_next(*sg);
457 }
458 
459 static unsigned blk_bvec_map_sg(struct request_queue *q,
460 		struct bio_vec *bvec, struct scatterlist *sglist,
461 		struct scatterlist **sg)
462 {
463 	unsigned nbytes = bvec->bv_len;
464 	unsigned nsegs = 0, total = 0;
465 
466 	while (nbytes > 0) {
467 		unsigned offset = bvec->bv_offset + total;
468 		unsigned len = min(get_max_segment_size(&q->limits,
469 				   bvec->bv_page, offset), nbytes);
470 		struct page *page = bvec->bv_page;
471 
472 		/*
473 		 * Unfortunately a fair number of drivers barf on scatterlists
474 		 * that have an offset larger than PAGE_SIZE, despite other
475 		 * subsystems dealing with that invariant just fine.  For now
476 		 * stick to the legacy format where we never present those from
477 		 * the block layer, but the code below should be removed once
478 		 * these offenders (mostly MMC/SD drivers) are fixed.
479 		 */
480 		page += (offset >> PAGE_SHIFT);
481 		offset &= ~PAGE_MASK;
482 
483 		*sg = blk_next_sg(sg, sglist);
484 		sg_set_page(*sg, page, len, offset);
485 
486 		total += len;
487 		nbytes -= len;
488 		nsegs++;
489 	}
490 
491 	return nsegs;
492 }
493 
494 static inline int __blk_bvec_map_sg(struct bio_vec bv,
495 		struct scatterlist *sglist, struct scatterlist **sg)
496 {
497 	*sg = blk_next_sg(sg, sglist);
498 	sg_set_page(*sg, bv.bv_page, bv.bv_len, bv.bv_offset);
499 	return 1;
500 }
501 
502 /* only try to merge bvecs into one sg if they are from two bios */
503 static inline bool
504 __blk_segment_map_sg_merge(struct request_queue *q, struct bio_vec *bvec,
505 			   struct bio_vec *bvprv, struct scatterlist **sg)
506 {
507 
508 	int nbytes = bvec->bv_len;
509 
510 	if (!*sg)
511 		return false;
512 
513 	if ((*sg)->length + nbytes > queue_max_segment_size(q))
514 		return false;
515 
516 	if (!biovec_phys_mergeable(q, bvprv, bvec))
517 		return false;
518 
519 	(*sg)->length += nbytes;
520 
521 	return true;
522 }
523 
524 static int __blk_bios_map_sg(struct request_queue *q, struct bio *bio,
525 			     struct scatterlist *sglist,
526 			     struct scatterlist **sg)
527 {
528 	struct bio_vec bvec, bvprv = { NULL };
529 	struct bvec_iter iter;
530 	int nsegs = 0;
531 	bool new_bio = false;
532 
533 	for_each_bio(bio) {
534 		bio_for_each_bvec(bvec, bio, iter) {
535 			/*
536 			 * Only try to merge bvecs from two bios given we
537 			 * have done bio internal merge when adding pages
538 			 * to bio
539 			 */
540 			if (new_bio &&
541 			    __blk_segment_map_sg_merge(q, &bvec, &bvprv, sg))
542 				goto next_bvec;
543 
544 			if (bvec.bv_offset + bvec.bv_len <= PAGE_SIZE)
545 				nsegs += __blk_bvec_map_sg(bvec, sglist, sg);
546 			else
547 				nsegs += blk_bvec_map_sg(q, &bvec, sglist, sg);
548  next_bvec:
549 			new_bio = false;
550 		}
551 		if (likely(bio->bi_iter.bi_size)) {
552 			bvprv = bvec;
553 			new_bio = true;
554 		}
555 	}
556 
557 	return nsegs;
558 }
559 
560 /*
561  * map a request to scatterlist, return number of sg entries setup. Caller
562  * must make sure sg can hold rq->nr_phys_segments entries
563  */
564 int __blk_rq_map_sg(struct request_queue *q, struct request *rq,
565 		struct scatterlist *sglist, struct scatterlist **last_sg)
566 {
567 	int nsegs = 0;
568 
569 	if (rq->rq_flags & RQF_SPECIAL_PAYLOAD)
570 		nsegs = __blk_bvec_map_sg(rq->special_vec, sglist, last_sg);
571 	else if (rq->bio)
572 		nsegs = __blk_bios_map_sg(q, rq->bio, sglist, last_sg);
573 
574 	if (*last_sg)
575 		sg_mark_end(*last_sg);
576 
577 	/*
