1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Functions related to segment and merge handling 4 */ 5 #include <linux/kernel.h> 6 #include <linux/module.h> 7 #include <linux/bio.h> 8 #include <linux/blkdev.h> 9 #include <linux/scatterlist.h> 10 11 #include <trace/events/block.h> 12 13 #include "blk.h" 14 #include "blk-rq-qos.h" 15 16 static inline bool bio_will_gap(struct request_queue *q, 17 struct request *prev_rq, struct bio *prev, struct bio *next) 18 { 19 struct bio_vec pb, nb; 20 21 if (!bio_has_data(prev) || !queue_virt_boundary(q)) 22 return false; 23 24 /* 25 * Don't merge if the 1st bio starts with non-zero offset, otherwise it 26 * is quite difficult to respect the sg gap limit. We work hard to 27 * merge a huge number of small single bios in case of mkfs. 28 */ 29 if (prev_rq) 30 bio_get_first_bvec(prev_rq->bio, &pb); 31 else 32 bio_get_first_bvec(prev, &pb); 33 if (pb.bv_offset & queue_virt_boundary(q)) 34 return true; 35 36 /* 37 * We don't need to worry about the situation that the merged segment 38 * ends in unaligned virt boundary: 39 * 40 * - if 'pb' ends aligned, the merged segment ends aligned 41 * - if 'pb' ends unaligned, the next bio must include 42 * one single bvec of 'nb', otherwise the 'nb' can't 43 * merge with 'pb' 44 */ 45 bio_get_last_bvec(prev, &pb); 46 bio_get_first_bvec(next, &nb); 47 if (biovec_phys_mergeable(q, &pb, &nb)) 48 return false; 49 return __bvec_gap_to_prev(q, &pb, nb.bv_offset); 50 } 51 52 static inline bool req_gap_back_merge(struct request *req, struct bio *bio) 53 { 54 return bio_will_gap(req->q, req, req->biotail, bio); 55 } 56 57 static inline bool req_gap_front_merge(struct request *req, struct bio *bio) 58 { 59 return bio_will_gap(req->q, NULL, bio, req->bio); 60 } 61 62 static struct bio *blk_bio_discard_split(struct request_queue *q, 63 struct bio *bio, 64 struct bio_set *bs, 65 unsigned *nsegs) 66 { 67 unsigned int max_discard_sectors, granularity; 68 int alignment; 69 sector_t tmp; 70 unsigned split_sectors; 71 72 *nsegs = 1; 73 74 /* Zero-sector (unknown) and one-sector granularities are the same. */ 75 granularity = max(q->limits.discard_granularity >> 9, 1U); 76 77 max_discard_sectors = min(q->limits.max_discard_sectors, 78 bio_allowed_max_sectors(q)); 79 max_discard_sectors -= max_discard_sectors % granularity; 80 81 if (unlikely(!max_discard_sectors)) { 82 /* XXX: warn */ 83 return NULL; 84 } 85 86 if (bio_sectors(bio) <= max_discard_sectors) 87 return NULL; 88 89 split_sectors = max_discard_sectors; 90 91 /* 92 * If the next starting sector would be misaligned, stop the discard at 93 * the previous aligned sector. 94 */ 95 alignment = (q->limits.discard_alignment >> 9) % granularity; 96 97 tmp = bio->bi_iter.bi_sector + split_sectors - alignment; 98 tmp = sector_div(tmp, granularity); 99 100 if (split_sectors > tmp) 101 split_sectors -= tmp; 102 103 return bio_split(bio, split_sectors, GFP_NOIO, bs); 104 } 105 106 static struct bio *blk_bio_write_zeroes_split(struct request_queue *q, 107 struct bio *bio, struct bio_set *bs, unsigned *nsegs) 108 { 109 *nsegs = 0; 110 111 if (!q->limits.max_write_zeroes_sectors) 112 return NULL; 113 114 if (bio_sectors(bio) <= q->limits.max_write_zeroes_sectors) 115 return NULL; 116 117 return bio_split(bio, q->limits.max_write_zeroes_sectors, GFP_NOIO, bs); 118 } 119 120 static struct bio *blk_bio_write_same_split(struct request_queue *q, 121 struct bio *bio, 122 struct bio_set *bs, 123 unsigned *nsegs) 124 { 125 *nsegs = 1; 126 127 if (!q->limits.max_write_same_sectors) 128 return NULL; 129 130 if (bio_sectors(bio) <= q->limits.max_write_same_sectors) 131 return NULL; 132 133 return bio_split(bio, q->limits.max_write_same_sectors, GFP_NOIO, bs); 134 } 135 136 /* 137 * Return the maximum number of sectors from the start of a bio that may be 138 * submitted as a single request to a block device. If enough sectors remain, 139 * align the end to the physical block size. Otherwise align the end to the 140 * logical block size. This approach minimizes the number of non-aligned 141 * requests that are submitted to a block device if the start of a bio is not 142 * aligned to a physical block boundary. 