xref: /linux/block/blk-map.c (revision 3f8ae9fe0409698799e173f698b714f34570b64b)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Functions related to mapping data to requests
4  */
5 #include <linux/kernel.h>
6 #include <linux/sched/task_stack.h>
7 #include <linux/module.h>
8 #include <linux/bio.h>
9 #include <linux/blkdev.h>
10 #include <linux/uio.h>
11 
12 #include "blk.h"
13 
14 struct bio_map_data {
15 	bool is_our_pages : 1;
16 	bool is_null_mapped : 1;
17 	struct iov_iter iter;
18 	struct iovec iov[];
19 };
20 
21 static struct bio_map_data *bio_alloc_map_data(struct iov_iter *data,
22 					       gfp_t gfp_mask)
23 {
24 	struct bio_map_data *bmd;
25 
26 	if (data->nr_segs > UIO_MAXIOV)
27 		return NULL;
28 
29 	bmd = kmalloc(struct_size(bmd, iov, data->nr_segs), gfp_mask);
30 	if (!bmd)
31 		return NULL;
32 	memcpy(bmd->iov, data->iov, sizeof(struct iovec) * data->nr_segs);
33 	bmd->iter = *data;
34 	bmd->iter.iov = bmd->iov;
35 	return bmd;
36 }
37 
38 /**
39  * bio_copy_from_iter - copy all pages from iov_iter to bio
40  * @bio: The &struct bio which describes the I/O as destination
41  * @iter: iov_iter as source
42  *
43  * Copy all pages from iov_iter to bio.
44  * Returns 0 on success, or error on failure.
45  */
46 static int bio_copy_from_iter(struct bio *bio, struct iov_iter *iter)
47 {
48 	struct bio_vec *bvec;
49 	struct bvec_iter_all iter_all;
50 
51 	bio_for_each_segment_all(bvec, bio, iter_all) {
52 		ssize_t ret;
53 
54 		ret = copy_page_from_iter(bvec->bv_page,
55 					  bvec->bv_offset,
56 					  bvec->bv_len,
57 					  iter);
58 
59 		if (!iov_iter_count(iter))
60 			break;
61 
62 		if (ret < bvec->bv_len)
63 			return -EFAULT;
64 	}
65 
66 	return 0;
67 }
68 
69 /**
70  * bio_copy_to_iter - copy all pages from bio to iov_iter
71  * @bio: The &struct bio which describes the I/O as source
72  * @iter: iov_iter as destination
73  *
74  * Copy all pages from bio to iov_iter.
75  * Returns 0 on success, or error on failure.
76  */
77 static int bio_copy_to_iter(struct bio *bio, struct iov_iter iter)
78 {
79 	struct bio_vec *bvec;
80 	struct bvec_iter_all iter_all;
81 
82 	bio_for_each_segment_all(bvec, bio, iter_all) {
83 		ssize_t ret;
84 
85 		ret = copy_page_to_iter(bvec->bv_page,
86 					bvec->bv_offset,
87 					bvec->bv_len,
88 					&iter);
89 
90 		if (!iov_iter_count(&iter))
91 			break;
92 
93 		if (ret < bvec->bv_len)
94 			return -EFAULT;
95 	}
96 
97 	return 0;
98 }
99 
100 /**
101  *	bio_uncopy_user	-	finish previously mapped bio
102  *	@bio: bio being terminated
103  *
104  *	Free pages allocated from bio_copy_user_iov() and write back data
105  *	to user space in case of a read.
106  */
107 static int bio_uncopy_user(struct bio *bio)
108 {
109 	struct bio_map_data *bmd = bio->bi_private;
110 	int ret = 0;
111 
112 	if (!bmd->is_null_mapped) {
113 		/*
114 		 * if we're in a workqueue, the request is orphaned, so
115 		 * don't copy into a random user address space, just free
116 		 * and return -EINTR so user space doesn't expect any data.
117 		 */
118 		if (!current->mm)
119 			ret = -EINTR;
120 		else if (bio_data_dir(bio) == READ)
121 			ret = bio_copy_to_iter(bio, bmd->iter);
122 		if (bmd->is_our_pages)
123 			bio_free_pages(bio);
124 	}
125 	kfree(bmd);
126 	return ret;
127 }
128 
129 static int bio_copy_user_iov(struct request *rq, struct rq_map_data *map_data,
130 		struct iov_iter *iter, gfp_t gfp_mask)
131 {
132 	struct bio_map_data *bmd;
133 	struct page *page;
134 	struct bio *bio;
135 	int i = 0, ret;
136 	int nr_pages;
137 	unsigned int len = iter->count;
138 	unsigned int offset = map_data ? offset_in_page(map_data->offset) : 0;
139 
140 	bmd = bio_alloc_map_data(iter, gfp_mask);
141 	if (!bmd)
142 		return -ENOMEM;
143 
144 	/*
145 	 * We need to do a deep copy of the iov_iter including the iovecs.
