1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Functions related to mapping data to requests 4 */ 5 #include <linux/kernel.h> 6 #include <linux/sched/task_stack.h> 7 #include <linux/module.h> 8 #include <linux/bio.h> 9 #include <linux/blkdev.h> 10 #include <linux/uio.h> 11 12 #include "blk.h" 13 14 struct bio_map_data { 15 bool is_our_pages : 1; 16 bool is_null_mapped : 1; 17 struct iov_iter iter; 18 struct iovec iov[]; 19 }; 20 21 static struct bio_map_data *bio_alloc_map_data(struct iov_iter *data, 22 gfp_t gfp_mask) 23 { 24 struct bio_map_data *bmd; 25 26 if (data->nr_segs > UIO_MAXIOV) 27 return NULL; 28 29 bmd = kmalloc(struct_size(bmd, iov, data->nr_segs), gfp_mask); 30 if (!bmd) 31 return NULL; 32 bmd->iter = *data; 33 if (iter_is_iovec(data)) { 34 memcpy(bmd->iov, iter_iov(data), sizeof(struct iovec) * data->nr_segs); 35 bmd->iter.__iov = bmd->iov; 36 } 37 return bmd; 38 } 39 40 /** 41 * bio_copy_from_iter - copy all pages from iov_iter to bio 42 * @bio: The &struct bio which describes the I/O as destination 43 * @iter: iov_iter as source 44 * 45 * Copy all pages from iov_iter to bio. 46 * Returns 0 on success, or error on failure. 47 */ 48 static int bio_copy_from_iter(struct bio *bio, struct iov_iter *iter) 49 { 50 struct bio_vec *bvec; 51 struct bvec_iter_all iter_all; 52 53 bio_for_each_segment_all(bvec, bio, iter_all) { 54 ssize_t ret; 55 56 ret = copy_page_from_iter(bvec->bv_page, 57 bvec->bv_offset, 58 bvec->bv_len, 59 iter); 60 61 if (!iov_iter_count(iter)) 62 break; 63 64 if (ret < bvec->bv_len) 65 return -EFAULT; 66 } 67 68 return 0; 69 } 70 71 /** 72 * bio_copy_to_iter - copy all pages from bio to iov_iter 73 * @bio: The &struct bio which describes the I/O as source 74 * @iter: iov_iter as destination 75 * 76 * Copy all pages from bio to iov_iter. 77 * Returns 0 on success, or error on failure. 78 */ 79 static int bio_copy_to_iter(struct bio *bio, struct iov_iter iter) 80 { 81 struct bio_vec *bvec; 82 struct bvec_iter_all iter_all; 83 84 bio_for_each_segment_all(bvec, bio, iter_all) { 85 ssize_t ret; 86 87 ret = copy_page_to_iter(bvec->bv_page, 88 bvec->bv_offset, 89 bvec->bv_len, 90 &iter); 91 92 if (!iov_iter_count(&iter)) 93 break; 94 95 if (ret < bvec->bv_len) 96 return -EFAULT; 97 } 98 99 return 0; 100 } 101 102 /** 103 * bio_uncopy_user - finish previously mapped bio 104 * @bio: bio being terminated 105 * 106 * Free pages allocated from bio_copy_user_iov() and write back data 107 * to user space in case of a read. 108 */ 109 static int bio_uncopy_user(struct bio *bio) 110 { 111 struct bio_map_data *bmd = bio->bi_private; 112 int ret = 0; 113 114 if (!bmd->is_null_mapped) { 115 /* 116 * if we're in a workqueue, the request is orphaned, so 117 * don't copy into a random user address space, just free 118 * and return -EINTR so user space doesn't expect any data. 119 */ 120 if (!current->mm) 121 ret = -EINTR; 122 else if (bio_data_dir(bio) == READ) 123 ret = bio_copy_to_iter(bio, bmd->iter); 124 if (bmd->is_our_pages) 125 bio_free_pages(bio); 126 } 127 kfree(bmd); 128 return ret; 129 } 130 131 static int bio_copy_user_iov(struct request *rq, struct rq_map_data *map_data, 132 struct iov_iter *iter, gfp_t gfp_mask) 133 { 134 struct bio_map_data *bmd; 135 struct page *page; 136 struct bio *bio; 137 int i = 0, ret; 138 int nr_pages; 139 unsigned int len = iter->count; 140 unsigned int offset = map_data ? offset_in_page(map_data->offset) : 0; 141 142 bmd = bio_alloc_map_data(iter, gfp_mask); 143 if (!bmd) 144 return -ENOMEM; 145 146 /* 147 * We need to do a deep copy of the iov_iter including the iovecs. 