143 */ 144 static inline unsigned get_max_io_size(struct request_queue *q, 145 struct bio *bio) 146 { 147 unsigned sectors = blk_max_size_offset(q, bio->bi_iter.bi_sector, 0); 148 unsigned max_sectors = sectors; 149 unsigned pbs = queue_physical_block_size(q) >> SECTOR_SHIFT; 150 unsigned lbs = queue_logical_block_size(q) >> SECTOR_SHIFT; 151 unsigned start_offset = bio->bi_iter.bi_sector & (pbs - 1); 152 153 max_sectors += start_offset; 154 max_sectors &= ~(pbs - 1); 155 if (max_sectors > start_offset) 156 return max_sectors - start_offset; 157 158 return sectors & ~(lbs - 1); 159 } 160 161 static inline unsigned get_max_segment_size(const struct request_queue *q, 162 struct page *start_page, 163 unsigned long offset) 164 { 165 unsigned long mask = queue_segment_boundary(q); 166 167 offset = mask & (page_to_phys(start_page) + offset); 168 169 /* 170 * overflow may be triggered in case of zero page physical address 171 * on 32bit arch, use queue's max segment size when that happens. 172 */ 173 return min_not_zero(mask - offset + 1, 174 (unsigned long)queue_max_segment_size(q)); 175 } 176 177 /** 178 * bvec_split_segs - verify whether or not a bvec should be split in the middle 179 * @q: [in] request queue associated with the bio associated with @bv 180 * @bv: [in] bvec to examine 181 * @nsegs: [in,out] Number of segments in the bio being built. Incremented 182 * by the number of segments from @bv that may be appended to that 183 * bio without exceeding @max_segs 184 * @sectors: [in,out] Number of sectors in the bio being built. Incremented 185 * by the number of sectors from @bv that may be appended to that 186 * bio without exceeding @max_sectors 187 * @max_segs: [in] upper bound for *@nsegs 188 * @max_sectors: [in] upper bound for *@sectors 189 * 190 * When splitting a bio, it can happen that a bvec is encountered that is too 191 * big to fit in a single segment and hence that it has to be split in the 192 * middle. This function verifies whether or not that should happen. The value 193 * %true is returned if and only if appending the entire @bv to a bio with 194 * *@nsegs segments and *@sectors sectors would make that bio unacceptable for 195 * the block driver. 196 */ 197 static bool bvec_split_segs(const struct request_queue *q, 198 const struct bio_vec *bv, unsigned *nsegs, 199 unsigned *sectors, unsigned max_segs, 200 unsigned max_sectors) 201 { 202 unsigned max_len = (min(max_sectors, UINT_MAX >> 9) - *sectors) << 9; 203 unsigned len = min(bv->bv_len, max_len); 204 unsigned total_len = 0; 205 unsigned seg_size = 0; 206 207 while (len && *nsegs < max_segs) { 208 seg_size = get_max_segment_size(q, bv->bv_page, 209 bv->bv_offset + total_len); 210 seg_size = min(seg_size, len); 211 212 (*nsegs)++; 213 total_len += seg_size; 214 len -= seg_size; 215 216 if ((bv->bv_offset + total_len) & queue_virt_boundary(q)) 217 break; 218 } 219 220 *sectors += total_len >> 9; 221 222 /* tell the caller to split the bvec if it is too big to fit */ 223 return len > 0 || bv->bv_len > max_len; 224 } 225 226 /** 227 * blk_bio_segment_split - split a bio in two bios 228 * @q: [in] request queue pointer 229 * @bio: [in] bio to be split 230 * @bs: [in] bio set to allocate the clone from 231 * @segs: [out] number of segments in the bio with the first half of the sectors 232 * 233 * Clone @bio, update the bi_iter of the clone to represent the first sectors 234 * of @bio and update @bio->bi_iter to represent the remaining sectors. The 235 * following is guaranteed for the cloned bio: 236 * - That it has at most get_max_io_size(@q, @bio) sectors. 237 * - That it has at most queue_max_segments(@q) segments. 238 * 239 * Except for discard requests the cloned bio will point at the bi_io_vec of 240 * the original bio. It is the responsibility of the caller to ensure that the 241 * original bio is not freed before the cloned bio. The caller is also 242 * responsible for ensuring that @bs is only destroyed after processing of the 243 * split bio has finished. 