1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Functions related to segment and merge handling 4 */ 5 #include <linux/kernel.h> 6 #include <linux/module.h> 7 #include <linux/bio.h> 8 #include <linux/blkdev.h> 9 #include <linux/blk-integrity.h> 10 #include <linux/scatterlist.h> 11 #include <linux/part_stat.h> 12 #include <linux/blk-cgroup.h> 13 14 #include <trace/events/block.h> 15 16 #include "blk.h" 17 #include "blk-mq-sched.h" 18 #include "blk-rq-qos.h" 19 #include "blk-throttle.h" 20 21 static inline void bio_get_first_bvec(struct bio *bio, struct bio_vec *bv) 22 { 23 *bv = mp_bvec_iter_bvec(bio->bi_io_vec, bio->bi_iter); 24 } 25 26 static inline void bio_get_last_bvec(struct bio *bio, struct bio_vec *bv) 27 { 28 struct bvec_iter iter = bio->bi_iter; 29 int idx; 30 31 bio_get_first_bvec(bio, bv); 32 if (bv->bv_len == bio->bi_iter.bi_size) 33 return; /* this bio only has a single bvec */ 34 35 bio_advance_iter(bio, &iter, iter.bi_size); 36 37 if (!iter.bi_bvec_done) 38 idx = iter.bi_idx - 1; 39 else /* in the middle of bvec */ 40 idx = iter.bi_idx; 41 42 *bv = bio->bi_io_vec[idx]; 43 44 /* 45 * iter.bi_bvec_done records actual length of the last bvec 46 * if this bio ends in the middle of one io vector 47 */ 48 if (iter.bi_bvec_done) 49 bv->bv_len = iter.bi_bvec_done; 50 } 51 52 static inline bool bio_will_gap(struct request_queue *q, 53 struct request *prev_rq, struct bio *prev, struct bio *next) 54 { 55 struct bio_vec pb, nb; 56 57 if (!bio_has_data(prev) || !queue_virt_boundary(q)) 58 return false; 59 60 /* 61 * Don't merge if the 1st bio starts with non-zero offset, otherwise it 62 * is quite difficult to respect the sg gap limit. We work hard to 63 * merge a huge number of small single bios in case of mkfs. 64 */ 65 if (prev_rq) 66 bio_get_first_bvec(prev_rq->bio, &pb); 67 else 68 bio_get_first_bvec(prev, &pb); 69 if (pb.bv_offset & queue_virt_boundary(q)) 70 return true; 71 72 /* 73 * We don't need to worry about the situation that the merged segment 74 * ends in unaligned virt boundary: 75 * 76 * - if 'pb' ends aligned, the merged segment ends aligned 77 * - if 'pb' ends unaligned, the next bio must include 78 * one single bvec of 'nb', otherwise the 'nb' can't 79 * merge with 'pb' 80 */ 81 bio_get_last_bvec(prev, &pb); 82 bio_get_first_bvec(next, &nb); 83 if (biovec_phys_mergeable(q, &pb, &nb)) 84 return false; 85 return __bvec_gap_to_prev(&q->limits, &pb, nb.bv_offset); 86 } 87 88 static inline bool req_gap_back_merge(struct request *req, struct bio *bio) 89 { 90 return bio_will_gap(req->q, req, req->biotail, bio); 91 } 92 93 static inline bool req_gap_front_merge(struct request *req, struct bio *bio) 94 { 95 return bio_will_gap(req->q, NULL, bio, req->bio); 96 } 97 98 /* 99 * The max size one bio can handle is UINT_MAX becasue bvec_iter.bi_size 100 * is defined as 'unsigned int', meantime it has to be aligned to with the 101 * logical block size, which is the minimum accepted unit by hardware. 102 */ 103 static unsigned int bio_allowed_max_sectors(struct queue_limits *lim) 104 { 105 return round_down(UINT_MAX, lim->logical_block_size) >> SECTOR_SHIFT; 106 } 107 108 static struct bio *bio_split_discard(struct bio *bio, struct queue_limits *lim, 109 unsigned *nsegs, struct bio_set *bs) 110 { 111 unsigned int max_discard_sectors, granularity; 112 sector_t tmp; 113 unsigned split_sectors; 114 115 *nsegs = 1; 116 117 /* Zero-sector (unknown) and one-sector granularities are the same. */ 118 granularity = max(lim->discard_granularity >> 9, 1U); 119 120 max_discard_sectors = 121 min(lim->max_discard_sectors, bio_allowed_max_sectors(lim)); 122 max_discard_sectors -= max_discard_sectors % granularity; 123 124 if (unlikely(!max_discard_sectors)) { 125 /* XXX: warn */ 126 return NULL; 127 } 128 129 if (bio_sectors(bio) <= max_discard_sectors) 130 return NULL; 131 132 split_sectors = max_discard_sectors; 133 134 /* 135 * If the next starting sector would be misaligned, stop the discard at 136 * the previous aligned sector. 