1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Functions related to mapping data to requests 4 */ 5 #include <linux/kernel.h> 6 #include <linux/sched/task_stack.h> 7 #include <linux/module.h> 8 #include <linux/bio.h> 9 #include <linux/blkdev.h> 10 #include <linux/uio.h> 11 12 #include "blk.h" 13 14 struct bio_map_data { 15 bool is_our_pages : 1; 16 bool is_null_mapped : 1; 17 struct iov_iter iter; 18 struct iovec iov[]; 19 }; 20 21 static struct bio_map_data *bio_alloc_map_data(struct iov_iter *data, 22 gfp_t gfp_mask) 23 { 24 struct bio_map_data *bmd; 25 26 if (data->nr_segs > UIO_MAXIOV) 27 return NULL; 28 29 bmd = kmalloc(struct_size(bmd, iov, data->nr_segs), gfp_mask); 30 if (!bmd) 31 return NULL; 32 bmd->iter = *data; 33 if (iter_is_iovec(data)) { 34 memcpy(bmd->iov, iter_iov(data), sizeof(struct iovec) * data->nr_segs); 35 bmd->iter.__iov = bmd->iov; 36 } 37 return bmd; 38 } 39 40 /** 41 * bio_copy_from_iter - copy all pages from iov_iter to bio 42 * @bio: The &struct bio which describes the I/O as destination 43 * @iter: iov_iter as source 44 * 45 * Copy all pages from iov_iter to bio. 46 * Returns 0 on success, or error on failure. 47 */ 48 static int bio_copy_from_iter(struct bio *bio, struct iov_iter *iter) 49 { 50 struct bio_vec *bvec; 51 struct bvec_iter_all iter_all; 52 53 bio_for_each_segment_all(bvec, bio, iter_all) { 54 ssize_t ret; 55 56 ret = copy_page_from_iter(bvec->bv_page, 57 bvec->bv_offset, 58 bvec->bv_len, 59 iter); 60 61 if (!iov_iter_count(iter)) 62 break; 63 64 if (ret < bvec->bv_len) 65 return -EFAULT; 66 } 67 68 return 0; 69 } 70 71 /** 72 * bio_copy_to_iter - copy all pages from bio to iov_iter 73 * @bio: The &struct bio which describes the I/O as source 74 * @iter: iov_iter as destination 75 * 76 * Copy all pages from bio to iov_iter. 77 * Returns 0 on success, or error on failure. 78 */ 79 static int bio_copy_to_iter(struct bio *bio, struct iov_iter iter) 80 { 81 struct bio_vec *bvec; 82 struct bvec_iter_all iter_all; 83 84 bio_for_each_segment_all(bvec, bio, iter_all) { 85 ssize_t ret; 86 87 ret = copy_page_to_iter(bvec->bv_page, 88 bvec->bv_offset, 89 bvec->bv_len, 90 &iter); 91 92 if (!iov_iter_count(&iter)) 93 break; 94 95 if (ret < bvec->bv_len) 96 return -EFAULT; 97 } 98 99 return 0; 100 } 101 102 /** 103 * bio_uncopy_user - finish previously mapped bio 104 * @bio: bio being terminated 105 * 106 * Free pages allocated from bio_copy_user_iov() and write back data 107 * to user space in case of a read. 108 */ 109 static int bio_uncopy_user(struct bio *bio) 110 { 111 struct bio_map_data *bmd = bio->bi_private; 112 int ret = 0; 113 114 if (!bmd->is_null_mapped) { 115 /* 116 * if we're in a workqueue, the request is orphaned, so 117 * don't copy into a random user address space, just free 118 * and return -EINTR so user space doesn't expect any data. 119 */ 120 if (!current->mm) 121 ret = -EINTR; 122 else if (bio_data_dir(bio) == READ) 123 ret = bio_copy_to_iter(bio, bmd->iter); 124 if (bmd->is_our_pages) 125 bio_free_pages(bio); 126 } 127 kfree(bmd); 128 return ret; 129 } 130 131 static int bio_copy_user_iov(struct request *rq, struct rq_map_data *map_data, 132 struct iov_iter *iter, gfp_t gfp_mask) 133 { 134 struct bio_map_data *bmd; 135 struct page *page; 136 struct bio *bio; 137 int i = 0, ret; 138 int nr_pages; 139 unsigned int len = iter->count; 140 unsigned int offset = map_data ? offset_in_page(map_data->offset) : 0; 141 142 bmd = bio_alloc_map_data(iter, gfp_mask); 143 if (!bmd) 144 return -ENOMEM; 145 146 /* 147 * We need to do a deep copy of the iov_iter including the iovecs. 148 * The caller provided iov might point to an on-stack or otherwise 149 * shortlived one. 150 */ 151 bmd->is_our_pages = !map_data; 152 bmd->is_null_mapped = (map_data && map_data->null_mapped); 153 154 nr_pages = bio_max_segs(DIV_ROUND_UP(offset + len, PAGE_SIZE)); 155 156 ret = -ENOMEM; 157 bio = bio_kmalloc(nr_pages, gfp_mask); 158 if (!bio) 159 goto out_bmd; 160 bio_init(bio, NULL, bio->bi_inline_vecs, nr_pages, req_op(rq)); 161 162 if (map_data) { 163 nr_pages = 1U << map_data->page_order; 164 i = map_data->offset / PAGE_SIZE; 165 } 166 while (len) { 167 unsigned int bytes = PAGE_SIZE; 168 169 bytes -= offset; 170 171 if (bytes > len) 172 bytes = len; 173 174 if (map_data) { 175 if (i == map_data->nr_entries * nr_pages) { 176 ret = -ENOMEM; 177 goto cleanup; 178 } 179 180 page = map_data->pages[i / nr_pages]; 181 page += (i % nr_pages); 182 183 i++; 184 } else { 185 page = alloc_page(GFP_NOIO | gfp_mask); 186 if (!page) { 187 ret = -ENOMEM; 188 goto cleanup; 189 } 190 } 191 192 if (bio_add_pc_page(rq->q, bio, page, bytes, offset) < bytes) { 193 if (!map_data) 194 __free_page(page); 195 break; 196 } 197 198 len -= bytes; 199 offset = 0; 200 } 201 202 if (map_data) 203 map_data->offset += bio->bi_iter.bi_size; 204 205 /* 206 * success 207 */ 208 if ((iov_iter_rw(iter) == WRITE && 209 (!map_data || !map_data->null_mapped)) || 210 (map_data && map_data->from_user)) { 211 ret = bio_copy_from_iter(bio, iter); 212 if (ret) 213 goto cleanup; 214 } else { 215 if (bmd->is_our_pages) 216 zero_fill_bio(bio); 217 iov_iter_advance(iter, bio->bi_iter.bi_size); 218 } 219 220 bio->bi_private = bmd; 221 222 ret = blk_rq_append_bio(rq, bio); 223 if (ret) 224 goto cleanup; 225 return 0; 226 cleanup: 227 if (!map_data) 228 bio_free_pages(bio); 229 bio_uninit(bio); 230 kfree(bio); 231 out_bmd: 232 kfree(bmd); 233 return ret; 234 } 235 236 static void blk_mq_map_bio_put(struct bio *bio) 237 { 238 if (bio->bi_opf & REQ_ALLOC_CACHE) { 239 bio_put(bio); 240 } else { 241 bio_uninit(bio); 242 kfree(bio); 243 } 244 } 245 246 static struct bio *blk_rq_map_bio_alloc(struct request *rq, 247 unsigned int nr_vecs, gfp_t gfp_mask) 248 { 249 struct bio *bio; 250 251 if (rq->cmd_flags & REQ_ALLOC_CACHE && (nr_vecs <= BIO_INLINE_VECS)) { 252 bio = bio_alloc_bioset(NULL, nr_vecs, rq->cmd_flags, gfp_mask, 253 &fs_bio_set); 254 if (!bio) 255 return NULL; 256 } else { 257 bio = bio_kmalloc(nr_vecs, gfp_mask); 258 if (!bio) 259 return NULL; 260 bio_init(bio, NULL, bio->bi_inline_vecs, nr_vecs, req_op(rq)); 261 } 262 return bio; 263 } 264 265 static int bio_map_user_iov(struct request *rq, struct iov_iter *iter, 266 gfp_t gfp_mask) 267 { 268 iov_iter_extraction_t extraction_flags = 0; 269 unsigned int max_sectors = queue_max_hw_sectors(rq->q); 270 unsigned int nr_vecs = iov_iter_npages(iter, BIO_MAX_VECS); 271 struct bio *bio; 272 int ret; 273 int j; 274 275 if (!iov_iter_count(iter)) 276 return -EINVAL; 277 278 bio = blk_rq_map_bio_alloc(rq, nr_vecs, gfp_mask); 279 if (bio == NULL) 280 return -ENOMEM; 281 282 if (blk_queue_pci_p2pdma(rq->q)) 283 extraction_flags |= ITER_ALLOW_P2PDMA; 284 if (iov_iter_extract_will_pin(iter)) 285 bio_set_flag(bio, BIO_PAGE_PINNED); 286 287 while (iov_iter_count(iter)) { 288 struct page *stack_pages[UIO_FASTIOV]; 289 struct page **pages = stack_pages; 290 ssize_t bytes; 291 size_t offs; 292 int npages; 293 294 if (nr_vecs > ARRAY_SIZE(stack_pages)) 295 pages = NULL; 296 297 bytes = iov_iter_extract_pages(iter, &pages, LONG_MAX, 298 nr_vecs, extraction_flags, &offs); 299 if (unlikely(bytes <= 0)) { 300 ret = bytes ? bytes : -EFAULT; 301 goto out_unmap; 302 } 303 304 npages = DIV_ROUND_UP(offs + bytes, PAGE_SIZE); 305 306 if (unlikely(offs & queue_dma_alignment(rq->q))) 307 j = 0; 308 else { 309 for (j = 0; j < npages; j++) { 310 struct page *page = pages[j]; 311 unsigned int n = PAGE_SIZE - offs; 312 bool same_page = false; 313 314 if (n > bytes) 315 n = bytes; 316 317 if (!bio_add_hw_page(rq->q, bio, page, n, offs, 318 max_sectors, &same_page)) 319 break; 320 321 if (same_page) 322 bio_release_page(bio, page); 323 bytes -= n; 324 offs = 0; 325 } 326 } 327 /* 328 * release the pages we didn't map into the bio, if any 329 */ 330 while (j < npages) 331 bio_release_page(bio, pages[j++]); 332 if (pages != stack_pages) 333 kvfree(pages); 334 /* couldn't stuff something into bio? */ 335 if (bytes) { 336 iov_iter_revert(iter, bytes); 337 break; 338 } 339 } 340 341 ret = blk_rq_append_bio(rq, bio); 342 if (ret) 343 goto out_unmap; 344 return 0; 345 346 out_unmap: 347 bio_release_pages(bio, false); 348 blk_mq_map_bio_put(bio); 349 return ret; 350 } 351 352 static void bio_invalidate_vmalloc_pages(struct bio *bio) 353 { 354 #ifdef ARCH_IMPLEMENTS_FLUSH_KERNEL_VMAP_RANGE 355 if (bio->bi_private && !op_is_write(bio_op(bio))) { 356 unsigned long i, len = 0; 357 358 for (i = 0; i < bio->bi_vcnt; i++) 359 len += bio->bi_io_vec[i].bv_len; 360 invalidate_kernel_vmap_range(bio->bi_private, len); 361 } 362 #endif 363 } 364 365 static void bio_map_kern_endio(struct bio *bio) 366 { 367 bio_invalidate_vmalloc_pages(bio); 368 bio_uninit(bio); 369 kfree(bio); 370 } 371 372 /** 373 * bio_map_kern - map kernel address into bio 374 * @q: the struct request_queue for the bio 375 * @data: pointer to buffer to map 376 * @len: length in bytes 377 * @gfp_mask: allocation flags for bio allocation 378 * 379 * Map the kernel address into a bio suitable for io to a block 380 * device. Returns an error pointer in case of error. 