1 /* SPDX-License-Identifier: GPL-2.0 2 * 3 * IO cost model based controller. 4 * 5 * Copyright (C) 2019 Tejun Heo <tj@kernel.org> 6 * Copyright (C) 2019 Andy Newell <newella@fb.com> 7 * Copyright (C) 2019 Facebook 8 * 9 * One challenge of controlling IO resources is the lack of trivially 10 * observable cost metric. This is distinguished from CPU and memory where 11 * wallclock time and the number of bytes can serve as accurate enough 12 * approximations. 13 * 14 * Bandwidth and iops are the most commonly used metrics for IO devices but 15 * depending on the type and specifics of the device, different IO patterns 16 * easily lead to multiple orders of magnitude variations rendering them 17 * useless for the purpose of IO capacity distribution. While on-device 18 * time, with a lot of clutches, could serve as a useful approximation for 19 * non-queued rotational devices, this is no longer viable with modern 20 * devices, even the rotational ones. 21 * 22 * While there is no cost metric we can trivially observe, it isn't a 23 * complete mystery. For example, on a rotational device, seek cost 24 * dominates while a contiguous transfer contributes a smaller amount 25 * proportional to the size. If we can characterize at least the relative 26 * costs of these different types of IOs, it should be possible to 27 * implement a reasonable work-conserving proportional IO resource 28 * distribution. 29 * 30 * 1. IO Cost Model 31 * 32 * IO cost model estimates the cost of an IO given its basic parameters and 33 * history (e.g. the end sector of the last IO). The cost is measured in 34 * device time. If a given IO is estimated to cost 10ms, the device should 35 * be able to process ~100 of those IOs in a second. 36 * 37 * Currently, there's only one builtin cost model - linear. Each IO is 38 * classified as sequential or random and given a base cost accordingly. 39 * On top of that, a size cost proportional to the length of the IO is 40 * added. While simple, this model captures the operational 41 * characteristics of a wide varienty of devices well enough. Default 42 * parameters for several different classes of devices are provided and the 43 * parameters can be configured from userspace via 44 * /sys/fs/cgroup/io.cost.model. 45 * 46 * If needed, tools/cgroup/iocost_coef_gen.py can be used to generate 47 * device-specific coefficients. 48 * 49 * 2. Control Strategy 50 * 51 * The device virtual time (vtime) is used as the primary control metric. 52 * The control strategy is composed of the following three parts. 53 * 54 * 2-1. Vtime Distribution 55 * 56 * When a cgroup becomes active in terms of IOs, its hierarchical share is 57 * calculated. Please consider the following hierarchy where the numbers 58 * inside parentheses denote the configured weights. 59 * 60 * root 61 * / \ 62 * A (w:100) B (w:300) 63 * / \ 64 * A0 (w:100) A1 (w:100) 65 * 66 * If B is idle and only A0 and A1 are actively issuing IOs, as the two are 67 * of equal weight, each gets 50% share. If then B starts issuing IOs, B 68 * gets 300/(100+300) or 75% share, and A0 and A1 equally splits the rest, 69 * 12.5% each. The distribution mechanism only cares about these flattened 70 * shares. They're called hweights (hierarchical weights) and always add 71 * upto 1 (WEIGHT_ONE). 72 * 73 * A given cgroup's vtime runs slower in inverse proportion to its hweight. 74 * For example, with 12.5% weight, A0's time runs 8 times slower (100/12.5) 75 * against the device vtime - an IO which takes 10ms on the underlying 76 * device is considered to take 80ms on A0. 77 * 78 * This constitutes the basis of IO capacity distribution. Each cgroup's 79 * vtime is running at a rate determined by its hweight. A cgroup tracks 80 * the vtime consumed by past IOs and can issue a new IO if doing so 81 * wouldn't outrun the current device vtime. Otherwise, the IO is 82 * suspended until the vtime has progressed enough to cover it. 83 * 84 * 2-2. Vrate Adjustment 85 * 86 * It's unrealistic to expect the cost model to be perfect. There are too 87 * many devices and even on the same device the overall performance 88 * fluctuates depending on numerous factors such as IO mixture and device 89 * internal garbage collection. The controller needs to adapt dynamically. 90 * 91 * This is achieved by adjusting the overall IO rate according to how busy 92 * the device is. If the device becomes overloaded, we're sending down too 93 * many IOs and should generally slow down. If there are waiting issuers 94 * but the device isn't saturated, we're issuing too few and should 95 * generally speed up. 96 * 97 * To slow down, we lower the vrate - the rate at which the device vtime 98 * passes compared to the wall clock. For example, if the vtime is running 99 * at the vrate of 75%, all cgroups added up would only be able to issue 100 * 750ms worth of IOs per second, and vice-versa for speeding up. 101 * 102 * Device business is determined using two criteria - rq wait and 103 * completion latencies. 104 * 105 * When a device gets saturated, the on-device and then the request queues 106 * fill up and a bio which is ready to be issued has to wait for a request 107 * to become available. When this delay becomes noticeable, it's a clear 108 * indication that the device is saturated and we lower the vrate. This 109 * saturation signal is fairly conservative as it only triggers when both 110 * hardware and software queues are filled up, and is used as the default 111 * busy signal. 112 * 113 * As devices can have deep queues and be unfair in how the queued commands 114 * are executed, solely depending on rq wait may not result in satisfactory 115 * control quality. For a better control quality, completion latency QoS 116 * parameters can be configured so that the device is considered saturated 117 * if N'th percentile completion latency rises above the set point. 118 * 119 * The completion latency requirements are a function of both the 120 * underlying device characteristics and the desired IO latency quality of 121 * service. There is an inherent trade-off - the tighter the latency QoS, 122 * the higher the bandwidth lossage. Latency QoS is disabled by default 123 * and can be set through /sys/fs/cgroup/io.cost.qos. 124 * 125 * 2-3. Work Conservation 126 * 127 * Imagine two cgroups A and B with equal weights. A is issuing a small IO 128 * periodically while B is sending out enough parallel IOs to saturate the 129 * device on its own. Let's say A's usage amounts to 100ms worth of IO 130 * cost per second, i.e., 10% of the device capacity. The naive 131 * distribution of half and half would lead to 60% utilization of the 132 * device, a significant reduction in the total amount of work done 133 * compared to free-for-all competition. This is too high a cost to pay 134 * for IO control. 135 * 136 * To conserve the total amount of work done, we keep track of how much 137 * each active cgroup is actually using and yield part of its weight if 138 * there are other cgroups which can make use of it. In the above case, 139 * A's weight will be lowered so that it hovers above the actual usage and 140 * B would be able to use the rest. 141 * 142 * As we don't want to penalize a cgroup for donating its weight, the 143 * surplus weight adjustment factors in a margin and has an immediate 144 * snapback mechanism in case the cgroup needs more IO vtime for itself. 145 * 146 * Note that adjusting down surplus weights has the same effects as 147 * accelerating vtime for other cgroups and work conservation can also be 148 * implemented by adjusting vrate dynamically. However, squaring who can 149 * donate and should take back how much requires hweight propagations 150 * anyway making it easier to implement and understand as a separate 151 * mechanism. 152 * 153 * 3. Monitoring 154 * 155 * Instead of debugfs or other clumsy monitoring mechanisms, this 156 * controller uses a drgn based monitoring script - 157 * tools/cgroup/iocost_monitor.py. For details on drgn, please see 158 * https://github.com/osandov/drgn. The output looks like the following. 159 * 160 * sdb RUN per=300ms cur_per=234.218:v203.695 busy= +1 vrate= 62.12% 161 * active weight hweight% inflt% dbt delay usages% 162 * test/a * 50/ 50 33.33/ 33.33 27.65 2 0*041 033:033:033 163 * test/b * 100/ 100 66.67/ 66.67 17.56 0 0*000 066:079:077 164 * 165 * - per : Timer period 166 * - cur_per : Internal wall and device vtime clock 167 * - vrate : Device virtual time rate against wall clock 168 * - weight : Surplus-adjusted and configured weights 169 * - hweight : Surplus-adjusted and configured hierarchical weights 170 * - inflt : The percentage of in-flight IO cost at the end of last period 171 * - del_ms : Deferred issuer delay induction level and duration 172 * - usages : Usage history 173 */ 174 175 #include <linux/kernel.h> 176 #include <linux/module.h> 177 #include <linux/timer.h> 178 #include <linux/time64.h> 179 #include <linux/parser.h> 180 #include <linux/sched/signal.h> 181 #include <asm/local.h> 182 #include <asm/local64.h> 183 #include "blk-rq-qos.h" 184 #include "blk-stat.h" 185 #include "blk-wbt.h" 186 #include "blk-cgroup.h" 187 188 #ifdef CONFIG_TRACEPOINTS 189 190 /* copied from TRACE_CGROUP_PATH, see cgroup-internal.h */ 191 #define TRACE_IOCG_PATH_LEN 1024 192 static DEFINE_SPINLOCK(trace_iocg_path_lock); 193 static char trace_iocg_path[TRACE_IOCG_PATH_LEN]; 194 195 #define TRACE_IOCG_PATH(type, iocg, ...) \ 196 do { \ 197 unsigned long flags; \ 198 if (trace_iocost_##type##_enabled()) { \ 199 spin_lock_irqsave(&trace_iocg_path_lock, flags); \ 200 cgroup_path(iocg_to_blkg(iocg)->blkcg->css.cgroup, \ 201 trace_iocg_path, TRACE_IOCG_PATH_LEN); \ 202 trace_iocost_##type(iocg, trace_iocg_path, \ 203 ##__VA_ARGS__); \ 204 spin_unlock_irqrestore(&trace_iocg_path_lock, flags); \ 205 } \ 206 } while (0) 207 208 #else /* CONFIG_TRACE_POINTS */ 209 #define TRACE_IOCG_PATH(type, iocg, ...) do { } while (0) 210 #endif /* CONFIG_TRACE_POINTS */ 211 212 enum { 213 MILLION = 1000000, 214 215 /* timer period is calculated from latency requirements, bound it */ 216 MIN_PERIOD = USEC_PER_MSEC, 217 MAX_PERIOD = USEC_PER_SEC, 218 219 /* 220 * iocg->vtime is targeted at 50% behind the device vtime, which 221 * serves as its IO credit buffer. Surplus weight adjustment is 222 * immediately canceled if the vtime margin runs below 10%. 223 */ 224 MARGIN_MIN_PCT = 10, 225 MARGIN_LOW_PCT = 20, 226 MARGIN_TARGET_PCT = 50, 227 228 INUSE_ADJ_STEP_PCT = 25, 229 230 /* Have some play in timer operations */ 231 TIMER_SLACK_PCT = 1, 232 233 /* 1/64k is granular enough and can easily be handled w/ u32 */ 234 WEIGHT_ONE = 1 << 16, 235 }; 236 237 enum { 238 /* 239 * As vtime is used to calculate the cost of each IO, it needs to 240 * be fairly high precision. For example, it should be able to 241 * represent the cost of a single page worth of discard with 242 * suffificient accuracy. At the same time, it should be able to 243 * represent reasonably long enough durations to be useful and 244 * convenient during operation. 245 * 246 * 1s worth of vtime is 2^37. This gives us both sub-nanosecond 247 * granularity and days of wrap-around time even at extreme vrates. 248 */ 249 VTIME_PER_SEC_SHIFT = 37, 250 VTIME_PER_SEC = 1LLU << VTIME_PER_SEC_SHIFT, 251 VTIME_PER_USEC = VTIME_PER_SEC / USEC_PER_SEC, 252 VTIME_PER_NSEC = VTIME_PER_SEC / NSEC_PER_SEC, 253 254 /* bound vrate adjustments within two orders of magnitude */ 255 VRATE_MIN_PPM = 10000, /* 1% */ 256 VRATE_MAX_PPM = 100000000, /* 10000% */ 257 258 VRATE_MIN = VTIME_PER_USEC * VRATE_MIN_PPM / MILLION, 259 VRATE_CLAMP_ADJ_PCT = 4, 260 261 /* switch iff the conditions are met for longer than this */ 262 AUTOP_CYCLE_NSEC = 10LLU * NSEC_PER_SEC, 263 }; 264 265 enum { 266 /* if IOs end up waiting for requests, issue less */ 267 RQ_WAIT_BUSY_PCT = 5, 268 269 /* unbusy hysterisis */ 270 UNBUSY_THR_PCT = 75, 271 272 /* 273 * The effect of delay is indirect and non-linear and a huge amount of 274 * future debt can accumulate abruptly while unthrottled. Linearly scale 275 * up delay as debt is going up and then let it decay exponentially. 276 * This gives us quick ramp ups while delay is accumulating and long 277 * tails which can help reducing the frequency of debt explosions on 278 * unthrottle. The parameters are experimentally determined. 279 * 280 * The delay mechanism provides adequate protection and behavior in many 281 * cases. However, this is far from ideal and falls shorts on both 282 * fronts. The debtors are often throttled too harshly costing a 283 * significant level of fairness and possibly total work while the 284 * protection against their impacts on the system can be choppy and 285 * unreliable. 286 * 287 * The shortcoming primarily stems from the fact that, unlike for page 288 * cache, the kernel doesn't have well-defined back-pressure propagation 289 * mechanism and policies for anonymous memory. Fully addressing this 290 * issue will likely require substantial improvements in the area. 291 */ 292 MIN_DELAY_THR_PCT = 500, 293 MAX_DELAY_THR_PCT = 25000, 294 MIN_DELAY = 250, 295 MAX_DELAY = 250 * USEC_PER_MSEC, 296 297 /* halve debts if avg usage over 100ms is under 50% */ 298 DFGV_USAGE_PCT = 50, 299 DFGV_PERIOD = 100 * USEC_PER_MSEC, 300 301 /* don't let cmds which take a very long time pin lagging for too long */ 302 MAX_LAGGING_PERIODS = 10, 303 304 /* 305 * Count IO size in 4k pages. The 12bit shift helps keeping 306 * size-proportional components of cost calculation in closer 307 * numbers of digits to per-IO cost components. 