137 */ 138 tmp = bio->bi_iter.bi_sector + split_sectors - 139 ((lim->discard_alignment >> 9) % granularity); 140 tmp = sector_div(tmp, granularity); 141 142 if (split_sectors > tmp) 143 split_sectors -= tmp; 144 145 return bio_split(bio, split_sectors, GFP_NOIO, bs); 146 } 147 148 static struct bio *bio_split_write_zeroes(struct bio *bio, 149 struct queue_limits *lim, unsigned *nsegs, struct bio_set *bs) 150 { 151 *nsegs = 0; 152 if (!lim->max_write_zeroes_sectors) 153 return NULL; 154 if (bio_sectors(bio) <= lim->max_write_zeroes_sectors) 155 return NULL; 156 return bio_split(bio, lim->max_write_zeroes_sectors, GFP_NOIO, bs); 157 } 158 159 /* 160 * Return the maximum number of sectors from the start of a bio that may be 161 * submitted as a single request to a block device. If enough sectors remain, 162 * align the end to the physical block size. Otherwise align the end to the 163 * logical block size. This approach minimizes the number of non-aligned 164 * requests that are submitted to a block device if the start of a bio is not 165 * aligned to a physical block boundary. 166 */ 167 static inline unsigned get_max_io_size(struct bio *bio, 168 struct queue_limits *lim) 169 { 170 unsigned pbs = lim->physical_block_size >> SECTOR_SHIFT; 171 unsigned lbs = lim->logical_block_size >> SECTOR_SHIFT; 172 unsigned max_sectors = lim->max_sectors, start, end; 173 174 if (lim->chunk_sectors) { 175 max_sectors = min(max_sectors, 176 blk_chunk_sectors_left(bio->bi_iter.bi_sector, 177 lim->chunk_sectors)); 178 } 179 180 start = bio->bi_iter.bi_sector & (pbs - 1); 181 end = (start + max_sectors) & ~(pbs - 1); 182 if (end > start) 183 return end - start; 184 return max_sectors & ~(lbs - 1); 185 } 186 187 static inline unsigned get_max_segment_size(struct queue_limits *lim, 188 struct page *start_page, unsigned long offset) 189 { 190 unsigned long mask = lim->seg_boundary_mask; 191 192 offset = mask & (page_to_phys(start_page) + offset); 193 194 /* 195 * overflow may be triggered in case of zero page physical address 196 * on 32bit arch, use queue's max segment size when that happens. 197 */ 198 return min_not_zero(mask - offset + 1, 199 (unsigned long)lim->max_segment_size); 200 } 201 202 /** 203 * bvec_split_segs - verify whether or not a bvec should be split in the middle 204 * @lim: [in] queue limits to split based on 205 * @bv: [in] bvec to examine 206 * @nsegs: [in,out] Number of segments in the bio being built. Incremented 207 * by the number of segments from @bv that may be appended to that 208 * bio without exceeding @max_segs 209 * @bytes: [in,out] Number of bytes in the bio being built. Incremented 210 * by the number of bytes from @bv that may be appended to that 211 * bio without exceeding @max_bytes 212 * @max_segs: [in] upper bound for *@nsegs 213 * @max_bytes: [in] upper bound for *@bytes 214 * 215 * When splitting a bio, it can happen that a bvec is encountered that is too 216 * big to fit in a single segment and hence that it has to be split in the 217 * middle. This function verifies whether or not that should happen. The value 218 * %true is returned if and only if appending the entire @bv to a bio with 219 * *@nsegs segments and *@sectors sectors would make that bio unacceptable for 220 * the block driver. 221 */ 222 static bool bvec_split_segs(struct queue_limits *lim, const struct bio_vec *bv, 223 unsigned *nsegs, unsigned *bytes, unsigned max_segs, 224 unsigned max_bytes) 225 { 226 unsigned max_len = min(max_bytes, UINT_MAX) - *bytes; 227 unsigned len = min(bv->bv_len, max_len); 228 unsigned total_len = 0; 229 unsigned seg_size = 0; 230 231 while (len && *nsegs < max_segs) { 232 seg_size = get_max_segment_size(lim, bv->bv_page, 233 bv->bv_offset + total_len); 234 seg_size = min(seg_size, len); 235 236 (*nsegs)++; 237 total_len += seg_size; 238 len -= seg_size; 239 240 if ((bv->bv_offset + total_len) & lim->virt_boundary_mask) 241 break; 242 } 243 244 *bytes += total_len; 245 246 /* tell the caller to split the bvec if it is too big to fit */ 247 return len > 0 || bv->bv_len > max_len; 248 } 249 250 /** 251 * bio_split_rw - split a bio in two bios 252 * @bio: [in] bio to be split 253 * @lim: [in] queue limits to split based on 254 * @segs: [out] number of segments in the bio with the first half of the sectors 255 * @bs: [in] bio set to allocate the clone from 256 * @max_bytes: [in] maximum number of bytes per bio 257 * 258 * Clone @bio, update the bi_iter of the clone to represent the first sectors 259 * of @bio and update @bio->bi_iter to represent the remaining sectors. The 260 * following is guaranteed for the cloned bio: 261 * - That it has at most @max_bytes worth of data 262 * - That it has at most queue_max_segments(@q) segments. 