1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Functions related to segment and merge handling 4 */ 5 #include <linux/kernel.h> 6 #include <linux/module.h> 7 #include <linux/bio.h> 8 #include <linux/blkdev.h> 9 #include <linux/blk-integrity.h> 10 #include <linux/scatterlist.h> 11 #include <linux/part_stat.h> 12 #include <linux/blk-cgroup.h> 13 14 #include <trace/events/block.h> 15 16 #include "blk.h" 17 #include "blk-mq-sched.h" 18 #include "blk-rq-qos.h" 19 #include "blk-throttle.h" 20 21 static inline void bio_get_first_bvec(struct bio *bio, struct bio_vec *bv) 22 { 23 *bv = mp_bvec_iter_bvec(bio->bi_io_vec, bio->bi_iter); 24 } 25 26 static inline void bio_get_last_bvec(struct bio *bio, struct bio_vec *bv) 27 { 28 struct bvec_iter iter = bio->bi_iter; 29 int idx; 30 31 bio_get_first_bvec(bio, bv); 32 if (bv->bv_len == bio->bi_iter.bi_size) 33 return; /* this bio only has a single bvec */ 34 35 bio_advance_iter(bio, &iter, iter.bi_size); 36 37 if (!iter.bi_bvec_done) 38 idx = iter.bi_idx - 1; 39 else /* in the middle of bvec */ 40 idx = iter.bi_idx; 41 42 *bv = bio->bi_io_vec[idx]; 43 44 /* 45 * iter.bi_bvec_done records actual length of the last bvec 46 * if this bio ends in the middle of one io vector 47 */ 48 if (iter.bi_bvec_done) 49 bv->bv_len = iter.bi_bvec_done; 50 } 51 52 static inline bool bio_will_gap(struct request_queue *q, 53 struct request *prev_rq, struct bio *prev, struct bio *next) 54 { 55 struct bio_vec pb, nb; 56 57 if (!bio_has_data(prev) || !queue_virt_boundary(q)) 58 return false; 59 60 /* 61 * Don't merge if the 1st bio starts with non-zero offset, otherwise it 62 * is quite difficult to respect the sg gap limit. We work hard to 63 * merge a huge number of small single bios in case of mkfs. 64 */ 65 if (prev_rq) 66 bio_get_first_bvec(prev_rq->bio, &pb); 67 else 68 bio_get_first_bvec(prev, &pb); 69 if (pb.bv_offset & queue_virt_boundary(q)) 70 return true; 71 72 /* 73 * We don't need to worry about the situation that the merged segment 74 * ends in unaligned virt boundary: 75 * 76 * - if 'pb' ends aligned, the merged segment ends aligned 77 * - if 'pb' ends unaligned, the next bio must include 78 * one single bvec of 'nb', otherwise the 'nb' can't 79 * merge with 'pb' 80 */ 81 bio_get_last_bvec(prev, &pb); 82 bio_get_first_bvec(next, &nb); 83 if (biovec_phys_mergeable(q, &pb, &nb)) 84 return false; 85 return __bvec_gap_to_prev(&q->limits, &pb, nb.bv_offset); 86 } 87 88 static inline bool req_gap_back_merge(struct request *req, struct bio *bio) 89 { 90 return bio_will_gap(req->q, req, req->biotail, bio); 91 } 92 93 static inline bool req_gap_front_merge(struct request *req, struct bio *bio) 94 { 95 return bio_will_gap(req->q, NULL, bio, req->bio); 96 } 97 98 /* 99 * The max size one bio can handle is UINT_MAX becasue bvec_iter.bi_size 100 * is defined as 'unsigned int', meantime it has to be aligned to with the 101 * logical block size, which is the minimum accepted unit by hardware. 102 */ 103 static unsigned int bio_allowed_max_sectors(const struct queue_limits *lim) 104 { 105 return round_down(UINT_MAX, lim->logical_block_size) >> SECTOR_SHIFT; 106 } 107 108 static struct bio *bio_split_discard(struct bio *bio, 109 const struct queue_limits *lim, 110 unsigned *nsegs, struct bio_set *bs) 111 { 112 unsigned int max_discard_sectors, granularity; 113 sector_t tmp; 114 unsigned split_sectors; 115 116 *nsegs = 1; 117 118 granularity = max(lim->discard_granularity >> 9, 1U); 119 120 max_discard_sectors = 121 min(lim->max_discard_sectors, bio_allowed_max_sectors(lim)); 122 max_discard_sectors -= max_discard_sectors % granularity; 123 if (unlikely(!max_discard_sectors)) 124 return NULL; 125 126 if (bio_sectors(bio) <= max_discard_sectors) 127 return NULL; 128 129 split_sectors = max_discard_sectors; 130 131 /* 132 * If the next starting sector would be misaligned, stop the discard at 133 * the previous aligned sector. 134 */ 135 tmp = bio->bi_iter.bi_sector + split_sectors - 136 ((lim->discard_alignment >> 9) % granularity); 137 tmp = sector_div(tmp, granularity); 138 139 if (split_sectors > tmp) 140 split_sectors -= tmp; 141 142 return bio_split(bio, split_sectors, GFP_NOIO, bs); 143 } 144 145 static struct bio *bio_split_write_zeroes(struct bio *bio, 146 const struct queue_limits *lim, 147 unsigned *nsegs, struct bio_set *bs) 148 { 149 *nsegs = 0; 150 if (!lim->max_write_zeroes_sectors) 151 return NULL; 152 if (bio_sectors(bio) <= lim->max_write_zeroes_sectors) 153 return NULL; 154 return bio_split(bio, lim->max_write_zeroes_sectors, GFP_NOIO, bs); 155 } 156 157 static inline unsigned int blk_boundary_sectors(const struct queue_limits *lim, 158 bool is_atomic) 159 { 160 /* 161 * chunk_sectors must be a multiple of atomic_write_boundary_sectors if 162 * both non-zero. 163 */ 164 if (is_atomic && lim->atomic_write_boundary_sectors) 165 return lim->atomic_write_boundary_sectors; 166 167 return lim->chunk_sectors; 168 } 169 170 /* 171 * Return the maximum number of sectors from the start of a bio that may be 172 * submitted as a single request to a block device. If enough sectors remain, 173 * align the end to the physical block size. Otherwise align the end to the 174 * logical block size. This approach minimizes the number of non-aligned 175 * requests that are submitted to a block device if the start of a bio is not 176 * aligned to a physical block boundary. 177 */ 178 static inline unsigned get_max_io_size(struct bio *bio, 179 const struct queue_limits *lim) 180 { 181 unsigned pbs = lim->physical_block_size >> SECTOR_SHIFT; 182 unsigned lbs = lim->logical_block_size >> SECTOR_SHIFT; 183 bool is_atomic = bio->bi_opf & REQ_ATOMIC; 184 unsigned boundary_sectors = blk_boundary_sectors(lim, is_atomic); 185 unsigned max_sectors, start, end; 186 187 /* 188 * We ignore lim->max_sectors for atomic writes because it may less 189 * than the actual bio size, which we cannot tolerate. 190 */ 191 if (is_atomic) 192 max_sectors = lim->atomic_write_max_sectors; 193 else 194 max_sectors = lim->max_sectors; 195 196 if (boundary_sectors) { 197 max_sectors = min(max_sectors, 198 blk_boundary_sectors_left(bio->bi_iter.bi_sector, 199 boundary_sectors)); 200 } 201 202 start = bio->bi_iter.bi_sector & (pbs - 1); 203 end = (start + max_sectors) & ~(pbs - 1); 204 if (end > start) 205 return end - start; 206 return max_sectors & ~(lbs - 1); 207 } 208 209 /** 210 * get_max_segment_size() - maximum number of bytes to add as a single segment 211 * @lim: Request queue limits. 212 * @start_page: See below. 213 * @offset: Offset from @start_page where to add a segment. 214 * 215 * Returns the maximum number of bytes that can be added as a single segment. 216 */ 217 static inline unsigned get_max_segment_size(const struct queue_limits *lim, 218 struct page *start_page, unsigned long offset) 219 { 220 unsigned long mask = lim->seg_boundary_mask; 221 222 offset = mask & (page_to_phys(start_page) + offset); 223 224 /* 225 * Prevent an overflow if mask = ULONG_MAX and offset = 0 by adding 1 226 * after having calculated the minimum. 227 */ 228 return min(mask - offset, (unsigned long)lim->max_segment_size - 1) + 1; 229 } 230 231 /** 232 * bvec_split_segs - verify whether or not a bvec should be split in the middle 233 * @lim: [in] queue limits to split based on 234 * @bv: [in] bvec to examine 235 * @nsegs: [in,out] Number of segments in the bio being built. Incremented 236 * by the number of segments from @bv that may be appended to that 237 * bio without exceeding @max_segs 238 * @bytes: [in,out] Number of bytes in the bio being built. Incremented 239 * by the number of bytes from @bv that may be appended to that 240 * bio without exceeding @max_bytes 241 * @max_segs: [in] upper bound for *@nsegs 242 * @max_bytes: [in] upper bound for *@bytes 243 * 244 * When splitting a bio, it can happen that a bvec is encountered that is too 245 * big to fit in a single segment and hence that it has to be split in the 246 * middle. This function verifies whether or not that should happen. The value 247 * %true is returned if and only if appending the entire @bv to a bio with 248 * *@nsegs segments and *@sectors sectors would make that bio unacceptable for 249 * the block driver. 250 */ 251 static bool bvec_split_segs(const struct queue_limits *lim, 252 const struct bio_vec *bv, unsigned *nsegs, unsigned *bytes, 253 unsigned max_segs, unsigned max_bytes) 254 { 255 unsigned max_len = min(max_bytes, UINT_MAX) - *bytes; 256 unsigned len = min(bv->bv_len, max_len); 257 unsigned total_len = 0; 258 unsigned seg_size = 0; 259 260 while (len && *nsegs < max_segs) { 261 seg_size = get_max_segment_size(lim, bv->bv_page, 262 bv->bv_offset + total_len); 263 seg_size = min(seg_size, len); 264 265 (*nsegs)++; 266 total_len += seg_size; 267 len -= seg_size; 268 269 if ((bv->bv_offset + total_len) & lim->virt_boundary_mask) 270 break; 271 } 272 273 *bytes += total_len; 274 275 /* tell the caller to split the bvec if it is too big to fit */ 276 return len > 0 || bv->bv_len > max_len; 277 } 278 279 /** 280 * bio_split_rw - split a bio in two bios 281 * @bio: [in] bio to be split 282 * @lim: [in] queue limits to split based on 283 * @segs: [out] number of segments in the bio with the first half of the sectors 284 * @bs: [in] bio set to allocate the clone from 285 * @max_bytes: [in] maximum number of bytes per bio 286 * 287 * Clone @bio, update the bi_iter of the clone to represent the first sectors 288 * of @bio and update @bio->bi_iter to represent the remaining sectors. The 289 * following is guaranteed for the cloned bio: 290 * - That it has at most @max_bytes worth of data 291 * - That it has at most queue_max_segments(@q) segments. 