xref: /linux/block/blk-iocost.c (revision eb01fe7abbe2d0b38824d2a93fdb4cc3eaf2ccc1)
1 /* SPDX-License-Identifier: GPL-2.0
2  *
3  * IO cost model based controller.
4  *
5  * Copyright (C) 2019 Tejun Heo <tj@kernel.org>
6  * Copyright (C) 2019 Andy Newell <newella@fb.com>
7  * Copyright (C) 2019 Facebook
8  *
9  * One challenge of controlling IO resources is the lack of trivially
10  * observable cost metric.  This is distinguished from CPU and memory where
11  * wallclock time and the number of bytes can serve as accurate enough
12  * approximations.
13  *
14  * Bandwidth and iops are the most commonly used metrics for IO devices but
15  * depending on the type and specifics of the device, different IO patterns
16  * easily lead to multiple orders of magnitude variations rendering them
17  * useless for the purpose of IO capacity distribution.  While on-device
18  * time, with a lot of clutches, could serve as a useful approximation for
19  * non-queued rotational devices, this is no longer viable with modern
20  * devices, even the rotational ones.
21  *
22  * While there is no cost metric we can trivially observe, it isn't a
23  * complete mystery.  For example, on a rotational device, seek cost
24  * dominates while a contiguous transfer contributes a smaller amount
25  * proportional to the size.  If we can characterize at least the relative
26  * costs of these different types of IOs, it should be possible to
27  * implement a reasonable work-conserving proportional IO resource
28  * distribution.
29  *
30  * 1. IO Cost Model
31  *
32  * IO cost model estimates the cost of an IO given its basic parameters and
33  * history (e.g. the end sector of the last IO).  The cost is measured in
34  * device time.  If a given IO is estimated to cost 10ms, the device should
35  * be able to process ~100 of those IOs in a second.
36  *
37  * Currently, there's only one builtin cost model - linear.  Each IO is
38  * classified as sequential or random and given a base cost accordingly.
39  * On top of that, a size cost proportional to the length of the IO is
40  * added.  While simple, this model captures the operational
41  * characteristics of a wide varienty of devices well enough.  Default
42  * parameters for several different classes of devices are provided and the
43  * parameters can be configured from userspace via
44  * /sys/fs/cgroup/io.cost.model.
45  *
46  * If needed, tools/cgroup/iocost_coef_gen.py can be used to generate
47  * device-specific coefficients.
48  *
49  * 2. Control Strategy
50  *
51  * The device virtual time (vtime) is used as the primary control metric.
52  * The control strategy is composed of the following three parts.
53  *
54  * 2-1. Vtime Distribution
55  *
56  * When a cgroup becomes active in terms of IOs, its hierarchical share is
57  * calculated.  Please consider the following hierarchy where the numbers
58  * inside parentheses denote the configured weights.
59  *
60  *           root
61  *         /       \
62  *      A (w:100)  B (w:300)
63  *      /       \
64  *  A0 (w:100)  A1 (w:100)
65  *
66  * If B is idle and only A0 and A1 are actively issuing IOs, as the two are
67  * of equal weight, each gets 50% share.  If then B starts issuing IOs, B
68  * gets 300/(100+300) or 75% share, and A0 and A1 equally splits the rest,
69  * 12.5% each.  The distribution mechanism only cares about these flattened
70  * shares.  They're called hweights (hierarchical weights) and always add
71  * upto 1 (WEIGHT_ONE).
72  *
73  * A given cgroup's vtime runs slower in inverse proportion to its hweight.
74  * For example, with 12.5% weight, A0's time runs 8 times slower (100/12.5)
75  * against the device vtime - an IO which takes 10ms on the underlying
76  * device is considered to take 80ms on A0.
77  *
78  * This constitutes the basis of IO capacity distribution.  Each cgroup's
79  * vtime is running at a rate determined by its hweight.  A cgroup tracks
80  * the vtime consumed by past IOs and can issue a new IO if doing so
81  * wouldn't outrun the current device vtime.  Otherwise, the IO is
82  * suspended until the vtime has progressed enough to cover it.
83  *
84  * 2-2. Vrate Adjustment
85  *
86  * It's unrealistic to expect the cost model to be perfect.  There are too
87  * many devices and even on the same device the overall performance
88  * fluctuates depending on numerous factors such as IO mixture and device
89  * internal garbage collection.  The controller needs to adapt dynamically.
90  *
91  * This is achieved by adjusting the overall IO rate according to how busy
92  * the device is.  If the device becomes overloaded, we're sending down too
93  * many IOs and should generally slow down.  If there are waiting issuers
94  * but the device isn't saturated, we're issuing too few and should
95  * generally speed up.
96  *
97  * To slow down, we lower the vrate - the rate at which the device vtime
98  * passes compared to the wall clock.  For example, if the vtime is running
99  * at the vrate of 75%, all cgroups added up would only be able to issue
100  * 750ms worth of IOs per second, and vice-versa for speeding up.
101  *
102  * Device business is determined using two criteria - rq wait and
103  * completion latencies.
104  *
105  * When a device gets saturated, the on-device and then the request queues
106  * fill up and a bio which is ready to be issued has to wait for a request
107  * to become available.  When this delay becomes noticeable, it's a clear
108  * indication that the device is saturated and we lower the vrate.  This
109  * saturation signal is fairly conservative as it only triggers when both
110  * hardware and software queues are filled up, and is used as the default
111  * busy signal.
112  *
113  * As devices can have deep queues and be unfair in how the queued commands
114  * are executed, solely depending on rq wait may not result in satisfactory
115  * control quality.  For a better control quality, completion latency QoS
116  * parameters can be configured so that the device is considered saturated
117  * if N'th percentile completion latency rises above the set point.
118  *
119  * The completion latency requirements are a function of both the
120  * underlying device characteristics and the desired IO latency quality of
121  * service.  There is an inherent trade-off - the tighter the latency QoS,
122  * the higher the bandwidth lossage.  Latency QoS is disabled by default
123  * and can be set through /sys/fs/cgroup/io.cost.qos.
124  *
125  * 2-3. Work Conservation
126  *
127  * Imagine two cgroups A and B with equal weights.  A is issuing a small IO
128  * periodically while B is sending out enough parallel IOs to saturate the
129  * device on its own.  Let's say A's usage amounts to 100ms worth of IO
130  * cost per second, i.e., 10% of the device capacity.  The naive
131  * distribution of half and half would lead to 60% utilization of the
132  * device, a significant reduction in the total amount of work done
133  * compared to free-for-all competition.  This is too high a cost to pay
134  * for IO control.
135  *
136  * To conserve the total amount of work done, we keep track of how much
137  * each active cgroup is actually using and yield part of its weight if
138  * there are other cgroups which can make use of it.  In the above case,
139  * A's weight will be lowered so that it hovers above the actual usage and
140  * B would be able to use the rest.
141  *
142  * As we don't want to penalize a cgroup for donating its weight, the
143  * surplus weight adjustment factors in a margin and has an immediate
144  * snapback mechanism in case the cgroup needs more IO vtime for itself.
145  *
146  * Note that adjusting down surplus weights has the same effects as
147  * accelerating vtime for other cgroups and work conservation can also be
148  * implemented by adjusting vrate dynamically.  However, squaring who can
149  * donate and should take back how much requires hweight propagations
150  * anyway making it easier to implement and understand as a separate
151  * mechanism.
152  *
153  * 3. Monitoring
154  *
155  * Instead of debugfs or other clumsy monitoring mechanisms, this
156  * controller uses a drgn based monitoring script -
157  * tools/cgroup/iocost_monitor.py.  For details on drgn, please see
158  * https://github.com/osandov/drgn.  The output looks like the following.
159  *
160  *  sdb RUN   per=300ms cur_per=234.218:v203.695 busy= +1 vrate= 62.12%
161  *                 active      weight      hweight% inflt% dbt  delay usages%
162  *  test/a              *    50/   50  33.33/ 33.33  27.65   2  0*041 033:033:033
163  *  test/b              *   100/  100  66.67/ 66.67  17.56   0  0*000 066:079:077
164  *
165  * - per	: Timer period
166  * - cur_per	: Internal wall and device vtime clock
167  * - vrate	: Device virtual time rate against wall clock
168  * - weight	: Surplus-adjusted and configured weights
169  * - hweight	: Surplus-adjusted and configured hierarchical weights
170  * - inflt	: The percentage of in-flight IO cost at the end of last period
171  * - del_ms	: Deferred issuer delay induction level and duration
172  * - usages	: Usage history
173  */
174 
175 #include <linux/kernel.h>
176 #include <linux/module.h>
177 #include <linux/timer.h>
178 #include <linux/time64.h>
179 #include <linux/parser.h>
180 #include <linux/sched/signal.h>
181 #include <asm/local.h>
182 #include <asm/local64.h>
183 #include "blk-rq-qos.h"
184 #include "blk-stat.h"
185 #include "blk-wbt.h"
186 #include "blk-cgroup.h"
187 
188 #ifdef CONFIG_TRACEPOINTS
189 
190 /* copied from TRACE_CGROUP_PATH, see cgroup-internal.h */
191 #define TRACE_IOCG_PATH_LEN 1024
192 static DEFINE_SPINLOCK(trace_iocg_path_lock);
193 static char trace_iocg_path[TRACE_IOCG_PATH_LEN];
194 
195 #define TRACE_IOCG_PATH(type, iocg, ...)					\
196 	do {									\
197 		unsigned long flags;						\
198 		if (trace_iocost_##type##_enabled()) {				\
199 			spin_lock_irqsave(&trace_iocg_path_lock, flags);	\
200 			cgroup_path(iocg_to_blkg(iocg)->blkcg->css.cgroup,	\
201 				    trace_iocg_path, TRACE_IOCG_PATH_LEN);	\
202 			trace_iocost_##type(iocg, trace_iocg_path,		\
203 					      ##__VA_ARGS__);			\
204 			spin_unlock_irqrestore(&trace_iocg_path_lock, flags);	\
205 		}								\
206 	} while (0)
207 
208 #else	/* CONFIG_TRACE_POINTS */
209 #define TRACE_IOCG_PATH(type, iocg, ...)	do { } while (0)
210 #endif	/* CONFIG_TRACE_POINTS */
211 
212 enum {
213 	MILLION			= 1000000,
214 
215 	/* timer period is calculated from latency requirements, bound it */
216 	MIN_PERIOD		= USEC_PER_MSEC,
217 	MAX_PERIOD		= USEC_PER_SEC,
218 
219 	/*
220 	 * iocg->vtime is targeted at 50% behind the device vtime, which
221 	 * serves as its IO credit buffer.  Surplus weight adjustment is
222 	 * immediately canceled if the vtime margin runs below 10%.
223 	 */
224 	MARGIN_MIN_PCT		= 10,
225 	MARGIN_LOW_PCT		= 20,
226 	MARGIN_TARGET_PCT	= 50,
227 
228 	INUSE_ADJ_STEP_PCT	= 25,
229 
230 	/* Have some play in timer operations */
231 	TIMER_SLACK_PCT		= 1,
232 
233 	/* 1/64k is granular enough and can easily be handled w/ u32 */
234 	WEIGHT_ONE		= 1 << 16,
235 };
236 
237 enum {
238 	/*
239 	 * As vtime is used to calculate the cost of each IO, it needs to
240 	 * be fairly high precision.  For example, it should be able to
241 	 * represent the cost of a single page worth of discard with
242 	 * suffificient accuracy.  At the same time, it should be able to
243 	 * represent reasonably long enough durations to be useful and
244 	 * convenient during operation.
245 	 *
246 	 * 1s worth of vtime is 2^37.  This gives us both sub-nanosecond
247 	 * granularity and days of wrap-around time even at extreme vrates.