381 */ 382 static struct bio *bio_map_kern(struct request_queue *q, void *data, 383 unsigned int len, gfp_t gfp_mask) 384 { 385 unsigned long kaddr = (unsigned long)data; 386 unsigned long end = (kaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT; 387 unsigned long start = kaddr >> PAGE_SHIFT; 388 const int nr_pages = end - start; 389 bool is_vmalloc = is_vmalloc_addr(data); 390 struct page *page; 391 int offset, i; 392 struct bio *bio; 393 394 bio = bio_kmalloc(nr_pages, gfp_mask); 395 if (!bio) 396 return ERR_PTR(-ENOMEM); 397 bio_init(bio, NULL, bio->bi_inline_vecs, nr_pages, 0); 398 399 if (is_vmalloc) { 400 flush_kernel_vmap_range(data, len); 401 bio->bi_private = data; 402 } 403 404 offset = offset_in_page(kaddr); 405 for (i = 0; i < nr_pages; i++) { 406 unsigned int bytes = PAGE_SIZE - offset; 407 408 if (len <= 0) 409 break; 410 411 if (bytes > len) 412 bytes = len; 413 414 if (!is_vmalloc) 415 page = virt_to_page(data); 416 else 417 page = vmalloc_to_page(data); 418 if (bio_add_pc_page(q, bio, page, bytes, 419 offset) < bytes) { 420 /* we don't support partial mappings */ 421 bio_uninit(bio); 422 kfree(bio); 423 return ERR_PTR(-EINVAL); 424 } 425 426 data += bytes; 427 len -= bytes; 428 offset = 0; 429 } 430 431 bio->bi_end_io = bio_map_kern_endio; 432 return bio; 433 } 434 435 static void bio_copy_kern_endio(struct bio *bio) 436 { 437 bio_free_pages(bio); 438 bio_uninit(bio); 439 kfree(bio); 440 } 441 442 static void bio_copy_kern_endio_read(struct bio *bio) 443 { 444 char *p = bio->bi_private; 445 struct bio_vec *bvec; 446 struct bvec_iter_all iter_all; 447 448 bio_for_each_segment_all(bvec, bio, iter_all) { 449 memcpy_from_bvec(p, bvec); 450 p += bvec->bv_len; 451 } 452 453 bio_copy_kern_endio(bio); 454 } 455 456 /** 457 * bio_copy_kern - copy kernel address into bio 458 * @q: the struct request_queue for the bio 459 * @data: pointer to buffer to copy 460 * @len: length in bytes 461 * @gfp_mask: allocation flags for bio and page allocation 462 * @reading: data direction is READ 463 * 464 * copy the kernel address into a bio suitable for io to a block 465 * device. Returns an error pointer in case of error. 