308 */ 309 IOC_PAGE_SHIFT = 12, 310 IOC_PAGE_SIZE = 1 << IOC_PAGE_SHIFT, 311 IOC_SECT_TO_PAGE_SHIFT = IOC_PAGE_SHIFT - SECTOR_SHIFT, 312 313 /* if apart further than 16M, consider randio for linear model */ 314 LCOEF_RANDIO_PAGES = 4096, 315 }; 316 317 enum ioc_running { 318 IOC_IDLE, 319 IOC_RUNNING, 320 IOC_STOP, 321 }; 322 323 /* io.cost.qos controls including per-dev enable of the whole controller */ 324 enum { 325 QOS_ENABLE, 326 QOS_CTRL, 327 NR_QOS_CTRL_PARAMS, 328 }; 329 330 /* io.cost.qos params */ 331 enum { 332 QOS_RPPM, 333 QOS_RLAT, 334 QOS_WPPM, 335 QOS_WLAT, 336 QOS_MIN, 337 QOS_MAX, 338 NR_QOS_PARAMS, 339 }; 340 341 /* io.cost.model controls */ 342 enum { 343 COST_CTRL, 344 COST_MODEL, 345 NR_COST_CTRL_PARAMS, 346 }; 347 348 /* builtin linear cost model coefficients */ 349 enum { 350 I_LCOEF_RBPS, 351 I_LCOEF_RSEQIOPS, 352 I_LCOEF_RRANDIOPS, 353 I_LCOEF_WBPS, 354 I_LCOEF_WSEQIOPS, 355 I_LCOEF_WRANDIOPS, 356 NR_I_LCOEFS, 357 }; 358 359 enum { 360 LCOEF_RPAGE, 361 LCOEF_RSEQIO, 362 LCOEF_RRANDIO, 363 LCOEF_WPAGE, 364 LCOEF_WSEQIO, 365 LCOEF_WRANDIO, 366 NR_LCOEFS, 367 }; 368 369 enum { 370 AUTOP_INVALID, 371 AUTOP_HDD, 372 AUTOP_SSD_QD1, 373 AUTOP_SSD_DFL, 374 AUTOP_SSD_FAST, 375 }; 376 377 struct ioc_params { 378 u32 qos[NR_QOS_PARAMS]; 379 u64 i_lcoefs[NR_I_LCOEFS]; 380 u64 lcoefs[NR_LCOEFS]; 381 u32 too_fast_vrate_pct; 382 u32 too_slow_vrate_pct; 383 }; 384 385 struct ioc_margins { 386 s64 min; 387 s64 low; 388 s64 target; 389 }; 390 391 struct ioc_missed { 392 local_t nr_met; 393 local_t nr_missed; 394 u32 last_met; 395 u32 last_missed; 396 }; 397 398 struct ioc_pcpu_stat { 399 struct ioc_missed missed[2]; 400 401 local64_t rq_wait_ns; 402 u64 last_rq_wait_ns; 403 }; 404 405 /* per device */ 406 struct ioc { 407 struct rq_qos rqos; 408 409 bool enabled; 410 411 struct ioc_params params; 412 struct ioc_margins margins; 413 u32 period_us; 414 u32 timer_slack_ns; 415 u64 vrate_min; 416 u64 vrate_max; 417 418 spinlock_t lock; 419 struct timer_list timer; 420 struct list_head active_iocgs; /* active cgroups */ 421 struct ioc_pcpu_stat __percpu *pcpu_stat; 422 423 enum ioc_running running; 424 atomic64_t vtime_rate; 425 u64 vtime_base_rate; 426 s64 vtime_err; 427 428 seqcount_spinlock_t period_seqcount; 429 u64 period_at; /* wallclock starttime */ 430 u64 period_at_vtime; /* vtime starttime */ 431 432 atomic64_t cur_period; /* inc'd each period */ 433 int busy_level; /* saturation history */ 434 435 bool weights_updated; 436 atomic_t hweight_gen; /* for lazy hweights */ 437 438 /* debt forgivness */ 439 u64 dfgv_period_at; 440 u64 dfgv_period_rem; 441 u64 dfgv_usage_us_sum; 442 443 u64 autop_too_fast_at; 444 u64 autop_too_slow_at; 445 int autop_idx; 446 bool user_qos_params:1; 447 bool user_cost_model:1; 448 }; 449 450 struct iocg_pcpu_stat { 451 local64_t abs_vusage; 452 }; 453 454 struct iocg_stat { 455 u64 usage_us; 456 u64 wait_us; 457 u64 indebt_us; 458 u64 indelay_us; 459 }; 460 461 /* per device-cgroup pair */ 462 struct ioc_gq { 463 struct blkg_policy_data pd; 464 struct ioc *ioc; 465 466 /* 467 * A iocg can get its weight from two sources - an explicit 468 * per-device-cgroup configuration or the default weight of the 469 * cgroup. `cfg_weight` is the explicit per-device-cgroup 470 * configuration. `weight` is the effective considering both 471 * sources. 472 * 473 * When an idle cgroup becomes active its `active` goes from 0 to 474 * `weight`. `inuse` is the surplus adjusted active weight. 475 * `active` and `inuse` are used to calculate `hweight_active` and 476 * `hweight_inuse`. 477 * 478 * `last_inuse` remembers `inuse` while an iocg is idle to persist 479 * surplus adjustments. 480 * 481 * `inuse` may be adjusted dynamically during period. `saved_*` are used 482 * to determine and track adjustments. 483 */ 484 u32 cfg_weight; 485 u32 weight; 486 u32 active; 487 u32 inuse; 488 489 u32 last_inuse; 490 s64 saved_margin; 491 492 sector_t cursor; /* to detect randio */ 493 494 /* 495 * `vtime` is this iocg's vtime cursor which progresses as IOs are 496 * issued. If lagging behind device vtime, the delta represents 497 * the currently available IO budget. If running ahead, the 498 * overage. 499 * 500 * `vtime_done` is the same but progressed on completion rather 501 * than issue. The delta behind `vtime` represents the cost of 502 * currently in-flight IOs. 503 */ 504 atomic64_t vtime; 505 atomic64_t done_vtime; 506 u64 abs_vdebt; 507 508 /* current delay in effect and when it started */ 509 u64 delay; 510 u64 delay_at; 511 512 /* 513 * The period this iocg was last active in. Used for deactivation 514 * and invalidating `vtime`. 515 */ 516 atomic64_t active_period; 517 struct list_head active_list; 518 519 /* see __propagate_weights() and current_hweight() for details */ 520 u64 child_active_sum; 521 u64 child_inuse_sum; 522 u64 child_adjusted_sum; 523 int hweight_gen; 524 u32 hweight_active; 525 u32 hweight_inuse; 526 u32 hweight_donating; 527 u32 hweight_after_donation; 528 529 struct list_head walk_list; 530 struct list_head surplus_list; 531 532 struct wait_queue_head waitq; 533 struct hrtimer waitq_timer; 534 535 /* timestamp at the latest activation */ 536 u64 activated_at; 537 538 /* statistics */ 539 struct iocg_pcpu_stat __percpu *pcpu_stat; 540 struct iocg_stat stat; 541 struct iocg_stat last_stat; 542 u64 last_stat_abs_vusage; 543 u64 usage_delta_us; 544 u64 wait_since; 545 u64 indebt_since; 546 u64 indelay_since; 547 548 /* this iocg's depth in the hierarchy and ancestors including self */ 549 int level; 550 struct ioc_gq *ancestors[]; 551 }; 552 553 /* per cgroup */ 554 struct ioc_cgrp { 555 struct blkcg_policy_data cpd; 556 unsigned int dfl_weight; 557 }; 558 559 struct ioc_now { 560 u64 now_ns; 561 u64 now; 562 u64 vnow; 563 }; 564 565 struct iocg_wait { 566 struct wait_queue_entry wait; 567 struct bio *bio; 568 u64 abs_cost; 569 bool committed; 570 }; 571 572 struct iocg_wake_ctx { 573 struct ioc_gq *iocg; 574 u32 hw_inuse; 575 s64 vbudget; 576 }; 577 578 static const struct ioc_params autop[] = { 579 [AUTOP_HDD] = { 580 .qos = { 581 [QOS_RLAT] = 250000, /* 250ms */ 582 [QOS_WLAT] = 250000, 583 [QOS_MIN] = VRATE_MIN_PPM, 584 [QOS_MAX] = VRATE_MAX_PPM, 585 }, 586 .i_lcoefs = { 587 [I_LCOEF_RBPS] = 174019176, 588 [I_LCOEF_RSEQIOPS] = 41708, 589 [I_LCOEF_RRANDIOPS] = 370, 590 [I_LCOEF_WBPS] = 178075866, 591 [I_LCOEF_WSEQIOPS] = 42705, 592 [I_LCOEF_WRANDIOPS] = 378, 593 }, 594 }, 595 [AUTOP_SSD_QD1] = { 596 .qos = { 597 [QOS_RLAT] = 25000, /* 25ms */ 598 [QOS_WLAT] = 25000, 599 [QOS_MIN] = VRATE_MIN_PPM, 600 [QOS_MAX] = VRATE_MAX_PPM, 601 }, 602 .i_lcoefs = { 603 [I_LCOEF_RBPS] = 245855193, 604 [I_LCOEF_RSEQIOPS] = 61575, 605 [I_LCOEF_RRANDIOPS] = 6946, 606 [I_LCOEF_WBPS] = 141365009, 607 [I_LCOEF_WSEQIOPS] = 33716, 608 [I_LCOEF_WRANDIOPS] = 26796, 609 }, 610 }, 611 [AUTOP_SSD_DFL] = { 612 .qos = { 613 [QOS_RLAT] = 25000, /* 25ms */ 614 [QOS_WLAT] = 25000, 615 [QOS_MIN] = VRATE_MIN_PPM, 616 [QOS_MAX] = VRATE_MAX_PPM, 617 }, 618 .i_lcoefs = { 619 [I_LCOEF_RBPS] = 488636629, 620 [I_LCOEF_RSEQIOPS] = 8932, 621 [I_LCOEF_RRANDIOPS] = 8518, 622 [I_LCOEF_WBPS] = 427891549, 623 [I_LCOEF_WSEQIOPS] = 28755, 624 [I_LCOEF_WRANDIOPS] = 21940, 625 }, 626 .too_fast_vrate_pct = 500, 627 }, 628 [AUTOP_SSD_FAST] = { 629 .qos = { 630 [QOS_RLAT] = 5000, /* 5ms */ 631 [QOS_WLAT] = 5000, 632 [QOS_MIN] = VRATE_MIN_PPM, 633 [QOS_MAX] = VRATE_MAX_PPM, 634 }, 635 .i_lcoefs = { 636 [I_LCOEF_RBPS] = 3102524156LLU, 637 [I_LCOEF_RSEQIOPS] = 724816, 638 [I_LCOEF_RRANDIOPS] = 778122, 639 [I_LCOEF_WBPS] = 1742780862LLU, 640 [I_LCOEF_WSEQIOPS] = 425702, 641 [I_LCOEF_WRANDIOPS] = 443193, 642 }, 643 .too_slow_vrate_pct = 10, 644 }, 645 }; 646 647 /* 648 * vrate adjust percentages indexed by ioc->busy_level. We adjust up on 649 * vtime credit shortage and down on device saturation. 650 */ 651 static u32 vrate_adj_pct[] = 652 { 0, 0, 0, 0, 653 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 654 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 655 4, 4, 4, 4, 4, 4, 4, 4, 8, 8, 8, 8, 8, 8, 8, 8, 16 }; 656 657 static struct blkcg_policy blkcg_policy_iocost; 658 659 /* accessors and helpers */ 660 static struct ioc *rqos_to_ioc(struct rq_qos *rqos) 661 { 662 return container_of(rqos, struct ioc, rqos); 663 } 664 665 static struct ioc *q_to_ioc(struct request_queue *q) 666 { 667 return rqos_to_ioc(rq_qos_id(q, RQ_QOS_COST)); 668 } 669 670 static const char __maybe_unused *ioc_name(struct ioc *ioc) 671 { 672 struct gendisk *disk = ioc->rqos.disk; 673 674 if (!disk) 675 return "<unknown>"; 676 return disk->disk_name; 677 } 678 679 static struct ioc_gq *pd_to_iocg(struct blkg_policy_data *pd) 680 { 681 return pd ? container_of(pd, struct ioc_gq, pd) : NULL; 682 } 683 684 static struct ioc_gq *blkg_to_iocg(struct blkcg_gq *blkg) 685 { 686 return pd_to_iocg(blkg_to_pd(blkg, &blkcg_policy_iocost)); 687 } 688 689 static struct blkcg_gq *iocg_to_blkg(struct ioc_gq *iocg) 690 { 691 return pd_to_blkg(&iocg->pd); 692 } 693 694 static struct ioc_cgrp *blkcg_to_iocc(struct blkcg *blkcg) 695 { 696 return container_of(blkcg_to_cpd(blkcg, &blkcg_policy_iocost), 697 struct ioc_cgrp, cpd); 698 } 699 700 /* 701 * Scale @abs_cost to the inverse of @hw_inuse. The lower the hierarchical 702 * weight, the more expensive each IO. Must round up. 703 */ 704 static u64 abs_cost_to_cost(u64 abs_cost, u32 hw_inuse) 705 { 706 return DIV64_U64_ROUND_UP(abs_cost * WEIGHT_ONE, hw_inuse); 707 } 708 709 /* 710 * The inverse of abs_cost_to_cost(). Must round up. 711 */ 712 static u64 cost_to_abs_cost(u64 cost, u32 hw_inuse) 713 { 714 return DIV64_U64_ROUND_UP(cost * hw_inuse, WEIGHT_ONE); 715 } 716 717 static void iocg_commit_bio(struct ioc_gq *iocg, struct bio *bio, 718 u64 abs_cost, u64 cost) 719 { 720 struct iocg_pcpu_stat *gcs; 721 722 bio->bi_iocost_cost = cost; 723 atomic64_add(cost, &iocg->vtime); 724 725 gcs = get_cpu_ptr(iocg->pcpu_stat); 726 local64_add(abs_cost, &gcs->abs_vusage); 727 put_cpu_ptr(gcs); 728 } 729 730 static void iocg_lock(struct ioc_gq *iocg, bool lock_ioc, unsigned long *flags) 731 { 732 if (lock_ioc) { 733 spin_lock_irqsave(&iocg->ioc->lock, *flags); 734 spin_lock(&iocg->waitq.lock); 735 } else { 736 spin_lock_irqsave(&iocg->waitq.lock, *flags); 737 } 738 } 739 740 static void iocg_unlock(struct ioc_gq *iocg, bool unlock_ioc, unsigned long *flags) 741 { 742 if (unlock_ioc) { 743 spin_unlock(&iocg->waitq.lock); 744 spin_unlock_irqrestore(&iocg->ioc->lock, *flags); 745 } else { 746 spin_unlock_irqrestore(&iocg->waitq.lock, *flags); 747 } 748 } 749 750 #define CREATE_TRACE_POINTS 751 #include <trace/events/iocost.h> 752 753 static void ioc_refresh_margins(struct ioc *ioc) 754 { 755 struct ioc_margins *margins = &ioc->margins; 756 u32 period_us = ioc->period_us; 757 u64 vrate = ioc->vtime_base_rate; 758 759 margins->min = (period_us * MARGIN_MIN_PCT / 100) * vrate; 760 margins->low = (period_us * MARGIN_LOW_PCT / 100) * vrate; 761 margins->target = (period_us * MARGIN_TARGET_PCT / 100) * vrate; 762 } 763 764 /* latency Qos params changed, update period_us and all the dependent params */ 765 static void ioc_refresh_period_us(struct ioc *ioc) 766 { 767 u32 ppm, lat, multi, period_us; 768 769 lockdep_assert_held(&ioc->lock); 770 771 /* pick the higher latency target */ 772 if (ioc->params.qos[QOS_RLAT] >= ioc->params.qos[QOS_WLAT]) { 773 ppm = ioc->params.qos[QOS_RPPM]; 774 lat = ioc->params.qos[QOS_RLAT]; 775 } else { 776 ppm = ioc->params.qos[QOS_WPPM]; 777 lat = ioc->params.qos[QOS_WLAT]; 778 } 779 780 /* 781 * We want the period to be long enough to contain a healthy number 782 * of IOs while short enough for granular control. Define it as a 783 * multiple of the latency target. Ideally, the multiplier should 784 * be scaled according to the percentile so that it would nominally 785 * contain a certain number of requests. Let's be simpler and 786 * scale it linearly so that it's 2x >= pct(90) and 10x at pct(50). 787 */ 788 if (ppm) 789 multi = max_t(u32, (MILLION - ppm) / 50000, 2); 790 else 791 multi = 2; 792 period_us = multi * lat; 793 period_us = clamp_t(u32, period_us, MIN_PERIOD, MAX_PERIOD); 794 795 /* calculate dependent params */ 796 ioc->period_us = period_us; 797 ioc->timer_slack_ns = div64_u64( 798 (u64)period_us * NSEC_PER_USEC * TIMER_SLACK_PCT, 799 100); 800 ioc_refresh_margins(ioc); 801 } 802 803 /* 804 * ioc->rqos.disk isn't initialized when this function is called from 805 * the init path. 806 */ 807 static int ioc_autop_idx(struct ioc *ioc, struct gendisk *disk) 808 { 809 int idx = ioc->autop_idx; 810 const struct ioc_params *p = &autop[idx]; 811 u32 vrate_pct; 812 u64 now_ns; 813 814 /* rotational? */ 815 if (!blk_queue_nonrot(disk->queue)) 816 return AUTOP_HDD; 817 818 /* handle SATA SSDs w/ broken NCQ */ 819 if (blk_queue_depth(disk->queue) == 1) 820 return AUTOP_SSD_QD1; 821 822 /* use one of the normal ssd sets */ 823 if (idx < AUTOP_SSD_DFL) 824 return AUTOP_SSD_DFL; 825 826 /* if user is overriding anything, maintain what was there */ 827 if (ioc->user_qos_params || ioc->user_cost_model) 828 return idx; 829 830 /* step up/down based on the vrate */ 831 vrate_pct = div64_u64(ioc->vtime_base_rate * 100, VTIME_PER_USEC); 832 now_ns = blk_time_get_ns(); 833 834 if (p->too_fast_vrate_pct && p->too_fast_vrate_pct <= vrate_pct) { 835 if (!ioc->autop_too_fast_at) 836 ioc->autop_too_fast_at = now_ns; 837 if (now_ns - ioc->autop_too_fast_at >= AUTOP_CYCLE_NSEC) 838 return idx + 1; 839 } else { 840 ioc->autop_too_fast_at = 0; 841 } 842 843 if (p->too_slow_vrate_pct && p->too_slow_vrate_pct >= vrate_pct) { 844 if (!ioc->autop_too_slow_at) 845 ioc->autop_too_slow_at = now_ns; 846 if (now_ns - ioc->autop_too_slow_at >= AUTOP_CYCLE_NSEC) 847 return idx - 1; 848 } else { 849 ioc->autop_too_slow_at = 0; 850 } 851 852 return idx; 853 } 854 855 /* 856 * Take the followings as input 857 * 858 * @bps maximum sequential throughput 859 * @seqiops maximum sequential 4k iops 860 * @randiops maximum random 4k iops 861 * 862 * and calculate the linear model cost coefficients. 