148 * The caller provided iov might point to an on-stack or otherwise 149 * shortlived one. 150 */ 151 bmd->is_our_pages = !map_data; 152 bmd->is_null_mapped = (map_data && map_data->null_mapped); 153 154 nr_pages = bio_max_segs(DIV_ROUND_UP(offset + len, PAGE_SIZE)); 155 156 ret = -ENOMEM; 157 bio = bio_kmalloc(nr_pages, gfp_mask); 158 if (!bio) 159 goto out_bmd; 160 bio_init(bio, NULL, bio->bi_inline_vecs, nr_pages, req_op(rq)); 161 162 if (map_data) { 163 nr_pages = 1U << map_data->page_order; 164 i = map_data->offset / PAGE_SIZE; 165 } 166 while (len) { 167 unsigned int bytes = PAGE_SIZE; 168 169 bytes -= offset; 170 171 if (bytes > len) 172 bytes = len; 173 174 if (map_data) { 175 if (i == map_data->nr_entries * nr_pages) { 176 ret = -ENOMEM; 177 goto cleanup; 178 } 179 180 page = map_data->pages[i / nr_pages]; 181 page += (i % nr_pages); 182 183 i++; 184 } else { 185 page = alloc_page(GFP_NOIO | gfp_mask); 186 if (!page) { 187 ret = -ENOMEM; 188 goto cleanup; 189 } 190 } 191 192 if (bio_add_pc_page(rq->q, bio, page, bytes, offset) < bytes) { 193 if (!map_data) 194 __free_page(page); 195 break; 196 } 197 198 len -= bytes; 199 offset = 0; 200 } 201 202 if (map_data) 203 map_data->offset += bio->bi_iter.bi_size; 204 205 /* 206 * success 207 */ 208 if (iov_iter_rw(iter) == WRITE && 209 (!map_data || !map_data->null_mapped)) { 210 ret = bio_copy_from_iter(bio, iter); 211 if (ret) 212 goto cleanup; 213 } else if (map_data && map_data->from_user) { 214 struct iov_iter iter2 = *iter; 215 216 /* This is the copy-in part of SG_DXFER_TO_FROM_DEV. */ 217 iter2.data_source = ITER_SOURCE; 218 ret = bio_copy_from_iter(bio, &iter2); 219 if (ret) 220 goto cleanup; 221 } else { 222 if (bmd->is_our_pages) 223 zero_fill_bio(bio); 224 iov_iter_advance(iter, bio->bi_iter.bi_size); 225 } 226 227 bio->bi_private = bmd; 228 229 ret = blk_rq_append_bio(rq, bio); 230 if (ret) 231 goto cleanup; 232 return 0; 233 cleanup: 234 if (!map_data) 235 bio_free_pages(bio); 236 bio_uninit(bio); 237 kfree(bio); 238 out_bmd: 239 kfree(bmd); 240 return ret; 241 } 242 243 static void blk_mq_map_bio_put(struct bio *bio) 244 { 245 if (bio->bi_opf & REQ_ALLOC_CACHE) { 246 bio_put(bio); 247 } else { 248 bio_uninit(bio); 249 kfree(bio); 250 } 251 } 252 253 static struct bio *blk_rq_map_bio_alloc(struct request *rq, 254 unsigned int nr_vecs, gfp_t gfp_mask) 255 { 256 struct bio *bio; 257 258 if (rq->cmd_flags & REQ_ALLOC_CACHE && (nr_vecs <= BIO_INLINE_VECS)) { 259 bio = bio_alloc_bioset(NULL, nr_vecs, rq->cmd_flags, gfp_mask, 260 &fs_bio_set); 261 if (!bio) 262 return NULL; 263 } else { 264 bio = bio_kmalloc(nr_vecs, gfp_mask); 265 if (!bio) 266 return NULL; 267 bio_init(bio, NULL, bio->bi_inline_vecs, nr_vecs, req_op(rq)); 268 } 269 return bio; 270 } 271 272 static int bio_map_user_iov(struct request *rq, struct iov_iter *iter, 273 gfp_t gfp_mask) 274 { 275 iov_iter_extraction_t extraction_flags = 0; 276 unsigned int max_sectors = queue_max_hw_sectors(rq->q); 277 unsigned int nr_vecs = iov_iter_npages(iter, BIO_MAX_VECS); 278 struct bio *bio; 279 int