578 	 * Something must have been wrong if the figured number of
579 	 * segment is bigger than number of req's physical segments
580 	 */
581 	WARN_ON(nsegs > blk_rq_nr_phys_segments(rq));
582 
583 	return nsegs;
584 }
585 EXPORT_SYMBOL(__blk_rq_map_sg);
586 
587 static inline unsigned int blk_rq_get_max_sectors(struct request *rq,
588 						  sector_t offset)
589 {
590 	struct request_queue *q = rq->q;
591 	unsigned int max_sectors;
592 
593 	if (blk_rq_is_passthrough(rq))
594 		return q->limits.max_hw_sectors;
595 
596 	max_sectors = blk_queue_get_max_sectors(q, req_op(rq));
597 	if (!q->limits.chunk_sectors ||
598 	    req_op(rq) == REQ_OP_DISCARD ||
599 	    req_op(rq) == REQ_OP_SECURE_ERASE)
600 		return max_sectors;
601 	return min(max_sectors,
602 		   blk_chunk_sectors_left(offset, q->limits.chunk_sectors));
603 }
604 
605 static inline int ll_new_hw_segment(struct request *req, struct bio *bio,
606 		unsigned int nr_phys_segs)
607 {
608 	if (!blk_cgroup_mergeable(req, bio))
609 		goto no_merge;
610 
611 	if (blk_integrity_merge_bio(req->q, req, bio) == false)
612 		goto no_merge;
613 
614 	/* discard request merge won't add new segment */
615 	if (req_op(req) == REQ_OP_DISCARD)
616 		return 1;
617 
618 	if (req->nr_phys_segments + nr_phys_segs > blk_rq_get_max_segments(req))
619 		goto no_merge;
620 
621 	/*
622 	 * This will form the start of a new hw segment.  Bump both
623 	 * counters.
624 	 */
625 	req->nr_phys_segments += nr_phys_segs;
626 	return 1;
627 
628 no_merge:
629 	req_set_nomerge(req->q, req);
630 	return 0;
631 }
632 
633 int ll_back_merge_fn(struct request *req, struct bio *bio, unsigned int nr_segs)
634 {
635 	if (req_gap_back_merge(req, bio))
636 		return 0;
637 	if (blk_integrity_rq(req) &&
638 	    integrity_req_gap_back_merge(req, bio))
639 		return 0;
640 	if (!bio_crypt_ctx_back_mergeable(req, bio))
641 		return 0;
642 	if (blk_rq_sectors(req) + bio_sectors(bio) >
643 	    blk_rq_get_max_sectors(req, blk_rq_pos(req))) {
644 		req_set_nomerge(req->q, req);
645 		return 0;
646 	}
647 
648 	return ll_new_hw_segment(req, bio, nr_segs);
649 }
650 
651 static int ll_front_merge_fn(struct request *req, struct bio *bio,
652 		unsigned int nr_segs)
653 {
654 	if (req_gap_front_merge(req, bio))
655 		return 0;
656 	if (blk_integrity_rq(req) &&
657 	    integrity_req_gap_front_merge(req, bio))
658 		return 0;
659 	if (!bio_crypt_ctx_front_mergeable(req, bio))
660 		return 0;
661 	if (blk_rq_sectors(req) + bio_sectors(bio) >
662 	    blk_rq_get_max_sectors(req, bio->bi_iter.bi_sector)) {
663 		req_set_nomerge(req->q, req);
664 		return 0;
665 	}
666 
667 	return ll_new_hw_segment(req, bio, nr_segs);
668 }
669 
670 static bool req_attempt_discard_merge(struct request_queue *q, struct request *req,
671 		struct request *next)
672 {
673 	unsigned short segments = blk_rq_nr_discard_segments(req);
674 
675 	if (segments >= queue_max_discard_segments(q))
676 		goto no_merge;
677 	if (blk_rq_sectors(req) + bio_sectors(next->bio) >
678 	    blk_rq_get_max_sectors(req, blk_rq_pos(req)))
679 		goto no_merge;
680 
681 	req->nr_phys_segments = segments + blk_rq_nr_discard_segments(next);
682 	return true;
683 no_merge:
684 	req_set_nomerge(q, req);
685 	return false;
686 }
687 
688 static int ll_merge_requests_fn(struct request_queue *q, struct request *req,
689 				struct request *next)
690 {
691 	int total_phys_segments;
692 
693 	if (req_gap_back_merge(req, next->bio))
694 		return 0;
695 
696 	/*
697 	 * Will it become too large?