146 	 * The caller provided iov might point to an on-stack or otherwise
147 	 * shortlived one.
148 	 */
149 	bmd->is_our_pages = !map_data;
150 	bmd->is_null_mapped = (map_data && map_data->null_mapped);
151 
152 	nr_pages = bio_max_segs(DIV_ROUND_UP(offset + len, PAGE_SIZE));
153 
154 	ret = -ENOMEM;
155 	bio = bio_kmalloc(nr_pages, gfp_mask);
156 	if (!bio)
157 		goto out_bmd;
158 	bio_init(bio, NULL, bio->bi_inline_vecs, nr_pages, req_op(rq));
159 
160 	if (map_data) {
161 		nr_pages = 1 << map_data->page_order;
162 		i = map_data->offset / PAGE_SIZE;
163 	}
164 	while (len) {
165 		unsigned int bytes = PAGE_SIZE;
166 
167 		bytes -= offset;
168 
169 		if (bytes > len)
170 			bytes = len;
171 
172 		if (map_data) {
173 			if (i == map_data->nr_entries * nr_pages) {
174 				ret = -ENOMEM;
175 				goto cleanup;
176 			}
177 
178 			page = map_data->pages[i / nr_pages];
179 			page += (i % nr_pages);
180 
181 			i++;
182 		} else {
183 			page = alloc_page(GFP_NOIO | gfp_mask);
184 			if (!page) {
185 				ret = -ENOMEM;
186 				goto cleanup;
187 			}
188 		}
189 
190 		if (bio_add_pc_page(rq->q, bio, page, bytes, offset) < bytes) {
191 			if (!map_data)
192 				__free_page(page);
193 			break;
194 		}
195 
196 		len -= bytes;
197 		offset = 0;
198 	}
199 
200 	if (map_data)
201 		map_data->offset += bio->bi_iter.bi_size;
202 
203 	/*
204 	 * success
205 	 */
206 	if ((iov_iter_rw(iter) == WRITE &&
207 	     (!map_data || !map_data->null_mapped)) ||
208 	    (map_data && map_data->from_user)) {
209 		ret = bio_copy_from_iter(bio, iter);
210 		if (ret)
211 			goto cleanup;
212 	} else {
213 		if (bmd->is_our_pages)
214 			zero_fill_bio(bio);
215 		iov_iter_advance(iter, bio->bi_iter.bi_size);
216 	}
217 
218 	bio->bi_private = bmd;
219 
220 	ret = blk_rq_append_bio(rq, bio);
221 	if (ret)
222 		goto cleanup;
223 	return 0;
224 cleanup:
225 	if (!map_data)
226 		bio_free_pages(bio);
227 	bio_uninit(bio);
228 	kfree(bio);
229 out_bmd:
230 	kfree(bmd);
231 	return ret;
232 }
233 
234 static int bio_map_user_iov(struct request *rq, struct iov_iter *iter,
235 		gfp_t gfp_mask)
236 {
237 	unsigned int max_sectors = queue_max_hw_sectors(rq->q);
238 	unsigned int nr_vecs = iov_iter_npages(iter, BIO_MAX_VECS);
239 	struct bio *bio;
240 	int ret;
241 	int j;
242 
243 	if (!iov_iter_count(iter))
244 		return -EINVAL;
245 
246 	bio = bio_kmalloc(nr_vecs, gfp_mask);
247 	if (!bio)
248 		return -ENOMEM;
249 	bio_init(bio, NULL, bio->bi_inline_vecs, nr_vecs, req_op(rq));
250 
251 	while (iov_iter_count(iter)) {
252 		struct page **pages;
253 		ssize_t bytes;
254 		size_t offs, added = 0;
255 		int npages;
256 
257 		bytes = iov_iter_get_pages_alloc2(iter, &pages, LONG_MAX, &offs);
258 		if (unlikely(bytes <= 0)) {
259 			ret = bytes ? bytes : -EFAULT;
260 			goto out_unmap;
261 		}
262 
263 		npages = DIV_ROUND_UP(offs + bytes, PAGE_SIZE);
264 
265 		if (unlikely(offs & queue_dma_alignment(rq->q)))
266 			j = 0;
267 		else {
268 			for (j = 0; j < npages; j++) {
269 				struct page *page = pages[j];
270 				unsigned int n = PAGE_SIZE - offs;
271 				bool same_page = false;
272 
273 				if (n > bytes)
274 					n = bytes;
275 
276 				if (!bio_add_hw_page(rq->q, bio, page, n, offs,
277 						     max_sectors, &same_page)) {
278 					if (same_page)
279 						put_page(page);
280 					break;
281 				}
282 
283 				added += n;
284 				bytes -= n;
285 				offs = 0;
286 			}
287 		}
288 		/*
289 		 * release the pages we didn't map into the bio, if any
290 		 */
291 		while (j < npages)
292 			put_page(pages[j++]);