292 * 293 * Except for discard requests the cloned bio will point at the bi_io_vec of 294 * the original bio. It is the responsibility of the caller to ensure that the 295 * original bio is not freed before the cloned bio. The caller is also 296 * responsible for ensuring that @bs is only destroyed after processing of the 297 * split bio has finished. 298 */ 299 struct bio *bio_split_rw(struct bio *bio, const struct queue_limits *lim, 300 unsigned *segs, struct bio_set *bs, unsigned max_bytes) 301 { 302 struct bio_vec bv, bvprv, *bvprvp = NULL; 303 struct bvec_iter iter; 304 unsigned nsegs = 0, bytes = 0; 305 306 bio_for_each_bvec(bv, bio, iter) { 307 /* 308 * If the queue doesn't support SG gaps and adding this 309 * offset would create a gap, disallow it. 310 */ 311 if (bvprvp && bvec_gap_to_prev(lim, bvprvp, bv.bv_offset)) 312 goto split; 313 314 if (nsegs < lim->max_segments && 315 bytes + bv.bv_len <= max_bytes && 316 bv.bv_offset + bv.bv_len <= PAGE_SIZE) { 317 nsegs++; 318 bytes += bv.bv_len; 319 } else { 320 if (bvec_split_segs(lim, &bv, &nsegs, &bytes, 321 lim->max_segments, max_bytes)) 322 goto split; 323 } 324 325 bvprv = bv; 326 bvprvp = &bvprv; 327 } 328 329 *segs = nsegs; 330 return NULL; 331 split: 332 if (bio->bi_opf & REQ_ATOMIC) { 333 bio->bi_status = BLK_STS_INVAL; 334 bio_endio(bio); 335 return ERR_PTR(-EINVAL); 336 } 337 /* 338 * We can't sanely support splitting for a REQ_NOWAIT bio. End it 339 * with EAGAIN if splitting is required and return an error pointer. 340 */ 341 if (bio->bi_opf & REQ_NOWAIT) { 342 bio->bi_status = BLK_STS_AGAIN; 343 bio_endio(bio); 344 return ERR_PTR(-EAGAIN); 345 } 346 347 *segs = nsegs; 348 349 /* 350 * Individual bvecs might not be logical block aligned. Round down the 351 * split size so that each bio is properly block size aligned, even if 352 * we do not use the full hardware limits. 353 */ 354 bytes = ALIGN_DOWN(bytes, lim->logical_block_size); 355 356 /* 357 * Bio splitting may cause subtle trouble such as hang when doing sync 358 * iopoll in direct IO routine. Given performance gain of iopoll for 359 * big IO can be trival, disable iopoll when split needed. 360 */ 361 bio_clear_polled(bio); 362 return bio_split(bio, bytes >> SECTOR_SHIFT, GFP_NOIO, bs); 363 } 364 EXPORT_SYMBOL_GPL(bio_split_rw); 365 366 /** 367 * __bio_split_to_limits - split a bio to fit the queue limits 368 * @bio: bio to be split 369 * @lim: queue limits to split based on 370 * @nr_segs: returns the number of segments in the returned bio 371 * 372 * Check if @bio needs splitting based on the queue limits, and if so split off 373 * a bio fitting the limits from the beginning of @bio and return it. @bio is 374 * shortened to the remainder and re-submitted. 375 * 376 * The split bio is allocated from @q->bio_split, which is provided by the 377 * block layer. 378 */ 379 struct bio *__bio_split_to_limits(struct bio *bio, 380 const struct queue_limits *lim, 381 unsigned int *nr_segs) 382 { 383 struct bio_set *bs = &bio->bi_bdev->bd_disk->bio_split; 384 struct bio *split; 385 386 switch (bio_op(bio)) { 387 case REQ_OP_DISCARD: 388 case REQ_OP_SECURE_ERASE: 389 split = bio_split_discard(bio, lim, nr_segs, bs); 390 break; 391 case REQ_OP_WRITE_ZEROES: 392 split = bio_split_write_zeroes(bio, lim, nr_segs, bs); 393 break; 394 default: 395 split = bio_split_rw(bio, lim, nr_segs, bs, 396 get_max_io_size(bio, lim) << SECTOR_SHIFT); 397 if (IS_ERR(split)) 398 return NULL; 399 break; 400 } 401 402 if (split) { 403 /* there isn't chance to merge the split bio */ 404 split->bi_opf |= REQ_NOMERGE; 405 406 blkcg_bio_issue_init(split); 407 bio_chain(split, bio); 408 trace_block_split(split, bio->bi_iter.bi_sector); 409 WARN_ON_ONCE(bio_zone_write_plugging(bio)); 410 submit_bio_noacct(bio); 411 return split; 412 } 413 return bio; 414 } 415 416 /** 417 * bio_split_to_limits - split a bio to fit the queue limits 418 * @bio: bio to be split 419 * 420 * Check if @bio needs splitting based on the queue limits of @bio->bi_bdev, and 421 * if so split off a bio fitting the limits from the beginning of @bio and 422 * return it. @bio is shortened to the remainder and re-submitted. 423 * 424 * The split bio is allocated from @q->bio_split, which is provided by the 425 * block layer. 