244 */ 245 static struct bio *blk_bio_segment_split(struct request_queue *q, 246 struct bio *bio, 247 struct bio_set *bs, 248 unsigned *segs) 249 { 250 struct bio_vec bv, bvprv, *bvprvp = NULL; 251 struct bvec_iter iter; 252 unsigned nsegs = 0, sectors = 0; 253 const unsigned max_sectors = get_max_io_size(q, bio); 254 const unsigned max_segs = queue_max_segments(q); 255 256 bio_for_each_bvec(bv, bio, iter) { 257 /* 258 * If the queue doesn't support SG gaps and adding this 259 * offset would create a gap, disallow it. 260 */ 261 if (bvprvp && bvec_gap_to_prev(q, bvprvp, bv.bv_offset)) 262 goto split; 263 264 if (nsegs < max_segs && 265 sectors + (bv.bv_len >> 9) <= max_sectors && 266 bv.bv_offset + bv.bv_len <= PAGE_SIZE) { 267 nsegs++; 268 sectors += bv.bv_len >> 9; 269 } else if (bvec_split_segs(q, &bv, &nsegs, §ors, max_segs, 270 max_sectors)) { 271 goto split; 272 } 273 274 bvprv = bv; 275 bvprvp = &bvprv; 276 } 277 278 *segs = nsegs; 279 return NULL; 280 split: 281 *segs = nsegs; 282 283 /* 284 * Bio splitting may cause subtle trouble such as hang when doing sync 285 * iopoll in direct IO routine. Given performance gain of iopoll for 286 * big IO can be trival, disable iopoll when split needed. 287 */ 288 bio->bi_opf &= ~REQ_HIPRI; 289 290 return bio_split(bio, sectors, GFP_NOIO, bs); 291 } 292 293 /** 294 * __blk_queue_split - split a bio and submit the second half 295 * @bio: [in, out] bio to be split 296 * @nr_segs: [out] number of segments in the first bio 297 * 298 * Split a bio into two bios, chain the two bios, submit the second half and 299 * store a pointer to the first half in *@bio. If the second bio is still too 300 * big it will be split by a recursive call to this function. Since this 301 * function may allocate a new bio from q->bio_split, it is the responsibility 302 * of the caller to ensure that q->bio_split is only released after processing 303 * of the split bio has finished. 304 */ 305 void __blk_queue_split(struct bio **bio, unsigned int *nr_segs) 306 { 307 struct request_queue *q = (*bio)->bi_bdev->bd_disk->queue; 308 struct bio *split = NULL; 309 310 switch (bio_op(*bio)) { 311 case REQ_OP_DISCARD: 312 case REQ_OP_SECURE_ERASE: 313 split = blk_bio_discard_split(q, *bio, &q->bio_split, nr_segs); 314 break; 315 case REQ_OP_WRITE_ZEROES: 316 split = blk_bio_write_zeroes_split(q, *bio, &q->bio_split, 317 nr_segs); 318 break; 319 case REQ_OP_WRITE_SAME: 320 split = blk_bio_write_same_split(q, *bio, &q->bio_split, 321 nr_segs); 322 break; 323 default: 324 /* 325 * All drivers must accept single-segments bios that are <= 326 * PAGE_SIZE. This is a quick and dirty check that relies on 327 * the fact that bi_io_vec[0] is always valid if a bio has data. 328 * The check might lead to occasional false negatives when bios 329 * are cloned, but compared to the performance impact of cloned 330 * bios themselves the loop below doesn't matter anyway. 331 */ 332 if (!q->limits.chunk_sectors && 333 (*bio)->bi_vcnt == 1 && 334 ((*bio)->bi_io_vec[0].bv_len + 335 (*bio)->bi_io_vec[0].bv_offset) <= PAGE_SIZE) { 336 *nr_segs = 1; 337 break; 338 } 339 split = blk_bio_segment_split(q, *bio, &q->bio_split, nr_segs); 340 break; 341 } 342 343 if (split) { 344 /* there isn't chance to merge the splitted bio */ 345 split->bi_opf |= REQ_NOMERGE; 346 347 bio_chain(split, *bio); 348 trace_block_split(split, (*bio)->bi_iter.bi_sector); 349 submit_bio_noacct(*bio); 350 *bio = split; 351 } 352 } 353 354 /** 355 * blk_queue_split - split a bio and submit the second half 356 * @bio: [in, out] bio to be split 357 * 358 * Split a bio into two bios, chains the two bios, submit the second half and 359 * store a pointer to the first half in *@bio. Since this function may allocate 360 * a new bio from q->bio_split, it is the responsibility of the caller to ensure 361 * that q->bio_split is only released after processing of the split bio has 362 * finished. 363 */ 364 void blk_queue_split(struct bio **bio) 365 { 366 unsigned int nr_segs; 367 368 __blk_queue_split(bio, &nr_segs); 369 } 370 EXPORT_SYMBOL(blk_queue_split); 371 372 unsigned int blk_recalc_rq_segments(struct request *rq) 373 { 374 unsigned int nr_phys_segs = 0; 375 unsigned int nr_sectors = 0; 376 struct req_iterator iter; 377 struct bio_vec bv; 378 379 if (!rq->bio) 380 return 0; 381 382 switch (bio_op(rq->bio)) { 383 case REQ_OP_DISCARD: 384 case REQ_OP_SECURE_ERASE: 385 if (queue_max_discard_segments(rq->q) > 1) { 386 struct bio *bio = rq->bio; 387 388 for_each_bio(bio) 389 nr_phys_segs++; 390 return nr_phys_segs; 391 } 392 return 1; 393 case REQ_OP_WRITE_ZEROES: 394 return 0; 395 case REQ_OP_WRITE_SAME: 396 return 1; 397 } 398 399 rq_for_each_bvec(bv, rq, iter) 400 bvec_split_segs(rq->q, &bv, &nr_phys_segs, &nr_sectors, 401 UINT_MAX, UINT_MAX); 402 return nr_phys_segs; 403 } 404 405 static inline struct scatterlist *blk_next_sg(struct scatterlist **sg, 406 struct scatterlist *sglist) 407 { 408 if (!