ret; 280 int j; 281 282 if (!iov_iter_count(iter)) 283 return -EINVAL; 284 285 bio = blk_rq_map_bio_alloc(rq, nr_vecs, gfp_mask); 286 if (bio == NULL) 287 return -ENOMEM; 288 289 if (blk_queue_pci_p2pdma(rq->q)) 290 extraction_flags |= ITER_ALLOW_P2PDMA; 291 if (iov_iter_extract_will_pin(iter)) 292 bio_set_flag(bio, BIO_PAGE_PINNED); 293 294 while (iov_iter_count(iter)) { 295 struct page *stack_pages[UIO_FASTIOV]; 296 struct page **pages = stack_pages; 297 ssize_t bytes; 298 size_t offs; 299 int npages; 300 301 if (nr_vecs > ARRAY_SIZE(stack_pages)) 302 pages = NULL; 303 304 bytes = iov_iter_extract_pages(iter, &pages, LONG_MAX, 305 nr_vecs, extraction_flags, &offs); 306 if (unlikely(bytes <= 0)) { 307 ret = bytes ? bytes : -EFAULT; 308 goto out_unmap; 309 } 310 311 npages = DIV_ROUND_UP(offs + bytes, PAGE_SIZE); 312 313 if (unlikely(offs & queue_dma_alignment(rq->q))) 314 j = 0; 315 else { 316 for (j = 0; j < npages; j++) { 317 struct page *page = pages[j]; 318 unsigned int n = PAGE_SIZE - offs; 319 bool same_page = false; 320 321 if (n > bytes) 322 n = bytes; 323 324 if (!bio_add_hw_page(rq->q, bio, page, n, offs, 325 max_sectors, &same_page)) 326 break; 327 328 if (same_page) 329 bio_release_page(bio, page); 330 bytes -= n; 331 offs = 0; 332 } 333 } 334 /* 335 * release the pages we didn't map into the bio, if any 336 */ 337 while (j < npages) 338 bio_release_page(bio, pages[j++]); 339 if (pages != stack_pages) 340 kvfree(pages); 341 /* couldn't stuff something into bio? */ 342 if (bytes) { 343 iov_iter_revert(iter, bytes); 344 break; 345 } 346 } 347 348 ret = blk_rq_append_bio(rq, bio); 349 if (ret) 350 goto out_unmap; 351 return 0; 352 353 out_unmap: 354 bio_release_pages(bio, false); 355 blk_mq_map_bio_put(bio); 356 return ret; 357 } 358 359 static void bio_invalidate_vmalloc_pages(struct bio *bio) 360 { 361 #ifdef ARCH_IMPLEMENTS_FLUSH_KERNEL_VMAP_RANGE 362 if (bio->bi_private && !op_is_write(bio_op(bio))) { 363 unsigned long i, len = 0; 364 365 for (i = 0; i < bio->bi_vcnt; i++) 366 len += bio->bi_io_vec[i].bv_len; 367 invalidate_kernel_vmap_range(bio->bi_private, len); 368 } 369 #endif 370 } 371 372 static void bio_map_kern_endio(struct bio *bio) 373 { 374 bio_invalidate_vmalloc_pages(bio); 375 bio_uninit(bio); 376 kfree(bio); 377 } 378 379 /** 380 * bio_map_kern - map kernel address into bio 381 * @q: the struct request_queue for the bio 382 * @data: pointer to buffer to map 383 * @len: length in bytes 384 * @gfp_mask: allocation flags for bio allocation 385 * 386 * Map the kernel address into a bio suitable for io to a block 387 * device. Returns an error pointer in case of error. 388 */ 389 static struct bio *bio_map_kern(struct request_queue *q, void *data, 390 unsigned int len, gfp_t gfp_mask) 391 { 392 unsigned long kaddr = (unsigned long)data; 393 unsigned long end = (kaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT; 394 unsigned long start = kaddr >> PAGE_SHIFT; 395 const int nr_pages = end - start; 396 bool is_vmalloc = is_vmalloc_addr(data); 397 struct page *page; 398 int offset, i; 399 struct bio *bio; 400 401 bio = bio_kmalloc(nr_pages, gfp_mask); 402 if (!bio) 403 return ERR_PTR(-ENOMEM); 404 bio_init(bio, NULL, bio->bi_inline_vecs, nr_pages, 0); 405 406 if (is_vmalloc) { 407 flush_kernel_vmap_range(data, len); 408 bio->bi_private = data; 