263 * 264 * Except for discard requests the cloned bio will point at the bi_io_vec of 265 * the original bio. It is the responsibility of the caller to ensure that the 266 * original bio is not freed before the cloned bio. The caller is also 267 * responsible for ensuring that @bs is only destroyed after processing of the 268 * split bio has finished. 269 */ 270 static struct bio *bio_split_rw(struct bio *bio, struct queue_limits *lim, 271 unsigned *segs, struct bio_set *bs, unsigned max_bytes) 272 { 273 struct bio_vec bv, bvprv, *bvprvp = NULL; 274 struct bvec_iter iter; 275 unsigned nsegs = 0, bytes = 0; 276 277 bio_for_each_bvec(bv, bio, iter) { 278 /* 279 * If the queue doesn't support SG gaps and adding this 280 * offset would create a gap, disallow it. 281 */ 282 if (bvprvp && bvec_gap_to_prev(lim, bvprvp, bv.bv_offset)) 283 goto split; 284 285 if (nsegs < lim->max_segments && 286 bytes + bv.bv_len <= max_bytes && 287 bv.bv_offset + bv.bv_len <= PAGE_SIZE) { 288 nsegs++; 289 bytes += bv.bv_len; 290 } else { 291 if (bvec_split_segs(lim, &bv, &nsegs, &bytes, 292 lim->max_segments, max_bytes)) 293 goto split; 294 } 295 296 bvprv = bv; 297 bvprvp = &bvprv; 298 } 299 300 *segs = nsegs; 301 return NULL; 302 split: 303 *segs = nsegs; 304 305 /* 306 * Individual bvecs might not be logical block aligned. Round down the 307 * split size so that each bio is properly block size aligned, even if 308 * we do not use the full hardware limits. 309 */ 310 bytes = ALIGN_DOWN(bytes, lim->logical_block_size); 311 312 /* 313 * Bio splitting may cause subtle trouble such as hang when doing sync 314 * iopoll in direct IO routine. Given performance gain of iopoll for 315 * big IO can be trival, disable iopoll when split needed. 316 */ 317 bio_clear_polled(bio); 318 return bio_split(bio, bytes >> SECTOR_SHIFT, GFP_NOIO, bs); 319 } 320 321 /** 322 * __bio_split_to_limits - split a bio to fit the queue limits 323 * @bio: bio to be split 324 * @lim: queue limits to split based on 325 * @nr_segs: returns the number of segments in the returned bio 326 * 327 * Check if @bio needs splitting based on the queue limits, and if so split off 328 * a bio fitting the limits from the beginning of @bio and return it. @bio is 329 * shortened to the remainder and re-submitted. 330 * 331 * The split bio is allocated from @q->bio_split, which is provided by the 332 * block layer. 333 */ 334 struct bio *__bio_split_to_limits(struct bio *bio, struct queue_limits *lim, 335 unsigned int *nr_segs) 336 { 337 struct bio_set *bs = &bio->bi_bdev->bd_disk->bio_split; 338 struct bio *split; 339 340 switch (bio_op(bio)) { 341 case REQ_OP_DISCARD: 342 case REQ_OP_SECURE_ERASE: 343 split = bio_split_discard(bio, lim, nr_segs, bs); 344 break; 345 case REQ_OP_WRITE_ZEROES: 346 split = bio_split_write_zeroes(bio, lim, nr_segs, bs); 347 break; 348 default: 349 split = bio_split_rw(bio, lim, nr_segs, bs, 350 get_max_io_size(bio, lim) << SECTOR_SHIFT); 351 break; 352 } 353 354 if (split) { 355 /* there isn't chance to merge the splitted bio */ 356 split->bi_opf |= REQ_NOMERGE; 357 358 blkcg_bio_issue_init(split); 359 bio_chain(split, bio); 360 trace_block_split(split, bio->bi_iter.bi_sector); 361 submit_bio_noacct(bio); 362 return split; 363 } 364 return bio; 365 } 366 367 /** 368 * bio_split_to_limits - split a bio to fit the queue limits 369 * @bio: bio to be split 370 * 371 * Check if @bio needs splitting based on the queue limits of @bio->bi_bdev, and 372 * if so split off a bio fitting the limits from the beginning of @bio and 373 * return it. @bio is shortened to the remainder and re-submitted. 374 * 375 * The split bio is allocated from @q->bio_split, which is provided by the 376 * block layer. 