466 */ 467 static struct bio *bio_copy_kern(struct request_queue *q, void *data, 468 unsigned int len, gfp_t gfp_mask, int reading) 469 { 470 unsigned long kaddr = (unsigned long)data; 471 unsigned long end = (kaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT; 472 unsigned long start = kaddr >> PAGE_SHIFT; 473 struct bio *bio; 474 void *p = data; 475 int nr_pages = 0; 476 477 /* 478 * Overflow, abort 479 */ 480 if (end < start) 481 return ERR_PTR(-EINVAL); 482 483 nr_pages = end - start; 484 bio = bio_kmalloc(nr_pages, gfp_mask); 485 if (!bio) 486 return ERR_PTR(-ENOMEM); 487 bio_init(bio, NULL, bio->bi_inline_vecs, nr_pages, 0); 488 489 while (len) { 490 struct page *page; 491 unsigned int bytes = PAGE_SIZE; 492 493 if (bytes > len) 494 bytes = len; 495 496 page = alloc_page(GFP_NOIO | __GFP_ZERO | gfp_mask); 497 if (!page) 498 goto cleanup; 499 500 if (!reading) 501 memcpy(page_address(page), p, bytes); 502 503 if (bio_add_pc_page(q, bio, page, bytes, 0) < bytes) 504 break; 505 506 len -= bytes; 507 p += bytes; 508 } 509 510 if (reading) { 511 bio->bi_end_io = bio_copy_kern_endio_read; 512 bio->bi_private = data; 513 } else { 514 bio->bi_end_io = bio_copy_kern_endio; 515 } 516 517 return bio; 518 519 cleanup: 520 bio_free_pages(bio); 521 bio_uninit(bio); 522 kfree(bio); 523 return ERR_PTR(-ENOMEM); 524 } 525 526 /* 527 * Append a bio to a passthrough request. Only works if the bio can be merged 528 * into the request based on the driver constraints. 529 */ 530 int blk_rq_append_bio(struct request *rq, struct bio *bio) 531 { 532 struct bvec_iter iter; 533 struct bio_vec bv; 534 unsigned int nr_segs = 0; 535 536 bio_for_each_bvec(bv, bio, iter) 537 nr_segs++; 538 539 if (!rq->bio) { 540 blk_rq_bio_prep(rq, bio, nr_segs); 541 } else { 542 if (!ll_back_merge_fn(rq, bio, nr_segs)) 543 return -EINVAL; 544 rq->biotail->bi_next = bio; 545 rq->biotail = bio; 546 rq->__data_len += (bio)->bi_iter.bi_size; 547 bio_crypt_free_ctx(bio); 548 } 549 550 return 0; 551 } 552 EXPORT_SYMBOL(blk_rq_append_bio); 553 554 /* Prepare bio for passthrough IO given ITER_BVEC iter */ 555 static int blk_rq_map_user_bvec(struct request *rq, const struct iov_iter *iter) 556 { 557 struct request_queue *q = rq->q; 558 size_t nr_iter = iov_iter_count(iter); 559 size_t nr_segs = iter->nr_segs; 560 struct bio_vec *bvecs, *bvprvp = NULL; 561 const struct queue_limits *lim = &q->limits; 562 unsigned int nsegs = 0, bytes = 0; 563 struct bio *bio; 564 size_t i; 565 566 if (!nr_iter || (nr_iter >> SECTOR_SHIFT) > queue_max_hw_sectors(q)) 567 return -EINVAL; 568 if (nr_segs > queue_max_segments(q)) 569 return -EINVAL; 570 571 /* no iovecs to alloc, as we already have a BVEC iterator */ 572 bio = blk_rq_map_bio_alloc(rq, 0, GFP_KERNEL); 573 if (bio == NULL) 574 return -ENOMEM; 575 576 bio_iov_bvec_set(bio, (struct iov_iter *)iter); 577 blk_rq_bio_prep(rq, bio, nr_segs); 578 579 /* loop to perform a bunch of sanity checks */ 580 bvecs = (struct bio_vec *)iter->bvec; 581 for (i = 0; i < nr_segs; i++) { 582 struct bio_vec *bv = &bvecs[i]; 583 584 /* 585 * If the queue doesn't support SG gaps and adding this 586 * offset would create a gap, fallback to copy. 587 */ 588 if (bvprvp && bvec_gap_to_prev(lim, bvprvp, bv->bv_offset)) { 589 blk_mq_map_bio_put(bio); 590 return -EREMOTEIO; 591 } 592 /* check full condition */ 593 if (nsegs >= nr_segs || bytes > UINT_MAX - bv->bv_len) 594 goto put_bio; 595 if (bytes + bv->bv_len > nr_iter) 596 goto put_bio; 597 if (bv->bv_offset + bv->bv_len > PAGE_SIZE) 598 goto put_bio; 599 600 nsegs++; 601 bytes += bv->bv_len; 602 bvprvp = bv; 603 } 604 return 0; 605 put_bio: 606 blk_mq_map_bio_put(bio); 607 return -EINVAL; 608 } 609 610 /** 611 * blk_rq_map_user_iov - map user data to a request, for passthrough requests 612 * @q: request queue where request should be inserted 613 * @rq: request to map data to 614 * @map_data: pointer to the rq_map_data holding pages (if necessary) 615 * @iter: iovec iterator 616 * @gfp_mask: memory allocation flags 617 * 618 * Description: 619 * Data will be mapped directly for zero copy I/O, if possible. Otherwise 620 * a kernel bounce buffer is used. 621 * 622 * A matching blk_rq_unmap_user() must be issued at the end of I/O, while 623 * still in process context. 624 */ 625 int blk_rq_map_user_iov(struct request_queue *q, struct request *rq, 626 struct rq_map_data *map_data, 627 const struct iov_iter *iter, gfp_t gfp_mask) 628 { 629 bool copy = false, map_bvec = false; 630 unsigned long align = q->dma_pad_mask | queue_dma_alignment(q); 631 struct bio *bio = NULL; 632 struct iov_iter i; 633 int ret = -EINVAL; 634 635 if (map_data) 636 copy = true; 637 else if (blk_queue_may_bounce(q)) 638 copy = true; 639 else if (iov_iter_alignment(iter) & align) 640 copy = true; 641 else if (iov_iter_is_bvec(iter)) 642 map_bvec = true; 643 else if (!user_backed_iter(iter)) 644 copy = true; 645 else if (queue_virt_boundary(q)) 646 copy = queue_virt_boundary(q) & iov_iter_gap_alignment(iter); 647 648 if (map_bvec) { 649 ret = blk_rq_map_user_bvec(rq, iter); 650 if (!ret) 651 return 0; 652 if (ret != -EREMOTEIO) 653 goto fail; 654 /* fall back to copying the data on limits mismatches */ 655 copy = true; 656 } 657 658 i = *iter; 659 do { 660 if (copy) 661 ret = bio_copy_user_iov(rq, map_data, &i, gfp_mask); 662 else 663 ret = bio_map_user_iov(rq, &i, gfp_mask); 664 if (ret) 665 goto unmap_rq; 666 if (!bio) 667 bio = rq->bio; 668 } while (iov_iter_count(&i)); 669 670 return 0; 671 672 unmap_rq: 673 blk_rq_unmap_user(bio); 674 fail: 675 rq->bio = NULL; 676 return ret; 677 } 678 EXPORT_SYMBOL(blk_rq_map_user_iov); 679 680 int blk_rq_map_user(struct request_queue *q, struct request *rq, 681 struct rq_map_data *map_data, void __user *ubuf, 682 unsigned long len, gfp_t gfp_mask) 683 { 684 struct iov_iter i; 685 int ret = import_ubuf(rq_data_dir(rq), ubuf, len, &i); 686 687 if (unlikely(ret < 0)) 688 return ret; 689 690 return blk_rq_map_user_iov(q, rq, map_data, &i, gfp_mask); 691 } 692 EXPORT_SYMBOL(blk_rq_map_user); 693 694 int blk_rq_map_user_io(struct request *req, struct rq_map_data *map_data, 695 void __user *ubuf, unsigned long buf_len, gfp_t gfp_mask, 696 bool vec, int iov_count, bool