*sg) 409 return sglist; 410 411 /* 412 * If the driver previously mapped a shorter list, we could see a 413 * termination bit prematurely unless it fully inits the sg table 414 * on each mapping. We KNOW that there must be more entries here 415 * or the driver would be buggy, so force clear the termination bit 416 * to avoid doing a full sg_init_table() in drivers for each command. 417 */ 418 sg_unmark_end(*sg); 419 return sg_next(*sg); 420 } 421 422 static unsigned blk_bvec_map_sg(struct request_queue *q, 423 struct bio_vec *bvec, struct scatterlist *sglist, 424 struct scatterlist **sg) 425 { 426 unsigned nbytes = bvec->bv_len; 427 unsigned nsegs = 0, total = 0; 428 429 while (nbytes > 0) { 430 unsigned offset = bvec->bv_offset + total; 431 unsigned len = min(get_max_segment_size(q, bvec->bv_page, 432 offset), nbytes); 433 struct page *page = bvec->bv_page; 434 435 /* 436 * Unfortunately a fair number of drivers barf on scatterlists 437 * that have an offset larger than PAGE_SIZE, despite other 438 * subsystems dealing with that invariant just fine. For now 439 * stick to the legacy format where we never present those from 440 * the block layer, but the code below should be removed once 441 * these offenders (mostly MMC/SD drivers) are fixed. 442 */ 443 page += (offset >> PAGE_SHIFT); 444 offset &= ~PAGE_MASK; 445 446 *sg = blk_next_sg(sg, sglist); 447 sg_set_page(*sg, page, len, offset); 448 449 total += len; 450 nbytes -= len; 451 nsegs++; 452 } 453 454 return nsegs; 455 } 456 457 static inline int __blk_bvec_map_sg(struct bio_vec bv, 458 struct scatterlist *sglist, struct scatterlist **sg) 459 { 460 *sg = blk_next_sg(sg, sglist); 461 sg_set_page(*sg, bv.bv_page, bv.bv_len, bv.bv_offset); 462 return 1; 463 } 464 465 /* only try to merge bvecs into one sg if they are from two bios */ 466 static inline bool 467 __blk_segment_map_sg_merge(struct request_queue *q, struct bio_vec *bvec, 468 struct bio_vec *bvprv, struct scatterlist **sg) 469 { 470 471 int nbytes = bvec->bv_len; 472 473 if (!*sg) 474 return false; 475 476 if ((*sg)->length + nbytes > queue_max_segment_size(q)) 477 return false; 478 479 if (!biovec_phys_mergeable(q, bvprv, bvec)) 480 return false; 481 482 (*sg)->length += nbytes; 483 484 return true; 485 } 486 487 static int __blk_bios_map_sg(struct request_queue *q, struct bio *bio, 488 struct scatterlist *sglist, 489 struct scatterlist **sg) 490 { 491 struct bio_vec bvec, bvprv = { NULL }; 492 struct bvec_iter iter; 493 int nsegs = 0; 494 bool new_bio = false; 495 496 for_each_bio(bio) { 497 bio_for_each_bvec(bvec, bio, iter) { 498 /* 499 * Only try to merge bvecs from two bios given we 500 * have done bio internal merge when adding pages 501 * to bio 502 */ 503 if (new_bio && 504 __blk_segment_map_sg_merge(q, &bvec, &bvprv, sg)) 505 goto next_bvec; 506 507 if (bvec.bv_offset + bvec.bv_len <= PAGE_SIZE) 508 nsegs += __blk_bvec_map_sg(bvec, sglist, sg); 509 else 510 nsegs += blk_bvec_map_sg(q, &bvec, sglist, sg); 511 next_bvec: 512 new_bio = false; 513 } 514 if (likely(bio->bi_iter.bi_size)) { 515 bvprv = bvec; 516 new_bio = true; 517 } 518 } 519 520 return nsegs; 521 } 522 523 /* 524 * map a request to scatterlist, return number of sg entries setup. Caller 525 * must make sure sg can hold rq->nr_phys_segments entries 526 */ 527 int __blk_rq_map_sg(struct request_queue *q, struct request *rq, 528 struct scatterlist *sglist, struct scatterlist **last_sg) 529 { 530 int nsegs = 0; 531 532 if (rq->rq_flags & RQF_SPECIAL_PAYLOAD) 533 nsegs = __blk_bvec_map_sg(rq->special_vec, sglist, last_sg); 534 else if (rq->bio && bio_op(rq->bio) == REQ_OP_WRITE_SAME) 535 nsegs = __blk_bvec_map_sg(bio_iovec(rq->bio), sglist, last_sg); 536 else if (rq->bio) 537 nsegs = __blk_bios_map_sg(q, rq->bio, sglist, last_sg); 538 539 if (*last_sg) 540 sg_mark_end(*last_sg); 541 542 /* 543 * Something must have been wrong if the figured number of 544 * segment is bigger than number of