698 	 */
699 	if ((blk_rq_sectors(req) + blk_rq_sectors(next)) >
700 	    blk_rq_get_max_sectors(req, blk_rq_pos(req)))
701 		return 0;
702 
703 	total_phys_segments = req->nr_phys_segments + next->nr_phys_segments;
704 	if (total_phys_segments > blk_rq_get_max_segments(req))
705 		return 0;
706 
707 	if (!blk_cgroup_mergeable(req, next->bio))
708 		return 0;
709 
710 	if (blk_integrity_merge_rq(q, req, next) == false)
711 		return 0;
712 
713 	if (!bio_crypt_ctx_merge_rq(req, next))
714 		return 0;
715 
716 	/* Merge is OK... */
717 	req->nr_phys_segments = total_phys_segments;
718 	return 1;
719 }
720 
721 /**
722  * blk_rq_set_mixed_merge - mark a request as mixed merge
723  * @rq: request to mark as mixed merge
724  *
725  * Description:
726  *     @rq is about to be mixed merged.  Make sure the attributes
727  *     which can be mixed are set in each bio and mark @rq as mixed
728  *     merged.
729  */
730 static void blk_rq_set_mixed_merge(struct request *rq)
731 {
732 	blk_opf_t ff = rq->cmd_flags & REQ_FAILFAST_MASK;
733 	struct bio *bio;
734 
735 	if (rq->rq_flags & RQF_MIXED_MERGE)
736 		return;
737 
738 	/*
739 	 * @rq will no longer represent mixable attributes for all the
740 	 * contained bios.  It will just track those of the first one.
741 	 * Distributes the attributs to each bio.
742 	 */
743 	for (bio = rq->bio; bio; bio = bio->bi_next) {
744 		WARN_ON_ONCE((bio->bi_opf & REQ_FAILFAST_MASK) &&
745 			     (bio->bi_opf & REQ_FAILFAST_MASK) != ff);
746 		bio->bi_opf |= ff;
747 	}
748 	rq->rq_flags |= RQF_MIXED_MERGE;
749 }
750 
751 static inline blk_opf_t bio_failfast(const struct bio *bio)
752 {
753 	if (bio->bi_opf & REQ_RAHEAD)
754 		return REQ_FAILFAST_MASK;
755 
756 	return bio->bi_opf & REQ_FAILFAST_MASK;
757 }
758 
759 /*
760  * After we are marked as MIXED_MERGE, any new RA bio has to be updated
761  * as failfast, and request's failfast has to be updated in case of
762  * front merge.