293 		kvfree(pages);
294 		/* couldn't stuff something into bio? */
295 		if (bytes) {
296 			iov_iter_revert(iter, bytes);
297 			break;
298 		}
299 	}
300 
301 	ret = blk_rq_append_bio(rq, bio);
302 	if (ret)
303 		goto out_unmap;
304 	return 0;
305 
306  out_unmap:
307 	bio_release_pages(bio, false);
308 	bio_uninit(bio);
309 	kfree(bio);
310 	return ret;
311 }
312 
313 static void bio_invalidate_vmalloc_pages(struct bio *bio)
314 {
315 #ifdef ARCH_IMPLEMENTS_FLUSH_KERNEL_VMAP_RANGE
316 	if (bio->bi_private && !op_is_write(bio_op(bio))) {
317 		unsigned long i, len = 0;
318 
319 		for (i = 0; i < bio->bi_vcnt; i++)
320 			len += bio->bi_io_vec[i].bv_len;
321 		invalidate_kernel_vmap_range(bio->bi_private, len);
322 	}
323 #endif
324 }
325 
326 static void bio_map_kern_endio(struct bio *bio)
327 {
328 	bio_invalidate_vmalloc_pages(bio);
329 	bio_uninit(bio);
330 	kfree(bio);
331 }
332 
333 /**
334  *	bio_map_kern	-	map kernel address into bio
335  *	@q: the struct request_queue for the bio
336  *	@data: pointer to buffer to map
337  *	@len: length in bytes
338  *	@gfp_mask: allocation flags for bio allocation
339  *
340  *	Map the kernel address into a bio suitable for io to a block
341  *	device. Returns an error pointer in case of error.
342  */
343 static struct bio *bio_map_kern(struct request_queue *q, void *data,
344 		unsigned int len, gfp_t gfp_mask)
345 {
346 	unsigned long kaddr = (unsigned long)data;
347 	unsigned long end = (kaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
348 	unsigned long start = kaddr >> PAGE_SHIFT;
349 	const int nr_pages = end - start;
350 	bool is_vmalloc = is_vmalloc_addr(data);
351 	struct page *page;
352 	int offset, i;
353 	struct bio *bio;
354 
355 	bio = bio_kmalloc(nr_pages, gfp_mask);
356 	if (!bio)
357 		return ERR_PTR(-ENOMEM);
358 	bio_init(bio, NULL, bio->bi_inline_vecs, nr_pages, 0);
359 
360 	if (is_vmalloc) {
361 		flush_kernel_vmap_range(data, len);
362 		bio->bi_private = data;
363 	}
364 
365 	offset = offset_in_page(kaddr);
366 	for (i = 0; i < nr_pages; i++) {
367 		unsigned int bytes = PAGE_SIZE - offset;
368 
369 		if (len <= 0)
370 			break;
371 
372 		if (bytes > len)
373 			bytes = len;
374 
375 		if (!is_vmalloc)
376 			page = virt_to_page(data);
377 		else
378 			page = vmalloc_to_page(data);
379 		if (bio_add_pc_page(q, bio, page, bytes,
380 				    offset) < bytes) {
381 			/* we don't support partial mappings */
382 			bio_uninit(bio);
383 			kfree(bio);
384 			return ERR_PTR(-EINVAL);
385 		}
386 
387 		data += bytes;
388 		len -= bytes;
389 		offset = 0;
390 	}
391 
392 	bio->bi_end_io = bio_map_kern_endio;
393 	return bio;
394 }
395 
396 static void bio_copy_kern_endio(struct bio *bio)
397 {
398 	bio_free_pages(bio);
399 	bio_uninit(bio);
400 	kfree(bio);
401 }
402 
403 static void bio_copy_kern_endio_read(struct bio *bio)
404 {
405 	char *p = bio->bi_private;
406 	struct bio_vec *bvec;
407 	struct bvec_iter_all iter_all;
408 
409 	bio_for_each_segment_all(bvec, bio, iter_all) {
410 		memcpy_from_bvec(p, bvec);
411 		p += bvec->bv_len;
412 	}
413 
414 	bio_copy_kern_endio(bio);
415 }
416 
417 /**
418  *	bio_copy_kern	-	copy kernel address into bio
419  *	@q: the struct request_queue for the bio
420  *	@data: pointer to buffer to copy
421  *	@len: length in bytes
422  *	@gfp_mask: allocation flags for bio and page allocation
423  *	@reading: data direction is READ
424  *
425  *	copy the kernel address into a bio suitable for io to a block
426  *	device. Returns an error pointer in case of error.