req's physical segments 545 */ 546 WARN_ON(nsegs > blk_rq_nr_phys_segments(rq)); 547 548 return nsegs; 549 } 550 EXPORT_SYMBOL(__blk_rq_map_sg); 551 552 static inline unsigned int blk_rq_get_max_segments(struct request *rq) 553 { 554 if (req_op(rq) == REQ_OP_DISCARD) 555 return queue_max_discard_segments(rq->q); 556 return queue_max_segments(rq->q); 557 } 558 559 static inline int ll_new_hw_segment(struct request *req, struct bio *bio, 560 unsigned int nr_phys_segs) 561 { 562 if (req->nr_phys_segments + nr_phys_segs > blk_rq_get_max_segments(req)) 563 goto no_merge; 564 565 if (blk_integrity_merge_bio(req->q, req, bio) == false) 566 goto no_merge; 567 568 /* 569 * This will form the start of a new hw segment. Bump both 570 * counters. 571 */ 572 req->nr_phys_segments += nr_phys_segs; 573 return 1; 574 575 no_merge: 576 req_set_nomerge(req->q, req); 577 return 0; 578 } 579 580 int ll_back_merge_fn(struct request *req, struct bio *bio, unsigned int nr_segs) 581 { 582 if (req_gap_back_merge(req, bio)) 583 return 0; 584 if (blk_integrity_rq(req) && 585 integrity_req_gap_back_merge(req, bio)) 586 return 0; 587 if (!bio_crypt_ctx_back_mergeable(req, bio)) 588 return 0; 589 if (blk_rq_sectors(req) + bio_sectors(bio) > 590 blk_rq_get_max_sectors(req, blk_rq_pos(req))) { 591 req_set_nomerge(req->q, req); 592 return 0; 593 } 594 595 return ll_new_hw_segment(req, bio, nr_segs); 596 } 597 598 static int ll_front_merge_fn(struct request *req, struct bio *bio, 599 unsigned int nr_segs) 600 { 601 if (req_gap_front_merge(req, bio)) 602 return 0; 603 if (blk_integrity_rq(req) && 604 integrity_req_gap_front_merge(req, bio)) 605 return 0; 606 if (!bio_crypt_ctx_front_mergeable(req, bio)) 607 return 0; 608 if (blk_rq_sectors(req) + bio_sectors(bio) > 609 blk_rq_get_max_sectors(req, bio->bi_iter.bi_sector)) { 610 req_set_nomerge(req->q, req); 611 return 0; 612 } 613 614 return ll_new_hw_segment(req, bio, nr_segs); 615 } 616 617 static bool req_attempt_discard_merge(struct request_queue *q, struct request *req, 618 struct request *next) 619 { 620 unsigned short segments = blk_rq_nr_discard_segments(req); 621 622 if (segments >= queue_max_discard_segments(q)) 623 goto no_merge; 624 if (blk_rq_sectors(req) + bio_sectors(next->bio) > 625 blk_rq_get_max_sectors(req, blk_rq_pos(req))) 626 goto no_merge; 627 628 req->nr_phys_segments = segments + blk_rq_nr_discard_segments(next); 629 return true; 630 no_merge: 631 req_set_nomerge(q, req); 632 return false; 633 } 634 635 static int ll_merge_requests_fn(struct request_queue *q, struct request *req, 636 struct request *next) 637 { 638 int total_phys_segments; 639 640 if (req_gap_back_merge(req, next->bio)) 641 return 0; 642 643 /* 644 * Will it become too large? 645 */ 646 if ((blk_rq_sectors(req) + blk_rq_sectors(next)) > 647 blk_rq_get_max_sectors(req, blk_rq_pos(req))) 648 return 0; 649 650 total_phys_segments = req->nr_phys_segments + next->nr_phys_segments; 651 if (total_phys_segments > blk_rq_get_max_segments(req)) 652 return 0; 653 654 if (blk_integrity_merge_rq(q, req, next) == false) 655 return 0; 656 657 if (!bio_crypt_ctx_merge_rq(req, next)) 658 return 0; 659 660 /* Merge is OK... */ 661 req->nr_phys_segments = total_phys_segments; 662 return 1; 663 } 664 665 /** 666 * blk_rq_set_mixed_merge - mark a request as mixed merge 667 * @rq: request to mark as mixed merge 668 * 669 * Description: 670 * @rq is about to be mixed merged. Make sure the attributes 671 * which can be mixed are set in each bio and mark @rq as mixed 672 * merged. 673 */ 674 void blk_rq_set_mixed_merge(struct request *rq) 675 { 676 unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK; 677 struct bio *bio; 678 679 if (rq->rq_flags & RQF_MIXED_MERGE) 680 return; 681 682 /* 683 * @rq will no longer represent mixable attributes for all the 684 * contained bios. It will just track those of the first one. 685 * Distributes the attributs to each bio. 686 */ 687 for (bio = rq->bio; bio; bio = bio->bi_next) { 688 WARN_ON_ONCE((bio->bi_opf & REQ_FAILFAST_MASK) && 689 (bio->bi_opf & REQ_FAILFAST_MASK) != ff); 690 bio->bi_opf |= ff; 691 } 692 rq->rq_flags |= RQF_MIXED_MERGE; 693 } 694 695 static void blk_account_io_merge_request(struct request *req) 696 { 697 if (blk_do_io_stat(req)) { 698 part_stat_lock(); 699 part_stat_inc(req->part, merges[op_stat_group(req_op(req))]); 700 part_stat_unlock(); 701 } 702 } 703 704 /* 705 * Two cases of handling DISCARD merge: 706 * If max_discard_segments > 1, the driver takes every bio 707 * as a range and send them to controller together. The ranges 708 * needn't to be contiguous. 