763  */
764 static inline void blk_update_mixed_merge(struct request *req,
765 		struct bio *bio, bool front_merge)
766 {
767 	if (req->rq_flags & RQF_MIXED_MERGE) {
768 		if (bio->bi_opf & REQ_RAHEAD)
769 			bio->bi_opf |= REQ_FAILFAST_MASK;
770 
771 		if (front_merge) {
772 			req->cmd_flags &= ~REQ_FAILFAST_MASK;
773 			req->cmd_flags |= bio->bi_opf & REQ_FAILFAST_MASK;
774 		}
775 	}
776 }
777 
778 static void blk_account_io_merge_request(struct request *req)
779 {
780 	if (blk_do_io_stat(req)) {
781 		part_stat_lock();
782 		part_stat_inc(req->part, merges[op_stat_group(req_op(req))]);
783 		part_stat_local_dec(req->part,
784 				    in_flight[op_is_write(req_op(req))]);
785 		part_stat_unlock();
786 	}
787 }
788 
789 static enum elv_merge blk_try_req_merge(struct request *req,
790 					struct request *next)
791 {
792 	if (blk_discard_mergable(req))
793 		return ELEVATOR_DISCARD_MERGE;
794 	else if (blk_rq_pos(req) + blk_rq_sectors(req) == blk_rq_pos(next))
795 		return ELEVATOR_BACK_MERGE;
796 
797 	return ELEVATOR_NO_MERGE;
798 }
799 
800 /*
801  * For non-mq, this has to be called with the request spinlock acquired.
802  * For mq with scheduling, the appropriate queue wide lock should be held.
803  */
804 static struct request *attempt_merge(struct request_queue *q,
805 				     struct request *req, struct request *next)
806 {
807 	if (!rq_mergeable(req) || !rq_mergeable(next))
808 		return NULL;
809 
810 	if (req_op(req) != req_op(next))
811 		return NULL;
812 
813 	if (rq_data_dir(req) != rq_data_dir(next))
814 		return NULL;
815 
816 	/* Don't merge requests with different write hints. */
817 	if (req->write_hint != next->write_hint)
818 		return NULL;
819 
820 	if (req->ioprio != next->ioprio)
821 		return NULL;
822 
823 	/*
824 	 * If we are allowed to merge, then append bio list
825 	 * from next to rq and release next. merge_requests_fn
826 	 * will have updated segment counts, update sector
827 	 * counts here. Handle DISCARDs separately, as they
828 	 * have separate settings.
829 	 */
830 
831 	switch (blk_try_req_merge(req, next)) {
832 	case ELEVATOR_DISCARD_MERGE:
833 		if (!req_attempt_discard_merge(q, req, next))
834 			return NULL;
835 		break;
836 	case ELEVATOR_BACK_MERGE:
837 		if (!ll_merge_requests_fn(q, req, next))
838 			return NULL;
839 		break;
840 	default:
841 		return NULL;
842 	}
843 
844 	/*
845 	 * If failfast settings disagree or any of the two is already
846 	 * a mixed merge, mark both as mixed before proceeding.  This
847 	 * makes sure that all involved bios have mixable attributes
848 	 * set properly.
849 	 */
850 	if (((req->rq_flags | next->rq_flags) & RQF_MIXED_MERGE) ||
851 	    (req->cmd_flags & REQ_FAILFAST_MASK) !=
852 	    (next->cmd_flags & REQ_FAILFAST_MASK)) {
853 		blk_rq_set_mixed_merge(req);
854 		blk_rq_set_mixed_merge(next);
855 	}
856 
857 	/*
858 	 * At this point we have either done a back merge or front merge. We
859 	 * need the smaller start_time_ns of the merged requests to be the
860 	 * current request for accounting purposes.
861 	 */
862 	if (next->start_time_ns < req->start_time_ns)
863 		req->start_time_ns = next->start_time_ns;
864 
865 	req->biotail->bi_next = next->bio;
866 	req->biotail = next->biotail;
867 
868 	req->__data_len += blk_rq_bytes(next);
869 
870 	if (!blk_discard_mergable(req))
871 		elv_merge_requests(q, req, next);
872 
873 	blk_crypto_rq_put_keyslot(next);
874 
875 	/*
876 	 * 'next' is going away, so update stats accordingly
877 	 */
878 	blk_account_io_merge_request(next);
879 
880 	trace_block_rq_merge(next);
881 
882 	/*
883 	 * ownership of bio passed from next to req, return 'next' for
884 	 * the caller to free
885 	 */
886 	next->bio = NULL;
887 	return next;
888 }
889 
890 static struct request *attempt_back_merge(struct request_queue *q,
891 		struct request *rq)
892 {
893 	struct request *next = elv_latter_request(q, rq);
894 
895 	if (next)
896 		return attempt_merge(q, rq, next);
897 
898 	return NULL;
899 }
900 
901 static struct request *attempt_front_merge(struct request_queue *q,
902 		struct request *rq)
903 {
904 	struct request *prev = elv_former_request(q, rq);
905 
906 	if (prev)
907 		return attempt_merge(q, prev, rq);
908 
909 	return NULL;
910 }
911 
912 /*
913  * Try to merge 'next' into 'rq'. Return true if the merge happened, false
914  * otherwise. The caller is responsible for freeing 'next' if the merge
915  * happened.