248 	 */
249 	VTIME_PER_SEC_SHIFT	= 37,
250 	VTIME_PER_SEC		= 1LLU << VTIME_PER_SEC_SHIFT,
251 	VTIME_PER_USEC		= VTIME_PER_SEC / USEC_PER_SEC,
252 	VTIME_PER_NSEC		= VTIME_PER_SEC / NSEC_PER_SEC,
253 
254 	/* bound vrate adjustments within two orders of magnitude */
255 	VRATE_MIN_PPM		= 10000,	/* 1% */
256 	VRATE_MAX_PPM		= 100000000,	/* 10000% */
257 
258 	VRATE_MIN		= VTIME_PER_USEC * VRATE_MIN_PPM / MILLION,
259 	VRATE_CLAMP_ADJ_PCT	= 4,
260 
261 	/* switch iff the conditions are met for longer than this */
262 	AUTOP_CYCLE_NSEC	= 10LLU * NSEC_PER_SEC,
263 };
264 
265 enum {
266 	/* if IOs end up waiting for requests, issue less */
267 	RQ_WAIT_BUSY_PCT	= 5,
268 
269 	/* unbusy hysterisis */
270 	UNBUSY_THR_PCT		= 75,
271 
272 	/*
273 	 * The effect of delay is indirect and non-linear and a huge amount of
274 	 * future debt can accumulate abruptly while unthrottled. Linearly scale
275 	 * up delay as debt is going up and then let it decay exponentially.
276 	 * This gives us quick ramp ups while delay is accumulating and long
277 	 * tails which can help reducing the frequency of debt explosions on
278 	 * unthrottle. The parameters are experimentally determined.
279 	 *
280 	 * The delay mechanism provides adequate protection and behavior in many
281 	 * cases. However, this is far from ideal and falls shorts on both
282 	 * fronts. The debtors are often throttled too harshly costing a
283 	 * significant level of fairness and possibly total work while the
284 	 * protection against their impacts on the system can be choppy and
285 	 * unreliable.
286 	 *
287 	 * The shortcoming primarily stems from the fact that, unlike for page
288 	 * cache, the kernel doesn't have well-defined back-pressure propagation
289 	 * mechanism and policies for anonymous memory. Fully addressing this
290 	 * issue will likely require substantial improvements in the area.
291 	 */
292 	MIN_DELAY_THR_PCT	= 500,
293 	MAX_DELAY_THR_PCT	= 25000,
294 	MIN_DELAY		= 250,
295 	MAX_DELAY		= 250 * USEC_PER_MSEC,
296 
297 	/* halve debts if avg usage over 100ms is under 50% */
298 	DFGV_USAGE_PCT		= 50,
299 	DFGV_PERIOD		= 100 * USEC_PER_MSEC,
300 
301 	/* don't let cmds which take a very long time pin lagging for too long */
302 	MAX_LAGGING_PERIODS	= 10,
303 
304 	/*
305 	 * Count IO size in 4k pages.  The 12bit shift helps keeping
306 	 * size-proportional components of cost calculation in closer
307 	 * numbers of digits to per-IO cost components.
308 	 */
309 	IOC_PAGE_SHIFT		= 12,
310 	IOC_PAGE_SIZE		= 1 << IOC_PAGE_SHIFT,
311 	IOC_SECT_TO_PAGE_SHIFT	= IOC_PAGE_SHIFT - SECTOR_SHIFT,
312 
313 	/* if apart further than 16M, consider randio for linear model */
314 	LCOEF_RANDIO_PAGES	= 4096,
315 };
316 
317 enum ioc_running {
318 	IOC_IDLE,
319 	IOC_RUNNING,
320 	IOC_STOP,
321 };
322 
323 /* io.cost.qos controls including per-dev enable of the whole controller */
324 enum {
325 	QOS_ENABLE,
326 	QOS_CTRL,
327 	NR_QOS_CTRL_PARAMS,
328 };
329 
330 /* io.cost.qos params */
331 enum {
332 	QOS_RPPM,
333 	QOS_RLAT,
334 	QOS_WPPM,
335 	QOS_WLAT,
336 	QOS_MIN,
337 	QOS_MAX,
338 	NR_QOS_PARAMS,
339 };
340 
341 /* io.cost.model controls */
342 enum {
343 	COST_CTRL,
344 	COST_MODEL,
345 	NR_COST_CTRL_PARAMS,
346 };
347 
348 /* builtin linear cost model coefficients */
349 enum {
350 	I_LCOEF_RBPS,
351 	I_LCOEF_RSEQIOPS,
352 	I_LCOEF_RRANDIOPS,
353 	I_LCOEF_WBPS,
354 	I_LCOEF_WSEQIOPS,
355 	I_LCOEF_WRANDIOPS,
356 	NR_I_LCOEFS,
357 };
358 
359 enum {
360 	LCOEF_RPAGE,
361 	LCOEF_RSEQIO,
362 	LCOEF_RRANDIO,
363 	LCOEF_WPAGE,
364 	LCOEF_WSEQIO,
365 	LCOEF_WRANDIO,
366 	NR_LCOEFS,
367 };
368 
369 enum {
370 	AUTOP_INVALID,
371 	AUTOP_HDD,
372 	AUTOP_SSD_QD1,
373 	AUTOP_SSD_DFL,
374 	AUTOP_SSD_FAST,
375 };
376 
377 struct ioc_params {
378 	u32				qos[NR_QOS_PARAMS];
379 	u64				i_lcoefs[NR_I_LCOEFS];
380 	u64				lcoefs[NR_LCOEFS];
381 	u32				too_fast_vrate_pct;
382 	u32				too_slow_vrate_pct;
383 };
384 
385 struct ioc_margins {
386 	s64				min;
387 	s64				low;
388 	s64				target;
389 };
390 
391 struct ioc_missed {
392 	local_t				nr_met;
393 	local_t				nr_missed;
394 	u32				last_met;
395 	u32				last_missed;
396 };
397 
398 struct ioc_pcpu_stat {
399 	struct ioc_missed		missed[2];
400 
401 	local64_t			rq_wait_ns;
402 	u64				last_rq_wait_ns;
403 };
404 
405 /* per device */
406 struct ioc {
407 	struct rq_qos			rqos;
408 
409 	bool				enabled;
410 
411 	struct ioc_params		params;
412 	struct ioc_margins		margins;
413 	u32				period_us;
414 	u32				timer_slack_ns;
415 	u64				vrate_min;
416 	u64				vrate_max;
417 
418 	spinlock_t			lock;
419 	struct timer_list		timer;
420 	struct list_head		active_iocgs;	/* active cgroups */
421 	struct ioc_pcpu_stat __percpu	*pcpu_stat;
422 
423 	enum ioc_running		running;
424 	atomic64_t			vtime_rate;
425 	u64				vtime_base_rate;
426 	s64				vtime_err;
427 
428 	seqcount_spinlock_t		period_seqcount;
429 	u64				period_at;	/* wallclock starttime */
430 	u64				period_at_vtime; /* vtime starttime */
431 
432 	atomic64_t			cur_period;	/* inc'd each period */
433 	int				busy_level;	/* saturation history */
434 
435 	bool				weights_updated;
436 	atomic_t			hweight_gen;	/* for lazy hweights */
437 
438 	/* debt forgivness */
439 	u64				dfgv_period_at;
440 	u64				dfgv_period_rem;
441 	u64				dfgv_usage_us_sum;
442 
443 	u64				autop_too_fast_at;
444 	u64				autop_too_slow_at;
445 	int				autop_idx;
446 	bool				user_qos_params:1;
447 	bool				user_cost_model:1;
448 };
449 
450 struct iocg_pcpu_stat {
451 	local64_t			abs_vusage;
452 };
453 
454 struct iocg_stat {
455 	u64				usage_us;
456 	u64				wait_us;
457 	u64				indebt_us;
458 	u64				indelay_us;
459 };
460 
461 /* per device-cgroup pair */
462 struct ioc_gq {
463 	struct blkg_policy_data		pd;
464 	struct ioc			*ioc;
465 
466 	/*
467 	 * A iocg can get its weight from two sources - an explicit
468 	 * per-device-cgroup configuration or the default weight of the
469 	 * cgroup.  `cfg_weight` is the explicit per-device-cgroup
470 	 * configuration.  `weight` is the effective considering both
471 	 * sources.
472 	 *
473 	 * When an idle cgroup becomes active its `active` goes from 0 to
474 	 * `weight`.  `inuse` is the surplus adjusted active weight.
475 	 * `active` and `inuse` are used to calculate `hweight_active` and
476 	 * `hweight_inuse`.
477 	 *
478 	 * `last_inuse` remembers `inuse` while an iocg is idle to persist
479 	 * surplus adjustments.
480 	 *
481 	 * `inuse` may be adjusted dynamically during period. `saved_*` are used
482 	 * to determine and track adjustments.
483 	 */
484 	u32				cfg_weight;
485 	u32				weight;
486 	u32				active;
487 	u32				inuse;
488 
489 	u32				last_inuse;
490 	s64				saved_margin;
491 
492 	sector_t			cursor;		/* to detect randio */
493 
494 	/*
495 	 * `vtime` is this iocg's vtime cursor which progresses as IOs are
496 	 * issued.  If lagging behind device vtime, the delta represents
497 	 * the currently available IO budget.  If running ahead, the
498 	 * overage.
499 	 *
500 	 * `vtime_done` is the same but progressed on completion rather
501 	 * than issue.  The delta behind `vtime` represents the cost of
502 	 * currently in-flight IOs.
503 	 */
504 	atomic64_t			vtime;
505 	atomic64_t			done_vtime;
506 	u64				abs_vdebt;
507 
508 	/* current delay in effect and when it started */
509 	u64				delay;
510 	u64				delay_at;
511 
512 	/*
513 	 * The period this iocg was last active in.  Used for deactivation
514 	 * and invalidating `vtime`.