377 */ 378 struct bio *bio_split_to_limits(struct bio *bio) 379 { 380 struct queue_limits *lim = &bdev_get_queue(bio->bi_bdev)->limits; 381 unsigned int nr_segs; 382 383 if (bio_may_exceed_limits(bio, lim)) 384 return __bio_split_to_limits(bio, lim, &nr_segs); 385 return bio; 386 } 387 EXPORT_SYMBOL(bio_split_to_limits); 388 389 unsigned int blk_recalc_rq_segments(struct request *rq) 390 { 391 unsigned int nr_phys_segs = 0; 392 unsigned int bytes = 0; 393 struct req_iterator iter; 394 struct bio_vec bv; 395 396 if (!rq->bio) 397 return 0; 398 399 switch (bio_op(rq->bio)) { 400 case REQ_OP_DISCARD: 401 case REQ_OP_SECURE_ERASE: 402 if (queue_max_discard_segments(rq->q) > 1) { 403 struct bio *bio = rq->bio; 404 405 for_each_bio(bio) 406 nr_phys_segs++; 407 return nr_phys_segs; 408 } 409 return 1; 410 case REQ_OP_WRITE_ZEROES: 411 return 0; 412 default: 413 break; 414 } 415 416 rq_for_each_bvec(bv, rq, iter) 417 bvec_split_segs(&rq->q->limits, &bv, &nr_phys_segs, &bytes, 418 UINT_MAX, UINT_MAX); 419 return nr_phys_segs; 420 } 421 422 static inline struct scatterlist *blk_next_sg(struct scatterlist **sg, 423 struct scatterlist *sglist) 424 { 425 if (!*sg) 426 return sglist; 427 428 /* 429 * If the driver previously mapped a shorter list, we could see a 430 * termination bit prematurely unless it fully inits the sg table 431 * on each mapping. We KNOW that there must be more entries here 432 * or the driver would be buggy, so force clear the termination bit 433 * to avoid doing a full sg_init_table() in drivers for each command. 434 */ 435 sg_unmark_end(*sg); 436 return sg_next(*sg); 437 } 438 439 static unsigned blk_bvec_map_sg(struct request_queue *q, 440 struct bio_vec *bvec, struct scatterlist *sglist, 441 struct scatterlist **sg) 442 { 443 unsigned nbytes = bvec->bv_len; 444 unsigned nsegs = 0, total = 0; 445 446 while (nbytes > 0) { 447 unsigned offset = bvec->bv_offset + total; 448 unsigned len = min(get_max_segment_size(&q->limits, 449 bvec->bv_page, offset), nbytes); 450 struct page *page = bvec->bv_page; 451 452 /* 453 * Unfortunately a fair number of drivers barf on scatterlists 454 * that have an offset larger than PAGE_SIZE, despite other 455 * subsystems dealing with that invariant just fine. For now 456 * stick to the legacy format where we never present those from 457 * the block layer, but the code below should be removed once 458 * these offenders (mostly MMC/SD drivers) are fixed. 459 */ 460 page += (offset >> PAGE_SHIFT); 461 offset &= ~PAGE_MASK; 462 463 *sg = blk_next_sg(sg, sglist); 464 sg_set_page(*sg, page, len, offset); 465 466 total += len; 467 nbytes -= len; 468 nsegs++; 469 } 470 471 return nsegs; 472 } 473 474 static inline int __blk_bvec_map_sg(struct bio_vec bv, 475 struct scatterlist *sglist, struct scatterlist **sg) 476 { 477 *sg = blk_next_sg(sg, sglist); 478 sg_set_page(*sg, bv.bv_page, bv.bv_len, bv.bv_offset); 479 return 1; 480 } 481 482 /* only try to merge bvecs into one sg if they are from two bios */ 483 static inline bool 484 __blk_segment_map_sg_merge(struct request_queue *q, struct bio_vec *bvec, 485 struct bio_vec *bvprv, struct scatterlist **sg) 486 { 487 488 int nbytes = bvec->bv_len; 489 490 if (!*sg) 491 return false; 492 493 if ((*sg)->length + nbytes > queue_max_segment_size(q)) 494 return false; 495 496 if (!biovec_phys_mergeable(q, bvprv, bvec)) 497 return false; 498 499 (*sg)->length += nbytes; 500 501 return true; 502 } 503 504 static int __blk_bios_map_sg(struct request_queue *q, struct bio *bio, 505 struct scatterlist *sglist, 506 struct scatterlist **sg) 507 { 508 struct bio_vec bvec, bvprv = { NULL }; 509 struct bvec_iter iter; 510 int nsegs = 0; 511 bool new_bio = false; 512 513 for_each_bio(bio) { 514 bio_for_each_bvec(bvec, bio, iter) { 515 /* 516 * Only try to merge bvecs from two bios given we 517 * have done bio internal merge when adding pages 518 * to bio 519 */ 520 if (new_bio && 521 __blk_segment_map_sg_merge(q, &bvec, &bvprv, sg)) 522 goto next_bvec; 523 524 if (bvec.bv_offset + bvec.bv_len <= PAGE_SIZE) 525 nsegs += __blk_bvec_map_sg(bvec, sglist, sg); 526 else 527 nsegs += blk_bvec_map_sg(q, &bvec, sglist, sg); 528 next_bvec: 529 new_bio = false; 530 } 531 if (likely(bio->bi_iter.bi_size)) { 532 bvprv = bvec; 533 new_bio = true; 534 } 535 } 536 537 return nsegs; 538 } 539 540 /* 541 * map a request to scatterlist, return number of sg entries setup. Caller 542 * must make sure sg can hold rq->nr_phys_segments entries 543 */ 544 int __blk_rq_map_sg(struct