916  */
917 bool blk_attempt_req_merge(struct request_queue *q, struct request *rq,
918 			   struct request *next)
919 {
920 	return attempt_merge(q, rq, next);
921 }
922 
923 bool blk_rq_merge_ok(struct request *rq, struct bio *bio)
924 {
925 	if (!rq_mergeable(rq) || !bio_mergeable(bio))
926 		return false;
927 
928 	if (req_op(rq) != bio_op(bio))
929 		return false;
930 
931 	/* different data direction or already started, don't merge */
932 	if (bio_data_dir(bio) != rq_data_dir(rq))
933 		return false;
934 
935 	/* don't merge across cgroup boundaries */
936 	if (!blk_cgroup_mergeable(rq, bio))
937 		return false;
938 
939 	/* only merge integrity protected bio into ditto rq */
940 	if (blk_integrity_merge_bio(rq->q, rq, bio) == false)
941 		return false;
942 
943 	/* Only merge if the crypt contexts are compatible */
944 	if (!bio_crypt_rq_ctx_compatible(rq, bio))
945 		return false;
946 
947 	/* Don't merge requests with different write hints. */
948 	if (rq->write_hint != bio->bi_write_hint)
949 		return false;
950 
951 	if (rq->ioprio != bio_prio(bio))
952 		return false;
953 
954 	return true;
955 }
956 
957 enum elv_merge blk_try_merge(struct request *rq, struct bio *bio)
958 {
959 	if (blk_discard_mergable(rq))
960 		return ELEVATOR_DISCARD_MERGE;
961 	else if (blk_rq_pos(rq) + blk_rq_sectors(rq) == bio->bi_iter.bi_sector)
962 		return ELEVATOR_BACK_MERGE;
963 	else if (blk_rq_pos(rq) - bio_sectors(bio) == bio->bi_iter.bi_sector)
964 		return ELEVATOR_FRONT_MERGE;
965 	return ELEVATOR_NO_MERGE;
966 }
967 
968 static void blk_account_io_merge_bio(struct request *req)
969 {
970 	if (!blk_do_io_stat(req))
971 		return;
972 
973 	part_stat_lock();
974 	part_stat_inc(req->part, merges[op_stat_group(req_op(req))]);
975 	part_stat_unlock();
976 }
977 
978 enum bio_merge_status bio_attempt_back_merge(struct request *req,
979 		struct bio *bio, unsigned int nr_segs)
980 {
981 	const blk_opf_t ff = bio_failfast(bio);
982 
983 	if (!ll_back_merge_fn(req, bio, nr_segs))
984 		return BIO_MERGE_FAILED;
985 
986 	trace_block_bio_backmerge(bio);
987 	rq_qos_merge(req->q, req, bio);
988 
989 	if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
990 		blk_rq_set_mixed_merge(req);
991 
992 	blk_update_mixed_merge(req, bio, false);
993 
994 	if (req->rq_flags & RQF_ZONE_WRITE_PLUGGING)
995 		blk_zone_write_plug_bio_merged(bio);
996 
997 	req->biotail->bi_next = bio;
998 	req->biotail = bio;
999 	req->__data_len += bio->bi_iter.bi_size;
1000 
1001 	bio_crypt_free_ctx(bio);
1002 
1003 	blk_account_io_merge_bio(req);
1004 	return BIO_MERGE_OK;
1005 }
1006 
1007 static enum bio_merge_status bio_attempt_front_merge(struct request *req,
1008 		struct bio *bio, unsigned int nr_segs)
1009 {
1010 	const blk_opf_t ff = bio_failfast(bio);
1011 
1012 	/*
1013 	 * A front merge for writes to sequential zones of a zoned block device
1014 	 * can happen only if the user submitted writes out of order. Do not
1015 	 * merge such write to let it fail.