863 * 864 * *@page per-page cost 1s / (@bps / 4096) 865 * *@seqio base cost of a seq IO max((1s / @seqiops) - *@page, 0) 866 * @randiops base cost of a rand IO max((1s / @randiops) - *@page, 0) 867 */ 868 static void calc_lcoefs(u64 bps, u64 seqiops, u64 randiops, 869 u64 *page, u64 *seqio, u64 *randio) 870 { 871 u64 v; 872 873 *page = *seqio = *randio = 0; 874 875 if (bps) { 876 u64 bps_pages = DIV_ROUND_UP_ULL(bps, IOC_PAGE_SIZE); 877 878 if (bps_pages) 879 *page = DIV64_U64_ROUND_UP(VTIME_PER_SEC, bps_pages); 880 else 881 *page = 1; 882 } 883 884 if (seqiops) { 885 v = DIV64_U64_ROUND_UP(VTIME_PER_SEC, seqiops); 886 if (v > *page) 887 *seqio = v - *page; 888 } 889 890 if (randiops) { 891 v = DIV64_U64_ROUND_UP(VTIME_PER_SEC, randiops); 892 if (v > *page) 893 *randio = v - *page; 894 } 895 } 896 897 static void ioc_refresh_lcoefs(struct ioc *ioc) 898 { 899 u64 *u = ioc->params.i_lcoefs; 900 u64 *c = ioc->params.lcoefs; 901 902 calc_lcoefs(u[I_LCOEF_RBPS], u[I_LCOEF_RSEQIOPS], u[I_LCOEF_RRANDIOPS], 903 &c[LCOEF_RPAGE], &c[LCOEF_RSEQIO], &c[LCOEF_RRANDIO]); 904 calc_lcoefs(u[I_LCOEF_WBPS], u[I_LCOEF_WSEQIOPS], u[I_LCOEF_WRANDIOPS], 905 &c[LCOEF_WPAGE], &c[LCOEF_WSEQIO], &c[LCOEF_WRANDIO]); 906 } 907 908 /* 909 * struct gendisk is required as an argument because ioc->rqos.disk 910 * is not properly initialized when called from the init path. 911 */ 912 static bool ioc_refresh_params_disk(struct ioc *ioc, bool force, 913 struct gendisk *disk) 914 { 915 const struct ioc_params *p; 916 int idx; 917 918 lockdep_assert_held(&ioc->lock); 919 920 idx = ioc_autop_idx(ioc, disk); 921 p = &autop[idx]; 922 923 if (idx == ioc->autop_idx && !force) 924 return false; 925 926 if (idx != ioc->autop_idx) { 927 atomic64_set(&ioc->vtime_rate, VTIME_PER_USEC); 928 ioc->vtime_base_rate = VTIME_PER_USEC; 929 } 930 931 ioc->autop_idx = idx; 932 ioc->autop_too_fast_at = 0; 933 ioc->autop_too_slow_at = 0; 934 935 if (!ioc->user_qos_params) 936 memcpy(ioc->params.qos, p->qos, sizeof(p->qos)); 937 if (!ioc->user_cost_model) 938 memcpy(ioc->params.i_lcoefs, p->i_lcoefs, sizeof(p->i_lcoefs)); 939 940 ioc_refresh_period_us(ioc); 941 ioc_refresh_lcoefs(ioc); 942 943 ioc->vrate_min = DIV64_U64_ROUND_UP((u64)ioc->params.qos[QOS_MIN] * 944 VTIME_PER_USEC, MILLION); 945 ioc->vrate_max = DIV64_U64_ROUND_UP((u64)ioc->params.qos[QOS_MAX] * 946 VTIME_PER_USEC, MILLION); 947 948 return true; 949 } 950 951 static bool ioc_refresh_params(struct ioc *ioc, bool force) 952 { 953 return ioc_refresh_params_disk(ioc, force, ioc->rqos.disk); 954 } 955 956 /* 957 * When an iocg accumulates too much vtime or gets deactivated, we throw away 958 * some vtime, which lowers the overall device utilization. As the exact amount 959 * which is being thrown away is known, we can compensate by accelerating the 960 * vrate accordingly so that the extra vtime generated in the current period 961 * matches what got lost. 962 */ 963 static void ioc_refresh_vrate(struct ioc *ioc, struct ioc_now *now) 964 { 965 s64 pleft = ioc->period_at + ioc->period_us - now->now; 966 s64 vperiod = ioc->period_us * ioc->vtime_base_rate; 967 s64 vcomp, vcomp_min, vcomp_max; 968 969 lockdep_assert_held(&ioc->lock); 970 971 /* we need some time left in this period */ 972 if (pleft <= 0) 973 goto done; 974 975 /* 976 * Calculate how much vrate should be adjusted to offset the error. 977 * Limit the amount of adjustment and deduct the adjusted amount from 978 * the error. 979 */ 980 vcomp = -div64_s64(ioc->vtime_err, pleft); 981 vcomp_min = -(ioc->vtime_base_rate >> 1); 982 vcomp_max = ioc->vtime_base_rate; 983 vcomp = clamp(vcomp, vcomp_min, vcomp_max); 984 985 ioc->vtime_err += vcomp * pleft; 986 987 atomic64_set(&ioc->vtime_rate, ioc->vtime_base_rate + vcomp); 988 done: 989 /* bound how much error can accumulate */ 990 ioc->vtime_err = clamp(ioc->vtime_err, -vperiod, vperiod); 991 } 992 993 static void ioc_adjust_base_vrate(struct ioc *ioc, u32 rq_wait_pct, 994 int nr_lagging, int nr_shortages, 995 int prev_busy_level, u32 *missed_ppm) 996 { 997 u64 vrate = ioc->vtime_base_rate; 998 u64 vrate_min = ioc->vrate_min, vrate_max = ioc->vrate_max; 999 1000 if (!ioc->busy_level || (ioc->busy_level < 0 && nr_lagging)) { 1001 if (ioc->busy_level != prev_busy_level || nr_lagging) 1002 trace_iocost_ioc_vrate_adj(ioc, vrate, 1003 missed_ppm, rq_wait_pct, 1004 nr_lagging, nr_shortages); 1005 1006 return; 1007 } 1008 1009 /* 1010 * If vrate is out of bounds, apply clamp gradually as the 1011 * bounds can change abruptly. Otherwise, apply busy_level 1012 * based adjustment. 1013 */ 1014 if (vrate < vrate_min) { 1015 vrate = div64_u64(vrate * (100 + VRATE_CLAMP_ADJ_PCT), 100); 1016 vrate = min(vrate, vrate_min); 1017 } else if (vrate > vrate_max) { 1018 vrate = div64_u64(vrate * (100 - VRATE_CLAMP_ADJ_PCT), 100); 1019 vrate = max(vrate, vrate_max); 1020 } else { 1021 int idx = min_t(int, abs(ioc->busy_level), 1022 ARRAY_SIZE(vrate_adj_pct) - 1); 1023 u32 adj_pct = vrate_adj_pct[idx]; 1024 1025 if (ioc->busy_level > 0) 1026 adj_pct = 100 - adj_pct; 1027 else 1028 adj_pct = 100 + adj_pct; 1029 1030 vrate = clamp(DIV64_U64_ROUND_UP(vrate * adj_pct, 100), 1031 vrate_min, vrate_max); 1032 } 1033 1034 trace_iocost_ioc_vrate_adj(ioc, vrate, missed_ppm, rq_wait_pct, 1035 nr_lagging, nr_shortages); 1036 1037 ioc->vtime_base_rate = vrate; 1038 ioc_refresh_margins(ioc); 1039 } 1040 1041 /* take a snapshot of the current [v]time and vrate */ 1042 static void ioc_now(struct ioc *ioc, struct ioc_now *now) 1043 { 1044 unsigned seq; 1045 u64 vrate; 1046 1047 now->now_ns = blk_time_get_ns(); 1048 now->now = ktime_to_us(now->now_ns); 1049 vrate = atomic64_read(&ioc->vtime_rate); 1050 1051 /* 1052 * The current vtime is 1053 * 1054 * vtime at period start + (wallclock time since the start) * vrate 1055 * 1056 * As a consistent snapshot of `period_at_vtime` and `period_at` is 1057 * needed, they're seqcount protected. 1058 */ 1059 do { 1060 seq = read_seqcount_begin(&ioc->period_seqcount); 1061 now->vnow = ioc->period_at_vtime + 1062 (now->now - ioc->period_at) * vrate; 1063 } while (read_seqcount_retry(&ioc->period_seqcount, seq)); 1064 } 1065 1066 static void ioc_start_period(struct ioc *ioc, struct ioc_now *now) 1067 { 1068 WARN_ON_ONCE(ioc->running != IOC_RUNNING); 1069 1070 write_seqcount_begin(&ioc->period_seqcount); 1071 ioc->period_at = now->now; 1072 ioc->period_at_vtime = now->vnow; 1073 write_seqcount_end(&ioc->period_seqcount); 1074 1075 ioc->timer.expires = jiffies + usecs_to_jiffies(ioc->period_us); 1076 add_timer(&ioc->timer); 1077 } 1078 1079 /* 1080 * Update @iocg's `active` and `inuse` to @active and @inuse, update level 1081 * weight sums and propagate upwards accordingly. If @save, the current margin 1082 * is saved to be used as reference for later inuse in-period adjustments. 1083 */ 1084 static void __propagate_weights(struct ioc_gq *iocg, u32 active, u32 inuse, 1085 bool save, struct ioc_now *now) 1086 { 1087 struct ioc *ioc = iocg->ioc; 1088 int lvl; 1089 1090 lockdep_assert_held(&ioc->lock); 1091 1092 /* 1093 * For an active leaf node, its inuse shouldn't be zero or exceed 1094 * @active. An active internal node's inuse is solely determined by the 1095 * inuse to active ratio of its children regardless of @inuse. 1096 */ 1097 if (list_empty(&iocg->active_list) && iocg->child_active_sum) { 1098 inuse = DIV64_U64_ROUND_UP(active * iocg->child_inuse_sum, 1099 iocg->child_active_sum); 1100 } else { 1101 inuse = clamp_t(u32, inuse, 1, active); 1102 } 1103 1104 iocg->last_inuse = iocg->inuse; 1105 if (save) 1106 iocg->saved_margin = now->vnow - atomic64_read(&iocg->vtime); 1107 1108 if (active == iocg->active && inuse == iocg->inuse) 1109 return; 1110 1111 for (lvl = iocg->level - 1; lvl >= 0; lvl--) { 1112 struct ioc_gq *parent = iocg->ancestors[lvl]; 1113 struct ioc_gq *child = iocg->ancestors[lvl + 1]; 1114 u32 parent_active = 0, parent_inuse = 0; 1115 1116 /* update the level sums */ 1117 parent->child_active_sum += (s32)(active - child->active); 1118 parent->child_inuse_sum += (s32)(inuse - child->inuse); 1119 /* apply the updates */ 1120 child->active = active; 1121 child->inuse = inuse; 1122 1123 /* 1124 * The delta between inuse and active sums indicates that 1125 * much of weight is being given away. Parent's inuse 1126 * and active should reflect the ratio. 1127 */ 1128 if (parent->child_active_sum) { 1129 parent_active = parent->weight; 1130 parent_inuse = DIV64_U64_ROUND_UP( 1131 parent_active * parent->child_inuse_sum, 1132 parent->child_active_sum); 1133 } 1134 1135 /* do we need to keep walking up? */ 1136 if (parent_active == parent->active && 1137 parent_inuse == parent->inuse) 1138 break; 1139 1140 active = parent_active; 1141 inuse = parent_inuse; 1142 } 1143 1144 ioc->weights_updated = true; 1145 } 1146 1147 static void commit_weights(struct ioc *ioc) 1148 { 1149 lockdep_assert_held(&ioc->lock); 1150 1151 if (ioc->weights_updated) { 1152 /* paired with rmb in current_hweight(), see there */ 1153 smp_wmb(); 1154 atomic_inc(&ioc->hweight_gen); 1155 ioc->weights_updated = false; 1156 } 1157 } 1158 1159 static void propagate_weights(struct ioc_gq *iocg, u32 active, u32 inuse, 1160 bool save, struct ioc_now *now) 1161 { 1162 __propagate_weights(iocg, active, inuse, save, now); 1163 commit_weights(iocg->ioc); 1164 } 1165 1166 static void current_hweight(struct ioc_gq *iocg, u32 *hw_activep, u32 *hw_inusep) 1167 { 1168 struct ioc *ioc = iocg->ioc; 1169 int lvl; 1170 u32 hwa, hwi; 1171 int ioc_gen; 1172 1173 /* hot path - if uptodate, use cached */ 1174 ioc_gen = atomic_read(&ioc->hweight_gen); 1175 if (ioc_gen == iocg->hweight_gen) 1176 goto out; 1177 1178 /* 1179 * Paired with wmb in commit_weights(). If we saw the updated 1180 * hweight_gen, all the weight updates from __propagate_weights() are 1181 * visible too. 1182 * 1183 * We can race with weight updates during calculation and get it 1184 * wrong. However, hweight_gen would have changed and a future 1185 * reader will recalculate and we're guaranteed to discard the 1186 * wrong result soon. 1187 */ 1188 smp_rmb(); 1189 1190 hwa = hwi = WEIGHT_ONE; 1191 for (lvl = 0; lvl <= iocg->level - 1; lvl++) { 1192 struct ioc_gq *parent = iocg->ancestors[lvl]; 1193 struct ioc_gq *child = iocg->ancestors[lvl + 1]; 1194 u64 active_sum = READ_ONCE(parent->child_active_sum); 1195 u64 inuse_sum = READ_ONCE(parent->child_inuse_sum); 1196 u32 active = READ_ONCE(child->active); 1197 u32 inuse = READ_ONCE(child->inuse); 1198 1199 /* we can race with deactivations and either may read as zero */ 1200 if (!active_sum || !inuse_sum) 1201 continue; 1202 1203 active_sum = max_t(u64, active, active_sum); 1204 hwa = div64_u64((u64)hwa * active, active_sum); 1205 1206 inuse_sum = max_t(u64, inuse, inuse_sum); 1207 hwi = div64_u64((u64)hwi * inuse, inuse_sum); 1208 } 1209 1210 iocg->hweight_active = max_t(u32, hwa, 1); 1211 iocg->hweight_inuse = max_t(u32, hwi, 1); 1212 iocg->hweight_gen = ioc_gen; 1213 out: 1214 if (hw_activep) 1215 *hw_activep = iocg->hweight_active; 1216 if (hw_inusep) 1217 *hw_inusep = iocg->hweight_inuse; 1218 } 1219 1220 /* 1221 * Calculate the hweight_inuse @iocg would get with max @inuse assuming all the 1222 * other weights stay unchanged. 1223 */ 1224 static u32 current_hweight_max(struct ioc_gq *iocg) 1225 { 1226 u32 hwm = WEIGHT_ONE; 1227 u32 inuse = iocg->active; 1228 u64 child_inuse_sum; 1229 int lvl; 1230 1231 lockdep_assert_held(&iocg->ioc->lock); 1232 1233 for (lvl = iocg->level - 1; lvl >= 0; lvl--) { 1234 struct ioc_gq *parent = iocg->ancestors[lvl]; 1235 struct ioc_gq *child = iocg->ancestors[lvl + 1]; 1236 1237 child_inuse_sum = parent->child_inuse_sum + inuse - child->inuse; 1238 hwm = div64_u64((u64)hwm * inuse, child_inuse_sum); 1239 inuse = DIV64_U64_ROUND_UP(parent->active * child_inuse_sum, 1240 parent->child_active_sum); 1241 } 1242 1243 return max_t(u32, hwm, 1); 1244 } 1245 1246 static void weight_updated(struct ioc_gq *iocg, struct ioc_now *now) 1247 { 1248 struct ioc *ioc = iocg->ioc; 1249 struct blkcg_gq *blkg = iocg_to_blkg(iocg); 1250 struct ioc_cgrp *iocc = blkcg_to_iocc(blkg->blkcg); 1251 u32 weight; 1252 1253 lockdep_assert_held(&ioc->lock); 1254 1255 weight = iocg->cfg_weight ?: iocc->dfl_weight; 1256 if (weight != iocg->weight && iocg->active) 1257 propagate_weights(iocg, weight, iocg->inuse, true, now); 1258 iocg->weight = weight; 1259 } 1260 1261 static bool iocg_activate(struct ioc_gq *iocg, struct ioc_now *now) 1262 { 1263 struct ioc *ioc = iocg->ioc; 1264 u64 __maybe_unused last_period, cur_period; 1265 u64 vtime, vtarget; 1266 int i; 1267 1268 /* 1269 * If seem to be already active, just update the stamp to tell the 1270 * timer that we're still active. We don't mind occassional races. 1271 */ 1272 if (!list_empty(&iocg->active_list)) { 1273 ioc_now(ioc, now); 1274 cur_period = atomic64_read(&ioc->cur_period); 1275 if (atomic64_read(&iocg->active_period) != cur_period) 1276 atomic64_set(&iocg->active_period, cur_period); 1277 return true; 1278 } 1279 1280 /* racy check on internal node IOs, treat as root level IOs */ 1281 if (iocg->child_active_sum) 1282 return false; 1283 1284 spin_lock_irq(&ioc->lock); 1285 1286 ioc_now(ioc, now); 1287 1288 /* update period */ 1289 cur_period = atomic64_read(&ioc->cur_period); 1290 last_period = atomic64_read(&iocg->active_period); 1291 atomic64_set(&iocg->active_period, cur_period); 1292 1293 /* already activated or breaking leaf-only constraint? */ 1294 if (!list_empty(&iocg->active_list)) 1295 goto succeed_unlock; 1296 for (i = iocg->level - 1; i > 0; i--) 1297 if (!list_empty(&iocg->ancestors[i]->active_list)) 1298 goto fail_unlock; 1299 1300 if (iocg->child_active_sum) 1301 goto fail_unlock; 1302 1303 /* 1304 * Always start with the target budget. On deactivation, we throw away 1305 * anything above it. 1306 */ 1307 vtarget = now->vnow - ioc->margins.target; 1308 vtime = atomic64_read(&iocg->vtime); 1309 1310 atomic64_add(vtarget - vtime, &iocg->vtime); 1311 atomic64_add(vtarget - vtime, &iocg->done_vtime); 1312 vtime = vtarget; 1313 1314 /* 1315 * Activate, propagate weight and start period timer if not 1316 * running. Reset hweight_gen to avoid accidental match from 1317 * wrapping. 