request_queue *q, struct request *rq, 545 struct scatterlist *sglist, struct scatterlist **last_sg) 546 { 547 int nsegs = 0; 548 549 if (rq->rq_flags & RQF_SPECIAL_PAYLOAD) 550 nsegs = __blk_bvec_map_sg(rq->special_vec, sglist, last_sg); 551 else if (rq->bio) 552 nsegs = __blk_bios_map_sg(q, rq->bio, sglist, last_sg); 553 554 if (*last_sg) 555 sg_mark_end(*last_sg); 556 557 /* 558 * Something must have been wrong if the figured number of 559 * segment is bigger than number of req's physical segments 560 */ 561 WARN_ON(nsegs > blk_rq_nr_phys_segments(rq)); 562 563 return nsegs; 564 } 565 EXPORT_SYMBOL(__blk_rq_map_sg); 566 567 static inline unsigned int blk_rq_get_max_segments(struct request *rq) 568 { 569 if (req_op(rq) == REQ_OP_DISCARD) 570 return queue_max_discard_segments(rq->q); 571 return queue_max_segments(rq->q); 572 } 573 574 static inline unsigned int blk_rq_get_max_sectors(struct request *rq, 575 sector_t offset) 576 { 577 struct request_queue *q = rq->q; 578 unsigned int max_sectors; 579 580 if (blk_rq_is_passthrough(rq)) 581 return q->limits.max_hw_sectors; 582 583 max_sectors = blk_queue_get_max_sectors(q, req_op(rq)); 584 if (!q->limits.chunk_sectors || 585 req_op(rq) == REQ_OP_DISCARD || 586 req_op(rq) == REQ_OP_SECURE_ERASE) 587 return max_sectors; 588 return min(max_sectors, 589 blk_chunk_sectors_left(offset, q->limits.chunk_sectors)); 590 } 591 592 static inline int ll_new_hw_segment(struct request *req, struct bio *bio, 593 unsigned int nr_phys_segs) 594 { 595 if (!blk_cgroup_mergeable(req, bio)) 596 goto no_merge; 597 598 if (blk_integrity_merge_bio(req->q, req, bio) == false) 599 goto no_merge; 600 601 /* discard request merge won't add new segment */ 602 if (req_op(req) == REQ_OP_DISCARD) 603 return 1; 604 605 if (req->nr_phys_segments + nr_phys_segs > blk_rq_get_max_segments(req)) 606 goto no_merge; 607 608 /* 609 * This will form the start of a new hw segment. Bump both 610 * counters. 611 */ 612 req->nr_phys_segments += nr_phys_segs; 613 return 1; 614 615 no_merge: 616 req_set_nomerge(req->q, req); 617 return 0; 618 } 619 620 int ll_back_merge_fn(struct request *req, struct bio *bio, unsigned int nr_segs) 621 { 622 if (req_gap_back_merge(req, bio)) 623 return 0; 624 if (blk_integrity_rq(req) && 625 integrity_req_gap_back_merge(req, bio)) 626 return 0; 627 if (!bio_crypt_ctx_back_mergeable(req, bio)) 628 return 0; 629 if (blk_rq_sectors(req) + bio_sectors(bio) > 630 blk_rq_get_max_sectors(req, blk_rq_pos(req))) { 631 req_set_nomerge(req->q, req); 632 return 0; 633 } 634 635 return ll_new_hw_segment(req, bio, nr_segs); 636 } 637 638 static int ll_front_merge_fn(struct request *req, struct bio *bio, 639 unsigned int nr_segs) 640 { 641 if (req_gap_front_merge(req, bio)) 642 return 0; 643 if (blk_integrity_rq(req) && 644 integrity_req_gap_front_merge(req, bio)) 645 return 0; 646 if (!bio_crypt_ctx_front_mergeable(req, bio)) 647 return 0; 648 if (blk_rq_sectors(req) + bio_sectors(bio) > 649 blk_rq_get_max_sectors(req, bio->bi_iter.bi_sector)) { 650 req_set_nomerge(req->q, req); 651 return 0; 652 } 653 654 return ll_new_hw_segment(req, bio, nr_segs); 655 } 656 657 static bool req_attempt_discard_merge(struct request_queue *q, struct request *req, 658 struct request *next) 659 { 660 unsigned short segments = blk_rq_nr_discard_segments(req); 661 662 if (segments >= queue_max_discard_segments(q)) 663 goto no_merge; 664 if (blk_rq_sectors(req) + bio_sectors(next->bio) > 665 blk_rq_get_max_sectors(req, blk_rq_pos(req))) 666 goto no_merge; 667 668 req->nr_phys_segments = segments + blk_rq_nr_discard_segments(next); 669 return true; 670 no_merge: 671 req_set_nomerge(q, req); 672 return false; 673 } 674 675 static int ll_merge_requests_fn(struct request_queue *q, struct request *req, 676 struct request *next) 677 { 678 int total_phys_segments; 679 680 if (req_gap_back_merge(req, next->bio)) 681 return 0; 682 683 /* 684 * Will it become too large? 