426 */ 427 struct bio *bio_split_to_limits(struct bio *bio) 428 { 429 const struct queue_limits *lim = &bdev_get_queue(bio->bi_bdev)->limits; 430 unsigned int nr_segs; 431 432 if (bio_may_exceed_limits(bio, lim)) 433 return __bio_split_to_limits(bio, lim, &nr_segs); 434 return bio; 435 } 436 EXPORT_SYMBOL(bio_split_to_limits); 437 438 unsigned int blk_recalc_rq_segments(struct request *rq) 439 { 440 unsigned int nr_phys_segs = 0; 441 unsigned int bytes = 0; 442 struct req_iterator iter; 443 struct bio_vec bv; 444 445 if (!rq->bio) 446 return 0; 447 448 switch (bio_op(rq->bio)) { 449 case REQ_OP_DISCARD: 450 case REQ_OP_SECURE_ERASE: 451 if (queue_max_discard_segments(rq->q) > 1) { 452 struct bio *bio = rq->bio; 453 454 for_each_bio(bio) 455 nr_phys_segs++; 456 return nr_phys_segs; 457 } 458 return 1; 459 case REQ_OP_WRITE_ZEROES: 460 return 0; 461 default: 462 break; 463 } 464 465 rq_for_each_bvec(bv, rq, iter) 466 bvec_split_segs(&rq->q->limits, &bv, &nr_phys_segs, &bytes, 467 UINT_MAX, UINT_MAX); 468 return nr_phys_segs; 469 } 470 471 static inline struct scatterlist *blk_next_sg(struct scatterlist **sg, 472 struct scatterlist *sglist) 473 { 474 if (!*sg) 475 return sglist; 476 477 /* 478 * If the driver previously mapped a shorter list, we could see a 479 * termination bit prematurely unless it fully inits the sg table 480 * on each mapping. We KNOW that there must be more entries here 481 * or the driver would be buggy, so force clear the termination bit 482 * to avoid doing a full sg_init_table() in drivers for each command. 483 */ 484 sg_unmark_end(*sg); 485 return sg_next(*sg); 486 } 487 488 static unsigned blk_bvec_map_sg(struct request_queue *q, 489 struct bio_vec *bvec, struct scatterlist *sglist, 490 struct scatterlist **sg) 491 { 492 unsigned nbytes = bvec->bv_len; 493 unsigned nsegs = 0, total = 0; 494 495 while (nbytes > 0) { 496 unsigned offset = bvec->bv_offset + total; 497 unsigned len = min(get_max_segment_size(&q->limits, 498 bvec->bv_page, offset), nbytes); 499 struct page *page = bvec->bv_page; 500 501 /* 502 * Unfortunately a fair number of drivers barf on scatterlists 503 * that have an offset larger than PAGE_SIZE, despite other 504 * subsystems dealing with that invariant just fine. For now 505 * stick to the legacy format where we never present those from 506 * the block layer, but the code below should be removed once 507 * these offenders (mostly MMC/SD drivers) are fixed. 508 */ 509 page += (offset >> PAGE_SHIFT); 510 offset &= ~PAGE_MASK; 511 512 *sg = blk_next_sg(sg, sglist); 513 sg_set_page(*sg, page, len, offset); 514 515 total += len; 516 nbytes -= len; 517 nsegs++; 518 } 519 520 return nsegs; 521 } 522 523 static inline int __blk_bvec_map_sg(struct bio_vec bv, 524 struct scatterlist *sglist, struct scatterlist **sg) 525 { 526 *sg = blk_next_sg(sg, sglist); 527 sg_set_page(*sg, bv.bv_page, bv.bv_len, bv.bv_offset); 528 return 1; 529 } 530 531 /* only try to merge bvecs into one sg if they are from two bios */ 532 static inline bool 533 __blk_segment_map_sg_merge(struct request_queue *q, struct bio_vec *bvec, 534 struct bio_vec *bvprv, struct scatterlist **sg) 535 { 536 537 int nbytes = bvec->bv_len; 538 539 if (!*sg) 540 return false; 541 542 if ((*sg)->length + nbytes > queue_max_segment_size(q)) 543 return false; 544 545 if (!biovec_phys_mergeable(q, bvprv, bvec)) 546 return false; 547 548 (*sg)->length += nbytes; 549 550 return true; 551 } 552 553 static int __blk_bios_map_sg(struct request_queue *q, struct bio *bio, 554 struct scatterlist *sglist, 555 struct scatterlist **sg) 556 { 557 struct bio_vec bvec, bvprv = { NULL }; 558 struct bvec_iter iter; 559 int nsegs = 0; 560 bool new_bio = false; 561 562 for_each_bio(bio) { 563 bio_for_each_bvec(bvec, bio, iter) { 564 /* 565 * Only try to merge bvecs from two bios given we 566 * have done bio internal merge when adding pages 567 * to bio 568 */ 569 if (new_bio && 570 __blk_segment_map_sg_merge(q, &bvec, &bvprv, sg)) 571 goto next_bvec; 572 573 if (bvec.bv_offset + bvec.bv_len <= PAGE_SIZE) 574 nsegs += __blk_bvec_map_sg(bvec, sglist, sg); 575 else 576 nsegs += blk_bvec_map_sg(q, &bvec, sglist, sg); 577 next_bvec: 578 new_bio = false; 579 } 580 if (likely(bio->bi_iter.bi_size)) { 581 bvprv = bvec; 582 new_bio = true; 583 } 584 } 585 586 return nsegs; 587 } 588 589 /* 590 * map a request to scatterlist, return number of sg entries setup. Caller 591 * must make sure sg can hold rq->nr_phys_segments entries 592 */ 593 int __blk_rq_map_sg(struct request_queue *q, struct request *rq, 594 struct scatterlist *sglist, struct scatterlist **last_sg) 595 { 596 int nsegs = 0; 597 598 if (rq->rq_flags & RQF_SPECIAL_PAYLOAD) 599 nsegs = __blk_bvec_map_sg(rq->special_vec, sglist, last_sg); 600 else if (rq->bio) 601 