1318 */ 1319 iocg->hweight_gen = atomic_read(&ioc->hweight_gen) - 1; 1320 list_add(&iocg->active_list, &ioc->active_iocgs); 1321 1322 propagate_weights(iocg, iocg->weight, 1323 iocg->last_inuse ?: iocg->weight, true, now); 1324 1325 TRACE_IOCG_PATH(iocg_activate, iocg, now, 1326 last_period, cur_period, vtime); 1327 1328 iocg->activated_at = now->now; 1329 1330 if (ioc->running == IOC_IDLE) { 1331 ioc->running = IOC_RUNNING; 1332 ioc->dfgv_period_at = now->now; 1333 ioc->dfgv_period_rem = 0; 1334 ioc_start_period(ioc, now); 1335 } 1336 1337 succeed_unlock: 1338 spin_unlock_irq(&ioc->lock); 1339 return true; 1340 1341 fail_unlock: 1342 spin_unlock_irq(&ioc->lock); 1343 return false; 1344 } 1345 1346 static bool iocg_kick_delay(struct ioc_gq *iocg, struct ioc_now *now) 1347 { 1348 struct ioc *ioc = iocg->ioc; 1349 struct blkcg_gq *blkg = iocg_to_blkg(iocg); 1350 u64 tdelta, delay, new_delay; 1351 s64 vover, vover_pct; 1352 u32 hwa; 1353 1354 lockdep_assert_held(&iocg->waitq.lock); 1355 1356 /* 1357 * If the delay is set by another CPU, we may be in the past. No need to 1358 * change anything if so. This avoids decay calculation underflow. 1359 */ 1360 if (time_before64(now->now, iocg->delay_at)) 1361 return false; 1362 1363 /* calculate the current delay in effect - 1/2 every second */ 1364 tdelta = now->now - iocg->delay_at; 1365 if (iocg->delay) 1366 delay = iocg->delay >> div64_u64(tdelta, USEC_PER_SEC); 1367 else 1368 delay = 0; 1369 1370 /* calculate the new delay from the debt amount */ 1371 current_hweight(iocg, &hwa, NULL); 1372 vover = atomic64_read(&iocg->vtime) + 1373 abs_cost_to_cost(iocg->abs_vdebt, hwa) - now->vnow; 1374 vover_pct = div64_s64(100 * vover, 1375 ioc->period_us * ioc->vtime_base_rate); 1376 1377 if (vover_pct <= MIN_DELAY_THR_PCT) 1378 new_delay = 0; 1379 else if (vover_pct >= MAX_DELAY_THR_PCT) 1380 new_delay = MAX_DELAY; 1381 else 1382 new_delay = MIN_DELAY + 1383 div_u64((MAX_DELAY - MIN_DELAY) * 1384 (vover_pct - MIN_DELAY_THR_PCT), 1385 MAX_DELAY_THR_PCT - MIN_DELAY_THR_PCT); 1386 1387 /* pick the higher one and apply */ 1388 if (new_delay > delay) { 1389 iocg->delay = new_delay; 1390 iocg->delay_at = now->now; 1391 delay = new_delay; 1392 } 1393 1394 if (delay >= MIN_DELAY) { 1395 if (!iocg->indelay_since) 1396 iocg->indelay_since = now->now; 1397 blkcg_set_delay(blkg, delay * NSEC_PER_USEC); 1398 return true; 1399 } else { 1400 if (iocg->indelay_since) { 1401 iocg->stat.indelay_us += now->now - iocg->indelay_since; 1402 iocg->indelay_since = 0; 1403 } 1404 iocg->delay = 0; 1405 blkcg_clear_delay(blkg); 1406 return false; 1407 } 1408 } 1409 1410 static void iocg_incur_debt(struct ioc_gq *iocg, u64 abs_cost, 1411 struct ioc_now *now) 1412 { 1413 struct iocg_pcpu_stat *gcs; 1414 1415 lockdep_assert_held(&iocg->ioc->lock); 1416 lockdep_assert_held(&iocg->waitq.lock); 1417 WARN_ON_ONCE(list_empty(&iocg->active_list)); 1418 1419 /* 1420 * Once in debt, debt handling owns inuse. @iocg stays at the minimum 1421 * inuse donating all of it share to others until its debt is paid off. 1422 */ 1423 if (!iocg->abs_vdebt && abs_cost) { 1424 iocg->indebt_since = now->now; 1425 propagate_weights(iocg, iocg->active, 0, false, now); 1426 } 1427 1428 iocg->abs_vdebt += abs_cost; 1429 1430 gcs = get_cpu_ptr(iocg->pcpu_stat); 1431 local64_add(abs_cost, &gcs->abs_vusage); 1432 put_cpu_ptr(gcs); 1433 } 1434 1435 static void iocg_pay_debt(struct ioc_gq *iocg, u64 abs_vpay, 1436 struct ioc_now *now) 1437 { 1438 lockdep_assert_held(&iocg->ioc->lock); 1439 lockdep_assert_held(&iocg->waitq.lock); 1440 1441 /* make sure that nobody messed with @iocg */ 1442 WARN_ON_ONCE(list_empty(&iocg->active_list)); 1443 WARN_ON_ONCE(iocg->inuse > 1); 1444 1445 iocg->abs_vdebt -= min(abs_vpay, iocg->abs_vdebt); 1446 1447 /* if debt is paid in full, restore inuse */ 1448 if (!iocg->abs_vdebt) { 1449 iocg->stat.indebt_us += now->now - iocg->indebt_since; 1450 iocg->indebt_since = 0; 1451 1452 propagate_weights(iocg, iocg->active, iocg->last_inuse, 1453 false, now); 1454 } 1455 } 1456 1457 static int iocg_wake_fn(struct wait_queue_entry *wq_entry, unsigned mode, 1458 int flags, void *key) 1459 { 1460 struct iocg_wait *wait = container_of(wq_entry, struct iocg_wait, wait); 1461 struct iocg_wake_ctx *ctx = key; 1462 u64 cost = abs_cost_to_cost(wait->abs_cost, ctx->hw_inuse); 1463 1464 ctx->vbudget -= cost; 1465 1466 if (ctx->vbudget < 0) 1467 return -1; 1468 1469 iocg_commit_bio(ctx->iocg, wait->bio, wait->abs_cost, cost); 1470 wait->committed = true; 1471 1472 /* 1473 * autoremove_wake_function() removes the wait entry only when it 1474 * actually changed the task state. We want the wait always removed. 1475 * Remove explicitly and use default_wake_function(). Note that the 1476 * order of operations is important as finish_wait() tests whether 1477 * @wq_entry is removed without grabbing the lock. 1478 */ 1479 default_wake_function(wq_entry, mode, flags, key); 1480 list_del_init_careful(&wq_entry->entry); 1481 return 0; 1482 } 1483 1484 /* 1485 * Calculate the accumulated budget, pay debt if @pay_debt and wake up waiters 1486 * accordingly. When @pay_debt is %true, the caller must be holding ioc->lock in 1487 * addition to iocg->waitq.lock. 1488 */ 1489 static void iocg_kick_waitq(struct ioc_gq *iocg, bool pay_debt, 1490 struct ioc_now *now) 1491 { 1492 struct ioc *ioc = iocg->ioc; 1493 struct iocg_wake_ctx ctx = { .iocg = iocg }; 1494 u64 vshortage, expires, oexpires; 1495 s64 vbudget; 1496 u32 hwa; 1497 1498 lockdep_assert_held(&iocg->waitq.lock); 1499 1500 current_hweight(iocg, &hwa, NULL); 1501 vbudget = now->vnow - atomic64_read(&iocg->vtime); 1502 1503 /* pay off debt */ 1504 if (pay_debt && iocg->abs_vdebt && vbudget > 0) { 1505 u64 abs_vbudget = cost_to_abs_cost(vbudget, hwa); 1506 u64 abs_vpay = min_t(u64, abs_vbudget, iocg->abs_vdebt); 1507 u64 vpay = abs_cost_to_cost(abs_vpay, hwa); 1508 1509 lockdep_assert_held(&ioc->lock); 1510 1511 atomic64_add(vpay, &iocg->vtime); 1512 atomic64_add(vpay, &iocg->done_vtime); 1513 iocg_pay_debt(iocg, abs_vpay, now); 1514 vbudget -= vpay; 1515 } 1516 1517 if (iocg->abs_vdebt || iocg->delay) 1518 iocg_kick_delay(iocg, now); 1519 1520 /* 1521 * Debt can still be outstanding if we haven't paid all yet or the 1522 * caller raced and called without @pay_debt. Shouldn't wake up waiters 1523 * under debt. Make sure @vbudget reflects the outstanding amount and is 1524 * not positive. 1525 */ 1526 if (iocg->abs_vdebt) { 1527 s64 vdebt = abs_cost_to_cost(iocg->abs_vdebt, hwa); 1528 vbudget = min_t(s64, 0, vbudget - vdebt); 1529 } 1530 1531 /* 1532 * Wake up the ones which are due and see how much vtime we'll need for 1533 * the next one. As paying off debt restores hw_inuse, it must be read 1534 * after the above debt payment. 1535 */ 1536 ctx.vbudget = vbudget; 1537 current_hweight(iocg, NULL, &ctx.hw_inuse); 1538 1539 __wake_up_locked_key(&iocg->waitq, TASK_NORMAL, &ctx); 1540 1541 if (!waitqueue_active(&iocg->waitq)) { 1542 if (iocg->wait_since) { 1543 iocg->stat.wait_us += now->now - iocg->wait_since; 1544 iocg->wait_since = 0; 1545 } 1546 return; 1547 } 1548 1549 if (!iocg->wait_since) 1550 iocg->wait_since = now->now; 1551 1552 if (WARN_ON_ONCE(ctx.vbudget >= 0)) 1553 return; 1554 1555 /* determine next wakeup, add a timer margin to guarantee chunking */ 1556 vshortage = -ctx.vbudget; 1557 expires = now->now_ns + 1558 DIV64_U64_ROUND_UP(vshortage, ioc->vtime_base_rate) * 1559 NSEC_PER_USEC; 1560 expires += ioc->timer_slack_ns; 1561 1562 /* if already active and close enough, don't bother */ 1563 oexpires = ktime_to_ns(hrtimer_get_softexpires(&iocg->waitq_timer)); 1564 if (hrtimer_is_queued(&iocg->waitq_timer) && 1565 abs(oexpires - expires) <= ioc->timer_slack_ns) 1566 return; 1567 1568 hrtimer_start_range_ns(&iocg->waitq_timer, ns_to_ktime(expires), 1569 ioc->timer_slack_ns, HRTIMER_MODE_ABS); 1570 } 1571 1572 static enum hrtimer_restart iocg_waitq_timer_fn(struct hrtimer *timer) 1573 { 1574 struct ioc_gq *iocg = container_of(timer, struct ioc_gq, waitq_timer); 1575 bool pay_debt = READ_ONCE(iocg->abs_vdebt); 1576 struct ioc_now now; 1577 unsigned long flags; 1578 1579 ioc_now(iocg->ioc, &now); 1580 1581 iocg_lock(iocg, pay_debt, &flags); 1582 iocg_kick_waitq(iocg, pay_debt, &now); 1583 iocg_unlock(iocg, pay_debt, &flags); 1584 1585 return HRTIMER_NORESTART; 1586 } 1587 1588 static void ioc_lat_stat(struct ioc *ioc, u32 *missed_ppm_ar, u32 *rq_wait_pct_p) 1589 { 1590 u32 nr_met[2] = { }; 1591 u32 nr_missed[2] = { }; 1592 u64 rq_wait_ns = 0; 1593 int cpu, rw; 1594 1595 for_each_online_cpu(cpu) { 1596 struct ioc_pcpu_stat *stat = per_cpu_ptr(ioc->pcpu_stat, cpu); 1597 u64 this_rq_wait_ns; 1598 1599 for (rw = READ; rw <= WRITE; rw++) { 1600 u32 this_met = local_read(&stat->missed[rw].nr_met); 1601 u32 this_missed = local_read(&stat->missed[rw].nr_missed); 1602 1603 nr_met[rw] += this_met - stat->missed[rw].last_met; 1604 nr_missed[rw] += this_missed - stat->missed[rw].last_missed; 1605 stat->missed[rw].last_met = this_met; 1606 stat->missed[rw].last_missed = this_missed; 1607 } 1608 1609 this_rq_wait_ns = local64_read(&stat->rq_wait_ns); 1610 rq_wait_ns += this_rq_wait_ns - stat->last_rq_wait_ns; 1611 stat->last_rq_wait_ns = this_rq_wait_ns; 1612 } 1613 1614 for (rw = READ; rw <= WRITE; rw++) { 1615 if (nr_met[rw] + nr_missed[rw]) 1616 missed_ppm_ar[rw] = 1617 DIV64_U64_ROUND_UP((u64)nr_missed[rw] * MILLION, 1618 nr_met[rw] + nr_missed[rw]); 1619 else 1620 missed_ppm_ar[rw] = 0; 1621 } 1622 1623 *rq_wait_pct_p = div64_u64(rq_wait_ns * 100, 1624 ioc->period_us * NSEC_PER_USEC); 1625 } 1626 1627 /* was iocg idle this period? */ 1628 static bool iocg_is_idle(struct ioc_gq *iocg) 1629 { 1630 struct ioc *ioc = iocg->ioc; 1631 1632 /* did something get issued this period? */ 1633 if (atomic64_read(&iocg->active_period) == 1634 atomic64_read(&ioc->cur_period)) 1635 return false; 1636 1637 /* is something in flight? */ 1638 if (atomic64_read(&iocg->done_vtime) != atomic64_read(&iocg->vtime)) 1639 return false; 1640 1641 return true; 1642 } 1643 1644 /* 1645 * Call this function on the target leaf @iocg's to build pre-order traversal 1646 * list of all the ancestors in @inner_walk. The inner nodes are linked through 1647 * ->walk_list and the caller is responsible for dissolving the list after use. 1648 */ 1649 static void iocg_build_inner_walk(struct ioc_gq *iocg, 1650 struct list_head *inner_walk) 1651 { 1652 int lvl; 1653 1654 WARN_ON_ONCE(!list_empty(&iocg->walk_list)); 1655 1656 /* find the first ancestor which hasn't been visited yet */ 1657 for (lvl = iocg->level - 1; lvl >= 0; lvl--) { 1658 if (!list_empty(&iocg->ancestors[lvl]->walk_list)) 1659 break; 1660 } 1661 1662 /* walk down and visit the inner nodes to get pre-order traversal */ 1663 while (++lvl <= iocg->level - 1) { 1664 struct ioc_gq *inner = iocg->ancestors[lvl]; 1665 1666 /* record traversal order */ 1667 list_add_tail(&inner->walk_list, inner_walk); 1668 } 1669 } 1670 1671 /* propagate the deltas to the parent */ 1672 static void iocg_flush_stat_upward(struct ioc_gq *iocg) 1673 { 1674 if (iocg->level > 0) { 1675 struct iocg_stat *parent_stat = 1676 &iocg->ancestors[iocg->level - 1]->stat; 1677 1678 parent_stat->usage_us += 1679 iocg->stat.usage_us - iocg->last_stat.usage_us; 1680 parent_stat->wait_us += 1681 iocg->stat.wait_us - iocg->last_stat.wait_us; 1682 parent_stat->indebt_us += 1683 iocg->stat.indebt_us - iocg->last_stat.indebt_us; 1684 parent_stat->indelay_us += 1685 iocg->stat.indelay_us - iocg->last_stat.indelay_us; 1686 } 1687 1688 iocg->last_stat = iocg->stat; 1689 } 1690 1691 /* collect per-cpu counters and propagate the deltas to the parent */ 1692 static void iocg_flush_stat_leaf(struct ioc_gq *iocg, struct ioc_now *now) 1693 { 1694 struct ioc *ioc = iocg->ioc; 1695 u64 abs_vusage = 0; 1696 u64 vusage_delta; 1697 int cpu; 1698 1699 lockdep_assert_held(&iocg->ioc->lock); 1700 1701 /* collect per-cpu counters */ 1702 for_each_possible_cpu(cpu) { 1703 abs_vusage += local64_read( 1704 per_cpu_ptr(&iocg->pcpu_stat->abs_vusage, cpu)); 1705 } 1706 vusage_delta = abs_vusage - iocg->last_stat_abs_vusage; 1707 iocg->last_stat_abs_vusage = abs_vusage; 1708 1709 iocg->usage_delta_us = div64_u64(vusage_delta, ioc->vtime_base_rate); 1710 iocg->stat.usage_us += iocg->usage_delta_us; 1711 1712 iocg_flush_stat_upward(iocg); 1713 } 1714 1715 /* get stat counters ready for reading on all active iocgs */ 1716 static void iocg_flush_stat(struct list_head *target_iocgs, struct ioc_now *now) 1717 { 1718 LIST_HEAD(inner_walk); 1719 struct ioc_gq *iocg, *tiocg; 1720 1721 /* flush leaves and build inner node walk list */ 1722 list_for_each_entry(iocg, target_iocgs, active_list) { 1723 iocg_flush_stat_leaf(iocg, now); 1724 iocg_build_inner_walk(iocg, &inner_walk); 1725 } 1726 1727 /* keep flushing upwards by walking the inner list backwards */ 1728 list_for_each_entry_safe_reverse(iocg, tiocg, &inner_walk, walk_list) { 1729 iocg_flush_stat_upward(iocg); 1730 list_del_init(&iocg->walk_list); 1731 } 1732 } 1733 1734 /* 1735 * Determine what @iocg's hweight_inuse should be after donating unused 1736 * capacity. @hwm is the upper bound and used to signal no donation. This 1737 * function also throws away @iocg's excess budget. 