515 	 */
516 	atomic64_t			active_period;
517 	struct list_head		active_list;
518 
519 	/* see __propagate_weights() and current_hweight() for details */
520 	u64				child_active_sum;
521 	u64				child_inuse_sum;
522 	u64				child_adjusted_sum;
523 	int				hweight_gen;
524 	u32				hweight_active;
525 	u32				hweight_inuse;
526 	u32				hweight_donating;
527 	u32				hweight_after_donation;
528 
529 	struct list_head		walk_list;
530 	struct list_head		surplus_list;
531 
532 	struct wait_queue_head		waitq;
533 	struct hrtimer			waitq_timer;
534 
535 	/* timestamp at the latest activation */
536 	u64				activated_at;
537 
538 	/* statistics */
539 	struct iocg_pcpu_stat __percpu	*pcpu_stat;
540 	struct iocg_stat		stat;
541 	struct iocg_stat		last_stat;
542 	u64				last_stat_abs_vusage;
543 	u64				usage_delta_us;
544 	u64				wait_since;
545 	u64				indebt_since;
546 	u64				indelay_since;
547 
548 	/* this iocg's depth in the hierarchy and ancestors including self */
549 	int				level;
550 	struct ioc_gq			*ancestors[];
551 };
552 
553 /* per cgroup */
554 struct ioc_cgrp {
555 	struct blkcg_policy_data	cpd;
556 	unsigned int			dfl_weight;
557 };
558 
559 struct ioc_now {
560 	u64				now_ns;
561 	u64				now;
562 	u64				vnow;
563 };
564 
565 struct iocg_wait {
566 	struct wait_queue_entry		wait;
567 	struct bio			*bio;
568 	u64				abs_cost;
569 	bool				committed;
570 };
571 
572 struct iocg_wake_ctx {
573 	struct ioc_gq			*iocg;
574 	u32				hw_inuse;
575 	s64				vbudget;
576 };
577 
578 static const struct ioc_params autop[] = {
579 	[AUTOP_HDD] = {
580 		.qos				= {
581 			[QOS_RLAT]		=        250000, /* 250ms */
582 			[QOS_WLAT]		=        250000,
583 			[QOS_MIN]		= VRATE_MIN_PPM,
584 			[QOS_MAX]		= VRATE_MAX_PPM,
585 		},
586 		.i_lcoefs			= {
587 			[I_LCOEF_RBPS]		=     174019176,
588 			[I_LCOEF_RSEQIOPS]	=         41708,
589 			[I_LCOEF_RRANDIOPS]	=           370,
590 			[I_LCOEF_WBPS]		=     178075866,
591 			[I_LCOEF_WSEQIOPS]	=         42705,
592 			[I_LCOEF_WRANDIOPS]	=           378,
593 		},
594 	},
595 	[AUTOP_SSD_QD1] = {
596 		.qos				= {
597 			[QOS_RLAT]		=         25000, /* 25ms */
598 			[QOS_WLAT]		=         25000,
599 			[QOS_MIN]		= VRATE_MIN_PPM,
600 			[QOS_MAX]		= VRATE_MAX_PPM,
601 		},
602 		.i_lcoefs			= {
603 			[I_LCOEF_RBPS]		=     245855193,
604 			[I_LCOEF_RSEQIOPS]	=         61575,
605 			[I_LCOEF_RRANDIOPS]	=          6946,
606 			[I_LCOEF_WBPS]		=     141365009,
607 			[I_LCOEF_WSEQIOPS]	=         33716,
608 			[I_LCOEF_WRANDIOPS]	=         26796,
609 		},
610 	},
611 	[AUTOP_SSD_DFL] = {
612 		.qos				= {
613 			[QOS_RLAT]		=         25000, /* 25ms */
614 			[QOS_WLAT]		=         25000,
615 			[QOS_MIN]		= VRATE_MIN_PPM,
616 			[QOS_MAX]		= VRATE_MAX_PPM,
617 		},
618 		.i_lcoefs			= {
619 			[I_LCOEF_RBPS]		=     488636629,
620 			[I_LCOEF_RSEQIOPS]	=          8932,
621 			[I_LCOEF_RRANDIOPS]	=          8518,
622 			[I_LCOEF_WBPS]		=     427891549,
623 			[I_LCOEF_WSEQIOPS]	=         28755,
624 			[I_LCOEF_WRANDIOPS]	=         21940,
625 		},
626 		.too_fast_vrate_pct		=           500,
627 	},
628 	[AUTOP_SSD_FAST] = {
629 		.qos				= {
630 			[QOS_RLAT]		=          5000, /* 5ms */
631 			[QOS_WLAT]		=          5000,
632 			[QOS_MIN]		= VRATE_MIN_PPM,
633 			[QOS_MAX]		= VRATE_MAX_PPM,
634 		},
635 		.i_lcoefs			= {
636 			[I_LCOEF_RBPS]		=    3102524156LLU,
637 			[I_LCOEF_RSEQIOPS]	=        724816,
638 			[I_LCOEF_RRANDIOPS]	=        778122,
639 			[I_LCOEF_WBPS]		=    1742780862LLU,
640 			[I_LCOEF_WSEQIOPS]	=        425702,
641 			[I_LCOEF_WRANDIOPS]	=	 443193,
642 		},
643 		.too_slow_vrate_pct		=            10,
644 	},
645 };
646 
647 /*
648  * vrate adjust percentages indexed by ioc->busy_level.  We adjust up on
649  * vtime credit shortage and down on device saturation.
650  */
651 static u32 vrate_adj_pct[] =
652 	{ 0, 0, 0, 0,
653 	  1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
654 	  2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
655 	  4, 4, 4, 4, 4, 4, 4, 4, 8, 8, 8, 8, 8, 8, 8, 8, 16 };
656 
657 static struct blkcg_policy blkcg_policy_iocost;
658 
659 /* accessors and helpers */
660 static struct ioc *rqos_to_ioc(struct rq_qos *rqos)
661 {
662 	return container_of(rqos, struct ioc, rqos);
663 }
664 
665 static struct ioc *q_to_ioc(struct request_queue *q)
666 {
667 	return rqos_to_ioc(rq_qos_id(q, RQ_QOS_COST));
668 }
669 
670 static const char __maybe_unused *ioc_name(struct ioc *ioc)
671 {
672 	struct gendisk *disk = ioc->rqos.disk;
673 
674 	if (!disk)
675 		return "<unknown>";
676 	return disk->disk_name;
677 }
678 
679 static struct ioc_gq *pd_to_iocg(struct blkg_policy_data *pd)
680 {
681 	return pd ? container_of(pd, struct ioc_gq, pd) : NULL;
682 }
683 
684 static struct ioc_gq *blkg_to_iocg(struct blkcg_gq *blkg)
685 {
686 	return pd_to_iocg(blkg_to_pd(blkg, &blkcg_policy_iocost));
687 }
688 
689 static struct blkcg_gq *iocg_to_blkg(struct ioc_gq *iocg)
690 {
691 	return pd_to_blkg(&iocg->pd);
692 }
693 
694 static struct ioc_cgrp *blkcg_to_iocc(struct blkcg *blkcg)
695 {
696 	return container_of(blkcg_to_cpd(blkcg, &blkcg_policy_iocost),
697 			    struct ioc_cgrp, cpd);
698 }
699 
700 /*
701  * Scale @abs_cost to the inverse of @hw_inuse.  The lower the hierarchical
702  * weight, the more expensive each IO.  Must round up.
703  */
704 static u64 abs_cost_to_cost(u64 abs_cost, u32 hw_inuse)
705 {
706 	return DIV64_U64_ROUND_UP(abs_cost * WEIGHT_ONE, hw_inuse);
707 }
708 
709 /*
710  * The inverse of abs_cost_to_cost().  Must round up.
711  */
712 static u64 cost_to_abs_cost(u64 cost, u32 hw_inuse)
713 {
714 	return DIV64_U64_ROUND_UP(cost * hw_inuse, WEIGHT_ONE);
715 }
716 
717 static void iocg_commit_bio(struct ioc_gq *iocg, struct bio *bio,
718 			    u64 abs_cost, u64 cost)
719 {
720 	struct iocg_pcpu_stat *gcs;
721 
722 	bio->bi_iocost_cost = cost;
723 	atomic64_add(cost, &iocg->vtime);
724 
725 	gcs = get_cpu_ptr(iocg->pcpu_stat);
726 	local64_add(abs_cost, &gcs->abs_vusage);
727 	put_cpu_ptr(gcs);
728 }
729 
730 static void iocg_lock(struct ioc_gq *iocg, bool lock_ioc, unsigned long *flags)
731 {
732 	if (lock_ioc) {
733 		spin_lock_irqsave(&iocg->ioc->lock, *flags);
734 		spin_lock(&iocg->waitq.lock);
735 	} else {
736 		spin_lock_irqsave(&iocg->waitq.lock, *flags);
737 	}
738 }
739 
740 static void iocg_unlock(struct ioc_gq *iocg, bool unlock_ioc, unsigned long *flags)
741 {
742 	if (unlock_ioc) {
743 		spin_unlock(&iocg->waitq.lock);
744 		spin_unlock_irqrestore(&iocg->ioc->lock, *flags);
745 	} else {
746 		spin_unlock_irqrestore(&iocg->waitq.lock, *flags);
747 	}
748 }
749 
750 #define CREATE_TRACE_POINTS
751 #include <trace/events/iocost.h>
752 
753 static void ioc_refresh_margins(struct ioc *ioc)
754 {
755 	struct ioc_margins *margins = &ioc->margins;
756 	u32 period_us = ioc->period_us;
757 	u64 vrate = ioc->vtime_base_rate;
758 
759 	margins->min = (period_us * MARGIN_MIN_PCT / 100) * vrate;
760 	margins->low = (period_us * MARGIN_LOW_PCT / 100) * vrate;
761 	margins->target = (period_us * MARGIN_TARGET_PCT / 100) * vrate;
762 }
763 
764 /* latency Qos params changed, update period_us and all the dependent params */
765 static void ioc_refresh_period_us(struct ioc *ioc)
766 {
767 	u32 ppm, lat, multi, period_us;
768 
769 	lockdep_assert_held(&ioc->lock);
770 
771 	/* pick the higher latency target */
772 	if (ioc->params.qos[QOS_RLAT] >= ioc->params.qos[QOS_WLAT]) {
773 		ppm = ioc->params.qos[QOS_RPPM];
774 		lat = ioc->params.qos[QOS_RLAT];
775 	} else {
776 		ppm = ioc->params.qos[QOS_WPPM];
777 		lat = ioc->params.qos[QOS_WLAT];
778 	}
779 
780 	/*
781 	 * We want the period to be long enough to contain a healthy number
782 	 * of IOs while short enough for granular control.  Define it as a
783 	 * multiple of the latency target.  Ideally, the multiplier should
784 	 * be scaled according to the percentile so that it would nominally
785 	 * contain a certain number of requests.  Let's be simpler and
786 	 * scale it linearly so that it's 2x >= pct(90) and 10x at pct(50).
787 	 */
788 	if (ppm)
789 		multi = max_t(u32, (MILLION - ppm) / 50000, 2);
790 	else
791 		multi = 2;
792 	period_us = multi * lat;
793 	period_us = clamp_t(u32, period_us, MIN_PERIOD, MAX_PERIOD);
794 
795 	/* calculate dependent params */
796 	ioc->period_us = period_us;
797 	ioc->timer_slack_ns = div64_u64(
798 		(u64)period_us * NSEC_PER_USEC * TIMER_SLACK_PCT,
799 		100);
800 	ioc_refresh_margins(ioc);
801 }
802 
803 /*
804  *  ioc->rqos.disk isn't initialized when this function is called from
805  *  the init path.
806  */
807 static int ioc_autop_idx(struct ioc *ioc, struct gendisk *disk)
808 {
809 	int idx = ioc->autop_idx;
810 	const struct ioc_params *p = &autop[idx];
811 	u32 vrate_pct;
812 	u64 now_ns;
813 
814 	/* rotational? */
815 	if (!blk_queue_nonrot(disk->queue))
816 		return AUTOP_HDD;
817 
818 	/* handle SATA SSDs w/ broken NCQ */
819 	if (blk_queue_depth(disk->queue) == 1)
820 		return AUTOP_SSD_QD1;
821 
822 	/* use one of the normal ssd sets */
823 	if (idx < AUTOP_SSD_DFL)
824 		return AUTOP_SSD_DFL;
825 
826 	/* if user is overriding anything, maintain what was there */
827 	if (ioc->user_qos_params || ioc->user_cost_model)
828 		return idx;
829 
830 	/* step up/down based on the vrate */
831 	vrate_pct = div64_u64(ioc->vtime_base_rate * 100, VTIME_PER_USEC);
832 	now_ns = blk_time_get_ns();
833 
834 	if (p->too_fast_vrate_pct && p->too_fast_vrate_pct <= vrate_pct) {
835 		if (!ioc->autop_too_fast_at)
836 			ioc->autop_too_fast_at = now_ns;
837 		if (now_ns - ioc->autop_too_fast_at >= AUTOP_CYCLE_NSEC)
838 			return idx + 1;
839 	} else {
840 		ioc->autop_too_fast_at = 0;
841 	}
842 
843 	if (p->too_slow_vrate_pct && p->too_slow_vrate_pct >= vrate_pct) {
844 		if (!ioc->autop_too_slow_at)
845 			ioc->autop_too_slow_at = now_ns;
846 		if (now_ns - ioc->autop_too_slow_at >= AUTOP_CYCLE_NSEC)
847 			return idx - 1;
848 	} else {
849 		ioc->autop_too_slow_at = 0;
850 	}
851 
852 	return idx;
853 }
854 
855 /*
856  * Take the followings as input
857  *
858  *  @bps	maximum sequential throughput
859  *  @seqiops	maximum sequential 4k iops
860  *  @randiops	maximum random 4k iops
861  *
862  * and calculate the linear model cost coefficients.