409 } 410 411 offset = offset_in_page(kaddr); 412 for (i = 0; i < nr_pages; i++) { 413 unsigned int bytes = PAGE_SIZE - offset; 414 415 if (len <= 0) 416 break; 417 418 if (bytes > len) 419 bytes = len; 420 421 if (!is_vmalloc) 422 page = virt_to_page(data); 423 else 424 page = vmalloc_to_page(data); 425 if (bio_add_pc_page(q, bio, page, bytes, 426 offset) < bytes) { 427 /* we don't support partial mappings */ 428 bio_uninit(bio); 429 kfree(bio); 430 return ERR_PTR(-EINVAL); 431 } 432 433 data += bytes; 434 len -= bytes; 435 offset = 0; 436 } 437 438 bio->bi_end_io = bio_map_kern_endio; 439 return bio; 440 } 441 442 static void bio_copy_kern_endio(struct bio *bio) 443 { 444 bio_free_pages(bio); 445 bio_uninit(bio); 446 kfree(bio); 447 } 448 449 static void bio_copy_kern_endio_read(struct bio *bio) 450 { 451 char *p = bio->bi_private; 452 struct bio_vec *bvec; 453 struct bvec_iter_all iter_all; 454 455 bio_for_each_segment_all(bvec, bio, iter_all) { 456 memcpy_from_bvec(p, bvec); 457 p += bvec->bv_len; 458 } 459 460 bio_copy_kern_endio(bio); 461 } 462 463 /** 464 * bio_copy_kern - copy kernel address into bio 465 * @q: the struct request_queue for the bio 466 * @data: pointer to buffer to copy 467 * @len: length in bytes 468 * @gfp_mask: allocation flags for bio and page allocation 469 * @reading: data direction is READ 470 * 471 * copy the kernel address into a bio suitable for io to a block 472 * device. Returns an error pointer in case of error. 473 */ 474 static struct bio *bio_copy_kern(struct request_queue *q, void *data, 475 unsigned int len, gfp_t gfp_mask, int reading) 476 { 477 unsigned long kaddr = (unsigned long)data; 478 unsigned long end = (kaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT; 479 unsigned long start = kaddr >> PAGE_SHIFT; 480 struct bio *bio; 481 void *p = data; 482 int nr_pages = 0; 483 484 /* 485 * Overflow, abort 486 */ 487 if (end < start) 488 return ERR_PTR(-EINVAL); 489 490 nr_pages = end - start; 491 bio = bio_kmalloc(nr_pages, gfp_mask); 492 if (!bio) 493 return ERR_PTR(-ENOMEM); 494 bio_init(bio, NULL, bio->bi_inline_vecs, nr_pages, 0); 495 496 while (len) { 497 struct page *page; 498 unsigned int bytes = PAGE_SIZE; 499 500 if (bytes > len) 501 bytes = len; 502 503 page = alloc_page(GFP_NOIO | __GFP_ZERO | gfp_mask); 504 if (!page) 505 goto cleanup; 506 507 if (!reading) 508 memcpy(page_address(page), p, bytes); 509 510 if (bio_add_pc_page(q, bio, page, bytes, 0) < bytes) 511 break; 512 513 len -= bytes; 514 p += bytes; 515 } 516 517 if (reading) { 518 bio->bi_end_io = bio_copy_kern_endio_read; 519 bio->bi_private = data; 520 } else { 521 bio->bi_end_io = bio_copy_kern_endio; 522 } 523 524 return bio; 525 526 cleanup: 527 bio_free_pages(bio); 528 bio_uninit(bio); 529 kfree(bio); 530 return ERR_PTR(-ENOMEM); 531 } 532 533 /* 534 * Append a bio to a passthrough request. Only works if the bio can be merged 535 * into the request based on the driver constraints. 