1738 */ 1739 static u32 hweight_after_donation(struct ioc_gq *iocg, u32 old_hwi, u32 hwm, 1740 u32 usage, struct ioc_now *now) 1741 { 1742 struct ioc *ioc = iocg->ioc; 1743 u64 vtime = atomic64_read(&iocg->vtime); 1744 s64 excess, delta, target, new_hwi; 1745 1746 /* debt handling owns inuse for debtors */ 1747 if (iocg->abs_vdebt) 1748 return 1; 1749 1750 /* see whether minimum margin requirement is met */ 1751 if (waitqueue_active(&iocg->waitq) || 1752 time_after64(vtime, now->vnow - ioc->margins.min)) 1753 return hwm; 1754 1755 /* throw away excess above target */ 1756 excess = now->vnow - vtime - ioc->margins.target; 1757 if (excess > 0) { 1758 atomic64_add(excess, &iocg->vtime); 1759 atomic64_add(excess, &iocg->done_vtime); 1760 vtime += excess; 1761 ioc->vtime_err -= div64_u64(excess * old_hwi, WEIGHT_ONE); 1762 } 1763 1764 /* 1765 * Let's say the distance between iocg's and device's vtimes as a 1766 * fraction of period duration is delta. Assuming that the iocg will 1767 * consume the usage determined above, we want to determine new_hwi so 1768 * that delta equals MARGIN_TARGET at the end of the next period. 1769 * 1770 * We need to execute usage worth of IOs while spending the sum of the 1771 * new budget (1 - MARGIN_TARGET) and the leftover from the last period 1772 * (delta): 1773 * 1774 * usage = (1 - MARGIN_TARGET + delta) * new_hwi 1775 * 1776 * Therefore, the new_hwi is: 1777 * 1778 * new_hwi = usage / (1 - MARGIN_TARGET + delta) 1779 */ 1780 delta = div64_s64(WEIGHT_ONE * (now->vnow - vtime), 1781 now->vnow - ioc->period_at_vtime); 1782 target = WEIGHT_ONE * MARGIN_TARGET_PCT / 100; 1783 new_hwi = div64_s64(WEIGHT_ONE * usage, WEIGHT_ONE - target + delta); 1784 1785 return clamp_t(s64, new_hwi, 1, hwm); 1786 } 1787 1788 /* 1789 * For work-conservation, an iocg which isn't using all of its share should 1790 * donate the leftover to other iocgs. There are two ways to achieve this - 1. 1791 * bumping up vrate accordingly 2. lowering the donating iocg's inuse weight. 1792 * 1793 * #1 is mathematically simpler but has the drawback of requiring synchronous 1794 * global hweight_inuse updates when idle iocg's get activated or inuse weights 1795 * change due to donation snapbacks as it has the possibility of grossly 1796 * overshooting what's allowed by the model and vrate. 1797 * 1798 * #2 is inherently safe with local operations. The donating iocg can easily 1799 * snap back to higher weights when needed without worrying about impacts on 1800 * other nodes as the impacts will be inherently correct. This also makes idle 1801 * iocg activations safe. The only effect activations have is decreasing 1802 * hweight_inuse of others, the right solution to which is for those iocgs to 1803 * snap back to higher weights. 1804 * 1805 * So, we go with #2. The challenge is calculating how each donating iocg's 1806 * inuse should be adjusted to achieve the target donation amounts. This is done 1807 * using Andy's method described in the following pdf. 1808 * 1809 * https://drive.google.com/file/d/1PsJwxPFtjUnwOY1QJ5AeICCcsL7BM3bo 1810 * 1811 * Given the weights and target after-donation hweight_inuse values, Andy's 1812 * method determines how the proportional distribution should look like at each 1813 * sibling level to maintain the relative relationship between all non-donating 1814 * pairs. To roughly summarize, it divides the tree into donating and 1815 * non-donating parts, calculates global donation rate which is used to 1816 * determine the target hweight_inuse for each node, and then derives per-level 1817 * proportions. 1818 * 1819 * The following pdf shows that global distribution calculated this way can be 1820 * achieved by scaling inuse weights of donating leaves and propagating the 1821 * adjustments upwards proportionally. 1822 * 1823 * https://drive.google.com/file/d/1vONz1-fzVO7oY5DXXsLjSxEtYYQbOvsE 1824 * 1825 * Combining the above two, we can determine how each leaf iocg's inuse should 1826 * be adjusted to achieve the target donation. 1827 * 1828 * https://drive.google.com/file/d/1WcrltBOSPN0qXVdBgnKm4mdp9FhuEFQN 1829 * 1830 * The inline comments use symbols from the last pdf. 1831 * 1832 * b is the sum of the absolute budgets in the subtree. 1 for the root node. 1833 * f is the sum of the absolute budgets of non-donating nodes in the subtree. 1834 * t is the sum of the absolute budgets of donating nodes in the subtree. 1835 * w is the weight of the node. w = w_f + w_t 1836 * w_f is the non-donating portion of w. w_f = w * f / b 1837 * w_b is the donating portion of w. w_t = w * t / b 1838 * s is the sum of all sibling weights. s = Sum(w) for siblings 1839 * s_f and s_t are the non-donating and donating portions of s. 1840 * 1841 * Subscript p denotes the parent's counterpart and ' the adjusted value - e.g. 1842 * w_pt is the donating portion of the parent's weight and w'_pt the same value 1843 * after adjustments. Subscript r denotes the root node's values. 1844 */ 1845 static void transfer_surpluses(struct list_head *surpluses, struct ioc_now *now) 1846 { 1847 LIST_HEAD(over_hwa); 1848 LIST_HEAD(inner_walk); 1849 struct ioc_gq *iocg, *tiocg, *root_iocg; 1850 u32 after_sum, over_sum, over_target, gamma; 1851 1852 /* 1853 * It's pretty unlikely but possible for the total sum of 1854 * hweight_after_donation's to be higher than WEIGHT_ONE, which will 1855 * confuse the following calculations. If such condition is detected, 1856 * scale down everyone over its full share equally to keep the sum below 1857 * WEIGHT_ONE. 1858 */ 1859 after_sum = 0; 1860 over_sum = 0; 1861 list_for_each_entry(iocg, surpluses, surplus_list) { 1862 u32 hwa; 1863 1864 current_hweight(iocg, &hwa, NULL); 1865 after_sum += iocg->hweight_after_donation; 1866 1867 if (iocg->hweight_after_donation > hwa) { 1868 over_sum += iocg->hweight_after_donation; 1869 list_add(&iocg->walk_list, &over_hwa); 1870 } 1871 } 1872 1873 if (after_sum >= WEIGHT_ONE) { 1874 /* 1875 * The delta should be deducted from the over_sum, calculate 1876 * target over_sum value. 1877 */ 1878 u32 over_delta = after_sum - (WEIGHT_ONE - 1); 1879 WARN_ON_ONCE(over_sum <= over_delta); 1880 over_target = over_sum - over_delta; 1881 } else { 1882 over_target = 0; 1883 } 1884 1885 list_for_each_entry_safe(iocg, tiocg, &over_hwa, walk_list) { 1886 if (over_target) 1887 iocg->hweight_after_donation = 1888 div_u64((u64)iocg->hweight_after_donation * 1889 over_target, over_sum); 1890 list_del_init(&iocg->walk_list); 1891 } 1892 1893 /* 1894 * Build pre-order inner node walk list and prepare for donation 1895 * adjustment calculations. 1896 */ 1897 list_for_each_entry(iocg, surpluses, surplus_list) { 1898 iocg_build_inner_walk(iocg, &inner_walk); 1899 } 1900 1901 root_iocg = list_first_entry(&inner_walk, struct ioc_gq, walk_list); 1902 WARN_ON_ONCE(root_iocg->level > 0); 1903 1904 list_for_each_entry(iocg, &inner_walk, walk_list) { 1905 iocg->child_adjusted_sum = 0; 1906 iocg->hweight_donating = 0; 1907 iocg->hweight_after_donation = 0; 1908 } 1909 1910 /* 1911 * Propagate the donating budget (b_t) and after donation budget (b'_t) 1912 * up the hierarchy. 1913 */ 1914 list_for_each_entry(iocg, surpluses, surplus_list) { 1915 struct ioc_gq *parent = iocg->ancestors[iocg->level - 1]; 1916 1917 parent->hweight_donating += iocg->hweight_donating; 1918 parent->hweight_after_donation += iocg->hweight_after_donation; 1919 } 1920 1921 list_for_each_entry_reverse(iocg, &inner_walk, walk_list) { 1922 if (iocg->level > 0) { 1923 struct ioc_gq *parent = iocg->ancestors[iocg->level - 1]; 1924 1925 parent->hweight_donating += iocg->hweight_donating; 1926 parent->hweight_after_donation += iocg->hweight_after_donation; 1927 } 1928 } 1929 1930 /* 1931 * Calculate inner hwa's (b) and make sure the donation values are 1932 * within the accepted ranges as we're doing low res calculations with 1933 * roundups. 1934 */ 1935 list_for_each_entry(iocg, &inner_walk, walk_list) { 1936 if (iocg->level) { 1937 struct ioc_gq *parent = iocg->ancestors[iocg->level - 1]; 1938 1939 iocg->hweight_active = DIV64_U64_ROUND_UP( 1940 (u64)parent->hweight_active * iocg->active, 1941 parent->child_active_sum); 1942 1943 } 1944 1945 iocg->hweight_donating = min(iocg->hweight_donating, 1946 iocg->hweight_active); 1947 iocg->hweight_after_donation = min(iocg->hweight_after_donation, 1948 iocg->hweight_donating - 1); 1949 if (WARN_ON_ONCE(iocg->hweight_active <= 1 || 1950 iocg->hweight_donating <= 1 || 1951 iocg->hweight_after_donation == 0)) { 1952 pr_warn("iocg: invalid donation weights in "); 1953 pr_cont_cgroup_path(iocg_to_blkg(iocg)->blkcg->css.cgroup); 1954 pr_cont(": active=%u donating=%u after=%u\n", 1955 iocg->hweight_active, iocg->hweight_donating, 1956 iocg->hweight_after_donation); 1957 } 1958 } 1959 1960 /* 1961 * Calculate the global donation rate (gamma) - the rate to adjust 1962 * non-donating budgets by. 1963 * 1964 * No need to use 64bit multiplication here as the first operand is 1965 * guaranteed to be smaller than WEIGHT_ONE (1<<16). 1966 * 1967 * We know that there are beneficiary nodes and the sum of the donating 1968 * hweights can't be whole; however, due to the round-ups during hweight 1969 * calculations, root_iocg->hweight_donating might still end up equal to 1970 * or greater than whole. Limit the range when calculating the divider. 1971 * 1972 * gamma = (1 - t_r') / (1 - t_r) 1973 */ 1974 gamma = DIV_ROUND_UP( 1975 (WEIGHT_ONE - root_iocg->hweight_after_donation) * WEIGHT_ONE, 1976 WEIGHT_ONE - min_t(u32, root_iocg->hweight_donating, WEIGHT_ONE - 1)); 1977 1978 /* 1979 * Calculate adjusted hwi, child_adjusted_sum and inuse for the inner 1980 * nodes. 1981 */ 1982 list_for_each_entry(iocg, &inner_walk, walk_list) { 1983 struct ioc_gq *parent; 1984 u32 inuse, wpt, wptp; 1985 u64 st, sf; 1986 1987 if (iocg->level == 0) { 1988 /* adjusted weight sum for 1st level: s' = s * b_pf / b'_pf */ 1989 iocg->child_adjusted_sum = DIV64_U64_ROUND_UP( 1990 iocg->child_active_sum * (WEIGHT_ONE - iocg->hweight_donating), 1991 WEIGHT_ONE - iocg->hweight_after_donation); 1992 continue; 1993 } 1994 1995 parent = iocg->ancestors[iocg->level - 1]; 1996 1997 /* b' = gamma * b_f + b_t' */ 1998 iocg->hweight_inuse = DIV64_U64_ROUND_UP( 1999 (u64)gamma * (iocg->hweight_active - iocg->hweight_donating), 2000 WEIGHT_ONE) + iocg->hweight_after_donation; 2001 2002 /* w' = s' * b' / b'_p */ 2003 inuse = DIV64_U64_ROUND_UP( 2004 (u64)parent->child_adjusted_sum * iocg->hweight_inuse, 2005 parent->hweight_inuse); 2006 2007 /* adjusted weight sum for children: s' = s_f + s_t * w'_pt / w_pt */ 2008 st = DIV64_U64_ROUND_UP( 2009 iocg->child_active_sum * iocg->hweight_donating, 2010 iocg->hweight_active); 2011 sf = iocg->child_active_sum - st; 2012 wpt = DIV64_U64_ROUND_UP( 2013 (u64)iocg->active * iocg->hweight_donating, 2014 iocg->hweight_active); 2015 wptp = DIV64_U64_ROUND_UP( 2016 (u64)inuse * iocg->hweight_after_donation, 2017 iocg->hweight_inuse); 2018 2019 iocg->child_adjusted_sum = sf + DIV64_U64_ROUND_UP(st * wptp, wpt); 2020 } 2021 2022 /* 2023 * All inner nodes now have ->hweight_inuse and ->child_adjusted_sum and 2024 * we can finally determine leaf adjustments. 2025 */ 2026 list_for_each_entry(iocg, surpluses, surplus_list) { 2027 struct ioc_gq *parent = iocg->ancestors[iocg->level - 1]; 2028 u32 inuse; 2029 2030 /* 2031 * In-debt iocgs participated in the donation calculation with 2032 * the minimum target hweight_inuse. Configuring inuse 2033 * accordingly would work fine but debt handling expects 2034 * @iocg->inuse stay at the minimum and we don't wanna 2035 * interfere. 2036 */ 2037 if (iocg->abs_vdebt) { 2038 WARN_ON_ONCE(iocg->inuse > 1); 2039 continue; 2040 } 2041 2042 /* w' = s' * b' / b'_p, note that b' == b'_t for donating leaves */ 2043 inuse = DIV64_U64_ROUND_UP( 2044 parent->child_adjusted_sum * iocg->hweight_after_donation, 2045 parent->hweight_inuse); 2046 2047 TRACE_IOCG_PATH(inuse_transfer, iocg, now, 2048 iocg->inuse, inuse, 2049 iocg->hweight_inuse, 2050 iocg->hweight_after_donation); 2051 2052 __propagate_weights(iocg, iocg->active, inuse, true, now); 2053 } 2054 2055 /* walk list should be dissolved after use */ 2056 list_for_each_entry_safe(iocg, tiocg, &inner_walk, walk_list) 2057 list_del_init(&iocg->walk_list); 2058 } 2059 2060 /* 2061 * A low weight iocg can amass a large amount of debt, for example, when 2062 * anonymous memory gets reclaimed aggressively. If the system has a lot of 2063 * memory paired with a slow IO device, the debt can span multiple seconds or 2064 * more. If there are no other subsequent IO issuers, the in-debt iocg may end 2065 * up blocked paying its debt while the IO device is idle. 2066 * 2067 * The following protects against such cases. If the device has been 2068 * sufficiently idle for a while, the debts are halved and delays are 2069 * recalculated. 2070 */ 2071 static void ioc_forgive_debts(struct ioc *ioc, u64 usage_us_sum, int nr_debtors, 2072 struct ioc_now *now) 2073 { 2074 struct ioc_gq *iocg; 2075 u64 dur, usage_pct, nr_cycles; 2076 2077 /* if no debtor, reset the cycle */ 2078 if (!nr_debtors) { 2079 ioc->dfgv_period_at = now->now; 2080 ioc->dfgv_period_rem = 0; 2081 ioc->dfgv_usage_us_sum = 0; 2082 return; 2083 } 2084 2085 /* 2086 * Debtors can pass through a lot of writes choking the device and we 2087 * don't want to be forgiving debts while the device is struggling from 2088 * write bursts. If we're missing latency targets, consider the device 2089 * fully utilized. 2090 */ 2091 if (ioc->busy_level > 0) 2092 usage_us_sum = max_t(u64, usage_us_sum, ioc->period_us); 2093 2094 ioc->dfgv_usage_us_sum += usage_us_sum; 2095 if (time_before64(now->now, ioc->dfgv_period_at + DFGV_PERIOD)) 2096 return; 2097 2098 /* 2099 * At least DFGV_PERIOD has passed since the last period. Calculate the 2100 * average usage and reset the period counters. 2101 */ 2102 dur = now->now - ioc->dfgv_period_at; 2103 usage_pct = div64_u64(100 * ioc->dfgv_usage_us_sum, dur); 2104 2105 ioc->dfgv_period_at = now->now; 2106 ioc->dfgv_usage_us_sum = 0; 2107 2108 /* if was too busy, reset everything */ 2109 if (usage_pct > DFGV_USAGE_PCT) { 2110 ioc->dfgv_period_rem = 0; 2111 return; 2112 } 2113 2114 /* 2115 * Usage is lower than threshold. Let's forgive some debts. Debt 2116 * forgiveness runs off of the usual ioc timer but its period usually 2117 * doesn't match ioc's. Compensate the difference by performing the 2118 * reduction as many times as would fit in the duration since the last 2119 * run and carrying over the left-over duration in @ioc->dfgv_period_rem 2120 * - if ioc period is 75% of DFGV_PERIOD, one out of three consecutive 2121 * reductions is doubled. 