427  */
428 static struct bio *bio_copy_kern(struct request_queue *q, void *data,
429 		unsigned int len, gfp_t gfp_mask, int reading)
430 {
431 	unsigned long kaddr = (unsigned long)data;
432 	unsigned long end = (kaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
433 	unsigned long start = kaddr >> PAGE_SHIFT;
434 	struct bio *bio;
435 	void *p = data;
436 	int nr_pages = 0;
437 
438 	/*
439 	 * Overflow, abort
440 	 */
441 	if (end < start)
442 		return ERR_PTR(-EINVAL);
443 
444 	nr_pages = end - start;
445 	bio = bio_kmalloc(nr_pages, gfp_mask);
446 	if (!bio)
447 		return ERR_PTR(-ENOMEM);
448 	bio_init(bio, NULL, bio->bi_inline_vecs, nr_pages, 0);
449 
450 	while (len) {
451 		struct page *page;
452 		unsigned int bytes = PAGE_SIZE;
453 
454 		if (bytes > len)
455 			bytes = len;
456 
457 		page = alloc_page(GFP_NOIO | __GFP_ZERO | gfp_mask);
458 		if (!page)
459 			goto cleanup;
460 
461 		if (!reading)
462 			memcpy(page_address(page), p, bytes);
463 
464 		if (bio_add_pc_page(q, bio, page, bytes, 0) < bytes)
465 			break;
466 
467 		len -= bytes;
468 		p += bytes;
469 	}
470 
471 	if (reading) {
472 		bio->bi_end_io = bio_copy_kern_endio_read;
473 		bio->bi_private = data;
474 	} else {
475 		bio->bi_end_io = bio_copy_kern_endio;
476 	}
477 
478 	return bio;
479 
480 cleanup:
481 	bio_free_pages(bio);
482 	bio_uninit(bio);
483 	kfree(bio);
484 	return ERR_PTR(-ENOMEM);
485 }
486 
487 /*
488  * Append a bio to a passthrough request.  Only works if the bio can be merged
489  * into the request based on the driver constraints.
490  */
491 int blk_rq_append_bio(struct request *rq, struct bio *bio)
492 {
493 	struct bvec_iter iter;
494 	struct bio_vec bv;
495 	unsigned int nr_segs = 0;
496 
497 	bio_for_each_bvec(bv, bio, iter)
498 		nr_segs++;
499 
500 	if (!rq->bio) {
501 		blk_rq_bio_prep(rq, bio, nr_segs);
502 	} else {
503 		if (!ll_back_merge_fn(rq, bio, nr_segs))
504 			return -EINVAL;
505 		rq->biotail->bi_next = bio;
506 		rq->biotail = bio;
507 		rq->__data_len += (bio)->bi_iter.bi_size;
508 		bio_crypt_free_ctx(bio);
509 	}
510 
511 	return 0;
512 }
513 EXPORT_SYMBOL(blk_rq_append_bio);
514 
515 /**
516  * blk_rq_map_user_iov - map user data to a request, for passthrough requests
517  * @q:		request queue where request should be inserted
518  * @rq:		request to map data to
519  * @map_data:   pointer to the rq_map_data holding pages (if necessary)
520  * @iter:	iovec iterator
521  * @gfp_mask:	memory allocation flags
522  *
523  * Description:
524  *    Data will be mapped directly for zero copy I/O, if possible. Otherwise
525  *    a kernel bounce buffer is used.
526  *
527  *    A matching blk_rq_unmap_user() must be issued at the end of I/O, while
528  *    still in process context.