709 * Otherwise, the bios/requests will be handled as same as 710 * others which should be contiguous. 711 */ 712 static inline bool blk_discard_mergable(struct request *req) 713 { 714 if (req_op(req) == REQ_OP_DISCARD && 715 queue_max_discard_segments(req->q) > 1) 716 return true; 717 return false; 718 } 719 720 static enum elv_merge blk_try_req_merge(struct request *req, 721 struct request *next) 722 { 723 if (blk_discard_mergable(req)) 724 return ELEVATOR_DISCARD_MERGE; 725 else if (blk_rq_pos(req) + blk_rq_sectors(req) == blk_rq_pos(next)) 726 return ELEVATOR_BACK_MERGE; 727 728 return ELEVATOR_NO_MERGE; 729 } 730 731 /* 732 * For non-mq, this has to be called with the request spinlock acquired. 733 * For mq with scheduling, the appropriate queue wide lock should be held. 734 */ 735 static struct request *attempt_merge(struct request_queue *q, 736 struct request *req, struct request *next) 737 { 738 if (!rq_mergeable(req) || !rq_mergeable(next)) 739 return NULL; 740 741 if (req_op(req) != req_op(next)) 742 return NULL; 743 744 if (rq_data_dir(req) != rq_data_dir(next) 745 || req->rq_disk != next->rq_disk) 746 return NULL; 747 748 if (req_op(req) == REQ_OP_WRITE_SAME && 749 !blk_write_same_mergeable(req->bio, next->bio)) 750 return NULL; 751 752 /* 753 * Don't allow merge of different write hints, or for a hint with 754 * non-hint IO. 755 */ 756 if (req->write_hint != next->write_hint) 757 return NULL; 758 759 if (req->ioprio != next->ioprio) 760 return NULL; 761 762 /* 763 * If we are allowed to merge, then append bio list 764 * from next to rq and release next. merge_requests_fn 765 * will have updated segment counts, update sector 766 * counts here. Handle DISCARDs separately, as they 767 * have separate settings. 768 */ 769 770 switch (blk_try_req_merge(req, next)) { 771 case ELEVATOR_DISCARD_MERGE: 772 if (!req_attempt_discard_merge(q, req, next)) 773 return NULL; 774 break; 775 case ELEVATOR_BACK_MERGE: 776 if (!ll_merge_requests_fn(q, req, next)) 777 return NULL; 778 break; 779 default: 780 return NULL; 781 } 782 783 /* 784 * If failfast settings disagree or any of the two is already 785 * a mixed merge, mark both as mixed before proceeding. This 786 * makes sure that all involved bios have mixable attributes 787 * set properly. 788 */ 789 if (((req->rq_flags | next->rq_flags) & RQF_MIXED_MERGE) || 790 (req->cmd_flags & REQ_FAILFAST_MASK) != 791 (next->cmd_flags & REQ_FAILFAST_MASK)) { 792 blk_rq_set_mixed_merge(req); 793 blk_rq_set_mixed_merge(next); 794 } 795 796 /* 797 * At this point we have either done a back merge or front merge. We 798 * need the smaller start_time_ns of the merged requests to be the 799 * current request for accounting purposes. 800 */ 801 if (next->start_time_ns < req->start_time_ns) 802 req->start_time_ns = next->start_time_ns; 803 804 req->biotail->bi_next = next->bio; 805 req->biotail = next->biotail; 806 807 req->__data_len += blk_rq_bytes(next); 808 809 if (!blk_discard_mergable(req)) 810 elv_merge_requests(q, req, next); 811 812 /* 813 * 'next' is going away, so update stats accordingly 814 */ 815 blk_account_io_merge_request(next); 816 817 trace_block_rq_merge(next); 818 819 /* 820 * ownership of bio passed from next to req, return 'next' for 821 * the caller to free 822 */ 823 next->bio = NULL; 824 return next; 825 } 826 827 static struct request *attempt_back_merge(struct request_queue *q, 828 struct request *rq) 829 { 830 struct request *next = elv_latter_request(q, rq); 831 832 if (next) 833 return attempt_merge(q, rq, next); 834 835 return NULL; 836 } 837 838 static struct request *attempt_front_merge(struct request_queue *q, 839 struct request *rq) 840 { 841 struct request *prev = elv_former_request(q, rq); 842 843 if (prev) 844 return attempt_merge(q, prev, rq); 845 846 return NULL; 847 } 848 849 int blk_attempt_req_merge(struct request_queue *q, struct request *rq, 850 struct request *next) 851 { 852 struct request *free; 853 854 free = attempt_merge(q, rq, next); 855 if (free) { 856 blk_put_request(free); 857 return 1; 858 } 859 860 return 0; 861 } 862 863 bool blk_rq_merge_ok(struct request *rq, struct bio *bio) 864 { 865 if (!rq_mergeable(rq) || !bio_mergeable(bio)) 866 return false; 867 868 if (req_op(rq) != bio_op(bio)) 869 return false; 870 871 /* different data direction or already started, don't merge */ 872 if (bio_data_dir(bio) != rq_data_dir(rq)) 873 return false; 874 875 /* must be same device */ 876 if (rq->rq_disk != bio->bi_bdev->bd_disk) 877 return false; 878 879 /* only merge integrity protected bio into ditto rq */ 880 if (blk_integrity_merge_bio(rq->q, rq, bio) == false) 881 return false; 882 883 /* Only merge if the crypt contexts are compatible */ 884 if (!bio_crypt_rq_ctx_compatible(rq, bio)) 885 return false; 886 887 /* must be using the same buffer */ 888 if (req_op(rq) == REQ_OP_WRITE_SAME && 889 !blk_write_same_mergeable(rq->bio, bio)) 890 return false; 891 892 /* 893 * Don't allow merge of different write hints, or for a hint with 894 * non-hint IO. 895 */ 896 if (rq->write_hint != bio->bi_write_hint) 897 return false; 898 899 if (rq->ioprio != bio_prio(bio)) 900 return false; 901 902 return true; 903 } 904 905 enum elv_merge blk_try_merge(struct request *rq, struct bio *bio) 906 { 907 if (blk_discard_mergable(rq)) 908 return ELEVATOR_DISCARD_MERGE; 909 else if (blk_rq_pos(rq) + blk_rq_sectors(rq) == bio->bi_iter.bi_sector) 910 return ELEVATOR_BACK_MERGE; 911 else if (blk_rq_pos(rq) - bio_sectors(bio) == bio->bi_iter.bi_sector) 912 return ELEVATOR_FRONT_MERGE; 913 return ELEVATOR_NO_MERGE; 914 } 915 916 static void blk_account_io_merge_bio(struct request *req) 917 { 918 if (!blk_do_io_stat(req)) 919 return; 920 921 part_stat_lock(); 922 part_stat_inc(req->part, merges[op_stat_group(req_op(req))]); 923 part_stat_unlock(); 924 } 925 926 enum bio_merge_status { 927 BIO_MERGE_OK, 928 BIO_MERGE_NONE, 929 BIO_MERGE_FAILED, 930 }; 931 932 static enum bio_merge_status bio_attempt_back_merge(struct request *req, 933 struct bio *bio, unsigned int nr_segs) 934 { 935 const int ff = bio->bi_opf & REQ_FAILFAST_MASK; 936 937 if (!ll_back_merge_fn(req, bio, nr_segs)) 938 return BIO_MERGE_FAILED; 939 940 trace_block_bio_backmerge(bio); 941 rq_qos_merge(req->q, req, bio); 942 943 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff) 944 blk_rq_set_mixed_merge(req); 945 946 req->biotail->bi_next = bio; 947 req->biotail = bio; 948 req->__data_len += bio->bi_iter.bi_size; 949 950 bio_crypt_free_ctx(bio); 951 952 blk_account_io_merge_bio(req); 953 return BIO_MERGE_OK; 954 } 955 956 static enum bio_merge_status bio_attempt_front_merge(struct request *req, 957 struct bio *bio, unsigned int nr_segs) 958 { 959 const int ff = bio->bi_opf & REQ_FAILFAST_MASK; 960 961 if (!ll_front_merge_fn(req, bio, nr_segs)) 962 return BIO_MERGE_FAILED; 963 964 trace_block_bio_frontmerge(bio); 965 rq_qos_merge(req->q, req, bio); 966 967 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff) 968 blk_rq_set_mixed_merge(req); 969 970 bio->bi_next = req->bio; 971 req->bio = bio; 972 973 req->__sector = bio->bi_iter.bi_sector; 974 req->__data_len += bio->bi_iter.bi_size; 975 976 bio_crypt_do_front_merge(req, bio); 977 978 blk_account_io_merge_bio(req); 979 return BIO_MERGE_OK; 980 } 981 982 static enum bio_merge_status bio_attempt_discard_merge(struct request_queue *q, 983 struct request *req, struct bio *bio) 984 { 985 unsigned short segments = blk_rq_nr_discard_segments(req); 986 987 if (segments >= queue_max_discard_segments(q)) 988 goto no_merge; 989 if (blk_rq_sectors(req) + bio_sectors(bio) > 990 blk_rq_get_max_sectors(req, blk_rq_pos(req))) 991 goto no_merge; 992 993 rq_qos_merge(q, req, bio); 994 995 req->biotail->bi_next = bio; 996 req->biotail = bio; 997 req->__data_len += bio->bi_iter.bi_size; 998 req->nr_phys_segments = segments + 1; 999 1000 blk_account_io_merge_bio(req); 1001 return BIO_MERGE_OK; 1002 no_merge: 1003 req_set_nomerge(q, req); 1004 return BIO_MERGE_FAILED; 1005 } 1006 1007 static enum bio_merge_status blk_attempt_bio_merge(struct request_queue *q, 1008 struct request *rq, 1009 struct bio *bio, 1010 unsigned int nr_segs, 1011 bool sched_allow_merge) 1012 { 1013 if (!blk_rq_merge_ok(rq, bio)) 