nsegs = __blk_bios_map_sg(q, rq->bio, sglist, last_sg); 602 603 if (*last_sg) 604 sg_mark_end(*last_sg); 605 606 /* 607 * Something must have been wrong if the figured number of 608 * segment is bigger than number of req's physical segments 609 */ 610 WARN_ON(nsegs > blk_rq_nr_phys_segments(rq)); 611 612 return nsegs; 613 } 614 EXPORT_SYMBOL(__blk_rq_map_sg); 615 616 static inline unsigned int blk_rq_get_max_sectors(struct request *rq, 617 sector_t offset) 618 { 619 struct request_queue *q = rq->q; 620 struct queue_limits *lim = &q->limits; 621 unsigned int max_sectors, boundary_sectors; 622 bool is_atomic = rq->cmd_flags & REQ_ATOMIC; 623 624 if (blk_rq_is_passthrough(rq)) 625 return q->limits.max_hw_sectors; 626 627 boundary_sectors = blk_boundary_sectors(lim, is_atomic); 628 max_sectors = blk_queue_get_max_sectors(rq); 629 630 if (!boundary_sectors || 631 req_op(rq) == REQ_OP_DISCARD || 632 req_op(rq) == REQ_OP_SECURE_ERASE) 633 return max_sectors; 634 return min(max_sectors, 635 blk_boundary_sectors_left(offset, boundary_sectors)); 636 } 637 638 static inline int ll_new_hw_segment(struct request *req, struct bio *bio, 639 unsigned int nr_phys_segs) 640 { 641 if (!blk_cgroup_mergeable(req, bio)) 642 goto no_merge; 643 644 if (blk_integrity_merge_bio(req->q, req, bio) == false) 645 goto no_merge; 646 647 /* discard request merge won't add new segment */ 648 if (req_op(req) == REQ_OP_DISCARD) 649 return 1; 650 651 if (req->nr_phys_segments + nr_phys_segs > blk_rq_get_max_segments(req)) 652 goto no_merge; 653 654 /* 655 * This will form the start of a new hw segment. Bump both 656 * counters. 657 */ 658 req->nr_phys_segments += nr_phys_segs; 659 return 1; 660 661 no_merge: 662 req_set_nomerge(req->q, req); 663 return 0; 664 } 665 666 int ll_back_merge_fn(struct request *req, struct bio *bio, unsigned int nr_segs) 667 { 668 if (req_gap_back_merge(req, bio)) 669 return 0; 670 if (blk_integrity_rq(req) && 671 integrity_req_gap_back_merge(req, bio)) 672 return 0; 673 if (!bio_crypt_ctx_back_mergeable(req, bio)) 674 return 0; 675 if (blk_rq_sectors(req) + bio_sectors(bio) > 676 blk_rq_get_max_sectors(req, blk_rq_pos(req))) { 677 req_set_nomerge(req->q, req); 678 return 0; 679 } 680 681 return ll_new_hw_segment(req, bio, nr_segs); 682 } 683 684 static int ll_front_merge_fn(struct request *req, struct bio *bio, 685 unsigned int nr_segs) 686 { 687 if (req_gap_front_merge(req, bio)) 688 return 0; 689 if (blk_integrity_rq(req) && 690 integrity_req_gap_front_merge(req, bio)) 691 return 0; 692 if (!bio_crypt_ctx_front_mergeable(req, bio)) 693 return 0; 694 if (blk_rq_sectors(req) + bio_sectors(bio) > 695 blk_rq_get_max_sectors(req, bio->bi_iter.bi_sector)) { 696 req_set_nomerge(req->q, req); 697 return 0; 698 } 699 700 return ll_new_hw_segment(req, bio, nr_segs); 701 } 702 703 static bool req_attempt_discard_merge(struct request_queue *q, struct request *req, 704 struct request *next) 705 { 706 unsigned short segments = blk_rq_nr_discard_segments(req); 707 708 if (segments >= queue_max_discard_segments(q)) 709 goto no_merge; 710 if (blk_rq_sectors(req) + bio_sectors(next->bio) > 711 blk_rq_get_max_sectors(req, blk_rq_pos(req))) 712 goto no_merge; 713 714 req->nr_phys_segments = segments + blk_rq_nr_discard_segments(next); 715 return true; 716 no_merge: 717 req_set_nomerge(q, req); 718 return false; 719 } 720 721 static int ll_merge_requests_fn(struct request_queue *q, struct request *req, 722 struct request *next) 723 { 724 int total_phys_segments; 725 726 if (req_gap_back_merge(req, next->bio)) 727 return 0; 728 729 /* 730 * Will it become too large? 731 */ 732 if ((blk_rq_sectors(req) + blk_rq_sectors(next)) > 733 blk_rq_get_max_sectors(req, blk_rq_pos(req))) 734 return 0; 735 736 total_phys_segments = req->nr_phys_segments + next->nr_phys_segments; 737 if (total_phys_segments > blk_rq_get_max_segments(req)) 738 return 0; 739 740 if (!blk_cgroup_mergeable(req, next->bio)) 741 return 0; 742 743 if (blk_integrity_merge_rq(q, req, next) == false) 744 return 0; 745 746 if (!bio_crypt_ctx_merge_rq(req, next)) 747 return 0; 748 749 /* Merge is OK... */ 750 req->nr_phys_segments = total_phys_segments; 751 return 1; 752 } 753 754 /** 755 * blk_rq_set_mixed_merge - mark a request as mixed merge 756 * @rq: request to mark as mixed merge 757 * 758 * Description: 759 * @rq is about to be mixed merged. Make sure the attributes 760 * which can be mixed are set in each bio and mark @rq as mixed 761 * merged. 