863  *
864  *  *@page	per-page cost		1s / (@bps / 4096)
865  *  *@seqio	base cost of a seq IO	max((1s / @seqiops) - *@page, 0)
866  *  @randiops	base cost of a rand IO	max((1s / @randiops) - *@page, 0)
867  */
868 static void calc_lcoefs(u64 bps, u64 seqiops, u64 randiops,
869 			u64 *page, u64 *seqio, u64 *randio)
870 {
871 	u64 v;
872 
873 	*page = *seqio = *randio = 0;
874 
875 	if (bps) {
876 		u64 bps_pages = DIV_ROUND_UP_ULL(bps, IOC_PAGE_SIZE);
877 
878 		if (bps_pages)
879 			*page = DIV64_U64_ROUND_UP(VTIME_PER_SEC, bps_pages);
880 		else
881 			*page = 1;
882 	}
883 
884 	if (seqiops) {
885 		v = DIV64_U64_ROUND_UP(VTIME_PER_SEC, seqiops);
886 		if (v > *page)
887 			*seqio = v - *page;
888 	}
889 
890 	if (randiops) {
891 		v = DIV64_U64_ROUND_UP(VTIME_PER_SEC, randiops);
892 		if (v > *page)
893 			*randio = v - *page;
894 	}
895 }
896 
897 static void ioc_refresh_lcoefs(struct ioc *ioc)
898 {
899 	u64 *u = ioc->params.i_lcoefs;
900 	u64 *c = ioc->params.lcoefs;
901 
902 	calc_lcoefs(u[I_LCOEF_RBPS], u[I_LCOEF_RSEQIOPS], u[I_LCOEF_RRANDIOPS],
903 		    &c[LCOEF_RPAGE], &c[LCOEF_RSEQIO], &c[LCOEF_RRANDIO]);
904 	calc_lcoefs(u[I_LCOEF_WBPS], u[I_LCOEF_WSEQIOPS], u[I_LCOEF_WRANDIOPS],
905 		    &c[LCOEF_WPAGE], &c[LCOEF_WSEQIO], &c[LCOEF_WRANDIO]);
906 }
907 
908 /*
909  * struct gendisk is required as an argument because ioc->rqos.disk
910  * is not properly initialized when called from the init path.
911  */
912 static bool ioc_refresh_params_disk(struct ioc *ioc, bool force,
913 				    struct gendisk *disk)
914 {
915 	const struct ioc_params *p;
916 	int idx;
917 
918 	lockdep_assert_held(&ioc->lock);
919 
920 	idx = ioc_autop_idx(ioc, disk);
921 	p = &autop[idx];
922 
923 	if (idx == ioc->autop_idx && !force)
924 		return false;
925 
926 	if (idx != ioc->autop_idx) {
927 		atomic64_set(&ioc->vtime_rate, VTIME_PER_USEC);
928 		ioc->vtime_base_rate = VTIME_PER_USEC;
929 	}
930 
931 	ioc->autop_idx = idx;
932 	ioc->autop_too_fast_at = 0;
933 	ioc->autop_too_slow_at = 0;
934 
935 	if (!ioc->user_qos_params)
936 		memcpy(ioc->params.qos, p->qos, sizeof(p->qos));
937 	if (!ioc->user_cost_model)
938 		memcpy(ioc->params.i_lcoefs, p->i_lcoefs, sizeof(p->i_lcoefs));
939 
940 	ioc_refresh_period_us(ioc);
941 	ioc_refresh_lcoefs(ioc);
942 
943 	ioc->vrate_min = DIV64_U64_ROUND_UP((u64)ioc->params.qos[QOS_MIN] *
944 					    VTIME_PER_USEC, MILLION);
945 	ioc->vrate_max = DIV64_U64_ROUND_UP((u64)ioc->params.qos[QOS_MAX] *
946 					    VTIME_PER_USEC, MILLION);
947 
948 	return true;
949 }
950 
951 static bool ioc_refresh_params(struct ioc *ioc, bool force)
952 {
953 	return ioc_refresh_params_disk(ioc, force, ioc->rqos.disk);
954 }
955 
956 /*
957  * When an iocg accumulates too much vtime or gets deactivated, we throw away
958  * some vtime, which lowers the overall device utilization. As the exact amount
959  * which is being thrown away is known, we can compensate by accelerating the
960  * vrate accordingly so that the extra vtime generated in the current period
961  * matches what got lost.
962  */
963 static void ioc_refresh_vrate(struct ioc *ioc, struct ioc_now *now)
964 {
965 	s64 pleft = ioc->period_at + ioc->period_us - now->now;
966 	s64 vperiod = ioc->period_us * ioc->vtime_base_rate;
967 	s64 vcomp, vcomp_min, vcomp_max;
968 
969 	lockdep_assert_held(&ioc->lock);
970 
971 	/* we need some time left in this period */
972 	if (pleft <= 0)
973 		goto done;
974 
975 	/*
976 	 * Calculate how much vrate should be adjusted to offset the error.
977 	 * Limit the amount of adjustment and deduct the adjusted amount from
978 	 * the error.
979 	 */
980 	vcomp = -div64_s64(ioc->vtime_err, pleft);
981 	vcomp_min = -(ioc->vtime_base_rate >> 1);
982 	vcomp_max = ioc->vtime_base_rate;
983 	vcomp = clamp(vcomp, vcomp_min, vcomp_max);
984 
985 	ioc->vtime_err += vcomp * pleft;
986 
987 	atomic64_set(&ioc->vtime_rate, ioc->vtime_base_rate + vcomp);
988 done:
989 	/* bound how much error can accumulate */
990 	ioc->vtime_err = clamp(ioc->vtime_err, -vperiod, vperiod);
991 }
992 
993 static void ioc_adjust_base_vrate(struct ioc *ioc, u32 rq_wait_pct,
994 				  int nr_lagging, int nr_shortages,
995 				  int prev_busy_level, u32 *missed_ppm)
996 {
997 	u64 vrate = ioc->vtime_base_rate;
998 	u64 vrate_min = ioc->vrate_min, vrate_max = ioc->vrate_max;
999 
1000 	if (!ioc->busy_level || (ioc->busy_level < 0 && nr_lagging)) {
1001 		if (ioc->busy_level != prev_busy_level || nr_lagging)
1002 			trace_iocost_ioc_vrate_adj(ioc, vrate,
1003 						   missed_ppm, rq_wait_pct,
1004 						   nr_lagging, nr_shortages);
1005 
1006 		return;
1007 	}
1008 
1009 	/*
1010 	 * If vrate is out of bounds, apply clamp gradually as the
1011 	 * bounds can change abruptly.  Otherwise, apply busy_level
1012 	 * based adjustment.
1013 	 */
1014 	if (vrate < vrate_min) {
1015 		vrate = div64_u64(vrate * (100 + VRATE_CLAMP_ADJ_PCT), 100);
1016 		vrate = min(vrate, vrate_min);
1017 	} else if (vrate > vrate_max) {
1018 		vrate = div64_u64(vrate * (100 - VRATE_CLAMP_ADJ_PCT), 100);
1019 		vrate = max(vrate, vrate_max);
1020 	} else {
1021 		int idx = min_t(int, abs(ioc->busy_level),
1022 				ARRAY_SIZE(vrate_adj_pct) - 1);
1023 		u32 adj_pct = vrate_adj_pct[idx];
1024 
1025 		if (ioc->busy_level > 0)
1026 			adj_pct = 100 - adj_pct;
1027 		else
1028 			adj_pct = 100 + adj_pct;
1029 
1030 		vrate = clamp(DIV64_U64_ROUND_UP(vrate * adj_pct, 100),
1031 			      vrate_min, vrate_max);
1032 	}
1033 
1034 	trace_iocost_ioc_vrate_adj(ioc, vrate, missed_ppm, rq_wait_pct,
1035 				   nr_lagging, nr_shortages);
1036 
1037 	ioc->vtime_base_rate = vrate;
1038 	ioc_refresh_margins(ioc);
1039 }
1040 
1041 /* take a snapshot of the current [v]time and vrate */
1042 static void ioc_now(struct ioc *ioc, struct ioc_now *now)
1043 {
1044 	unsigned seq;
1045 	u64 vrate;
1046 
1047 	now->now_ns = blk_time_get_ns();
1048 	now->now = ktime_to_us(now->now_ns);
1049 	vrate = atomic64_read(&ioc->vtime_rate);
1050 
1051 	/*
1052 	 * The current vtime is
1053 	 *
1054 	 *   vtime at period start + (wallclock time since the start) * vrate
1055 	 *
1056 	 * As a consistent snapshot of `period_at_vtime` and `period_at` is
1057 	 * needed, they're seqcount protected.
1058 	 */
1059 	do {
1060 		seq = read_seqcount_begin(&ioc->period_seqcount);
1061 		now->vnow = ioc->period_at_vtime +
1062 			(now->now - ioc->period_at) * vrate;
1063 	} while (read_seqcount_retry(&ioc->period_seqcount, seq));
1064 }
1065 
1066 static void ioc_start_period(struct ioc *ioc, struct ioc_now *now)
1067 {
1068 	WARN_ON_ONCE(ioc->running != IOC_RUNNING);
1069 
1070 	write_seqcount_begin(&ioc->period_seqcount);
1071 	ioc->period_at = now->now;
1072 	ioc->period_at_vtime = now->vnow;
1073 	write_seqcount_end(&ioc->period_seqcount);
1074 
1075 	ioc->timer.expires = jiffies + usecs_to_jiffies(ioc->period_us);
1076 	add_timer(&ioc->timer);
1077 }
1078 
1079 /*
1080  * Update @iocg's `active` and `inuse` to @active and @inuse, update level
1081  * weight sums and propagate upwards accordingly. If @save, the current margin
1082  * is saved to be used as reference for later inuse in-period adjustments.
1083  */
1084 static void __propagate_weights(struct ioc_gq *iocg, u32 active, u32 inuse,
1085 				bool save, struct ioc_now *now)
1086 {
1087 	struct ioc *ioc = iocg->ioc;
1088 	int lvl;
1089 
1090 	lockdep_assert_held(&ioc->lock);
1091 
1092 	/*
1093 	 * For an active leaf node, its inuse shouldn't be zero or exceed
1094 	 * @active. An active internal node's inuse is solely determined by the
1095 	 * inuse to active ratio of its children regardless of @inuse.
1096 	 */
1097 	if (list_empty(&iocg->active_list) && iocg->child_active_sum) {
1098 		inuse = DIV64_U64_ROUND_UP(active * iocg->child_inuse_sum,
1099 					   iocg->child_active_sum);
1100 	} else {
1101 		inuse = clamp_t(u32, inuse, 1, active);
1102 	}
1103 
1104 	iocg->last_inuse = iocg->inuse;
1105 	if (save)
1106 		iocg->saved_margin = now->vnow - atomic64_read(&iocg->vtime);
1107 
1108 	if (active == iocg->active && inuse == iocg->inuse)
1109 		return;
1110 
1111 	for (lvl = iocg->level - 1; lvl >= 0; lvl--) {
1112 		struct ioc_gq *parent = iocg->ancestors[lvl];
1113 		struct ioc_gq *child = iocg->ancestors[lvl + 1];
1114 		u32 parent_active = 0, parent_inuse = 0;
1115 
1116 		/* update the level sums */
1117 		parent->child_active_sum += (s32)(active - child->active);
1118 		parent->child_inuse_sum += (s32)(inuse - child->inuse);
1119 		/* apply the updates */
1120 		child->active = active;
1121 		child->inuse = inuse;
1122 
1123 		/*
1124 		 * The delta between inuse and active sums indicates that
1125 		 * much of weight is being given away.  Parent's inuse
1126 		 * and active should reflect the ratio.