1014 return BIO_MERGE_NONE; 1015 1016 switch (blk_try_merge(rq, bio)) { 1017 case ELEVATOR_BACK_MERGE: 1018 if (!sched_allow_merge || blk_mq_sched_allow_merge(q, rq, bio)) 1019 return bio_attempt_back_merge(rq, bio, nr_segs); 1020 break; 1021 case ELEVATOR_FRONT_MERGE: 1022 if (!sched_allow_merge || blk_mq_sched_allow_merge(q, rq, bio)) 1023 return bio_attempt_front_merge(rq, bio, nr_segs); 1024 break; 1025 case ELEVATOR_DISCARD_MERGE: 1026 return bio_attempt_discard_merge(q, rq, bio); 1027 default: 1028 return BIO_MERGE_NONE; 1029 } 1030 1031 return BIO_MERGE_FAILED; 1032 } 1033 1034 /** 1035 * blk_attempt_plug_merge - try to merge with %current's plugged list 1036 * @q: request_queue new bio is being queued at 1037 * @bio: new bio being queued 1038 * @nr_segs: number of segments in @bio 1039 * @same_queue_rq: pointer to &struct request that gets filled in when 1040 * another request associated with @q is found on the plug list 1041 * (optional, may be %NULL) 1042 * 1043 * Determine whether @bio being queued on @q can be merged with a request 1044 * on %current's plugged list. Returns %true if merge was successful, 1045 * otherwise %false. 1046 * 1047 * Plugging coalesces IOs from the same issuer for the same purpose without 1048 * going through @q->queue_lock. As such it's more of an issuing mechanism 1049 * than scheduling, and the request, while may have elvpriv data, is not 1050 * added on the elevator at this point. In addition, we don't have 1051 * reliable access to the elevator outside queue lock. Only check basic 1052 * merging parameters without querying the elevator. 1053 * 1054 * Caller must ensure !blk_queue_nomerges(q) beforehand. 1055 */ 1056 bool blk_attempt_plug_merge(struct request_queue *q, struct bio *bio, 1057 unsigned int nr_segs, struct request **same_queue_rq) 1058 { 1059 struct blk_plug *plug; 1060 struct request *rq; 1061 struct list_head *plug_list; 1062 1063 plug = blk_mq_plug(q, bio); 1064 if (!plug) 1065 return false; 1066 1067 plug_list = &plug->mq_list; 1068 1069 list_for_each_entry_reverse(rq, plug_list, queuelist) { 1070 if (rq->q == q && same_queue_rq) { 1071 /* 1072 * Only blk-mq multiple hardware queues case checks the 1073 * rq in the same queue, there should be only one such 1074 * rq in a queue 1075 **/ 1076 *same_queue_rq = rq; 1077 } 1078 1079 if (rq->q != q) 1080 continue; 1081 1082 if (blk_attempt_bio_merge(q, rq, bio, nr_segs, false) == 1083 BIO_MERGE_OK) 1084 return true; 1085 } 1086 1087 return false; 1088 } 1089 1090 /* 1091 * Iterate list of requests and see if we can merge this bio with any 1092 * of them. 1093 */ 1094 bool blk_bio_list_merge(struct request_queue *q, struct list_head *list, 1095 struct bio *bio, unsigned int nr_segs) 1096 { 1097 struct request *rq; 1098 int checked = 8; 1099 1100 list_for_each_entry_reverse(rq, list, queuelist) { 1101 if (!checked--) 1102 break; 1103 1104 switch (blk_attempt_bio_merge(q, rq, bio, nr_segs, true)) { 1105 case BIO_MERGE_NONE: 1106 continue; 1107 case BIO_MERGE_OK: 1108 return true; 1109 case BIO_MERGE_FAILED: 1110 return false; 1111 } 1112 1113 } 1114 1115 return false; 1116 } 1117 EXPORT_SYMBOL_GPL(blk_bio_list_merge); 1118 1119 bool blk_mq_sched_try_merge(struct request_queue *q, struct bio *bio, 1120 unsigned int nr_segs, struct request **merged_request) 1121 { 1122 struct request *rq; 1123 1124 switch (elv_merge(q, &rq, bio)) { 1125 case ELEVATOR_BACK_MERGE: 1126 if (!blk_mq_sched_allow_merge(q, rq, bio)) 1127 return false; 1128 if (bio_attempt_back_merge(rq, bio, nr_segs) != BIO_MERGE_OK) 1129 return false; 1130 *merged_request = attempt_back_merge(q, rq); 1131 if (!*merged_request) 1132 elv_merged_request(q, rq, ELEVATOR_BACK_MERGE); 1133 return true; 1134 case ELEVATOR_FRONT_MERGE: 1135 if (!blk_mq_sched_allow_merge(q, rq, bio)) 1136 return false; 1137 if (bio_attempt_front_merge(rq, bio, nr_segs) != BIO_MERGE_OK) 1138 return false; 1139 *merged_request = attempt_front_merge(q, rq); 1140 if (!*merged_request) 1141 elv_merged_request(q, rq, ELEVATOR_FRONT_MERGE); 1142 return true; 1143 case ELEVATOR_DISCARD_MERGE: 1144 return bio_attempt_discard_merge(q, rq, bio) == BIO_MERGE_OK; 1145 default: 1146 return false; 1147 } 1148 } 1149 EXPORT_SYMBOL_GPL(blk_mq_sched_try_merge); 1150