762 */ 763 static void blk_rq_set_mixed_merge(struct request *rq) 764 { 765 blk_opf_t ff = rq->cmd_flags & REQ_FAILFAST_MASK; 766 struct bio *bio; 767 768 if (rq->rq_flags & RQF_MIXED_MERGE) 769 return; 770 771 /* 772 * @rq will no longer represent mixable attributes for all the 773 * contained bios. It will just track those of the first one. 774 * Distributes the attributs to each bio. 775 */ 776 for (bio = rq->bio; bio; bio = bio->bi_next) { 777 WARN_ON_ONCE((bio->bi_opf & REQ_FAILFAST_MASK) && 778 (bio->bi_opf & REQ_FAILFAST_MASK) != ff); 779 bio->bi_opf |= ff; 780 } 781 rq->rq_flags |= RQF_MIXED_MERGE; 782 } 783 784 static inline blk_opf_t bio_failfast(const struct bio *bio) 785 { 786 if (bio->bi_opf & REQ_RAHEAD) 787 return REQ_FAILFAST_MASK; 788 789 return bio->bi_opf & REQ_FAILFAST_MASK; 790 } 791 792 /* 793 * After we are marked as MIXED_MERGE, any new RA bio has to be updated 794 * as failfast, and request's failfast has to be updated in case of 795 * front merge. 796 */ 797 static inline void blk_update_mixed_merge(struct request *req, 798 struct bio *bio, bool front_merge) 799 { 800 if (req->rq_flags & RQF_MIXED_MERGE) { 801 if (bio->bi_opf & REQ_RAHEAD) 802 bio->bi_opf |= REQ_FAILFAST_MASK; 803 804 if (front_merge) { 805 req->cmd_flags &= ~REQ_FAILFAST_MASK; 806 req->cmd_flags |= bio->bi_opf & REQ_FAILFAST_MASK; 807 } 808 } 809 } 810 811 static void blk_account_io_merge_request(struct request *req) 812 { 813 if (blk_do_io_stat(req)) { 814 part_stat_lock(); 815 part_stat_inc(req->part, merges[op_stat_group(req_op(req))]); 816 part_stat_local_dec(req->part, 817 in_flight[op_is_write(req_op(req))]); 818 part_stat_unlock(); 819 } 820 } 821 822 static enum elv_merge blk_try_req_merge(struct request *req, 823 struct request *next) 824 { 825 if (blk_discard_mergable(req)) 826 return ELEVATOR_DISCARD_MERGE; 827 else if (blk_rq_pos(req) + blk_rq_sectors(req) == blk_rq_pos(next)) 828 return ELEVATOR_BACK_MERGE; 829 830 return ELEVATOR_NO_MERGE; 831 } 832 833 static bool blk_atomic_write_mergeable_rq_bio(struct request *rq, 834 struct bio *bio) 835 { 836 return (rq->cmd_flags & REQ_ATOMIC) == (bio->bi_opf & REQ_ATOMIC); 837 } 838 839 static bool blk_atomic_write_mergeable_rqs(struct request *rq, 840 struct request *next) 841 { 842 return (rq->cmd_flags & REQ_ATOMIC) == (next->cmd_flags & REQ_ATOMIC); 843 } 844 845 /* 846 * For non-mq, this has to be called with the request spinlock acquired. 847 * For mq with scheduling, the appropriate queue wide lock should be held. 848 */ 849 static struct request *attempt_merge(struct request_queue *q, 850 struct request *req, struct request *next) 851 { 852 if (!rq_mergeable(req) || !rq_mergeable(next)) 853 return NULL; 854 855 if (req_op(req) != req_op(next)) 856 return NULL; 857 858 if (rq_data_dir(req) != rq_data_dir(next)) 859 return NULL; 860 861 /* Don't merge requests with different write hints. */ 862 if (req->write_hint != next->write_hint) 863 return NULL; 864 865 if (req->ioprio != next->ioprio) 866 return NULL; 867 868 if (!blk_atomic_write_mergeable_rqs(req, next)) 869 return NULL; 870 871 /* 872 * If we are allowed to merge, then append bio list 873 * from next to rq and release next. merge_requests_fn 874 * will have updated segment counts, update sector 875 * counts here. Handle DISCARDs separately, as they 876 * have separate settings. 877 */ 878 879 switch (blk_try_req_merge(req, next)) { 880 case ELEVATOR_DISCARD_MERGE: 881 if (!req_attempt_discard_merge(q, req, next)) 882 return NULL; 883 break; 884 case ELEVATOR_BACK_MERGE: 885 if (!ll_merge_requests_fn(q, req, next)) 886 return NULL; 887 break; 888 default: 889 return NULL; 890 } 891 892 /* 893 * If failfast settings disagree or any of the two is already 894 * a mixed merge, mark both as mixed before proceeding. This 895 * makes sure that all involved bios have mixable attributes 896 * set properly. 897 */ 898 if (((req->rq_flags | next->rq_flags) & RQF_MIXED_MERGE) || 899 (req->cmd_flags & REQ_FAILFAST_MASK) != 900 (next->cmd_flags & REQ_FAILFAST_MASK)) { 901 blk_rq_set_mixed_merge(req); 902 blk_rq_set_mixed_merge(next); 903 } 904 905 /* 906 * At this point we have either done a back merge or front merge. We 907 * need the smaller start_time_ns of the merged requests to be the 908 * current request for accounting purposes. 