685 */ 686 if ((blk_rq_sectors(req) + blk_rq_sectors(next)) > 687 blk_rq_get_max_sectors(req, blk_rq_pos(req))) 688 return 0; 689 690 total_phys_segments = req->nr_phys_segments + next->nr_phys_segments; 691 if (total_phys_segments > blk_rq_get_max_segments(req)) 692 return 0; 693 694 if (!blk_cgroup_mergeable(req, next->bio)) 695 return 0; 696 697 if (blk_integrity_merge_rq(q, req, next) == false) 698 return 0; 699 700 if (!bio_crypt_ctx_merge_rq(req, next)) 701 return 0; 702 703 /* Merge is OK... */ 704 req->nr_phys_segments = total_phys_segments; 705 return 1; 706 } 707 708 /** 709 * blk_rq_set_mixed_merge - mark a request as mixed merge 710 * @rq: request to mark as mixed merge 711 * 712 * Description: 713 * @rq is about to be mixed merged. Make sure the attributes 714 * which can be mixed are set in each bio and mark @rq as mixed 715 * merged. 716 */ 717 void blk_rq_set_mixed_merge(struct request *rq) 718 { 719 blk_opf_t ff = rq->cmd_flags & REQ_FAILFAST_MASK; 720 struct bio *bio; 721 722 if (rq->rq_flags & RQF_MIXED_MERGE) 723 return; 724 725 /* 726 * @rq will no longer represent mixable attributes for all the 727 * contained bios. It will just track those of the first one. 728 * Distributes the attributs to each bio. 729 */ 730 for (bio = rq->bio; bio; bio = bio->bi_next) { 731 WARN_ON_ONCE((bio->bi_opf & REQ_FAILFAST_MASK) && 732 (bio->bi_opf & REQ_FAILFAST_MASK) != ff); 733 bio->bi_opf |= ff; 734 } 735 rq->rq_flags |= RQF_MIXED_MERGE; 736 } 737 738 static void blk_account_io_merge_request(struct request *req) 739 { 740 if (blk_do_io_stat(req)) { 741 part_stat_lock(); 742 part_stat_inc(req->part, merges[op_stat_group(req_op(req))]); 743 part_stat_unlock(); 744 } 745 } 746 747 static enum elv_merge blk_try_req_merge(struct request *req, 748 struct request *next) 749 { 750 if (blk_discard_mergable(req)) 751 return ELEVATOR_DISCARD_MERGE; 752 else if (blk_rq_pos(req) + blk_rq_sectors(req) == blk_rq_pos(next)) 753 return ELEVATOR_BACK_MERGE; 754 755 return ELEVATOR_NO_MERGE; 756 } 757 758 /* 759 * For non-mq, this has to be called with the request spinlock acquired. 760 * For mq with scheduling, the appropriate queue wide lock should be held. 761 */ 762 static struct request *attempt_merge(struct request_queue *q, 763 struct request *req, struct request *next) 764 { 765 if (!rq_mergeable(req) || !rq_mergeable(next)) 766 return NULL; 767 768 if (req_op(req) != req_op(next)) 769 return NULL; 770 771 if (rq_data_dir(req) != rq_data_dir(next)) 772 return NULL; 773 774 if (req->ioprio != next->ioprio) 775 return NULL; 776 777 /* 778 * If we are allowed to merge, then append bio list 779 * from next to rq and release next. merge_requests_fn 780 * will have updated segment counts, update sector 781 * counts here. Handle DISCARDs separately, as they 782 * have separate settings. 783 */ 784 785 switch (blk_try_req_merge(req, next)) { 786 case ELEVATOR_DISCARD_MERGE: 787 if (!req_attempt_discard_merge(q, req, next)) 788 return NULL; 789 break; 790 case ELEVATOR_BACK_MERGE: 791 if (!ll_merge_requests_fn(q, req, next)) 792 return NULL; 793 break; 794 default: 795 return NULL; 796 } 797 798 /* 799 * If failfast settings disagree or any of the two is already 800 * a mixed merge, mark both as mixed before proceeding. This 801 * makes sure that all involved bios have mixable attributes 802 * set properly. 803 */ 804 if (((req->rq_flags | next->rq_flags) & RQF_MIXED_MERGE) || 805 (req->cmd_flags & REQ_FAILFAST_MASK) != 806 (next->cmd_flags & REQ_FAILFAST_MASK)) { 807 blk_rq_set_mixed_merge(req); 808 blk_rq_set_mixed_merge(next); 809 } 810 811 /* 812 * At this point we have either done a back merge or front merge. We 813 * need the smaller start_time_ns of the merged requests to be the 814 * current request for accounting purposes. 815 */ 816 if (next->start_time_ns < req->start_time_ns) 817 req->start_time_ns = next->start_time_ns; 818 819 req->biotail->bi_next = next->bio; 820 req->biotail = next->biotail; 821 822 req->__data_len += blk_rq_bytes(next); 823 824 if (!blk_discard_mergable(req)) 825 elv_merge_requests(q, req, next); 826 827 /* 828 * 'next' is going away, so update stats accordingly 829 */ 830 blk_account_io_merge_request(next); 831 832 trace_block_rq_merge(next); 833 834 /* 835 * ownership of bio passed from next to req, return 'next' for 836 * the caller to free 837 */ 838 next->bio = NULL; 839 return next; 840 } 841 842 static struct request *attempt_back_merge(struct request_queue *q, 843 struct request *rq) 844 { 845 struct request *next = elv_latter_request(q, rq); 846 847 if (next) 848 return attempt_merge(q, rq, next); 849 850 return NULL; 851 } 852 853 static struct request *attempt_front_merge(struct request_queue *q, 854 struct request *rq) 855 { 856 struct request *prev = elv_former_request(q, rq); 857 858 if (prev) 859 return attempt_merge(q, prev, rq); 860 861 return NULL; 862 } 863 864 /* 865 * Try to merge 'next' into 'rq'. Return true if the merge happened, false 866 * otherwise. The caller is responsible for freeing 'next' if the merge 867 * happened. 