2122 */ 2123 nr_cycles = dur + ioc->dfgv_period_rem; 2124 ioc->dfgv_period_rem = do_div(nr_cycles, DFGV_PERIOD); 2125 2126 list_for_each_entry(iocg, &ioc->active_iocgs, active_list) { 2127 u64 __maybe_unused old_debt, __maybe_unused old_delay; 2128 2129 if (!iocg->abs_vdebt && !iocg->delay) 2130 continue; 2131 2132 spin_lock(&iocg->waitq.lock); 2133 2134 old_debt = iocg->abs_vdebt; 2135 old_delay = iocg->delay; 2136 2137 if (iocg->abs_vdebt) 2138 iocg->abs_vdebt = iocg->abs_vdebt >> nr_cycles ?: 1; 2139 if (iocg->delay) 2140 iocg->delay = iocg->delay >> nr_cycles ?: 1; 2141 2142 iocg_kick_waitq(iocg, true, now); 2143 2144 TRACE_IOCG_PATH(iocg_forgive_debt, iocg, now, usage_pct, 2145 old_debt, iocg->abs_vdebt, 2146 old_delay, iocg->delay); 2147 2148 spin_unlock(&iocg->waitq.lock); 2149 } 2150 } 2151 2152 /* 2153 * Check the active iocgs' state to avoid oversleeping and deactive 2154 * idle iocgs. 2155 * 2156 * Since waiters determine the sleep durations based on the vrate 2157 * they saw at the time of sleep, if vrate has increased, some 2158 * waiters could be sleeping for too long. Wake up tardy waiters 2159 * which should have woken up in the last period and expire idle 2160 * iocgs. 2161 */ 2162 static int ioc_check_iocgs(struct ioc *ioc, struct ioc_now *now) 2163 { 2164 int nr_debtors = 0; 2165 struct ioc_gq *iocg, *tiocg; 2166 2167 list_for_each_entry_safe(iocg, tiocg, &ioc->active_iocgs, active_list) { 2168 if (!waitqueue_active(&iocg->waitq) && !iocg->abs_vdebt && 2169 !iocg->delay && !iocg_is_idle(iocg)) 2170 continue; 2171 2172 spin_lock(&iocg->waitq.lock); 2173 2174 /* flush wait and indebt stat deltas */ 2175 if (iocg->wait_since) { 2176 iocg->stat.wait_us += now->now - iocg->wait_since; 2177 iocg->wait_since = now->now; 2178 } 2179 if (iocg->indebt_since) { 2180 iocg->stat.indebt_us += 2181 now->now - iocg->indebt_since; 2182 iocg->indebt_since = now->now; 2183 } 2184 if (iocg->indelay_since) { 2185 iocg->stat.indelay_us += 2186 now->now - iocg->indelay_since; 2187 iocg->indelay_since = now->now; 2188 } 2189 2190 if (waitqueue_active(&iocg->waitq) || iocg->abs_vdebt || 2191 iocg->delay) { 2192 /* might be oversleeping vtime / hweight changes, kick */ 2193 iocg_kick_waitq(iocg, true, now); 2194 if (iocg->abs_vdebt || iocg->delay) 2195 nr_debtors++; 2196 } else if (iocg_is_idle(iocg)) { 2197 /* no waiter and idle, deactivate */ 2198 u64 vtime = atomic64_read(&iocg->vtime); 2199 s64 excess; 2200 2201 /* 2202 * @iocg has been inactive for a full duration and will 2203 * have a high budget. Account anything above target as 2204 * error and throw away. On reactivation, it'll start 2205 * with the target budget. 2206 */ 2207 excess = now->vnow - vtime - ioc->margins.target; 2208 if (excess > 0) { 2209 u32 old_hwi; 2210 2211 current_hweight(iocg, NULL, &old_hwi); 2212 ioc->vtime_err -= div64_u64(excess * old_hwi, 2213 WEIGHT_ONE); 2214 } 2215 2216 TRACE_IOCG_PATH(iocg_idle, iocg, now, 2217 atomic64_read(&iocg->active_period), 2218 atomic64_read(&ioc->cur_period), vtime); 2219 __propagate_weights(iocg, 0, 0, false, now); 2220 list_del_init(&iocg->active_list); 2221 } 2222 2223 spin_unlock(&iocg->waitq.lock); 2224 } 2225 2226 commit_weights(ioc); 2227 return nr_debtors; 2228 } 2229 2230 static void ioc_timer_fn(struct timer_list *timer) 2231 { 2232 struct ioc *ioc = container_of(timer, struct ioc, timer); 2233 struct ioc_gq *iocg, *tiocg; 2234 struct ioc_now now; 2235 LIST_HEAD(surpluses); 2236 int nr_debtors, nr_shortages = 0, nr_lagging = 0; 2237 u64 usage_us_sum = 0; 2238 u32 ppm_rthr; 2239 u32 ppm_wthr; 2240 u32 missed_ppm[2], rq_wait_pct; 2241 u64 period_vtime; 2242 int prev_busy_level; 2243 2244 /* how were the latencies during the period? */ 2245 ioc_lat_stat(ioc, missed_ppm, &rq_wait_pct); 2246 2247 /* take care of active iocgs */ 2248 spin_lock_irq(&ioc->lock); 2249 2250 ppm_rthr = MILLION - ioc->params.qos[QOS_RPPM]; 2251 ppm_wthr = MILLION - ioc->params.qos[QOS_WPPM]; 2252 ioc_now(ioc, &now); 2253 2254 period_vtime = now.vnow - ioc->period_at_vtime; 2255 if (WARN_ON_ONCE(!period_vtime)) { 2256 spin_unlock_irq(&ioc->lock); 2257 return; 2258 } 2259 2260 nr_debtors = ioc_check_iocgs(ioc, &now); 2261 2262 /* 2263 * Wait and indebt stat are flushed above and the donation calculation 2264 * below needs updated usage stat. Let's bring stat up-to-date. 2265 */ 2266 iocg_flush_stat(&ioc->active_iocgs, &now); 2267 2268 /* calc usage and see whether some weights need to be moved around */ 2269 list_for_each_entry(iocg, &ioc->active_iocgs, active_list) { 2270 u64 vdone, vtime, usage_us; 2271 u32 hw_active, hw_inuse; 2272 2273 /* 2274 * Collect unused and wind vtime closer to vnow to prevent 2275 * iocgs from accumulating a large amount of budget. 2276 */ 2277 vdone = atomic64_read(&iocg->done_vtime); 2278 vtime = atomic64_read(&iocg->vtime); 2279 current_hweight(iocg, &hw_active, &hw_inuse); 2280 2281 /* 2282 * Latency QoS detection doesn't account for IOs which are 2283 * in-flight for longer than a period. Detect them by 2284 * comparing vdone against period start. If lagging behind 2285 * IOs from past periods, don't increase vrate. 2286 */ 2287 if ((ppm_rthr != MILLION || ppm_wthr != MILLION) && 2288 !atomic_read(&iocg_to_blkg(iocg)->use_delay) && 2289 time_after64(vtime, vdone) && 2290 time_after64(vtime, now.vnow - 2291 MAX_LAGGING_PERIODS * period_vtime) && 2292 time_before64(vdone, now.vnow - period_vtime)) 2293 nr_lagging++; 2294 2295 /* 2296 * Determine absolute usage factoring in in-flight IOs to avoid 2297 * high-latency completions appearing as idle. 2298 */ 2299 usage_us = iocg->usage_delta_us; 2300 usage_us_sum += usage_us; 2301 2302 /* see whether there's surplus vtime */ 2303 WARN_ON_ONCE(!list_empty(&iocg->surplus_list)); 2304 if (hw_inuse < hw_active || 2305 (!waitqueue_active(&iocg->waitq) && 2306 time_before64(vtime, now.vnow - ioc->margins.low))) { 2307 u32 hwa, old_hwi, hwm, new_hwi, usage; 2308 u64 usage_dur; 2309 2310 if (vdone != vtime) { 2311 u64 inflight_us = DIV64_U64_ROUND_UP( 2312 cost_to_abs_cost(vtime - vdone, hw_inuse), 2313 ioc->vtime_base_rate); 2314 2315 usage_us = max(usage_us, inflight_us); 2316 } 2317 2318 /* convert to hweight based usage ratio */ 2319 if (time_after64(iocg->activated_at, ioc->period_at)) 2320 usage_dur = max_t(u64, now.now - iocg->activated_at, 1); 2321 else 2322 usage_dur = max_t(u64, now.now - ioc->period_at, 1); 2323 2324 usage = clamp_t(u32, 2325 DIV64_U64_ROUND_UP(usage_us * WEIGHT_ONE, 2326 usage_dur), 2327 1, WEIGHT_ONE); 2328 2329 /* 2330 * Already donating or accumulated enough to start. 2331 * Determine the donation amount. 2332 */ 2333 current_hweight(iocg, &hwa, &old_hwi); 2334 hwm = current_hweight_max(iocg); 2335 new_hwi = hweight_after_donation(iocg, old_hwi, hwm, 2336 usage, &now); 2337 /* 2338 * Donation calculation assumes hweight_after_donation 2339 * to be positive, a condition that a donor w/ hwa < 2 2340 * can't meet. Don't bother with donation if hwa is 2341 * below 2. It's not gonna make a meaningful difference 2342 * anyway. 2343 */ 2344 if (new_hwi < hwm && hwa >= 2) { 2345 iocg->hweight_donating = hwa; 2346 iocg->hweight_after_donation = new_hwi; 2347 list_add(&iocg->surplus_list, &surpluses); 2348 } else if (!iocg->abs_vdebt) { 2349 /* 2350 * @iocg doesn't have enough to donate. Reset 2351 * its inuse to active. 2352 * 2353 * Don't reset debtors as their inuse's are 2354 * owned by debt handling. This shouldn't affect 2355 * donation calculuation in any meaningful way 2356 * as @iocg doesn't have a meaningful amount of 2357 * share anyway. 2358 */ 2359 TRACE_IOCG_PATH(inuse_shortage, iocg, &now, 2360 iocg->inuse, iocg->active, 2361 iocg->hweight_inuse, new_hwi); 2362 2363 __propagate_weights(iocg, iocg->active, 2364 iocg->active, true, &now); 2365 nr_shortages++; 2366 } 2367 } else { 2368 /* genuinely short on vtime */ 2369 nr_shortages++; 2370 } 2371 } 2372 2373 if (!list_empty(&surpluses) && nr_shortages) 2374 transfer_surpluses(&surpluses, &now); 2375 2376 commit_weights(ioc); 2377 2378 /* surplus list should be dissolved after use */ 2379 list_for_each_entry_safe(iocg, tiocg, &surpluses, surplus_list) 2380 list_del_init(&iocg->surplus_list); 2381 2382 /* 2383 * If q is getting clogged or we're missing too much, we're issuing 2384 * too much IO and should lower vtime rate. If we're not missing 2385 * and experiencing shortages but not surpluses, we're too stingy 2386 * and should increase vtime rate. 2387 */ 2388 prev_busy_level = ioc->busy_level; 2389 if (rq_wait_pct > RQ_WAIT_BUSY_PCT || 2390 missed_ppm[READ] > ppm_rthr || 2391 missed_ppm[WRITE] > ppm_wthr) { 2392 /* clearly missing QoS targets, slow down vrate */ 2393 ioc->busy_level = max(ioc->busy_level, 0); 2394 ioc->busy_level++; 2395 } else if (rq_wait_pct <= RQ_WAIT_BUSY_PCT * UNBUSY_THR_PCT / 100 && 2396 missed_ppm[READ] <= ppm_rthr * UNBUSY_THR_PCT / 100 && 2397 missed_ppm[WRITE] <= ppm_wthr * UNBUSY_THR_PCT / 100) { 2398 /* QoS targets are being met with >25% margin */ 2399 if (nr_shortages) { 2400 /* 2401 * We're throttling while the device has spare 2402 * capacity. If vrate was being slowed down, stop. 2403 */ 2404 ioc->busy_level = min(ioc->busy_level, 0); 2405 2406 /* 2407 * If there are IOs spanning multiple periods, wait 2408 * them out before pushing the device harder. 2409 */ 2410 if (!nr_lagging) 2411 ioc->busy_level--; 2412 } else { 2413 /* 2414 * Nobody is being throttled and the users aren't 2415 * issuing enough IOs to saturate the device. We 2416 * simply don't know how close the device is to 2417 * saturation. Coast. 2418 */ 2419 ioc->busy_level = 0; 2420 } 2421 } else { 2422 /* inside the hysterisis margin, we're good */ 2423 ioc->busy_level = 0; 2424 } 2425 2426 ioc->busy_level = clamp(ioc->busy_level, -1000, 1000); 2427 2428 ioc_adjust_base_vrate(ioc, rq_wait_pct, nr_lagging, nr_shortages, 2429 prev_busy_level, missed_ppm); 2430 2431 ioc_refresh_params(ioc, false); 2432 2433 ioc_forgive_debts(ioc, usage_us_sum, nr_debtors, &now); 2434 2435 /* 2436 * This period is done. Move onto the next one. If nothing's 2437 * going on with the device, stop the timer. 2438 */ 2439 atomic64_inc(&ioc->cur_period); 2440 2441 if (ioc->running != IOC_STOP) { 2442 if (!list_empty(&ioc->active_iocgs)) { 2443 ioc_start_period(ioc, &now); 2444 } else { 2445 ioc->busy_level = 0; 2446 ioc->vtime_err = 0; 2447 ioc->running = IOC_IDLE; 2448 } 2449 2450 ioc_refresh_vrate(ioc, &now); 2451 } 2452 2453 spin_unlock_irq(&ioc->lock); 2454 } 2455 2456 static u64 adjust_inuse_and_calc_cost(struct ioc_gq *iocg, u64 vtime, 2457 u64 abs_cost, struct ioc_now *now) 2458 { 2459 struct ioc *ioc = iocg->ioc; 2460 struct ioc_margins *margins = &ioc->margins; 2461 u32 __maybe_unused old_inuse = iocg->inuse, __maybe_unused old_hwi; 2462 u32 hwi, adj_step; 2463 s64 margin; 2464 u64 cost, new_inuse; 2465 unsigned long flags; 2466 2467 current_hweight(iocg, NULL, &hwi); 2468 old_hwi = hwi; 2469 cost = abs_cost_to_cost(abs_cost, hwi); 2470 margin = now->vnow - vtime - cost; 2471 2472 /* debt handling owns inuse for debtors */ 2473 if (iocg->abs_vdebt) 2474 return cost; 2475 2476 /* 2477 * We only increase inuse during period and do so if the margin has 2478 * deteriorated since the previous adjustment. 2479 */ 2480 if (margin >= iocg->saved_margin || margin >= margins->low || 2481 iocg->inuse == iocg->active) 2482 return cost; 2483 2484 spin_lock_irqsave(&ioc->lock, flags); 2485 2486 /* we own inuse only when @iocg is in the normal active state */ 2487 if (iocg->abs_vdebt || list_empty(&iocg->active_list)) { 2488 spin_unlock_irqrestore(&ioc->lock, flags); 2489 return cost; 2490 } 2491 2492 /* 2493 * Bump up inuse till @abs_cost fits in the existing budget. 