909 */ 910 if (next->start_time_ns < req->start_time_ns) 911 req->start_time_ns = next->start_time_ns; 912 913 req->biotail->bi_next = next->bio; 914 req->biotail = next->biotail; 915 916 req->__data_len += blk_rq_bytes(next); 917 918 if (!blk_discard_mergable(req)) 919 elv_merge_requests(q, req, next); 920 921 blk_crypto_rq_put_keyslot(next); 922 923 /* 924 * 'next' is going away, so update stats accordingly 925 */ 926 blk_account_io_merge_request(next); 927 928 trace_block_rq_merge(next); 929 930 /* 931 * ownership of bio passed from next to req, return 'next' for 932 * the caller to free 933 */ 934 next->bio = NULL; 935 return next; 936 } 937 938 static struct request *attempt_back_merge(struct request_queue *q, 939 struct request *rq) 940 { 941 struct request *next = elv_latter_request(q, rq); 942 943 if (next) 944 return attempt_merge(q, rq, next); 945 946 return NULL; 947 } 948 949 static struct request *attempt_front_merge(struct request_queue *q, 950 struct request *rq) 951 { 952 struct request *prev = elv_former_request(q, rq); 953 954 if (prev) 955 return attempt_merge(q, prev, rq); 956 957 return NULL; 958 } 959 960 /* 961 * Try to merge 'next' into 'rq'. Return true if the merge happened, false 962 * otherwise. The caller is responsible for freeing 'next' if the merge 963 * happened. 964 */ 965 bool blk_attempt_req_merge(struct request_queue *q, struct request *rq, 966 struct request *next) 967 { 968 return attempt_merge(q, rq, next); 969 } 970 971 bool blk_rq_merge_ok(struct request *rq, struct bio *bio) 972 { 973 if (!rq_mergeable(rq) || !bio_mergeable(bio)) 974 return false; 975 976 if (req_op(rq) != bio_op(bio)) 977 return false; 978 979 /* different data direction or already started, don't merge */ 980 if (bio_data_dir(bio) != rq_data_dir(rq)) 981 return false; 982 983 /* don't merge across cgroup boundaries */ 984 if (!blk_cgroup_mergeable(rq, bio)) 985 return false; 986 987 /* only merge integrity protected bio into ditto rq */ 988 if (blk_integrity_merge_bio(rq->q, rq, bio) == false) 989 return false; 990 991 /* Only merge if the crypt contexts are compatible */ 992 if (!bio_crypt_rq_ctx_compatible(rq, bio)) 993 return false; 994 995 /* Don't merge requests with different write hints. */ 996 if (rq->write_hint != bio->bi_write_hint) 997 return false; 998 999 if (rq->ioprio != bio_prio(bio)) 1000 return false; 1001 1002 if (blk_atomic_write_mergeable_rq_bio(rq, bio) == false) 1003 return false; 1004 1005 return true; 1006 } 1007 1008 enum elv_merge blk_try_merge(struct request *rq, struct bio *bio) 1009 { 1010 if (blk_discard_mergable(rq)) 1011 return ELEVATOR_DISCARD_MERGE; 1012 else if (blk_rq_pos(rq) + blk_rq_sectors(rq) == bio->bi_iter.bi_sector) 1013 return ELEVATOR_BACK_MERGE; 1014 else if (blk_rq_pos(rq) - bio_sectors(bio) == bio->bi_iter.bi_sector) 1015 return ELEVATOR_FRONT_MERGE; 1016 return ELEVATOR_NO_MERGE; 1017 } 1018 1019 static void blk_account_io_merge_bio(struct request *req) 1020 { 1021 if (!blk_do_io_stat(req)) 1022 return; 1023 1024 part_stat_lock(); 1025 part_stat_inc(req->part, merges[op_stat_group(req_op(req))]); 1026 part_stat_unlock(); 1027 } 1028 1029 enum bio_merge_status bio_attempt_back_merge(struct request *req, 1030 struct bio *bio, unsigned int nr_segs) 1031 { 1032 const blk_opf_t ff = bio_failfast(bio); 1033 1034 if (!ll_back_merge_fn(req, bio, nr_segs)) 1035 return BIO_MERGE_FAILED; 1036 1037 trace_block_bio_backmerge(bio); 1038 rq_qos_merge(req->q, req, bio); 1039 1040 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff) 1041 blk_rq_set_mixed_merge(req); 1042 1043 blk_update_mixed_merge(req, bio, false); 1044 1045 if (req->rq_flags & RQF_ZONE_WRITE_PLUGGING) 1046 blk_zone_write_plug_bio_merged(bio); 1047 1048 req->biotail->bi_next = bio; 1049 req->biotail = bio; 1050 req->__data_len += bio->bi_iter.bi_size; 1051 1052 bio_crypt_free_ctx(bio); 1053 1054 blk_account_io_merge_bio(req); 1055 return BIO_MERGE_OK; 1056 } 1057 1058 static enum bio_merge_status bio_attempt_front_merge(struct request *req, 1059 struct bio *bio, unsigned int nr_segs) 1060 { 1061 const blk_opf_t ff = bio_failfast(bio); 1062 1063 /* 1064 * A front merge for writes to sequential zones of a zoned block device 1065 * can happen only if the user submitted writes out of order. Do not 1066 * merge such write to let it fail. 1067 */ 1068 if (req->rq_flags & RQF_ZONE_WRITE_PLUGGING) 1069 return BIO_MERGE_FAILED; 1070 1071 if (!ll_front_merge_fn(req, bio, nr_segs)) 1072 return BIO_MERGE_FAILED; 1073 1074 trace_block_bio_frontmerge(bio); 1075 rq_qos_merge(req->q, req, bio); 1076 1077 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff) 1078 blk_rq_set_mixed_merge(req); 1079 1080 blk_update_mixed_merge(req, bio, true); 1081 1082 bio->bi_next = req->bio; 1083 req->bio = bio; 1084 1085 req->__sector = bio->bi_iter.bi_sector; 1086 req->__data_len += bio->bi_iter.bi_size; 1087 1088 bio_crypt_do_front_merge(req, bio); 1089 1090 blk_account_io_merge_bio(req); 1091 return BIO_MERGE_OK; 1092 } 1093 1094 static enum bio_merge_status bio_attempt_discard_merge(struct request_queue *q, 1095 struct request *req, struct bio *bio) 1096 { 1097 unsigned short segments = blk_rq_nr_discard_segments(req); 1098 1099 if (segments >= queue_max_discard_segments(q)) 