check_iter_count, int rw) 697 { 698 int ret = 0; 699 700 if (vec) { 701 struct iovec fast_iov[UIO_FASTIOV]; 702 struct iovec *iov = fast_iov; 703 struct iov_iter iter; 704 705 ret = import_iovec(rw, ubuf, iov_count ? iov_count : buf_len, 706 UIO_FASTIOV, &iov, &iter); 707 if (ret < 0) 708 return ret; 709 710 if (iov_count) { 711 /* SG_IO howto says that the shorter of the two wins */ 712 iov_iter_truncate(&iter, buf_len); 713 if (check_iter_count && !iov_iter_count(&iter)) { 714 kfree(iov); 715 return -EINVAL; 716 } 717 } 718 719 ret = blk_rq_map_user_iov(req->q, req, map_data, &iter, 720 gfp_mask); 721 kfree(iov); 722 } else if (buf_len) { 723 ret = blk_rq_map_user(req->q, req, map_data, ubuf, buf_len, 724 gfp_mask); 725 } 726 return ret; 727 } 728 EXPORT_SYMBOL(blk_rq_map_user_io); 729 730 /** 731 * blk_rq_unmap_user - unmap a request with user data 732 * @bio: start of bio list 733 * 734 * Description: 735 * Unmap a rq previously mapped by blk_rq_map_user(). The caller must 736 * supply the original rq->bio from the blk_rq_map_user() return, since 737 * the I/O completion may have changed rq->bio. 738 */ 739 int blk_rq_unmap_user(struct bio *bio) 740 { 741 struct bio *next_bio; 742 int ret = 0, ret2; 743 744 while (bio) { 745 if (bio->bi_private) { 746 ret2 = bio_uncopy_user(bio); 747 if (ret2 && !ret) 748 ret = ret2; 749 } else { 750 bio_release_pages(bio, bio_data_dir(bio) == READ); 751 } 752 753 next_bio = bio; 754 bio = bio->bi_next; 755 blk_mq_map_bio_put(next_bio); 756 } 757 758 return ret; 759 } 760 EXPORT_SYMBOL(blk_rq_unmap_user); 761 762 /** 763 * blk_rq_map_kern - map kernel data to a request, for passthrough requests 764 * @q: request queue where request should be inserted 765 * @rq: request to fill 766 * @kbuf: the kernel buffer 767 * @len: length of user data 768 * @gfp_mask: memory allocation flags 769 * 770 * Description: 771 * Data will be mapped directly if possible. Otherwise a bounce 772 * buffer is used. Can be called multiple times to append multiple 773 * buffers. 774 */ 775 int blk_rq_map_kern(struct request_queue *q, struct request *rq, void *kbuf, 776 unsigned int len, gfp_t gfp_mask) 777 { 778 int reading = rq_data_dir(rq) == READ; 779 unsigned long addr = (unsigned long) kbuf; 780 struct bio *bio; 781 int ret; 782 783 if (len > (queue_max_hw_sectors(q) << 9)) 784 return -EINVAL; 785 if (!len || !kbuf) 786 return -EINVAL; 787 788 if (!blk_rq_aligned(q, addr, len) || object_is_on_stack(kbuf) || 789 blk_queue_may_bounce(q)) 790 bio = bio_copy_kern(q, kbuf, len, gfp_mask, reading); 791 else 792 bio = bio_map_kern(q, kbuf, len, gfp_mask); 793 794 if (IS_ERR(bio)) 795 return PTR_ERR(bio); 796 797 bio->bi_opf &= ~REQ_OP_MASK; 798 bio->bi_opf |= req_op(rq); 799 800 ret = blk_rq_append_bio(rq, bio); 801 if (unlikely(ret)) { 802 bio_uninit(bio); 803 kfree(bio); 804 } 805 return ret; 806 } 807 EXPORT_SYMBOL(blk_rq_map_kern); 808