2494 * adj_step must be determined after acquiring ioc->lock - we might 2495 * have raced and lost to another thread for activation and could 2496 * be reading 0 iocg->active before ioc->lock which will lead to 2497 * infinite loop. 2498 */ 2499 new_inuse = iocg->inuse; 2500 adj_step = DIV_ROUND_UP(iocg->active * INUSE_ADJ_STEP_PCT, 100); 2501 do { 2502 new_inuse = new_inuse + adj_step; 2503 propagate_weights(iocg, iocg->active, new_inuse, true, now); 2504 current_hweight(iocg, NULL, &hwi); 2505 cost = abs_cost_to_cost(abs_cost, hwi); 2506 } while (time_after64(vtime + cost, now->vnow) && 2507 iocg->inuse != iocg->active); 2508 2509 spin_unlock_irqrestore(&ioc->lock, flags); 2510 2511 TRACE_IOCG_PATH(inuse_adjust, iocg, now, 2512 old_inuse, iocg->inuse, old_hwi, hwi); 2513 2514 return cost; 2515 } 2516 2517 static void calc_vtime_cost_builtin(struct bio *bio, struct ioc_gq *iocg, 2518 bool is_merge, u64 *costp) 2519 { 2520 struct ioc *ioc = iocg->ioc; 2521 u64 coef_seqio, coef_randio, coef_page; 2522 u64 pages = max_t(u64, bio_sectors(bio) >> IOC_SECT_TO_PAGE_SHIFT, 1); 2523 u64 seek_pages = 0; 2524 u64 cost = 0; 2525 2526 /* Can't calculate cost for empty bio */ 2527 if (!bio->bi_iter.bi_size) 2528 goto out; 2529 2530 switch (bio_op(bio)) { 2531 case REQ_OP_READ: 2532 coef_seqio = ioc->params.lcoefs[LCOEF_RSEQIO]; 2533 coef_randio = ioc->params.lcoefs[LCOEF_RRANDIO]; 2534 coef_page = ioc->params.lcoefs[LCOEF_RPAGE]; 2535 break; 2536 case REQ_OP_WRITE: 2537 coef_seqio = ioc->params.lcoefs[LCOEF_WSEQIO]; 2538 coef_randio = ioc->params.lcoefs[LCOEF_WRANDIO]; 2539 coef_page = ioc->params.lcoefs[LCOEF_WPAGE]; 2540 break; 2541 default: 2542 goto out; 2543 } 2544 2545 if (iocg->cursor) { 2546 seek_pages = abs(bio->bi_iter.bi_sector - iocg->cursor); 2547 seek_pages >>= IOC_SECT_TO_PAGE_SHIFT; 2548 } 2549 2550 if (!is_merge) { 2551 if (seek_pages > LCOEF_RANDIO_PAGES) { 2552 cost += coef_randio; 2553 } else { 2554 cost += coef_seqio; 2555 } 2556 } 2557 cost += pages * coef_page; 2558 out: 2559 *costp = cost; 2560 } 2561 2562 static u64 calc_vtime_cost(struct bio *bio, struct ioc_gq *iocg, bool is_merge) 2563 { 2564 u64 cost; 2565 2566 calc_vtime_cost_builtin(bio, iocg, is_merge, &cost); 2567 return cost; 2568 } 2569 2570 static void calc_size_vtime_cost_builtin(struct request *rq, struct ioc *ioc, 2571 u64 *costp) 2572 { 2573 unsigned int pages = blk_rq_stats_sectors(rq) >> IOC_SECT_TO_PAGE_SHIFT; 2574 2575 switch (req_op(rq)) { 2576 case REQ_OP_READ: 2577 *costp = pages * ioc->params.lcoefs[LCOEF_RPAGE]; 2578 break; 2579 case REQ_OP_WRITE: 2580 *costp = pages * ioc->params.lcoefs[LCOEF_WPAGE]; 2581 break; 2582 default: 2583 *costp = 0; 2584 } 2585 } 2586 2587 static u64 calc_size_vtime_cost(struct request *rq, struct ioc *ioc) 2588 { 2589 u64 cost; 2590 2591 calc_size_vtime_cost_builtin(rq, ioc, &cost); 2592 return cost; 2593 } 2594 2595 static void ioc_rqos_throttle(struct rq_qos *rqos, struct bio *bio) 2596 { 2597 struct blkcg_gq *blkg = bio->bi_blkg; 2598 struct ioc *ioc = rqos_to_ioc(rqos); 2599 struct ioc_gq *iocg = blkg_to_iocg(blkg); 2600 struct ioc_now now; 2601 struct iocg_wait wait; 2602 u64 abs_cost, cost, vtime; 2603 bool use_debt, ioc_locked; 2604 unsigned long flags; 2605 2606 /* bypass IOs if disabled, still initializing, or for root cgroup */ 2607 if (!ioc->enabled || !iocg || !iocg->level) 2608 return; 2609 2610 /* calculate the absolute vtime cost */ 2611 abs_cost = calc_vtime_cost(bio, iocg, false); 2612 if (!abs_cost) 2613 return; 2614 2615 if (!iocg_activate(iocg, &now)) 2616 return; 2617 2618 iocg->cursor = bio_end_sector(bio); 2619 vtime = atomic64_read(&iocg->vtime); 2620 cost = adjust_inuse_and_calc_cost(iocg, vtime, abs_cost, &now); 2621 2622 /* 2623 * If no one's waiting and within budget, issue right away. The 2624 * tests are racy but the races aren't systemic - we only miss once 2625 * in a while which is fine. 2626 */ 2627 if (!waitqueue_active(&iocg->waitq) && !iocg->abs_vdebt && 2628 time_before_eq64(vtime + cost, now.vnow)) { 2629 iocg_commit_bio(iocg, bio, abs_cost, cost); 2630 return; 2631 } 2632 2633 /* 2634 * We're over budget. This can be handled in two ways. IOs which may 2635 * cause priority inversions are punted to @ioc->aux_iocg and charged as 2636 * debt. Otherwise, the issuer is blocked on @iocg->waitq. Debt handling 2637 * requires @ioc->lock, waitq handling @iocg->waitq.lock. Determine 2638 * whether debt handling is needed and acquire locks accordingly. 2639 */ 2640 use_debt = bio_issue_as_root_blkg(bio) || fatal_signal_pending(current); 2641 ioc_locked = use_debt || READ_ONCE(iocg->abs_vdebt); 2642 retry_lock: 2643 iocg_lock(iocg, ioc_locked, &flags); 2644 2645 /* 2646 * @iocg must stay activated for debt and waitq handling. Deactivation 2647 * is synchronized against both ioc->lock and waitq.lock and we won't 2648 * get deactivated as long as we're waiting or has debt, so we're good 2649 * if we're activated here. In the unlikely cases that we aren't, just 2650 * issue the IO. 2651 */ 2652 if (unlikely(list_empty(&iocg->active_list))) { 2653 iocg_unlock(iocg, ioc_locked, &flags); 2654 iocg_commit_bio(iocg, bio, abs_cost, cost); 2655 return; 2656 } 2657 2658 /* 2659 * We're over budget. If @bio has to be issued regardless, remember 2660 * the abs_cost instead of advancing vtime. iocg_kick_waitq() will pay 2661 * off the debt before waking more IOs. 2662 * 2663 * This way, the debt is continuously paid off each period with the 2664 * actual budget available to the cgroup. If we just wound vtime, we 2665 * would incorrectly use the current hw_inuse for the entire amount 2666 * which, for example, can lead to the cgroup staying blocked for a 2667 * long time even with substantially raised hw_inuse. 2668 * 2669 * An iocg with vdebt should stay online so that the timer can keep 2670 * deducting its vdebt and [de]activate use_delay mechanism 2671 * accordingly. We don't want to race against the timer trying to 2672 * clear them and leave @iocg inactive w/ dangling use_delay heavily 2673 * penalizing the cgroup and its descendants. 2674 */ 2675 if (use_debt) { 2676 iocg_incur_debt(iocg, abs_cost, &now); 2677 if (iocg_kick_delay(iocg, &now)) 2678 blkcg_schedule_throttle(rqos->disk, 2679 (bio->bi_opf & REQ_SWAP) == REQ_SWAP); 2680 iocg_unlock(iocg, ioc_locked, &flags); 2681 return; 2682 } 2683 2684 /* guarantee that iocgs w/ waiters have maximum inuse */ 2685 if (!iocg->abs_vdebt && iocg->inuse != iocg->active) { 2686 if (!ioc_locked) { 2687 iocg_unlock(iocg, false, &flags); 2688 ioc_locked = true; 2689 goto retry_lock; 2690 } 2691 propagate_weights(iocg, iocg->active, iocg->active, true, 2692 &now); 2693 } 2694 2695 /* 2696 * Append self to the waitq and schedule the wakeup timer if we're 2697 * the first waiter. The timer duration is calculated based on the 2698 * current vrate. vtime and hweight changes can make it too short 2699 * or too long. Each wait entry records the absolute cost it's 2700 * waiting for to allow re-evaluation using a custom wait entry. 2701 * 2702 * If too short, the timer simply reschedules itself. If too long, 2703 * the period timer will notice and trigger wakeups. 2704 * 2705 * All waiters are on iocg->waitq and the wait states are 2706 * synchronized using waitq.lock. 2707 */ 2708 init_waitqueue_func_entry(&wait.wait, iocg_wake_fn); 2709 wait.wait.private = current; 2710 wait.bio = bio; 2711 wait.abs_cost = abs_cost; 2712 wait.committed = false; /* will be set true by waker */ 2713 2714 __add_wait_queue_entry_tail(&iocg->waitq, &wait.wait); 2715 iocg_kick_waitq(iocg, ioc_locked, &now); 2716 2717 iocg_unlock(iocg, ioc_locked, &flags); 2718 2719 while (true) { 2720 set_current_state(TASK_UNINTERRUPTIBLE); 2721 if (wait.committed) 2722 break; 2723 io_schedule(); 2724 } 2725 2726 /* waker already committed us, proceed */ 2727 finish_wait(&iocg->waitq, &wait.wait); 2728 } 2729 2730 static void ioc_rqos_merge(struct rq_qos *rqos, struct request *rq, 2731 struct bio *bio) 2732 { 2733 struct ioc_gq *iocg = blkg_to_iocg(bio->bi_blkg); 2734 struct ioc *ioc = rqos_to_ioc(rqos); 2735 sector_t bio_end = bio_end_sector(bio); 2736 struct ioc_now now; 2737 u64 vtime, abs_cost, cost; 2738 unsigned long flags; 2739 2740 /* bypass if disabled, still initializing, or for root cgroup */ 2741 if (!ioc->enabled || !iocg || !iocg->level) 2742 return; 2743 2744 abs_cost = calc_vtime_cost(bio, iocg, true); 2745 if (!abs_cost) 2746 return; 2747 2748 ioc_now(ioc, &now); 2749 2750 vtime = atomic64_read(&iocg->vtime); 2751 cost = adjust_inuse_and_calc_cost(iocg, vtime, abs_cost, &now); 2752 2753 /* update cursor if backmerging into the request at the cursor */ 2754 if (blk_rq_pos(rq) < bio_end && 2755 blk_rq_pos(rq) + blk_rq_sectors(rq) == iocg->cursor) 2756 iocg->cursor = bio_end; 2757 2758 /* 2759 * Charge if there's enough vtime budget and the existing request has 2760 * cost assigned. 2761 */ 2762 if (rq->bio && rq->bio->bi_iocost_cost && 2763 time_before_eq64(atomic64_read(&iocg->vtime) + cost, now.vnow)) { 2764 iocg_commit_bio(iocg, bio, abs_cost, cost); 2765 return; 2766 } 2767 2768 /* 2769 * Otherwise, account it as debt if @iocg is online, which it should 2770 * be for the vast majority of cases. See debt handling in 2771 * ioc_rqos_throttle() for details. 2772 */ 2773 spin_lock_irqsave(&ioc->lock, flags); 2774 spin_lock(&iocg->waitq.lock); 2775 2776 if (likely(!list_empty(&iocg->active_list))) { 2777 iocg_incur_debt(iocg, abs_cost, &now); 2778 if (iocg_kick_delay(iocg, &now)) 2779 blkcg_schedule_throttle(rqos->disk, 2780 (bio->bi_opf & REQ_SWAP) == REQ_SWAP); 2781 } else { 2782 iocg_commit_bio(iocg, bio, abs_cost, cost); 2783 } 2784 2785 spin_unlock(&iocg->waitq.lock); 2786 spin_unlock_irqrestore(&ioc->lock, flags); 2787 } 2788 2789 static void ioc_rqos_done_bio(struct rq_qos *rqos, struct bio *bio) 2790 { 2791 struct ioc_gq *iocg = blkg_to_iocg(bio->bi_blkg); 2792 2793 if (iocg && bio->bi_iocost_cost) 2794 atomic64_add(bio->bi_iocost_cost, &iocg->done_vtime); 2795 } 2796 2797 static void ioc_rqos_done(struct rq_qos *rqos, struct request *rq) 2798 { 2799 struct ioc *ioc = rqos_to_ioc(rqos); 2800 struct ioc_pcpu_stat *ccs; 2801 u64 on_q_ns, rq_wait_ns, size_nsec; 2802 int pidx, rw; 2803 2804 if (!ioc->enabled || !rq->alloc_time_ns || !rq->start_time_ns) 2805 return; 2806 2807 switch (req_op(rq)) { 2808 case REQ_OP_READ: 2809 pidx = QOS_RLAT; 2810 rw = READ; 2811 break; 2812 case REQ_OP_WRITE: 2813 pidx = QOS_WLAT; 2814 rw = WRITE; 2815 break; 2816 default: 2817 return; 2818 } 2819 2820 on_q_ns = blk_time_get_ns() - rq->alloc_time_ns; 2821 rq_wait_ns = rq->start_time_ns - rq->alloc_time_ns; 2822 size_nsec = div64_u64(calc_size_vtime_cost(rq, ioc), VTIME_PER_NSEC); 2823 2824 ccs = get_cpu_ptr(ioc->pcpu_stat); 2825 2826 if (on_q_ns <= size_nsec || 2827 on_q_ns - size_nsec <= ioc->params.qos[pidx] * NSEC_PER_USEC) 2828 local_inc(&ccs->missed[rw].nr_met); 2829 else 2830 local_inc(&ccs->missed[rw].nr_missed); 2831 2832 local64_add(rq_wait_ns, &ccs->rq_wait_ns); 2833 2834 put_cpu_ptr(ccs); 2835 } 2836 2837 static void ioc_rqos_queue_depth_changed(struct rq_qos *rqos) 2838 { 2839 struct ioc *ioc = rqos_to_ioc(rqos); 2840 2841 spin_lock_irq(&ioc->lock); 2842 ioc_refresh_params(ioc, false); 2843 spin_unlock_irq(&ioc->lock); 2844 } 2845 2846 static void ioc_rqos_exit(struct rq_qos *rqos) 2847 { 2848 struct ioc *ioc = rqos_to_ioc(rqos); 2849 2850 blkcg_deactivate_policy(rqos->disk, &blkcg_policy_iocost); 2851 2852 spin_lock_irq(&ioc->lock); 2853 ioc->running = IOC_STOP; 2854 spin_unlock_irq(&ioc->lock); 2855 2856 timer_shutdown_sync(&ioc->timer); 2857 free_percpu(ioc->pcpu_stat); 2858 kfree(ioc); 2859 } 2860 2861 static const struct rq_qos_ops ioc_rqos_ops = { 2862 .throttle = ioc_rqos_throttle, 2863 .merge = ioc_rqos_merge, 2864 .done_bio = ioc_rqos_done_bio, 2865 .done = ioc_rqos_done, 2866 .queue_depth_changed = ioc_rqos_queue_depth_changed, 2867 .exit = ioc_rqos_exit, 2868 }; 2869 2870 static int blk_iocost_init(struct gendisk *disk) 2871 { 2872 struct ioc *ioc; 2873 int i, cpu, ret; 2874 2875 ioc = kzalloc(sizeof(*ioc), GFP_KERNEL); 2876 if (!ioc) 2877 return -ENOMEM; 2878 2879 ioc->pcpu_stat = alloc_percpu(struct ioc_pcpu_stat); 2880 if (!ioc->pcpu_stat) { 2881 kfree(ioc); 2882 return -ENOMEM; 2883 } 2884 2885 for_each_possible_cpu(cpu) { 2886 struct ioc_pcpu_stat *ccs = per_cpu_ptr(ioc->pcpu_stat, cpu); 2887 2888 for (i = 0; i < ARRAY_SIZE(ccs->missed); i++) { 2889 local_set(&ccs->missed[i].nr_met, 0); 2890 local_set(&ccs->missed[i].nr_missed, 0); 2891 } 2892 local64_set(&ccs->rq_wait_ns, 0); 2893 } 2894 2895 spin_lock_init(&ioc->lock); 2896 timer_setup(&ioc->timer, ioc_timer_fn, 0); 2897 INIT_LIST_HEAD(&ioc->active_iocgs); 2898 2899 ioc->running = IOC_IDLE; 2900 ioc->vtime_base_rate = VTIME_PER_USEC; 2901 atomic64_set(&ioc->vtime_rate, VTIME_PER_USEC); 2902 seqcount_spinlock_init(&ioc->period_seqcount, &ioc->lock); 2903 ioc->period_at = ktime_to_us(blk_time_get()); 2904 atomic64_set(&ioc->cur_period, 0); 2905 atomic_set(&ioc->hweight_gen, 0); 2906 2907 spin_lock_irq(&ioc->lock); 2908 ioc->autop_idx = AUTOP_INVALID; 2909 ioc_refresh_params_disk(ioc, true, disk); 2910 spin_unlock_irq(&ioc->lock); 2911 2912 /* 2913 * rqos must be added before activation to allow ioc_pd_init() to 2914 * lookup the ioc from q. This means that the rqos methods may get 2915 * called before policy activation completion, can't assume that the 2916 * target bio has an iocg associated and need to test for NULL iocg. 2917 */ 2918 ret = rq_qos_add(&ioc->rqos, disk, RQ_QOS_COST, &ioc_rqos_ops); 2919 if (ret) 2920 goto err_free_ioc; 2921 2922 ret = blkcg_activate_policy(disk, &blkcg_policy_iocost); 2923 if (ret) 2924 goto err_del_qos; 2925 return 0; 2926 2927 err_del_qos: 2928 rq_qos_del(&ioc->rqos); 2929 err_free_ioc: 2930 free_percpu(ioc->pcpu_stat); 2931 kfree(ioc); 2932 return ret; 2933 } 2934 2935 static struct blkcg_policy_data *ioc_cpd_alloc(gfp_t gfp) 2936 { 2937 struct ioc_cgrp *iocc; 2938 2939 iocc = kzalloc(sizeof(struct ioc_cgrp), gfp); 2940 if (!iocc) 2941 return NULL; 2942 2943 iocc->dfl_weight = CGROUP_WEIGHT_DFL * WEIGHT_ONE; 2944 return &iocc->cpd; 2945 } 2946 2947 static void ioc_cpd_free(struct blkcg_policy_data *cpd) 2948 { 2949 kfree(container_of(cpd, struct ioc_cgrp, cpd)); 2950 } 2951 2952 static struct blkg_policy_data *ioc_pd_alloc(struct gendisk *disk, 2953 struct blkcg *blkcg, gfp_t gfp) 2954 { 2955 int levels = blkcg->css.cgroup->level + 1; 2956 struct ioc_gq *iocg; 2957 2958 iocg = kzalloc_node(struct_size(iocg, ancestors, levels), gfp, 2959 disk->node_id); 2960 if (!iocg) 2961 return NULL; 2962 2963 iocg->pcpu_stat = alloc_percpu_gfp(struct iocg_pcpu_stat, gfp); 2964 if (!iocg->pcpu_stat) { 2965 kfree(iocg); 2966 return NULL; 2967 } 2968 2969 return &iocg->pd; 2970 } 2971 2972 static void ioc_pd_init(struct blkg_policy_data *pd) 2973 { 2974 struct ioc_gq *iocg = pd_to_iocg(pd); 2975 struct blkcg_gq *blkg = pd_to_blkg(&iocg->pd); 2976 struct ioc *ioc = q_to_ioc(blkg->q); 2977 struct ioc_now now; 2978 struct blkcg_gq *tblkg; 2979 unsigned long flags; 2980 2981 ioc_now(ioc, &now); 2982 2983 iocg->ioc = ioc; 2984 atomic64_set(&iocg->vtime, now.vnow); 2985 atomic64_set(&iocg->done_vtime, now.vnow); 2986 atomic64_set(&iocg->active_period, atomic64_read(&ioc->cur_period)); 2987 INIT_LIST_HEAD(&iocg->active_list); 2988 INIT_LIST_HEAD(&iocg->walk_list); 2989 INIT_LIST_HEAD(&iocg->surplus_list); 2990 iocg->hweight_active = WEIGHT_ONE; 2991 iocg->hweight_inuse = WEIGHT_ONE; 2992 2993 init_waitqueue_head(&iocg->waitq); 2994 hrtimer_init(&iocg->waitq_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS); 2995 iocg->waitq_timer.function = iocg_waitq_timer_fn; 2996 2997 iocg->level = blkg->blkcg->css.cgroup->level; 2998 2999 for (tblkg = blkg; tblkg; tblkg = tblkg->parent) { 3000 struct ioc_gq *tiocg = blkg_to_iocg(tblkg); 3001 iocg->ancestors[tiocg->level] = tiocg; 3002 } 3003 3004 spin_lock_irqsave(&ioc->lock, flags); 3005 weight_updated(iocg, &now); 3006 spin_unlock_irqrestore(&ioc->lock, flags); 3007 } 3008 3009 static void ioc_pd_free(struct blkg_policy_data *pd) 3010 { 3011 struct ioc_gq *iocg = pd_to_iocg(pd); 3012 struct ioc *ioc = iocg->ioc; 3013 unsigned long flags; 3014 3015 if (ioc) { 3016 spin_lock_irqsave(&ioc->lock, flags); 3017 3018 if (!list_empty(&iocg->active_list)) { 3019 struct ioc_now now; 3020 3021 ioc_now(ioc, &now); 3022 propagate_weights(iocg, 0, 0, false, &now); 3023 list_del_init(&iocg->active_list); 3024 } 3025 3026 WARN_ON_ONCE(!list_empty(&iocg->walk_list)); 3027 WARN_ON_ONCE(!list_empty(&iocg->surplus_list)); 3028 3029 spin_unlock_irqrestore(&ioc->lock, flags); 3030 3031 hrtimer_cancel(&iocg->waitq_timer); 3032 } 3033 free_percpu(iocg->pcpu_stat); 3034 kfree(iocg); 3035 } 3036 3037 static void ioc_pd_stat(struct blkg_policy_data *pd, struct seq_file *s) 3038 { 3039 struct ioc_gq *iocg = pd_to_iocg(pd); 3040 struct ioc *ioc = iocg->ioc; 3041 3042 if (!ioc->enabled) 3043 return; 3044 3045 if (iocg->level == 0) { 3046 unsigned vp10k = DIV64_U64_ROUND_CLOSEST( 3047 ioc->vtime_base_rate * 10000, 3048 VTIME_PER_USEC); 3049 seq_printf(s, " cost.vrate=%u.