536 */ 537 int blk_rq_append_bio(struct request *rq, struct bio *bio) 538 { 539 struct bvec_iter iter; 540 struct bio_vec bv; 541 unsigned int nr_segs = 0; 542 543 bio_for_each_bvec(bv, bio, iter) 544 nr_segs++; 545 546 if (!rq->bio) { 547 blk_rq_bio_prep(rq, bio, nr_segs); 548 } else { 549 if (!ll_back_merge_fn(rq, bio, nr_segs)) 550 return -EINVAL; 551 rq->biotail->bi_next = bio; 552 rq->biotail = bio; 553 rq->__data_len += (bio)->bi_iter.bi_size; 554 bio_crypt_free_ctx(bio); 555 } 556 557 return 0; 558 } 559 EXPORT_SYMBOL(blk_rq_append_bio); 560 561 /* Prepare bio for passthrough IO given ITER_BVEC iter */ 562 static int blk_rq_map_user_bvec(struct request *rq, const struct iov_iter *iter) 563 { 564 const struct queue_limits *lim = &rq->q->limits; 565 unsigned int max_bytes = lim->max_hw_sectors << SECTOR_SHIFT; 566 unsigned int nsegs; 567 struct bio *bio; 568 int ret; 569 570 if (!iov_iter_count(iter) || iov_iter_count(iter) > max_bytes) 571 return -EINVAL; 572 573 /* reuse the bvecs from the iterator instead of allocating new ones */ 574 bio = blk_rq_map_bio_alloc(rq, 0, GFP_KERNEL); 575 if (!bio) 576 return -ENOMEM; 577 bio_iov_bvec_set(bio, (struct iov_iter *)iter); 578 579 /* check that the data layout matches the hardware restrictions */ 580 ret = bio_split_rw_at(bio, lim, &nsegs, max_bytes); 581 if (ret) { 582 /* if we would have to split the bio, copy instead */ 583 if (ret > 0) 584 ret = -EREMOTEIO; 585 blk_mq_map_bio_put(bio); 586 return ret; 587 } 588 589 blk_rq_bio_prep(rq, bio, nsegs); 590 return 0; 591 } 592 593 /** 594 * blk_rq_map_user_iov - map user data to a request, for passthrough requests 595 * @q: request queue where request should be inserted 596 * @rq: request to map data to 597 * @map_data: pointer to the rq_map_data holding pages (if necessary) 598 * @iter: iovec iterator 599 * @gfp_mask: memory allocation flags 600 * 601 * Description: 602 * Data will be mapped directly for zero copy I/O, if possible. Otherwise 603 * a kernel bounce buffer is used. 604 * 605 * A matching blk_rq_unmap_user() must be issued at the end of I/O, while 606 * still in process context. 607 */ 608 int blk_rq_map_user_iov(struct request_queue *q, struct request *rq, 609 struct rq_map_data *map_data, 610 const struct iov_iter *iter, gfp_t gfp_mask) 611 { 612 bool copy = false, map_bvec = false; 613 unsigned long align = blk_lim_dma_alignment_and_pad(&q->limits); 614 struct bio *bio = NULL; 615 struct iov_iter i; 616 int ret = -EINVAL; 617 618 if (map_data) 619 copy = true; 620 else if (blk_queue_may_bounce(q)) 621 copy = true; 622 else if (iov_iter_alignment(iter) & align) 623 copy = true; 624 else if (iov_iter_is_bvec(iter)) 625 map_bvec = true; 626 else if (!user_backed_iter(iter)) 627 copy = true; 628 else if (queue_virt_boundary(q)) 629 copy = queue_virt_boundary(q) & iov_iter_gap_alignment(iter); 630 631 if (map_bvec) { 632 ret = blk_rq_map_user_bvec(rq, iter); 633 if (!ret) 634 return 0; 635 if (ret != -EREMOTEIO) 636 goto fail; 637 /* fall back to copying the data on limits mismatches */ 638 copy = true; 639 } 640 641 i = *iter; 642 do { 643 if (copy) 644 ret = bio_copy_user_iov(rq, map_data, &i, gfp_mask); 645 else 646 ret = bio_map_user_iov(rq, &i, gfp_mask); 647 if (ret) 648 goto unmap_rq; 649 if (!bio) 650 bio = rq->bio; 651 } while (iov_iter_count(&i)); 652 653 return 0; 654 655 unmap_rq: 656 blk_rq_unmap_user(bio); 657 fail: 658 rq->bio = NULL; 659 return ret; 660 } 661 EXPORT_SYMBOL(blk_rq_map_user_iov); 662 663 int blk_rq_map_user(struct request_queue *q, struct request *rq, 664 struct rq_map_data *map_data, void __user *ubuf, 665 unsigned long len, gfp_t gfp_mask) 666 { 667 struct iov_iter i; 668 int ret = import_ubuf(rq_data_dir(rq), ubuf, len, &i); 669 670 if (unlikely(ret < 0)) 671 return ret; 672 673 return blk_rq_map_user_iov(q, rq, map_data, &i, gfp_mask); 674 } 675 EXPORT_SYMBOL(blk_rq_map_user); 676 677 int blk_rq_map_user_io(struct request *req, struct rq_map_data *map_data, 678 void __user *ubuf, unsigned long buf_len, gfp_t gfp_mask, 679 bool vec, int iov_count, bool check_iter_count, int rw) 680 { 681 int ret = 0; 682 683 if (vec) { 684 struct iovec fast_iov[UIO_FASTIOV]; 685 struct iovec *iov = fast_iov; 686 struct iov_iter iter; 687 688 ret = import_iovec(rw, ubuf, iov_count ? iov_count : buf_len, 689 UIO_FASTIOV, &iov, &iter); 690 if (ret < 0) 691 return ret; 692 693 if (iov_count) { 694 /* SG_IO howto says that the shorter of the two wins */ 695 iov_iter_truncate(&iter, buf_len); 696 if (check_iter_count && !iov_iter_count(&iter)) { 697 kfree(iov); 698 return -EINVAL; 699 } 700 } 701 702 ret = blk_rq_map_user_iov(req->q, req, map_data, &iter, 703 gfp_mask); 704 kfree(iov); 705 } else if (buf_len) { 706 ret = blk_rq_map_user(req->q, req, map_data, ubuf, buf_len, 707 gfp_mask); 708 } 709 return ret; 710 } 711 EXPORT_SYMBOL(blk_rq_map_user_io); 712 713 /** 714 * blk_rq_unmap_user - unmap a request with user data 715 * @bio: start of bio list 716 * 717 * Description: 718 * Unmap a rq previously mapped by blk_rq_map_user(). The caller must 719 * supply the original rq->bio from the blk_rq_map_user() return, since 720 * the I/O completion may have changed rq->bio. 721 */ 722 int blk_rq_unmap_user(struct bio *bio) 723 { 724 struct bio *next_bio; 725 int ret = 0, ret2; 726 727 while (bio) { 728 if (bio->bi_private) { 729 ret2 = bio_uncopy_user(bio); 730 if (ret2 && !ret) 731 ret = ret2; 732 } else { 733 bio_release_pages(bio, bio_data_dir(bio) == READ); 734 } 735 736 if (bio_integrity(bio)) 737 bio_integrity_unmap_user(bio); 738 739 next_bio = bio; 740 bio = bio->bi_next; 741 blk_mq_map_bio_put(next_bio); 742 } 743 744 return ret; 745 } 746 EXPORT_SYMBOL(blk_rq_unmap_user); 747 748 /** 749 * blk_rq_map_kern - map kernel data to a request, for passthrough requests 750 * @q: request queue where request should be inserted 751 * @rq: request to fill 752 * @kbuf: the kernel buffer 753 * @len: length of user data 754 * @gfp_mask: memory allocation flags 755 * 756 * Description: 757 * Data will be mapped directly if possible. Otherwise a bounce 758 * buffer is used. Can be called multiple times to append multiple 759 * buffers. 760 */ 761 int blk_rq_map_kern(struct request_queue *q, struct request *rq, void *kbuf, 762 unsigned int len, gfp_t gfp_mask) 763 { 764 int reading = rq_data_dir(rq) == READ; 765 unsigned long addr = (unsigned long) kbuf; 766 struct bio *bio; 767 int ret; 768 769 if (len > (queue_max_hw_sectors(q) << 9)) 770 return -EINVAL; 771 if (!len || !kbuf) 772 return -EINVAL; 773 774 if (!blk_rq_aligned(q, addr, len) || object_is_on_stack(kbuf) || 775 blk_queue_may_bounce(q)) 776 bio = bio_copy_kern(q, kbuf, len, gfp_mask, reading); 777 else 778 bio = bio_map_kern(q, kbuf, len, gfp_mask); 779 780 if (IS_ERR(bio)) 781 return PTR_ERR(bio); 782 783 bio->bi_opf &= ~REQ_OP_MASK; 784 bio->bi_opf |= req_op(rq); 785 786 ret = blk_rq_append_bio(rq, bio); 787 if (unlikely(ret)) { 788 bio_uninit(bio); 789 kfree(bio); 790 } 791 return ret; 792 } 793 EXPORT_SYMBOL(blk_rq_map_kern); 794