1127 		 */
1128 		if (parent->child_active_sum) {
1129 			parent_active = parent->weight;
1130 			parent_inuse = DIV64_U64_ROUND_UP(
1131 				parent_active * parent->child_inuse_sum,
1132 				parent->child_active_sum);
1133 		}
1134 
1135 		/* do we need to keep walking up? */
1136 		if (parent_active == parent->active &&
1137 		    parent_inuse == parent->inuse)
1138 			break;
1139 
1140 		active = parent_active;
1141 		inuse = parent_inuse;
1142 	}
1143 
1144 	ioc->weights_updated = true;
1145 }
1146 
1147 static void commit_weights(struct ioc *ioc)
1148 {
1149 	lockdep_assert_held(&ioc->lock);
1150 
1151 	if (ioc->weights_updated) {
1152 		/* paired with rmb in current_hweight(), see there */
1153 		smp_wmb();
1154 		atomic_inc(&ioc->hweight_gen);
1155 		ioc->weights_updated = false;
1156 	}
1157 }
1158 
1159 static void propagate_weights(struct ioc_gq *iocg, u32 active, u32 inuse,
1160 			      bool save, struct ioc_now *now)
1161 {
1162 	__propagate_weights(iocg, active, inuse, save, now);
1163 	commit_weights(iocg->ioc);
1164 }
1165 
1166 static void current_hweight(struct ioc_gq *iocg, u32 *hw_activep, u32 *hw_inusep)
1167 {
1168 	struct ioc *ioc = iocg->ioc;
1169 	int lvl;
1170 	u32 hwa, hwi;
1171 	int ioc_gen;
1172 
1173 	/* hot path - if uptodate, use cached */
1174 	ioc_gen = atomic_read(&ioc->hweight_gen);
1175 	if (ioc_gen == iocg->hweight_gen)
1176 		goto out;
1177 
1178 	/*
1179 	 * Paired with wmb in commit_weights(). If we saw the updated
1180 	 * hweight_gen, all the weight updates from __propagate_weights() are
1181 	 * visible too.
1182 	 *
1183 	 * We can race with weight updates during calculation and get it
1184 	 * wrong.  However, hweight_gen would have changed and a future
1185 	 * reader will recalculate and we're guaranteed to discard the
1186 	 * wrong result soon.
1187 	 */
1188 	smp_rmb();
1189 
1190 	hwa = hwi = WEIGHT_ONE;
1191 	for (lvl = 0; lvl <= iocg->level - 1; lvl++) {
1192 		struct ioc_gq *parent = iocg->ancestors[lvl];
1193 		struct ioc_gq *child = iocg->ancestors[lvl + 1];
1194 		u64 active_sum = READ_ONCE(parent->child_active_sum);
1195 		u64 inuse_sum = READ_ONCE(parent->child_inuse_sum);
1196 		u32 active = READ_ONCE(child->active);
1197 		u32 inuse = READ_ONCE(child->inuse);
1198 
1199 		/* we can race with deactivations and either may read as zero */
1200 		if (!active_sum || !inuse_sum)
1201 			continue;
1202 
1203 		active_sum = max_t(u64, active, active_sum);
1204 		hwa = div64_u64((u64)hwa * active, active_sum);
1205 
1206 		inuse_sum = max_t(u64, inuse, inuse_sum);
1207 		hwi = div64_u64((u64)hwi * inuse, inuse_sum);
1208 	}
1209 
1210 	iocg->hweight_active = max_t(u32, hwa, 1);
1211 	iocg->hweight_inuse = max_t(u32, hwi, 1);
1212 	iocg->hweight_gen = ioc_gen;
1213 out:
1214 	if (hw_activep)
1215 		*hw_activep = iocg->hweight_active;
1216 	if (hw_inusep)
1217 		*hw_inusep = iocg->hweight_inuse;
1218 }
1219 
1220 /*
1221  * Calculate the hweight_inuse @iocg would get with max @inuse assuming all the
1222  * other weights stay unchanged.
1223  */
1224 static u32 current_hweight_max(struct ioc_gq *iocg)
1225 {
1226 	u32 hwm = WEIGHT_ONE;
1227 	u32 inuse = iocg->active;
1228 	u64 child_inuse_sum;
1229 	int lvl;
1230 
1231 	lockdep_assert_held(&iocg->ioc->lock);
1232 
1233 	for (lvl = iocg->level - 1; lvl >= 0; lvl--) {
1234 		struct ioc_gq *parent = iocg->ancestors[lvl];
1235 		struct ioc_gq *child = iocg->ancestors[lvl + 1];
1236 
1237 		child_inuse_sum = parent->child_inuse_sum + inuse - child->inuse;
1238 		hwm = div64_u64((u64)hwm * inuse, child_inuse_sum);
1239 		inuse = DIV64_U64_ROUND_UP(parent->active * child_inuse_sum,
1240 					   parent->child_active_sum);
1241 	}
1242 
1243 	return max_t(u32, hwm, 1);
1244 }
1245 
1246 static void weight_updated(struct ioc_gq *iocg, struct ioc_now *now)
1247 {
1248 	struct ioc *ioc = iocg->ioc;
1249 	struct blkcg_gq *blkg = iocg_to_blkg(iocg);
1250 	struct ioc_cgrp *iocc = blkcg_to_iocc(blkg->blkcg);
1251 	u32 weight;
1252 
1253 	lockdep_assert_held(&ioc->lock);
1254 
1255 	weight = iocg->cfg_weight ?: iocc->dfl_weight;
1256 	if (weight != iocg->weight && iocg->active)
1257 		propagate_weights(iocg, weight, iocg->inuse, true, now);
1258 	iocg->weight = weight;
1259 }
1260 
1261 static bool iocg_activate(struct ioc_gq *iocg, struct ioc_now *now)
1262 {
1263 	struct ioc *ioc = iocg->ioc;
1264 	u64 __maybe_unused last_period, cur_period;
1265 	u64 vtime, vtarget;
1266 	int i;
1267 
1268 	/*
1269 	 * If seem to be already active, just update the stamp to tell the
1270 	 * timer that we're still active.  We don't mind occassional races.
1271 	 */
1272 	if (!list_empty(&iocg->active_list)) {
1273 		ioc_now(ioc, now);
1274 		cur_period = atomic64_read(&ioc->cur_period);
1275 		if (atomic64_read(&iocg->active_period) != cur_period)
1276 			atomic64_set(&iocg->active_period, cur_period);
1277 		return true;
1278 	}
1279 
1280 	/* racy check on internal node IOs, treat as root level IOs */
1281 	if (iocg->child_active_sum)
1282 		return false;
1283 
1284 	spin_lock_irq(&ioc->lock);
1285 
1286 	ioc_now(ioc, now);
1287 
1288 	/* update period */
1289 	cur_period = atomic64_read(&ioc->cur_period);
1290 	last_period = atomic64_read(&iocg->active_period);
1291 	atomic64_set(&iocg->active_period, cur_period);
1292 
1293 	/* already activated or breaking leaf-only constraint? */
1294 	if (!list_empty(&iocg->active_list))
1295 		goto succeed_unlock;
1296 	for (i = iocg->level - 1; i > 0; i--)
1297 		if (!list_empty(&iocg->ancestors[i]->active_list))
1298 			goto fail_unlock;
1299 
1300 	if (iocg->child_active_sum)
1301 		goto fail_unlock;
1302 
1303 	/*
1304 	 * Always start with the target budget. On deactivation, we throw away
1305 	 * anything above it.
1306 	 */
1307 	vtarget = now->vnow - ioc->margins.target;
1308 	vtime = atomic64_read(&iocg->vtime);
1309 
1310 	atomic64_add(vtarget - vtime, &iocg->vtime);
1311 	atomic64_add(vtarget - vtime, &iocg->done_vtime);
1312 	vtime = vtarget;
1313 
1314 	/*
1315 	 * Activate, propagate weight and start period timer if not
1316 	 * running.  Reset hweight_gen to avoid accidental match from
1317 	 * wrapping.
1318 	 */
1319 	iocg->hweight_gen = atomic_read(&ioc->hweight_gen) - 1;
1320 	list_add(&iocg->active_list, &ioc->active_iocgs);
1321 
1322 	propagate_weights(iocg, iocg->weight,
1323 			  iocg->last_inuse ?: iocg->weight, true, now);
1324 
1325 	TRACE_IOCG_PATH(iocg_activate, iocg, now,
1326 			last_period, cur_period, vtime);
1327 
1328 	iocg->activated_at = now->now;
1329 
1330 	if (ioc->running == IOC_IDLE) {
1331 		ioc->running = IOC_RUNNING;
1332 		ioc->dfgv_period_at = now->now;
1333 		ioc->dfgv_period_rem = 0;
1334 		ioc_start_period(ioc, now);
1335 	}
1336 
1337 succeed_unlock:
1338 	spin_unlock_irq(&ioc->lock);
1339 	return true;
1340 
1341 fail_unlock:
1342 	spin_unlock_irq(&ioc->lock);
1343 	return false;
1344 }
1345 
1346 static bool iocg_kick_delay(struct ioc_gq *iocg, struct ioc_now *now)
1347 {
1348 	struct ioc *ioc = iocg->ioc;
1349 	struct blkcg_gq *blkg = iocg_to_blkg(iocg);
1350 	u64 tdelta, delay, new_delay;
1351 	s64 vover, vover_pct;
1352 	u32 hwa;
1353 
1354 	lockdep_assert_held(&iocg->waitq.lock);
1355 
1356 	/*
1357 	 * If the delay is set by another CPU, we may be in the past. No need to
1358 	 * change anything if so. This avoids decay calculation underflow.
1359 	 */
1360 	if (time_before64(now->now, iocg->delay_at))
1361 		return false;
1362 
1363 	/* calculate the current delay in effect - 1/2 every second */
1364 	tdelta = now->now - iocg->delay_at;
1365 	if (iocg->delay)
1366 		delay = iocg->delay >> div64_u64(tdelta, USEC_PER_SEC);
1367 	else
1368 		delay = 0;
1369 
1370 	/* calculate the new delay from the debt amount */
1371 	current_hweight(iocg, &hwa, NULL);
1372 	vover = atomic64_read(&iocg->vtime) +
1373 		abs_cost_to_cost(iocg->abs_vdebt, hwa) - now->vnow;
1374 	vover_pct = div64_s64(100 * vover,
1375 			      ioc->period_us * ioc->vtime_base_rate);
1376 
1377 	if (vover_pct <= MIN_DELAY_THR_PCT)
1378 		new_delay = 0;
1379 	else if (vover_pct >= MAX_DELAY_THR_PCT)
1380 		new_delay = MAX_DELAY;
1381 	else
1382 		new_delay = MIN_DELAY +
1383 			div_u64((MAX_DELAY - MIN_DELAY) *
1384 				(vover_pct - MIN_DELAY_THR_PCT),
1385 				MAX_DELAY_THR_PCT - MIN_DELAY_THR_PCT);
1386 
1387 	/* pick the higher one and apply */
1388 	if (new_delay > delay) {
1389 		iocg->delay = new_delay;
1390 		iocg->delay_at = now->now;
1391 		delay = new_delay;
1392 	}
1393 
1394 	if (delay >= MIN_DELAY) {
1395 		if (!iocg->indelay_since)
1396 			iocg->indelay_since = now->now;
1397 		blkcg_set_delay(blkg, delay * NSEC_PER_USEC);
1398 		return true;
1399 	} else {
1400 		if (iocg->indelay_since) {
1401 			iocg->stat.indelay_us += now->now - iocg->indelay_since;
1402 			iocg->indelay_since = 0;
1403 		}
1404 		iocg->delay = 0;
1405 		blkcg_clear_delay(blkg);
1406 		return false;
1407 	}
1408 }
1409 
1410 static void iocg_incur_debt(struct ioc_gq *iocg, u64 abs_cost,
1411 			    struct ioc_now *now)
1412 {
1413 	struct iocg_pcpu_stat *gcs;
1414 
1415 	lockdep_assert_held(&iocg->ioc->lock);
1416 	lockdep_assert_held(&iocg->waitq.lock);
1417 	WARN_ON_ONCE(list_empty(&iocg->active_list));
1418 
1419 	/*
1420 	 * Once in debt, debt handling owns inuse. @iocg stays at the minimum
1421 	 * inuse donating all of it share to others until its debt is paid off.