1016 	 */
1017 	if (req->rq_flags & RQF_ZONE_WRITE_PLUGGING)
1018 		return BIO_MERGE_FAILED;
1019 
1020 	if (!ll_front_merge_fn(req, bio, nr_segs))
1021 		return BIO_MERGE_FAILED;
1022 
1023 	trace_block_bio_frontmerge(bio);
1024 	rq_qos_merge(req->q, req, bio);
1025 
1026 	if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1027 		blk_rq_set_mixed_merge(req);
1028 
1029 	blk_update_mixed_merge(req, bio, true);
1030 
1031 	bio->bi_next = req->bio;
1032 	req->bio = bio;
1033 
1034 	req->__sector = bio->bi_iter.bi_sector;
1035 	req->__data_len += bio->bi_iter.bi_size;
1036 
1037 	bio_crypt_do_front_merge(req, bio);
1038 
1039 	blk_account_io_merge_bio(req);
1040 	return BIO_MERGE_OK;
1041 }
1042 
1043 static enum bio_merge_status bio_attempt_discard_merge(struct request_queue *q,
1044 		struct request *req, struct bio *bio)
1045 {
1046 	unsigned short segments = blk_rq_nr_discard_segments(req);
1047 
1048 	if (segments >= queue_max_discard_segments(q))
1049 		goto no_merge;
1050 	if (blk_rq_sectors(req) + bio_sectors(bio) >
1051 	    blk_rq_get_max_sectors(req, blk_rq_pos(req)))
1052 		goto no_merge;
1053 
1054 	rq_qos_merge(q, req, bio);
1055 
1056 	req->biotail->bi_next = bio;
1057 	req->biotail = bio;
1058 	req->__data_len += bio->bi_iter.bi_size;
1059 	req->nr_phys_segments = segments + 1;
1060 
1061 	blk_account_io_merge_bio(req);
1062 	return BIO_MERGE_OK;
1063 no_merge:
1064 	req_set_nomerge(q, req);
1065 	return BIO_MERGE_FAILED;
1066 }
1067 
1068 static enum bio_merge_status blk_attempt_bio_merge(struct request_queue *q,
1069 						   struct request *rq,
1070 						   struct bio *bio,
1071 						   unsigned int nr_segs,
1072 						   bool sched_allow_merge)
1073 {
1074 	if (!blk_rq_merge_ok(rq, bio))
1075 		return BIO_MERGE_NONE;
1076 
1077 	switch (blk_try_merge(rq, bio)) {
1078 	case ELEVATOR_BACK_MERGE:
1079 		if (!sched_allow_merge || blk_mq_sched_allow_merge(q, rq, bio))
1080 			return bio_attempt_back_merge(rq, bio, nr_segs);
1081 		break;
1082 	case ELEVATOR_FRONT_MERGE:
1083 		if (!sched_allow_merge || blk_mq_sched_allow_merge(q, rq, bio))
1084 			return bio_attempt_front_merge(rq, bio, nr_segs);
1085 		break;
1086 	case ELEVATOR_DISCARD_MERGE:
1087 		return bio_attempt_discard_merge(q, rq, bio);
1088 	default:
1089 		return BIO_MERGE_NONE;
1090 	}
1091 
1092 	return BIO_MERGE_FAILED;
1093 }
1094 
1095 /**
1096  * blk_attempt_plug_merge - try to merge with %current's plugged list
1097  * @q: request_queue new bio is being queued at
1098  * @bio: new bio being queued
1099  * @nr_segs: number of segments in @bio
1100  * from the passed in @q already in the plug list
1101  *
1102  * Determine whether @bio being queued on @q can be merged with the previous
1103  * request on %current's plugged list.  Returns %true if merge was successful,
1104  * otherwise %false.