%02u", vp10k / 100, vp10k % 100); 3050 } 3051 3052 seq_printf(s, " cost.usage=%llu", iocg->last_stat.usage_us); 3053 3054 if (blkcg_debug_stats) 3055 seq_printf(s, " cost.wait=%llu cost.indebt=%llu cost.indelay=%llu", 3056 iocg->last_stat.wait_us, 3057 iocg->last_stat.indebt_us, 3058 iocg->last_stat.indelay_us); 3059 } 3060 3061 static u64 ioc_weight_prfill(struct seq_file *sf, struct blkg_policy_data *pd, 3062 int off) 3063 { 3064 const char *dname = blkg_dev_name(pd->blkg); 3065 struct ioc_gq *iocg = pd_to_iocg(pd); 3066 3067 if (dname && iocg->cfg_weight) 3068 seq_printf(sf, "%s %u\n", dname, iocg->cfg_weight / WEIGHT_ONE); 3069 return 0; 3070 } 3071 3072 3073 static int ioc_weight_show(struct seq_file *sf, void *v) 3074 { 3075 struct blkcg *blkcg = css_to_blkcg(seq_css(sf)); 3076 struct ioc_cgrp *iocc = blkcg_to_iocc(blkcg); 3077 3078 seq_printf(sf, "default %u\n", iocc->dfl_weight / WEIGHT_ONE); 3079 blkcg_print_blkgs(sf, blkcg, ioc_weight_prfill, 3080 &blkcg_policy_iocost, seq_cft(sf)->private, false); 3081 return 0; 3082 } 3083 3084 static ssize_t ioc_weight_write(struct kernfs_open_file *of, char *buf, 3085 size_t nbytes, loff_t off) 3086 { 3087 struct blkcg *blkcg = css_to_blkcg(of_css(of)); 3088 struct ioc_cgrp *iocc = blkcg_to_iocc(blkcg); 3089 struct blkg_conf_ctx ctx; 3090 struct ioc_now now; 3091 struct ioc_gq *iocg; 3092 u32 v; 3093 int ret; 3094 3095 if (!strchr(buf, ':')) { 3096 struct blkcg_gq *blkg; 3097 3098 if (!sscanf(buf, "default %u", &v) && !sscanf(buf, "%u", &v)) 3099 return -EINVAL; 3100 3101 if (v < CGROUP_WEIGHT_MIN || v > CGROUP_WEIGHT_MAX) 3102 return -EINVAL; 3103 3104 spin_lock_irq(&blkcg->lock); 3105 iocc->dfl_weight = v * WEIGHT_ONE; 3106 hlist_for_each_entry(blkg, &blkcg->blkg_list, blkcg_node) { 3107 struct ioc_gq *iocg = blkg_to_iocg(blkg); 3108 3109 if (iocg) { 3110 spin_lock(&iocg->ioc->lock); 3111 ioc_now(iocg->ioc, &now); 3112 weight_updated(iocg, &now); 3113 spin_unlock(&iocg->ioc->lock); 3114 } 3115 } 3116 spin_unlock_irq(&blkcg->lock); 3117 3118 return nbytes; 3119 } 3120 3121 blkg_conf_init(&ctx, buf); 3122 3123 ret = blkg_conf_prep(blkcg, &blkcg_policy_iocost, &ctx); 3124 if (ret) 3125 goto err; 3126 3127 iocg = blkg_to_iocg(ctx.blkg); 3128 3129 if (!strncmp(ctx.body, "default", 7)) { 3130 v = 0; 3131 } else { 3132 if (!sscanf(ctx.body, "%u", &v)) 3133 goto einval; 3134 if (v < CGROUP_WEIGHT_MIN || v > CGROUP_WEIGHT_MAX) 3135 goto einval; 3136 } 3137 3138 spin_lock(&iocg->ioc->lock); 3139 iocg->cfg_weight = v * WEIGHT_ONE; 3140 ioc_now(iocg->ioc, &now); 3141 weight_updated(iocg, &now); 3142 spin_unlock(&iocg->ioc->lock); 3143 3144 blkg_conf_exit(&ctx); 3145 return nbytes; 3146 3147 einval: 3148 ret = -EINVAL; 3149 err: 3150 blkg_conf_exit(&ctx); 3151 return ret; 3152 } 3153 3154 static u64 ioc_qos_prfill(struct seq_file *sf, struct blkg_policy_data *pd, 3155 int off) 3156 { 3157 const char *dname = blkg_dev_name(pd->blkg); 3158 struct ioc *ioc = pd_to_iocg(pd)->ioc; 3159 3160 if (!dname) 3161 return 0; 3162 3163 spin_lock_irq(&ioc->lock); 3164 seq_printf(sf, "%s enable=%d ctrl=%s rpct=%u.%02u rlat=%u wpct=%u.%02u wlat=%u min=%u.%02u max=%u.%02u\n", 3165 dname, ioc->enabled, ioc->user_qos_params ? "user" : "auto", 3166 ioc->params.qos[QOS_RPPM] / 10000, 3167 ioc->params.qos[QOS_RPPM] % 10000 / 100, 3168 ioc->params.qos[QOS_RLAT], 3169 ioc->params.qos[QOS_WPPM] / 10000, 3170 ioc->params.qos[QOS_WPPM] % 10000 / 100, 3171 ioc->params.qos[QOS_WLAT], 3172 ioc->params.qos[QOS_MIN] / 10000, 3173 ioc->params.qos[QOS_MIN] % 10000 / 100, 3174 ioc->params.qos[QOS_MAX] / 10000, 3175 ioc->params.qos[QOS_MAX] % 10000 / 100); 3176 spin_unlock_irq(&ioc->lock); 3177 return 0; 3178 } 3179 3180 static int ioc_qos_show(struct seq_file *sf, void *v) 3181 { 3182 struct blkcg *blkcg = css_to_blkcg(seq_css(sf)); 3183 3184 blkcg_print_blkgs(sf, blkcg, ioc_qos_prfill, 3185 &blkcg_policy_iocost, seq_cft(sf)->private, false); 3186 return 0; 3187 } 3188 3189 static const match_table_t qos_ctrl_tokens = { 3190 { QOS_ENABLE, "enable=%u" }, 3191 { QOS_CTRL, "ctrl=%s" }, 3192 { NR_QOS_CTRL_PARAMS, NULL }, 3193 }; 3194 3195 static const match_table_t qos_tokens = { 3196 { QOS_RPPM, "rpct=%s" }, 3197 { QOS_RLAT, "rlat=%u" }, 3198 { QOS_WPPM, "wpct=%s" }, 3199 { QOS_WLAT, "wlat=%u" }, 3200 { QOS_MIN, "min=%s" }, 3201 { QOS_MAX, "max=%s" }, 3202 { NR_QOS_PARAMS, NULL }, 3203 }; 3204 3205 static ssize_t ioc_qos_write(struct kernfs_open_file *of, char *input, 3206 size_t nbytes, loff_t off) 3207 { 3208 struct blkg_conf_ctx ctx; 3209 struct gendisk *disk; 3210 struct ioc *ioc; 3211 u32 qos[NR_QOS_PARAMS]; 3212 bool enable, user; 3213 char *body, *p; 3214 int ret; 3215 3216 blkg_conf_init(&ctx, input); 3217 3218 ret = blkg_conf_open_bdev(&ctx); 3219 if (ret) 3220 goto err; 3221 3222 body = ctx.body; 3223 disk = ctx.bdev->bd_disk; 3224 if (!queue_is_mq(disk->queue)) { 3225 ret = -EOPNOTSUPP; 3226 goto err; 3227 } 3228 3229 ioc = q_to_ioc(disk->queue); 3230 if (!ioc) { 3231 ret = blk_iocost_init(disk); 3232 if (ret) 3233 goto err; 3234 ioc = q_to_ioc(disk->queue); 3235 } 3236 3237 blk_mq_freeze_queue(disk->queue); 3238 blk_mq_quiesce_queue(disk->queue); 3239 3240 spin_lock_irq(&ioc->lock); 3241 memcpy(qos, ioc->params.qos, sizeof(qos)); 3242 enable = ioc->enabled; 3243 user = ioc->user_qos_params; 3244 3245 while ((p = strsep(&body, " \t\n"))) { 3246 substring_t args[MAX_OPT_ARGS]; 3247 char buf[32]; 3248 int tok; 3249 s64 v; 3250 3251 if (!*p) 3252 continue; 3253 3254 switch (match_token(p, qos_ctrl_tokens, args)) { 3255 case QOS_ENABLE: 3256 if (match_u64(&args[0], &v)) 3257 goto einval; 3258 enable = v; 3259 continue; 3260 case QOS_CTRL: 3261 match_strlcpy(buf, &args[0], sizeof(buf)); 3262 if (!strcmp(buf, "auto")) 3263 user = false; 3264 else if (!strcmp(buf, "user")) 3265 user = true; 3266 else 3267 goto einval; 3268 continue; 3269 } 3270 3271 tok = match_token(p, qos_tokens, args); 3272 switch (tok) { 3273 case QOS_RPPM: 3274 case QOS_WPPM: 3275 if (match_strlcpy(buf, &args[0], sizeof(buf)) >= 3276 sizeof(buf)) 3277 goto einval; 3278 if (cgroup_parse_float(buf, 2, &v)) 3279 goto einval; 3280 if (v < 0 || v > 10000) 3281 goto einval; 3282 qos[tok] = v * 100; 3283 break; 3284 case QOS_RLAT: 3285 case QOS_WLAT: 3286 if (match_u64(&args[0], &v)) 3287 goto einval; 3288 qos[tok] = v; 3289 break; 3290 case QOS_MIN: 3291 case QOS_MAX: 3292 if (match_strlcpy(buf, &args[0], sizeof(buf)) >= 3293 sizeof(buf)) 3294 goto einval; 3295 if (cgroup_parse_float(buf, 2, &v)) 3296 goto einval; 3297 if (v < 0) 3298 goto einval; 3299 qos[tok] = clamp_t(s64, v * 100, 3300 VRATE_MIN_PPM, VRATE_MAX_PPM); 3301 break; 3302 default: 3303 goto einval; 3304 } 3305 user = true; 3306 } 3307 3308 if (qos[QOS_MIN] > qos[QOS_MAX]) 3309 goto einval; 3310 3311 if (enable && !ioc->enabled) { 3312 blk_stat_enable_accounting(disk->queue); 3313 blk_queue_flag_set(QUEUE_FLAG_RQ_ALLOC_TIME, disk->queue); 3314 ioc->enabled = true; 3315 } else if (!enable && ioc->enabled) { 3316 blk_stat_disable_accounting(disk->queue); 3317 blk_queue_flag_clear(QUEUE_FLAG_RQ_ALLOC_TIME, disk->queue); 3318 ioc->enabled = false; 3319 } 3320 3321 if (user) { 3322 memcpy(ioc->params.qos, qos, sizeof(qos)); 3323 ioc->user_qos_params = true; 3324 } else { 3325 ioc->user_qos_params = false; 3326 } 3327 3328 ioc_refresh_params(ioc, true); 3329 spin_unlock_irq(&ioc->lock); 3330 3331 if (enable) 3332 wbt_disable_default(disk); 3333 else 3334 wbt_enable_default(disk); 3335 3336 blk_mq_unquiesce_queue(disk->queue); 3337 blk_mq_unfreeze_queue(disk->queue); 3338 3339 blkg_conf_exit(&ctx); 3340 return nbytes; 3341 einval: 3342 spin_unlock_irq(&ioc->lock); 3343 3344 blk_mq_unquiesce_queue(disk->queue); 3345 blk_mq_unfreeze_queue(disk->queue); 3346 3347 ret = -EINVAL; 3348 err: 3349 blkg_conf_exit(&ctx); 3350 return ret; 3351 } 3352 3353 static u64 ioc_cost_model_prfill(struct seq_file *sf, 3354 struct blkg_policy_data *pd, int off) 3355 { 3356 const char *dname = blkg_dev_name(pd->blkg); 3357 struct ioc *ioc = pd_to_iocg(pd)->ioc; 3358 u64 *u = ioc->params.i_lcoefs; 3359 3360 if (!dname) 3361 return 0; 3362 3363 spin_lock_irq(&ioc->lock); 3364 seq_printf(sf, "%s ctrl=%s model=linear " 3365 "rbps=%llu rseqiops=%llu rrandiops=%llu " 3366 "wbps=%llu wseqiops=%llu wrandiops=%llu\n", 3367 dname, ioc->user_cost_model ? "user" : "auto", 3368 u[I_LCOEF_RBPS], u[I_LCOEF_RSEQIOPS], u[I_LCOEF_RRANDIOPS], 3369 u[I_LCOEF_WBPS], u[I_LCOEF_WSEQIOPS], u[I_LCOEF_WRANDIOPS]); 3370 spin_unlock_irq(&ioc->lock); 3371 return 0; 3372 } 3373 3374 static int ioc_cost_model_show(struct seq_file *sf, void *v) 3375 { 3376 struct blkcg *blkcg = css_to_blkcg(seq_css(sf)); 3377 3378 blkcg_print_blkgs(sf, blkcg, ioc_cost_model_prfill, 3379 &blkcg_policy_iocost, seq_cft(sf)->private, false); 3380 return 0; 3381 } 3382 3383 static const match_table_t cost_ctrl_tokens = { 3384 { COST_CTRL, "ctrl=%s" }, 3385 { COST_MODEL, "model=%s" }, 3386 { NR_COST_CTRL_PARAMS, NULL }, 3387 }; 3388 3389 static const match_table_t i_lcoef_tokens = { 3390 { I_LCOEF_RBPS, "rbps=%u" }, 3391 { I_LCOEF_RSEQIOPS, "rseqiops=%u" }, 3392 { I_LCOEF_RRANDIOPS, "rrandiops=%u" }, 3393 { I_LCOEF_WBPS, "wbps=%u" }, 3394 { I_LCOEF_WSEQIOPS, "wseqiops=%u" }, 3395 { I_LCOEF_WRANDIOPS, "wrandiops=%u" }, 3396 { NR_I_LCOEFS, NULL }, 3397 }; 3398 3399 static ssize_t ioc_cost_model_write(struct kernfs_open_file *of, char *input, 3400 size_t nbytes, loff_t off) 3401 { 3402 struct blkg_conf_ctx ctx; 3403 struct request_queue *q; 3404 struct ioc *ioc; 3405 u64 u[NR_I_LCOEFS]; 3406 bool user; 3407 char *body, *p; 3408 int ret; 3409 3410 blkg_conf_init(&ctx, input); 3411 3412 ret = blkg_conf_open_bdev(&ctx); 3413 if (ret) 3414 goto err; 3415 3416 body = ctx.body; 3417 q = bdev_get_queue(ctx.bdev); 3418 if (!queue_is_mq(q)) { 3419 ret = -EOPNOTSUPP; 3420 goto err; 3421 } 3422 3423 ioc = q_to_ioc(q); 3424 if (!ioc) { 3425 ret = blk_iocost_init(ctx.bdev->bd_disk); 3426 if (ret) 3427 goto err; 3428 ioc = q_to_ioc(q); 3429 } 3430 3431 blk_mq_freeze_queue(q); 3432 blk_mq_quiesce_queue(q); 3433 3434 spin_lock_irq(&ioc->lock); 3435 memcpy(u, ioc->params.i_lcoefs, sizeof(u)); 3436 user = ioc->user_cost_model; 3437 3438 while ((p = strsep(&body, " \t\n"))) { 3439 substring_t args[MAX_OPT_ARGS]; 3440 char buf[32]; 3441 int tok; 3442 u64 v; 3443 3444 if (!*p) 3445 continue; 3446 3447 switch (match_token(p, cost_ctrl_tokens, args)) { 3448 case COST_CTRL: 3449 match_strlcpy(buf, &args[0], sizeof(buf)); 3450 if (!strcmp(buf, "auto")) 3451 user = false; 3452 else if (!strcmp(buf, "user")) 3453 user = true; 3454 else 3455 goto einval; 3456 continue; 3457 case COST_MODEL: 3458 match_strlcpy(buf, &args[0], sizeof(buf)); 3459 if (strcmp(buf, "linear")) 3460 goto einval; 3461 continue; 3462 } 3463 3464 tok = match_token(p, i_lcoef_tokens, args); 3465 if (tok == NR_I_LCOEFS) 3466 goto einval; 3467 if (match_u64(&args[0], &v)) 3468 goto einval; 3469 u[tok] = v; 3470 user = true; 3471 } 3472 3473 if (user) { 3474 memcpy(ioc->params.i_lcoefs, u, sizeof(u)); 3475 ioc->user_cost_model = true; 3476 } else { 3477 ioc->user_cost_model = false; 3478 } 3479 ioc_refresh_params(ioc, true); 3480 spin_unlock_irq(&ioc->lock); 3481 3482 blk_mq_unquiesce_queue(q); 3483 blk_mq_unfreeze_queue(q); 3484 3485 blkg_conf_exit(&ctx); 3486 return nbytes; 3487 3488 einval: 3489 spin_unlock_irq(&ioc->lock); 3490 3491 blk_mq_unquiesce_queue(q); 3492 blk_mq_unfreeze_queue(q); 3493 3494 ret = -EINVAL; 3495 err: 3496 blkg_conf_exit(&ctx); 3497 return ret; 3498 } 3499 3500 static struct cftype ioc_files[] = { 3501 { 3502 .name = "weight", 3503 .flags = CFTYPE_NOT_ON_ROOT, 3504 .seq_show = ioc_weight_show, 3505 .write = ioc_weight_write, 3506 }, 3507 { 3508 .name = "cost.qos", 3509 .flags = CFTYPE_ONLY_ON_ROOT, 3510 .seq_show = ioc_qos_show, 3511 .write = ioc_qos_write, 3512 }, 3513 { 3514 .name = "cost.model", 3515 .flags = CFTYPE_ONLY_ON_ROOT, 3516 .seq_show = ioc_cost_model_show, 3517 .write = ioc_cost_model_write, 3518 }, 3519 {} 3520 }; 3521 3522 static struct blkcg_policy blkcg_policy_iocost = { 3523 .dfl_cftypes = ioc_files, 3524 .cpd_alloc_fn = ioc_cpd_alloc, 3525 .cpd_free_fn = ioc_cpd_free, 3526 .pd_alloc_fn = ioc_pd_alloc, 3527 .pd_init_fn = ioc_pd_init, 3528 .pd_free_fn = ioc_pd_free, 3529 .pd_stat_fn = ioc_pd_stat, 3530 }; 3531 3532 static int __init ioc_init(void) 3533 { 3534 return blkcg_policy_register(&blkcg_policy_iocost); 3535 } 3536 3537 static void __exit ioc_exit(void) 3538 { 3539 blkcg_policy_unregister(&blkcg_policy_iocost); 3540 } 3541 3542 module_init(ioc_init); 3543 module_exit(ioc_exit); 3544