1422 	 */
1423 	if (!iocg->abs_vdebt && abs_cost) {
1424 		iocg->indebt_since = now->now;
1425 		propagate_weights(iocg, iocg->active, 0, false, now);
1426 	}
1427 
1428 	iocg->abs_vdebt += abs_cost;
1429 
1430 	gcs = get_cpu_ptr(iocg->pcpu_stat);
1431 	local64_add(abs_cost, &gcs->abs_vusage);
1432 	put_cpu_ptr(gcs);
1433 }
1434 
1435 static void iocg_pay_debt(struct ioc_gq *iocg, u64 abs_vpay,
1436 			  struct ioc_now *now)
1437 {
1438 	lockdep_assert_held(&iocg->ioc->lock);
1439 	lockdep_assert_held(&iocg->waitq.lock);
1440 
1441 	/* make sure that nobody messed with @iocg */
1442 	WARN_ON_ONCE(list_empty(&iocg->active_list));
1443 	WARN_ON_ONCE(iocg->inuse > 1);
1444 
1445 	iocg->abs_vdebt -= min(abs_vpay, iocg->abs_vdebt);
1446 
1447 	/* if debt is paid in full, restore inuse */
1448 	if (!iocg->abs_vdebt) {
1449 		iocg->stat.indebt_us += now->now - iocg->indebt_since;
1450 		iocg->indebt_since = 0;
1451 
1452 		propagate_weights(iocg, iocg->active, iocg->last_inuse,
1453 				  false, now);
1454 	}
1455 }
1456 
1457 static int iocg_wake_fn(struct wait_queue_entry *wq_entry, unsigned mode,
1458 			int flags, void *key)
1459 {
1460 	struct iocg_wait *wait = container_of(wq_entry, struct iocg_wait, wait);
1461 	struct iocg_wake_ctx *ctx = key;
1462 	u64 cost = abs_cost_to_cost(wait->abs_cost, ctx->hw_inuse);
1463 
1464 	ctx->vbudget -= cost;
1465 
1466 	if (ctx->vbudget < 0)
1467 		return -1;
1468 
1469 	iocg_commit_bio(ctx->iocg, wait->bio, wait->abs_cost, cost);
1470 	wait->committed = true;
1471 
1472 	/*
1473 	 * autoremove_wake_function() removes the wait entry only when it
1474 	 * actually changed the task state. We want the wait always removed.
1475 	 * Remove explicitly and use default_wake_function(). Note that the
1476 	 * order of operations is important as finish_wait() tests whether
1477 	 * @wq_entry is removed without grabbing the lock.
1478 	 */
1479 	default_wake_function(wq_entry, mode, flags, key);
1480 	list_del_init_careful(&wq_entry->entry);
1481 	return 0;
1482 }
1483 
1484 /*
1485  * Calculate the accumulated budget, pay debt if @pay_debt and wake up waiters
1486  * accordingly. When @pay_debt is %true, the caller must be holding ioc->lock in
1487  * addition to iocg->waitq.lock.
1488  */
1489 static void iocg_kick_waitq(struct ioc_gq *iocg, bool pay_debt,
1490 			    struct ioc_now *now)
1491 {
1492 	struct ioc *ioc = iocg->ioc;
1493 	struct iocg_wake_ctx ctx = { .iocg = iocg };
1494 	u64 vshortage, expires, oexpires;
1495 	s64 vbudget;
1496 	u32 hwa;
1497 
1498 	lockdep_assert_held(&iocg->waitq.lock);
1499 
1500 	current_hweight(iocg, &hwa, NULL);
1501 	vbudget = now->vnow - atomic64_read(&iocg->vtime);
1502 
1503 	/* pay off debt */
1504 	if (pay_debt && iocg->abs_vdebt && vbudget > 0) {
1505 		u64 abs_vbudget = cost_to_abs_cost(vbudget, hwa);
1506 		u64 abs_vpay = min_t(u64, abs_vbudget, iocg->abs_vdebt);
1507 		u64 vpay = abs_cost_to_cost(abs_vpay, hwa);
1508 
1509 		lockdep_assert_held(&ioc->lock);
1510 
1511 		atomic64_add(vpay, &iocg->vtime);
1512 		atomic64_add(vpay, &iocg->done_vtime);
1513 		iocg_pay_debt(iocg, abs_vpay, now);
1514 		vbudget -= vpay;
1515 	}
1516 
1517 	if (iocg->abs_vdebt || iocg->delay)
1518 		iocg_kick_delay(iocg, now);
1519 
1520 	/*
1521 	 * Debt can still be outstanding if we haven't paid all yet or the
1522 	 * caller raced and called without @pay_debt. Shouldn't wake up waiters
1523 	 * under debt. Make sure @vbudget reflects the outstanding amount and is
1524 	 * not positive.
1525 	 */
1526 	if (iocg->abs_vdebt) {
1527 		s64 vdebt = abs_cost_to_cost(iocg->abs_vdebt, hwa);
1528 		vbudget = min_t(s64, 0, vbudget - vdebt);
1529 	}
1530 
1531 	/*
1532 	 * Wake up the ones which are due and see how much vtime we'll need for
1533 	 * the next one. As paying off debt restores hw_inuse, it must be read
1534 	 * after the above debt payment.
1535 	 */
1536 	ctx.vbudget = vbudget;
1537 	current_hweight(iocg, NULL, &ctx.hw_inuse);
1538 
1539 	__wake_up_locked_key(&iocg->waitq, TASK_NORMAL, &ctx);
1540 
1541 	if (!waitqueue_active(&iocg->waitq)) {
1542 		if (iocg->wait_since) {
1543 			iocg->stat.wait_us += now->now - iocg->wait_since;
1544 			iocg->wait_since = 0;
1545 		}
1546 		return;
1547 	}
1548 
1549 	if (!iocg->wait_since)
1550 		iocg->wait_since = now->now;
1551 
1552 	if (WARN_ON_ONCE(ctx.vbudget >= 0))
1553 		return;
1554 
1555 	/* determine next wakeup, add a timer margin to guarantee chunking */
1556 	vshortage = -ctx.vbudget;
1557 	expires = now->now_ns +
1558 		DIV64_U64_ROUND_UP(vshortage, ioc->vtime_base_rate) *
1559 		NSEC_PER_USEC;
1560 	expires += ioc->timer_slack_ns;
1561 
1562 	/* if already active and close enough, don't bother */
1563 	oexpires = ktime_to_ns(hrtimer_get_softexpires(&iocg->waitq_timer));
1564 	if (hrtimer_is_queued(&iocg->waitq_timer) &&
1565 	    abs(oexpires - expires) <= ioc->timer_slack_ns)
1566 		return;
1567 
1568 	hrtimer_start_range_ns(&iocg->waitq_timer, ns_to_ktime(expires),
1569 			       ioc->timer_slack_ns, HRTIMER_MODE_ABS);
1570 }
1571 
1572 static enum hrtimer_restart iocg_waitq_timer_fn(struct hrtimer *timer)
1573 {
1574 	struct ioc_gq *iocg = container_of(timer, struct ioc_gq, waitq_timer);
1575 	bool pay_debt = READ_ONCE(iocg->abs_vdebt);
1576 	struct ioc_now now;
1577 	unsigned long flags;
1578 
1579 	ioc_now(iocg->ioc, &now);
1580 
1581 	iocg_lock(iocg, pay_debt, &flags);
1582 	iocg_kick_waitq(iocg, pay_debt, &now);
1583 	iocg_unlock(iocg, pay_debt, &flags);
1584 
1585 	return HRTIMER_NORESTART;
1586 }
1587 
1588 static void ioc_lat_stat(struct ioc *ioc, u32 *missed_ppm_ar, u32 *rq_wait_pct_p)
1589 {
1590 	u32 nr_met[2] = { };
1591 	u32 nr_missed[2] = { };
1592 	u64 rq_wait_ns = 0;
1593 	int cpu, rw;
1594 
1595 	for_each_online_cpu(cpu) {
1596 		struct ioc_pcpu_stat *stat = per_cpu_ptr(ioc->pcpu_stat, cpu);
1597 		u64 this_rq_wait_ns;
1598 
1599 		for (rw = READ; rw <= WRITE; rw++) {
1600 			u32 this_met = local_read(&stat->missed[rw].nr_met);
1601 			u32 this_missed = local_read(&stat->missed[rw].nr_missed);
1602 
1603 			nr_met[rw] += this_met - stat->missed[rw].last_met;
1604 			nr_missed[rw] += this_missed - stat->missed[rw].last_missed;
1605 			stat->missed[rw].last_met = this_met;
1606 			stat->missed[rw].last_missed = this_missed;
1607 		}
1608 
1609 		this_rq_wait_ns = local64_read(&stat->rq_wait_ns);
1610 		rq_wait_ns += this_rq_wait_ns - stat->last_rq_wait_ns;
1611 		stat->last_rq_wait_ns = this_rq_wait_ns;
1612 	}
1613 
1614 	for (rw = READ; rw <= WRITE; rw++) {
1615 		if (nr_met[rw] + nr_missed[rw])
1616 			missed_ppm_ar[rw] =
1617 				DIV64_U64_ROUND_UP((u64)nr_missed[rw] * MILLION,
1618 						   nr_met[rw] + nr_missed[rw]);
1619 		else
1620 			missed_ppm_ar[rw] = 0;
1621 	}
1622 
1623 	*rq_wait_pct_p = div64_u64(rq_wait_ns * 100,
1624 				   ioc->period_us * NSEC_PER_USEC);
1625 }
1626 
1627 /* was iocg idle this period? */
1628 static bool iocg_is_idle(struct ioc_gq *iocg)
1629 {
1630 	struct ioc *ioc = iocg->ioc;
1631 
1632 	/* did something get issued this period? */
1633 	if (atomic64_read(&iocg->active_period) ==
1634 	    atomic64_read(&ioc->cur_period))
1635 		return false;
1636 
1637 	/* is something in flight? */
1638 	if (atomic64_read(&iocg->done_vtime) != atomic64_read(&iocg->vtime))
1639 		return false;
1640 
1641 	return true;
1642 }
1643 
1644 /*
1645  * Call this function on the target leaf @iocg's to build pre-order traversal
1646  * list of all the ancestors in @inner_walk. The inner nodes are linked through
1647  * ->walk_list and the caller is responsible for dissolving the list after use.
1648  */
1649 static void iocg_build_inner_walk(struct ioc_gq *iocg,
1650 				  struct list_head *inner_walk)
1651 {
1652 	int lvl;
1653 
1654 	WARN_ON_ONCE(!list_empty(&iocg->walk_list));
1655 
1656 	/* find the first ancestor which hasn't been visited yet */
1657 	for (lvl = iocg->level - 1; lvl >= 0; lvl--) {
1658 		if (!list_empty(&iocg->ancestors[lvl]->walk_list))
1659 			break;
1660 	}
1661 
1662 	/* walk down and visit the inner nodes to get pre-order traversal */
1663 	while (++lvl <= iocg->level - 1) {
1664 		struct ioc_gq *inner = iocg->ancestors[lvl];
1665 
1666 		/* record traversal order */
1667 		list_add_tail(&inner->walk_list, inner_walk);
1668 	}
1669 }
1670 
1671 /* propagate the deltas to the parent */
1672 static void iocg_flush_stat_upward(struct ioc_gq *iocg)
1673 {
1674 	if (iocg->level > 0) {
1675 		struct iocg_stat *parent_stat =
1676 			&iocg->ancestors[iocg->level - 1]->stat;
1677 
1678 		parent_stat->usage_us +=
1679 			iocg->stat.usage_us - iocg->last_stat.usage_us;
1680 		parent_stat->wait_us +=
1681 			iocg->stat.wait_us - iocg->last_stat.wait_us;
1682 		parent_stat->indebt_us +=
1683 			iocg->stat.indebt_us - iocg->last_stat.indebt_us;
1684 		parent_stat->indelay_us +=
1685 			iocg->stat.indelay_us - iocg->last_stat.indelay_us;
1686 	}
1687 
1688 	iocg->last_stat = iocg->stat;
1689 }
1690 
1691 /* collect per-cpu counters and propagate the deltas to the parent */
1692 static void iocg_flush_stat_leaf(struct ioc_gq *iocg, struct ioc_now *now)
1693 {
1694 	struct ioc *ioc = iocg->ioc;
1695 	u64 abs_vusage = 0;
1696 	u64 vusage_delta;
1697 	int cpu;
1698 
1699 	lockdep_assert_held(&iocg->ioc->lock);
1700 
1701 	/* collect per-cpu counters */
1702 	for_each_possible_cpu(cpu) {
1703 		abs_vusage += local64_read(
1704 				per_cpu_ptr(&iocg->pcpu_stat->abs_vusage, cpu));
1705 	}
1706 	vusage_delta = abs_vusage - iocg->last_stat_abs_vusage;
1707 	iocg->last_stat_abs_vusage = abs_vusage;
1708 
1709 	iocg->usage_delta_us = div64_u64(vusage_delta, ioc->vtime_base_rate);
1710 	iocg->stat.usage_us += iocg->usage_delta_us;
1711 
1712 	iocg_flush_stat_upward(iocg);
1713 }
1714 
1715 /* get stat counters ready for reading on all active iocgs */
1716 static void iocg_flush_stat(struct list_head *target_iocgs, struct ioc_now *now)
1717 {
1718 	LIST_HEAD(inner_walk);
1719 	struct ioc_gq *iocg, *tiocg;
1720 
1721 	/* flush leaves and build inner node walk list */
1722 	list_for_each_entry(iocg, target_iocgs, active_list) {
1723 		iocg_flush_stat_leaf(iocg, now);
1724 		iocg_build_inner_walk(iocg, &inner_walk);
1725 	}
1726 
1727 	/* keep flushing upwards by walking the inner list backwards */
1728 	list_for_each_entry_safe_reverse(iocg, tiocg, &inner_walk, walk_list) {
1729 		iocg_flush_stat_upward(iocg);
1730 		list_del_init(&iocg->walk_list);
1731 	}
1732 }
1733 
1734 /*
1735  * Determine what @iocg's hweight_inuse should be after donating unused
1736  * capacity. @hwm is the upper bound and used to signal no donation. This
1737  * function also throws away @iocg's excess budget.