529  */
530 int blk_rq_map_user_iov(struct request_queue *q, struct request *rq,
531 			struct rq_map_data *map_data,
532 			const struct iov_iter *iter, gfp_t gfp_mask)
533 {
534 	bool copy = false;
535 	unsigned long align = q->dma_pad_mask | queue_dma_alignment(q);
536 	struct bio *bio = NULL;
537 	struct iov_iter i;
538 	int ret = -EINVAL;
539 
540 	if (!iter_is_iovec(iter))
541 		goto fail;
542 
543 	if (map_data)
544 		copy = true;
545 	else if (blk_queue_may_bounce(q))
546 		copy = true;
547 	else if (iov_iter_alignment(iter) & align)
548 		copy = true;
549 	else if (queue_virt_boundary(q))
550 		copy = queue_virt_boundary(q) & iov_iter_gap_alignment(iter);
551 
552 	i = *iter;
553 	do {
554 		if (copy)
555 			ret = bio_copy_user_iov(rq, map_data, &i, gfp_mask);
556 		else
557 			ret = bio_map_user_iov(rq, &i, gfp_mask);
558 		if (ret)
559 			goto unmap_rq;
560 		if (!bio)
561 			bio = rq->bio;
562 	} while (iov_iter_count(&i));
563 
564 	return 0;
565 
566 unmap_rq:
567 	blk_rq_unmap_user(bio);
568 fail:
569 	rq->bio = NULL;
570 	return ret;
571 }
572 EXPORT_SYMBOL(blk_rq_map_user_iov);
573 
574 int blk_rq_map_user(struct request_queue *q, struct request *rq,
575 		    struct rq_map_data *map_data, void __user *ubuf,
576 		    unsigned long len, gfp_t gfp_mask)
577 {
578 	struct iovec iov;
579 	struct iov_iter i;
580 	int ret = import_single_range(rq_data_dir(rq), ubuf, len, &iov, &i);
581 
582 	if (unlikely(ret < 0))
583 		return ret;
584 
585 	return blk_rq_map_user_iov(q, rq, map_data, &i, gfp_mask);
586 }
587 EXPORT_SYMBOL(blk_rq_map_user);
588 
589 /**
590  * blk_rq_unmap_user - unmap a request with user data
591  * @bio:	       start of bio list
592  *
593  * Description:
594  *    Unmap a rq previously mapped by blk_rq_map_user(). The caller must
595  *    supply the original rq->bio from the blk_rq_map_user() return, since
596  *    the I/O completion may have changed rq->bio.
597  */
598 int blk_rq_unmap_user(struct bio *bio)
599 {
600 	struct bio *next_bio;
601 	int ret = 0, ret2;
602 
603 	while (bio) {
604 		if (bio->bi_private) {
605 			ret2 = bio_uncopy_user(bio);
606 			if (ret2 && !ret)
607 				ret = ret2;
608 		} else {
609 			bio_release_pages(bio, bio_data_dir(bio) == READ);
610 		}
611 
612 		next_bio = bio;
613 		bio = bio->bi_next;
614 		bio_uninit(next_bio);
615 		kfree(next_bio);
616 	}
617 
618 	return ret;
619 }
620 EXPORT_SYMBOL(blk_rq_unmap_user);
621 
622 /**
623  * blk_rq_map_kern - map kernel data to a request, for passthrough requests
624  * @q:		request queue where request should be inserted
625  * @rq:		request to fill
626  * @kbuf:	the kernel buffer
627  * @len:	length of user data
628  * @gfp_mask:	memory allocation flags
629  *
630  * Description:
631  *    Data will be mapped directly if possible. Otherwise a bounce
632  *    buffer is used. Can be called multiple times to append multiple
633  *    buffers.
634  */
635 int blk_rq_map_kern(struct request_queue *q, struct request *rq, void *kbuf,
636 		    unsigned int len, gfp_t gfp_mask)
637 {
638 	int reading = rq_data_dir(rq) == READ;
639 	unsigned long addr = (unsigned long) kbuf;
640 	struct bio *bio;
641 	int ret;
642 
643 	if (len > (queue_max_hw_sectors(q) << 9))
644 		return -EINVAL;
645 	if (!len || !kbuf)
646 		return -EINVAL;
647 
648 	if (!blk_rq_aligned(q, addr, len) || object_is_on_stack(kbuf) ||
649 	    blk_queue_may_bounce(q))
650 		bio = bio_copy_kern(q, kbuf, len, gfp_mask, reading);
651 	else
652 		bio = bio_map_kern(q, kbuf, len, gfp_mask);
653 
654 	if (IS_ERR(bio))
655 		return PTR_ERR(bio);
656 
657 	bio->bi_opf &= ~REQ_OP_MASK;
658 	bio->bi_opf |= req_op(rq);
659 
660 	ret = blk_rq_append_bio(rq, bio);
661 	if (unlikely(ret)) {
662 		bio_uninit(bio);
663 		kfree(bio);
664 	}
665 	return ret;
666 }
667 EXPORT_SYMBOL(blk_rq_map_kern);
668