868 */ 869 bool blk_attempt_req_merge(struct request_queue *q, struct request *rq, 870 struct request *next) 871 { 872 return attempt_merge(q, rq, next); 873 } 874 875 bool blk_rq_merge_ok(struct request *rq, struct bio *bio) 876 { 877 if (!rq_mergeable(rq) || !bio_mergeable(bio)) 878 return false; 879 880 if (req_op(rq) != bio_op(bio)) 881 return false; 882 883 /* different data direction or already started, don't merge */ 884 if (bio_data_dir(bio) != rq_data_dir(rq)) 885 return false; 886 887 /* don't merge across cgroup boundaries */ 888 if (!blk_cgroup_mergeable(rq, bio)) 889 return false; 890 891 /* only merge integrity protected bio into ditto rq */ 892 if (blk_integrity_merge_bio(rq->q, rq, bio) == false) 893 return false; 894 895 /* Only merge if the crypt contexts are compatible */ 896 if (!bio_crypt_rq_ctx_compatible(rq, bio)) 897 return false; 898 899 if (rq->ioprio != bio_prio(bio)) 900 return false; 901 902 return true; 903 } 904 905 enum elv_merge blk_try_merge(struct request *rq, struct bio *bio) 906 { 907 if (blk_discard_mergable(rq)) 908 return ELEVATOR_DISCARD_MERGE; 909 else if (blk_rq_pos(rq) + blk_rq_sectors(rq) == bio->bi_iter.bi_sector) 910 return ELEVATOR_BACK_MERGE; 911 else if (blk_rq_pos(rq) - bio_sectors(bio) == bio->bi_iter.bi_sector) 912 return ELEVATOR_FRONT_MERGE; 913 return ELEVATOR_NO_MERGE; 914 } 915 916 static void blk_account_io_merge_bio(struct request *req) 917 { 918 if (!blk_do_io_stat(req)) 919 return; 920 921 part_stat_lock(); 922 part_stat_inc(req->part, merges[op_stat_group(req_op(req))]); 923 part_stat_unlock(); 924 } 925 926 enum bio_merge_status { 927 BIO_MERGE_OK, 928 BIO_MERGE_NONE, 929 BIO_MERGE_FAILED, 930 }; 931 932 static enum bio_merge_status bio_attempt_back_merge(struct request *req, 933 struct bio *bio, unsigned int nr_segs) 934 { 935 const blk_opf_t ff = bio->bi_opf & REQ_FAILFAST_MASK; 936 937 if (!ll_back_merge_fn(req, bio, nr_segs)) 938 return BIO_MERGE_FAILED; 939 940 trace_block_bio_backmerge(bio); 941 rq_qos_merge(req->q, req, bio); 942 943 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff) 944 blk_rq_set_mixed_merge(req); 945 946 req->biotail->bi_next = bio; 947 req->biotail = bio; 948 req->__data_len += bio->bi_iter.bi_size; 949 950 bio_crypt_free_ctx(bio); 951 952 blk_account_io_merge_bio(req); 953 return BIO_MERGE_OK; 954 } 955 956 static enum bio_merge_status bio_attempt_front_merge(struct request *req, 957 struct bio *bio, unsigned int nr_segs) 958 { 959 const blk_opf_t ff = bio->bi_opf & REQ_FAILFAST_MASK; 960 961 if (!ll_front_merge_fn(req, bio, nr_segs)) 962 return BIO_MERGE_FAILED; 963 964 trace_block_bio_frontmerge(bio); 965 rq_qos_merge(req->q, req, bio); 966 967 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff) 968 blk_rq_set_mixed_merge(req); 969 970 bio->bi_next = req->bio; 971 req->bio = bio; 972 973 req->__sector = bio->bi_iter.bi_sector; 974 req->__data_len += bio->bi_iter.bi_size; 975 976 bio_crypt_do_front_merge(req, bio); 977 978 blk_account_io_merge_bio(req); 979 return BIO_MERGE_OK; 980 } 981 982 static enum bio_merge_status bio_attempt_discard_merge(struct request_queue *q, 983 struct request *req, struct bio *bio) 984 { 985 unsigned short segments = blk_rq_nr_discard_segments(req); 986 987 if (segments >= queue_max_discard_segments(q)) 988 goto no_merge; 989 if (blk_rq_sectors(req) + bio_sectors(bio) > 990 blk_rq_get_max_sectors(req, blk_rq_pos(req))) 991 goto no_merge; 992 993 rq_qos_merge(q, req, bio); 994 995 req->biotail->bi_next = bio; 996 req->biotail = bio; 997 req->__data_len += bio->bi_iter.bi_size; 998 req->nr_phys_segments = segments + 1; 999 1000 blk_account_io_merge_bio(req); 1001 return BIO_MERGE_OK; 1002 no_merge: 1003 req_set_nomerge(q, req); 