1738  */
1739 static u32 hweight_after_donation(struct ioc_gq *iocg, u32 old_hwi, u32 hwm,
1740 				  u32 usage, struct ioc_now *now)
1741 {
1742 	struct ioc *ioc = iocg->ioc;
1743 	u64 vtime = atomic64_read(&iocg->vtime);
1744 	s64 excess, delta, target, new_hwi;
1745 
1746 	/* debt handling owns inuse for debtors */
1747 	if (iocg->abs_vdebt)
1748 		return 1;
1749 
1750 	/* see whether minimum margin requirement is met */
1751 	if (waitqueue_active(&iocg->waitq) ||
1752 	    time_after64(vtime, now->vnow - ioc->margins.min))
1753 		return hwm;
1754 
1755 	/* throw away excess above target */
1756 	excess = now->vnow - vtime - ioc->margins.target;
1757 	if (excess > 0) {
1758 		atomic64_add(excess, &iocg->vtime);
1759 		atomic64_add(excess, &iocg->done_vtime);
1760 		vtime += excess;
1761 		ioc->vtime_err -= div64_u64(excess * old_hwi, WEIGHT_ONE);
1762 	}
1763 
1764 	/*
1765 	 * Let's say the distance between iocg's and device's vtimes as a
1766 	 * fraction of period duration is delta. Assuming that the iocg will
1767 	 * consume the usage determined above, we want to determine new_hwi so
1768 	 * that delta equals MARGIN_TARGET at the end of the next period.
1769 	 *
1770 	 * We need to execute usage worth of IOs while spending the sum of the
1771 	 * new budget (1 - MARGIN_TARGET) and the leftover from the last period
1772 	 * (delta):
1773 	 *
1774 	 *   usage = (1 - MARGIN_TARGET + delta) * new_hwi
1775 	 *
1776 	 * Therefore, the new_hwi is:
1777 	 *
1778 	 *   new_hwi = usage / (1 - MARGIN_TARGET + delta)
1779 	 */
1780 	delta = div64_s64(WEIGHT_ONE * (now->vnow - vtime),
1781 			  now->vnow - ioc->period_at_vtime);
1782 	target = WEIGHT_ONE * MARGIN_TARGET_PCT / 100;
1783 	new_hwi = div64_s64(WEIGHT_ONE * usage, WEIGHT_ONE - target + delta);
1784 
1785 	return clamp_t(s64, new_hwi, 1, hwm);
1786 }
1787 
1788 /*
1789  * For work-conservation, an iocg which isn't using all of its share should
1790  * donate the leftover to other iocgs. There are two ways to achieve this - 1.
1791  * bumping up vrate accordingly 2. lowering the donating iocg's inuse weight.
1792  *
1793  * #1 is mathematically simpler but has the drawback of requiring synchronous
1794  * global hweight_inuse updates when idle iocg's get activated or inuse weights
1795  * change due to donation snapbacks as it has the possibility of grossly
1796  * overshooting what's allowed by the model and vrate.
1797  *
1798  * #2 is inherently safe with local operations. The donating iocg can easily
1799  * snap back to higher weights when needed without worrying about impacts on
1800  * other nodes as the impacts will be inherently correct. This also makes idle
1801  * iocg activations safe. The only effect activations have is decreasing
1802  * hweight_inuse of others, the right solution to which is for those iocgs to
1803  * snap back to higher weights.
1804  *
1805  * So, we go with #2. The challenge is calculating how each donating iocg's
1806  * inuse should be adjusted to achieve the target donation amounts. This is done
1807  * using Andy's method described in the following pdf.
1808  *
1809  *   https://drive.google.com/file/d/1PsJwxPFtjUnwOY1QJ5AeICCcsL7BM3bo
1810  *
1811  * Given the weights and target after-donation hweight_inuse values, Andy's
1812  * method determines how the proportional distribution should look like at each
1813  * sibling level to maintain the relative relationship between all non-donating
1814  * pairs. To roughly summarize, it divides the tree into donating and
1815  * non-donating parts, calculates global donation rate which is used to
1816  * determine the target hweight_inuse for each node, and then derives per-level
1817  * proportions.
1818  *
1819  * The following pdf shows that global distribution calculated this way can be
1820  * achieved by scaling inuse weights of donating leaves and propagating the
1821  * adjustments upwards proportionally.
1822  *
1823  *   https://drive.google.com/file/d/1vONz1-fzVO7oY5DXXsLjSxEtYYQbOvsE
1824  *
1825  * Combining the above two, we can determine how each leaf iocg's inuse should
1826  * be adjusted to achieve the target donation.
1827  *
1828  *   https://drive.google.com/file/d/1WcrltBOSPN0qXVdBgnKm4mdp9FhuEFQN
1829  *
1830  * The inline comments use symbols from the last pdf.
1831  *
1832  *   b is the sum of the absolute budgets in the subtree. 1 for the root node.
1833  *   f is the sum of the absolute budgets of non-donating nodes in the subtree.
1834  *   t is the sum of the absolute budgets of donating nodes in the subtree.
1835  *   w is the weight of the node. w = w_f + w_t
1836  *   w_f is the non-donating portion of w. w_f = w * f / b
1837  *   w_b is the donating portion of w. w_t = w * t / b
1838  *   s is the sum of all sibling weights. s = Sum(w) for siblings
1839  *   s_f and s_t are the non-donating and donating portions of s.
1840  *
1841  * Subscript p denotes the parent's counterpart and ' the adjusted value - e.g.
1842  * w_pt is the donating portion of the parent's weight and w'_pt the same value
1843  * after adjustments. Subscript r denotes the root node's values.
1844  */
1845 static void transfer_surpluses(struct list_head *surpluses, struct ioc_now *now)
1846 {
1847 	LIST_HEAD(over_hwa);
1848 	LIST_HEAD(inner_walk);
1849 	struct ioc_gq *iocg, *tiocg, *root_iocg;
1850 	u32 after_sum, over_sum, over_target, gamma;
1851 
1852 	/*
1853 	 * It's pretty unlikely but possible for the total sum of
1854 	 * hweight_after_donation's to be higher than WEIGHT_ONE, which will
1855 	 * confuse the following calculations. If such condition is detected,
1856 	 * scale down everyone over its full share equally to keep the sum below
1857 	 * WEIGHT_ONE.
1858 	 */
1859 	after_sum = 0;
1860 	over_sum = 0;
1861 	list_for_each_entry(iocg, surpluses, surplus_list) {
1862 		u32 hwa;
1863 
1864 		current_hweight(iocg, &hwa, NULL);
1865 		after_sum += iocg->hweight_after_donation;
1866 
1867 		if (iocg->hweight_after_donation > hwa) {
1868 			over_sum += iocg->hweight_after_donation;
1869 			list_add(&iocg->walk_list, &over_hwa);
1870 		}
1871 	}
1872 
1873 	if (after_sum >= WEIGHT_ONE) {
1874 		/*
1875 		 * The delta should be deducted from the over_sum, calculate
1876 		 * target over_sum value.
1877 		 */
1878 		u32 over_delta = after_sum - (WEIGHT_ONE - 1);
1879 		WARN_ON_ONCE(over_sum <= over_delta);
1880 		over_target = over_sum - over_delta;
1881 	} else {
1882 		over_target = 0;
1883 	}
1884 
1885 	list_for_each_entry_safe(iocg, tiocg, &over_hwa, walk_list) {
1886 		if (over_target)
1887 			iocg->hweight_after_donation =
1888 				div_u64((u64)iocg->hweight_after_donation *
1889 					over_target, over_sum);
1890 		list_del_init(&iocg->walk_list);
1891 	}
1892 
1893 	/*
1894 	 * Build pre-order inner node walk list and prepare for donation
1895 	 * adjustment calculations.
1896 	 */
1897 	list_for_each_entry(iocg, surpluses, surplus_list) {
1898 		iocg_build_inner_walk(iocg, &inner_walk);
1899 	}
1900 
1901 	root_iocg = list_first_entry(&inner_walk, struct ioc_gq, walk_list);
1902 	WARN_ON_ONCE(root_iocg->level > 0);
1903 
1904 	list_for_each_entry(iocg, &inner_walk, walk_list) {
1905 		iocg->child_adjusted_sum = 0;
1906 		iocg->hweight_donating = 0;
1907 		iocg->hweight_after_donation = 0;
1908 	}
1909 
1910 	/*
1911 	 * Propagate the donating budget (b_t) and after donation budget (b'_t)
1912 	 * up the hierarchy.
1913 	 */
1914 	list_for_each_entry(iocg, surpluses, surplus_list) {
1915 		struct ioc_gq *parent = iocg->ancestors[iocg->level - 1];
1916 
1917 		parent->hweight_donating += iocg->hweight_donating;
1918 		parent->hweight_after_donation += iocg->hweight_after_donation;
1919 	}
1920 
1921 	list_for_each_entry_reverse(iocg, &inner_walk, walk_list) {
1922 		if (iocg->level > 0) {
1923 			struct ioc_gq *parent = iocg->ancestors[iocg->level - 1];
1924 
1925 			parent->hweight_donating += iocg->hweight_donating;
1926 			parent->hweight_after_donation += iocg->hweight_after_donation;
1927 		}
1928 	}
1929 
1930 	/*
1931 	 * Calculate inner hwa's (b) and make sure the donation values are
1932 	 * within the accepted ranges as we're doing low res calculations with
1933 	 * roundups.