1105  *
1106  * Plugging coalesces IOs from the same issuer for the same purpose without
1107  * going through @q->queue_lock.  As such it's more of an issuing mechanism
1108  * than scheduling, and the request, while may have elvpriv data, is not
1109  * added on the elevator at this point.  In addition, we don't have
1110  * reliable access to the elevator outside queue lock.  Only check basic
1111  * merging parameters without querying the elevator.
1112  *
1113  * Caller must ensure !blk_queue_nomerges(q) beforehand.
1114  */
1115 bool blk_attempt_plug_merge(struct request_queue *q, struct bio *bio,
1116 		unsigned int nr_segs)
1117 {
1118 	struct blk_plug *plug = current->plug;
1119 	struct request *rq;
1120 
1121 	if (!plug || rq_list_empty(plug->mq_list))
1122 		return false;
1123 
1124 	rq_list_for_each(&plug->mq_list, rq) {
1125 		if (rq->q == q) {
1126 			if (blk_attempt_bio_merge(q, rq, bio, nr_segs, false) ==
1127 			    BIO_MERGE_OK)
1128 				return true;
1129 			break;
1130 		}
1131 
1132 		/*
1133 		 * Only keep iterating plug list for merges if we have multiple
1134 		 * queues
1135 		 */
1136 		if (!plug->multiple_queues)
1137 			break;
1138 	}
1139 	return false;
1140 }
1141 
1142 /*
1143  * Iterate list of requests and see if we can merge this bio with any
1144  * of them.
1145  */
1146 bool blk_bio_list_merge(struct request_queue *q, struct list_head *list,
1147 			struct bio *bio, unsigned int nr_segs)
1148 {
1149 	struct request *rq;
1150 	int checked = 8;
1151 
1152 	list_for_each_entry_reverse(rq, list, queuelist) {
1153 		if (!checked--)
1154 			break;
1155 
1156 		switch (blk_attempt_bio_merge(q, rq, bio, nr_segs, true)) {
1157 		case BIO_MERGE_NONE:
1158 			continue;
1159 		case BIO_MERGE_OK:
1160 			return true;
1161 		case BIO_MERGE_FAILED:
1162 			return false;
1163 		}
1164 
1165 	}
1166 
1167 	return false;
1168 }
1169 EXPORT_SYMBOL_GPL(blk_bio_list_merge);
1170 
1171 bool blk_mq_sched_try_merge(struct request_queue *q, struct bio *bio,
1172 		unsigned int nr_segs, struct request **merged_request)
1173 {
1174 	struct request *rq;
1175 
1176 	switch (elv_merge(q, &rq, bio)) {
1177 	case ELEVATOR_BACK_MERGE:
1178 		if (!blk_mq_sched_allow_merge(q, rq, bio))
1179 			return false;
1180 		if (bio_attempt_back_merge(rq, bio, nr_segs) != BIO_MERGE_OK)
1181 			return false;
1182 		*merged_request = attempt_back_merge(q, rq);
1183 		if (!*merged_request)
1184 			elv_merged_request(q, rq, ELEVATOR_BACK_MERGE);
1185 		return true;
1186 	case ELEVATOR_FRONT_MERGE:
1187 		if (!blk_mq_sched_allow_merge(q, rq, bio))
1188 			return false;
1189 		if (bio_attempt_front_merge(rq, bio, nr_segs) != BIO_MERGE_OK)
1190 			return false;
1191 		*merged_request = attempt_front_merge(q, rq);
1192 		if (!*merged_request)
1193 			elv_merged_request(q, rq, ELEVATOR_FRONT_MERGE);
1194 		return true;
1195 	case ELEVATOR_DISCARD_MERGE:
1196 		return bio_attempt_discard_merge(q, rq, bio) == BIO_MERGE_OK;
1197 	default:
1198 		return false;
1199 	}
1200 }
1201 EXPORT_SYMBOL_GPL(blk_mq_sched_try_merge);
1202