1004 return BIO_MERGE_FAILED; 1005 } 1006 1007 static enum bio_merge_status blk_attempt_bio_merge(struct request_queue *q, 1008 struct request *rq, 1009 struct bio *bio, 1010 unsigned int nr_segs, 1011 bool sched_allow_merge) 1012 { 1013 if (!blk_rq_merge_ok(rq, bio)) 1014 return BIO_MERGE_NONE; 1015 1016 switch (blk_try_merge(rq, bio)) { 1017 case ELEVATOR_BACK_MERGE: 1018 if (!sched_allow_merge || blk_mq_sched_allow_merge(q, rq, bio)) 1019 return bio_attempt_back_merge(rq, bio, nr_segs); 1020 break; 1021 case ELEVATOR_FRONT_MERGE: 1022 if (!sched_allow_merge || blk_mq_sched_allow_merge(q, rq, bio)) 1023 return bio_attempt_front_merge(rq, bio, nr_segs); 1024 break; 1025 case ELEVATOR_DISCARD_MERGE: 1026 return bio_attempt_discard_merge(q, rq, bio); 1027 default: 1028 return BIO_MERGE_NONE; 1029 } 1030 1031 return BIO_MERGE_FAILED; 1032 } 1033 1034 /** 1035 * blk_attempt_plug_merge - try to merge with %current's plugged list 1036 * @q: request_queue new bio is being queued at 1037 * @bio: new bio being queued 1038 * @nr_segs: number of segments in @bio 1039 * from the passed in @q already in the plug list 1040 * 1041 * Determine whether @bio being queued on @q can be merged with the previous 1042 * request on %current's plugged list. Returns %true if merge was successful, 1043 * otherwise %false. 1044 * 1045 * Plugging coalesces IOs from the same issuer for the same purpose without 1046 * going through @q->queue_lock. As such it's more of an issuing mechanism 1047 * than scheduling, and the request, while may have elvpriv data, is not 1048 * added on the elevator at this point. In addition, we don't have 1049 * reliable access to the elevator outside queue lock. Only check basic 1050 * merging parameters without querying the elevator. 1051 * 1052 * Caller must ensure !blk_queue_nomerges(q) beforehand. 1053 */ 1054 bool blk_attempt_plug_merge(struct request_queue *q, struct bio *bio, 1055 unsigned int nr_segs) 1056 { 1057 struct blk_plug *plug; 1058 struct request *rq; 1059 1060 plug = blk_mq_plug(bio); 1061 if (!plug || rq_list_empty(plug->mq_list)) 1062 return false; 1063 1064 rq_list_for_each(&plug->mq_list, rq) { 1065 if (rq->q == q) { 1066 if (blk_attempt_bio_merge(q, rq, bio, nr_segs, false) == 1067 BIO_MERGE_OK) 1068 return true; 1069 break; 1070 } 1071 1072 /* 1073 * Only keep iterating plug list for merges if we have multiple 1074 * queues 1075 */ 1076 if (!plug->multiple_queues) 1077 break; 1078 } 1079 return false; 1080 } 1081 1082 /* 1083 * Iterate list of requests and see if we can merge this bio with any 1084 * of them. 1085 */ 1086 bool blk_bio_list_merge(struct request_queue *q, struct list_head *list, 1087 struct bio *bio, unsigned int nr_segs) 1088 { 1089 struct request *rq; 1090 int checked = 8; 1091 1092 list_for_each_entry_reverse(rq, list, queuelist) { 1093 if (!checked--) 1094 break; 1095 1096 switch (blk_attempt_bio_merge(q, rq, bio, nr_segs, true)) { 1097 case BIO_MERGE_NONE: 1098 continue; 1099 case BIO_MERGE_OK: 1100 return true; 1101 case BIO_MERGE_FAILED: 1102 return false; 1103 } 1104 1105 } 1106 1107 return false; 1108 } 1109 EXPORT_SYMBOL_GPL(blk_bio_list_merge); 1110 1111 bool blk_mq_sched_try_merge(struct request_queue *q, struct bio *bio, 1112 unsigned int nr_segs, struct request **merged_request) 1113 { 1114 struct request *rq; 1115 1116 switch (elv_merge(q, &rq, bio)) { 1117 case ELEVATOR_BACK_MERGE: 1118 if (!blk_mq_sched_allow_merge(q, rq, bio)) 1119 return false; 1120 if (bio_attempt_back_merge(rq, bio, nr_segs) != BIO_MERGE_OK) 1121 return false; 1122 *merged_request = attempt_back_merge(q, rq); 1123 if (!*merged_request) 1124 elv_merged_request(q, rq, ELEVATOR_BACK_MERGE); 1125 return true; 1126 case ELEVATOR_FRONT_MERGE: 1127 if (!blk_mq_sched_allow_merge(q, rq, bio)) 1128 return false; 1129 if (bio_attempt_front_merge(rq, bio, nr_segs) != BIO_MERGE_OK) 1130 return false; 1131 *merged_request = attempt_front_merge(q, rq); 1132 if (!*merged_request) 1133 elv_merged_request(q, rq, ELEVATOR_FRONT_MERGE); 1134 return true; 1135 case ELEVATOR_DISCARD_MERGE: 1136 return bio_attempt_discard_merge(q, rq, bio) == BIO_MERGE_OK; 1137 default: 1138 return false; 1139 } 1140 } 1141 EXPORT_SYMBOL_GPL(blk_mq_sched_try_merge); 1142