1100 goto no_merge; 1101 if (blk_rq_sectors(req) + bio_sectors(bio) > 1102 blk_rq_get_max_sectors(req, blk_rq_pos(req))) 1103 goto no_merge; 1104 1105 rq_qos_merge(q, req, bio); 1106 1107 req->biotail->bi_next = bio; 1108 req->biotail = bio; 1109 req->__data_len += bio->bi_iter.bi_size; 1110 req->nr_phys_segments = segments + 1; 1111 1112 blk_account_io_merge_bio(req); 1113 return BIO_MERGE_OK; 1114 no_merge: 1115 req_set_nomerge(q, req); 1116 return BIO_MERGE_FAILED; 1117 } 1118 1119 static enum bio_merge_status blk_attempt_bio_merge(struct request_queue *q, 1120 struct request *rq, 1121 struct bio *bio, 1122 unsigned int nr_segs, 1123 bool sched_allow_merge) 1124 { 1125 if (!blk_rq_merge_ok(rq, bio)) 1126 return BIO_MERGE_NONE; 1127 1128 switch (blk_try_merge(rq, bio)) { 1129 case ELEVATOR_BACK_MERGE: 1130 if (!sched_allow_merge || blk_mq_sched_allow_merge(q, rq, bio)) 1131 return bio_attempt_back_merge(rq, bio, nr_segs); 1132 break; 1133 case ELEVATOR_FRONT_MERGE: 1134 if (!sched_allow_merge || blk_mq_sched_allow_merge(q, rq, bio)) 1135 return bio_attempt_front_merge(rq, bio, nr_segs); 1136 break; 1137 case ELEVATOR_DISCARD_MERGE: 1138 return bio_attempt_discard_merge(q, rq, bio); 1139 default: 1140 return BIO_MERGE_NONE; 1141 } 1142 1143 return BIO_MERGE_FAILED; 1144 } 1145 1146 /** 1147 * blk_attempt_plug_merge - try to merge with %current's plugged list 1148 * @q: request_queue new bio is being queued at 1149 * @bio: new bio being queued 1150 * @nr_segs: number of segments in @bio 1151 * from the passed in @q already in the plug list 1152 * 1153 * Determine whether @bio being queued on @q can be merged with the previous 1154 * request on %current's plugged list. Returns %true if merge was successful, 1155 * otherwise %false. 1156 * 1157 * Plugging coalesces IOs from the same issuer for the same purpose without 1158 * going through @q->queue_lock. As such it's more of an issuing mechanism 1159 * than scheduling, and the request, while may have elvpriv data, is not 1160 * added on the elevator at this point. In addition, we don't have 1161 * reliable access to the elevator outside queue lock. Only check basic 1162 * merging parameters without querying the elevator. 1163 * 1164 * Caller must ensure !blk_queue_nomerges(q) beforehand. 1165 */ 1166 bool blk_attempt_plug_merge(struct request_queue *q, struct bio *bio, 1167 unsigned int nr_segs) 1168 { 1169 struct blk_plug *plug = current->plug; 1170 struct request *rq; 1171 1172 if (!plug || rq_list_empty(plug->mq_list)) 1173 return false; 1174 1175 rq_list_for_each(&plug->mq_list, rq) { 1176 if (rq->q == q) { 1177 if (blk_attempt_bio_merge(q, rq, bio, nr_segs, false) == 1178 BIO_MERGE_OK) 1179 return true; 1180 break; 1181 } 1182 1183 /* 1184 * Only keep iterating plug list for merges if we have multiple 1185 * queues 1186 */ 1187 if (!plug->multiple_queues) 1188 break; 1189 } 1190 return false; 1191 } 1192 1193 /* 1194 * Iterate list of requests and see if we can merge this bio with any 1195 * of them. 1196 */ 1197 bool blk_bio_list_merge(struct request_queue *q, struct list_head *list, 1198 struct bio *bio, unsigned int nr_segs) 1199 { 1200 struct request *rq; 1201 int checked = 8; 1202 1203 list_for_each_entry_reverse(rq, list, queuelist) { 1204 if (!checked--) 1205 break; 1206 1207 switch (blk_attempt_bio_merge(q, rq, bio, nr_segs, true)) { 1208 case BIO_MERGE_NONE: 1209 continue; 1210 case BIO_MERGE_OK: 1211 return true; 1212 case BIO_MERGE_FAILED: 1213 return false; 1214 } 1215 1216 } 1217 1218 return false; 1219 } 1220 EXPORT_SYMBOL_GPL(blk_bio_list_merge); 1221 1222 bool blk_mq_sched_try_merge(struct request_queue *q, struct bio *bio, 1223 unsigned int nr_segs, struct request **merged_request) 1224 { 1225 struct request *rq; 1226 1227 switch (elv_merge(q, &rq, bio)) { 1228 case ELEVATOR_BACK_MERGE: 1229 if (!blk_mq_sched_allow_merge(q, rq, bio)) 1230 return false; 1231 if (bio_attempt_back_merge(rq, bio, nr_segs) != BIO_MERGE_OK) 1232 return false; 1233 *merged_request = attempt_back_merge(q, rq); 1234 if (!*merged_request) 1235 elv_merged_request(q, rq, ELEVATOR_BACK_MERGE); 1236 return true; 1237 case ELEVATOR_FRONT_MERGE: 1238 if (!blk_mq_sched_allow_merge(q, rq, bio)) 1239 return false; 1240 if (bio_attempt_front_merge(rq, bio, nr_segs) != BIO_MERGE_OK) 1241 return false; 1242 *merged_request = attempt_front_merge(q, rq); 1243 if (!*merged_request) 1244 elv_merged_request(q, rq, ELEVATOR_FRONT_MERGE); 1245 return true; 1246 case ELEVATOR_DISCARD_MERGE: 1247 return bio_attempt_discard_merge(q, rq, bio) == BIO_MERGE_OK; 1248 default: 1249 return false; 1250 } 1251 } 1252 EXPORT_SYMBOL_GPL(blk_mq_sched_try_merge); 1253