1934 	 */
1935 	list_for_each_entry(iocg, &inner_walk, walk_list) {
1936 		if (iocg->level) {
1937 			struct ioc_gq *parent = iocg->ancestors[iocg->level - 1];
1938 
1939 			iocg->hweight_active = DIV64_U64_ROUND_UP(
1940 				(u64)parent->hweight_active * iocg->active,
1941 				parent->child_active_sum);
1942 
1943 		}
1944 
1945 		iocg->hweight_donating = min(iocg->hweight_donating,
1946 					     iocg->hweight_active);
1947 		iocg->hweight_after_donation = min(iocg->hweight_after_donation,
1948 						   iocg->hweight_donating - 1);
1949 		if (WARN_ON_ONCE(iocg->hweight_active <= 1 ||
1950 				 iocg->hweight_donating <= 1 ||
1951 				 iocg->hweight_after_donation == 0)) {
1952 			pr_warn("iocg: invalid donation weights in ");
1953 			pr_cont_cgroup_path(iocg_to_blkg(iocg)->blkcg->css.cgroup);
1954 			pr_cont(": active=%u donating=%u after=%u\n",
1955 				iocg->hweight_active, iocg->hweight_donating,
1956 				iocg->hweight_after_donation);
1957 		}
1958 	}
1959 
1960 	/*
1961 	 * Calculate the global donation rate (gamma) - the rate to adjust
1962 	 * non-donating budgets by.
1963 	 *
1964 	 * No need to use 64bit multiplication here as the first operand is
1965 	 * guaranteed to be smaller than WEIGHT_ONE (1<<16).
1966 	 *
1967 	 * We know that there are beneficiary nodes and the sum of the donating
1968 	 * hweights can't be whole; however, due to the round-ups during hweight
1969 	 * calculations, root_iocg->hweight_donating might still end up equal to
1970 	 * or greater than whole. Limit the range when calculating the divider.
1971 	 *
1972 	 * gamma = (1 - t_r') / (1 - t_r)
1973 	 */
1974 	gamma = DIV_ROUND_UP(
1975 		(WEIGHT_ONE - root_iocg->hweight_after_donation) * WEIGHT_ONE,
1976 		WEIGHT_ONE - min_t(u32, root_iocg->hweight_donating, WEIGHT_ONE - 1));
1977 
1978 	/*
1979 	 * Calculate adjusted hwi, child_adjusted_sum and inuse for the inner
1980 	 * nodes.
1981 	 */
1982 	list_for_each_entry(iocg, &inner_walk, walk_list) {
1983 		struct ioc_gq *parent;
1984 		u32 inuse, wpt, wptp;
1985 		u64 st, sf;
1986 
1987 		if (iocg->level == 0) {
1988 			/* adjusted weight sum for 1st level: s' = s * b_pf / b'_pf */
1989 			iocg->child_adjusted_sum = DIV64_U64_ROUND_UP(
1990 				iocg->child_active_sum * (WEIGHT_ONE - iocg->hweight_donating),
1991 				WEIGHT_ONE - iocg->hweight_after_donation);
1992 			continue;
1993 		}
1994 
1995 		parent = iocg->ancestors[iocg->level - 1];
1996 
1997 		/* b' = gamma * b_f + b_t' */
1998 		iocg->hweight_inuse = DIV64_U64_ROUND_UP(
1999 			(u64)gamma * (iocg->hweight_active - iocg->hweight_donating),
2000 			WEIGHT_ONE) + iocg->hweight_after_donation;
2001 
2002 		/* w' = s' * b' / b'_p */
2003 		inuse = DIV64_U64_ROUND_UP(
2004 			(u64)parent->child_adjusted_sum * iocg->hweight_inuse,
2005 			parent->hweight_inuse);
2006 
2007 		/* adjusted weight sum for children: s' = s_f + s_t * w'_pt / w_pt */
2008 		st = DIV64_U64_ROUND_UP(
2009 			iocg->child_active_sum * iocg->hweight_donating,
2010 			iocg->hweight_active);
2011 		sf = iocg->child_active_sum - st;
2012 		wpt = DIV64_U64_ROUND_UP(
2013 			(u64)iocg->active * iocg->hweight_donating,
2014 			iocg->hweight_active);
2015 		wptp = DIV64_U64_ROUND_UP(
2016 			(u64)inuse * iocg->hweight_after_donation,
2017 			iocg->hweight_inuse);
2018 
2019 		iocg->child_adjusted_sum = sf + DIV64_U64_ROUND_UP(st * wptp, wpt);
2020 	}
2021 
2022 	/*
2023 	 * All inner nodes now have ->hweight_inuse and ->child_adjusted_sum and
2024 	 * we can finally determine leaf adjustments.
2025 	 */
2026 	list_for_each_entry(iocg, surpluses, surplus_list) {
2027 		struct ioc_gq *parent = iocg->ancestors[iocg->level - 1];
2028 		u32 inuse;
2029 
2030 		/*
2031 		 * In-debt iocgs participated in the donation calculation with
2032 		 * the minimum target hweight_inuse. Configuring inuse
2033 		 * accordingly would work fine but debt handling expects
2034 		 * @iocg->inuse stay at the minimum and we don't wanna
2035 		 * interfere.
2036 		 */
2037 		if (iocg->abs_vdebt) {
2038 			WARN_ON_ONCE(iocg->inuse > 1);
2039 			continue;
2040 		}
2041 
2042 		/* w' = s' * b' / b'_p, note that b' == b'_t for donating leaves */
2043 		inuse = DIV64_U64_ROUND_UP(
2044 			parent->child_adjusted_sum * iocg->hweight_after_donation,
2045 			parent->hweight_inuse);
2046 
2047 		TRACE_IOCG_PATH(inuse_transfer, iocg, now,
2048 				iocg->inuse, inuse,
2049 				iocg->hweight_inuse,
2050 				iocg->hweight_after_donation);
2051 
2052 		__propagate_weights(iocg, iocg->active, inuse, true, now);
2053 	}
2054 
2055 	/* walk list should be dissolved after use */
2056 	list_for_each_entry_safe(iocg, tiocg, &inner_walk, walk_list)
2057 		list_del_init(&iocg->walk_list);
2058 }
2059 
2060 /*
2061  * A low weight iocg can amass a large amount of debt, for example, when
2062  * anonymous memory gets reclaimed aggressively. If the system has a lot of
2063  * memory paired with a slow IO device, the debt can span multiple seconds or
2064  * more. If there are no other subsequent IO issuers, the in-debt iocg may end
2065  * up blocked paying its debt while the IO device is idle.
2066  *
2067  * The following protects against such cases. If the device has been
2068  * sufficiently idle for a while, the debts are halved and delays are
2069  * recalculated.
2070  */
2071 static void ioc_forgive_debts(struct ioc *ioc, u64 usage_us_sum, int nr_debtors,
2072 			      struct ioc_now *now)
2073 {
2074 	struct ioc_gq *iocg;
2075 	u64 dur, usage_pct, nr_cycles;
2076 
2077 	/* if no debtor, reset the cycle */
2078 	if (!nr_debtors) {
2079 		ioc->dfgv_period_at = now->now;
2080 		ioc->dfgv_period_rem = 0;
2081 		ioc->dfgv_usage_us_sum = 0;
2082 		return;
2083 	}
2084 
2085 	/*
2086 	 * Debtors can pass through a lot of writes choking the device and we
2087 	 * don't want to be forgiving debts while the device is struggling from
2088 	 * write bursts. If we're missing latency targets, consider the device
2089 	 * fully utilized.
2090 	 */
2091 	if (ioc->busy_level > 0)
2092 		usage_us_sum = max_t(u64, usage_us_sum, ioc->period_us);
2093 
2094 	ioc->dfgv_usage_us_sum += usage_us_sum;
2095 	if (time_before64(now->now, ioc->dfgv_period_at + DFGV_PERIOD))
2096 		return;
2097 
2098 	/*
2099 	 * At least DFGV_PERIOD has passed since the last period. Calculate the
2100 	 * average usage and reset the period counters.
2101 	 */
2102 	dur = now->now - ioc->dfgv_period_at;
2103 	usage_pct = div64_u64(100 * ioc->dfgv_usage_us_sum, dur);
2104 
2105 	ioc->dfgv_period_at = now->now;
2106 	ioc->dfgv_usage_us_sum = 0;
2107 
2108 	/* if was too busy, reset everything */
2109 	if (usage_pct > DFGV_USAGE_PCT) {
2110 		ioc->dfgv_period_rem = 0;
2111 		return;
2112 	}
2113 
2114 	/*
2115 	 * Usage is lower than threshold. Let's forgive some debts. Debt
2116 	 * forgiveness runs off of the usual ioc timer but its period usually
2117 	 * doesn't match ioc's. Compensate the difference by performing the
2118 	 * reduction as many times as would fit in the duration since the last
2119 	 * run and carrying over the left-over duration in @ioc->dfgv_period_rem
2120 	 * - if ioc period is 75% of DFGV_PERIOD, one out of three consecutive
2121 	 * reductions is doubled.
2122 	 */
2123 	nr_cycles = dur + ioc->dfgv_period_rem;
2124 	ioc->dfgv_period_rem = do_div(nr_cycles, DFGV_PERIOD);
2125 
2126 	list_for_each_entry(iocg, &ioc->active_iocgs, active_list) {
2127 		u64 __maybe_unused old_debt, __maybe_unused old_delay;
2128 
2129 		if (!iocg->abs_vdebt && !iocg->delay)
2130 			continue;
2131 
2132 		spin_lock(&iocg->waitq.lock);
2133 
2134 		old_debt = iocg->abs_vdebt;
2135 		old_delay = iocg->delay;
2136 
2137 		if (iocg->abs_vdebt)
2138 			iocg->abs_vdebt = iocg->abs_vdebt >> nr_cycles ?: 1;
2139 		if (iocg->delay)
2140 			iocg->delay = iocg->delay >> nr_cycles ?: 1;
2141 
2142 		iocg_kick_waitq(iocg, true, now);
2143 
2144 		TRACE_IOCG_PATH(iocg_forgive_debt, iocg, now, usage_pct,
2145 				old_debt, iocg->abs_vdebt,
2146 				old_delay, iocg->delay);
2147 
2148 		spin_unlock(&iocg->waitq.lock);
2149 	}
2150 }
2151 
2152 /*
2153  * Check the active iocgs' state to avoid oversleeping and deactive
2154  * idle iocgs.
2155  *
2156  * Since waiters determine the sleep durations based on the vrate
2157  * they saw at the time of sleep, if vrate has increased, some
2158  * waiters could be sleeping for too long. Wake up tardy waiters
2159  * which should have woken up in the last period and expire idle
2160  * iocgs.
2161  */
2162 static int ioc_check_iocgs(struct ioc *ioc, struct ioc_now *now)
2163 {
2164 	int nr_debtors = 0;
2165 	struct ioc_gq *iocg, *tiocg;
2166 
2167 	list_for_each_entry_safe(iocg, tiocg, &ioc->active_iocgs, active_list) {
2168 		if (!waitqueue_active(&iocg->waitq) && !iocg->abs_vdebt &&
2169 		    !iocg->delay && !iocg_is_idle(iocg))
2170 			continue;
2171 
2172 		spin_lock(&iocg->waitq.lock);
2173 
2174 		/* flush wait and indebt stat deltas */
2175 		if (iocg->wait_since) {
2176 			iocg->stat.wait_us += now->now - iocg->wait_since;
2177 			iocg->wait_since = now->now;
2178 		}
2179 		if (iocg->indebt_since) {
2180 			iocg->stat.indebt_us +=
2181 				now->now - iocg->indebt_since;
2182 			iocg->indebt_since = now->now;
2183 		}
2184 		if (iocg->indelay_since) {
2185 			iocg->stat.indelay_us +=
2186 				now->now - iocg->indelay_since;
2187 			iocg->indelay_since = now->now;
2188 		}
2189 
2190 		if (waitqueue_active(&iocg->waitq) || iocg->abs_vdebt ||
2191 		    iocg->delay) {
2192 			/* might be oversleeping vtime / hweight changes, kick */
2193 			iocg_kick_waitq(iocg, true, now);
2194 			if (iocg->abs_vdebt || iocg->delay)
2195 				nr_debtors++;
2196 		} else if (iocg_is_idle(iocg)) {
2197 			/* no waiter and idle, deactivate */
2198 			u64 vtime = atomic64_read(&iocg->vtime);
2199 			s64 excess;
2200 
2201 			/*
2202 			 * @iocg has been inactive for a full duration and will
2203 			 * have a high budget. Account anything above target as
2204 			 * error and throw away. On reactivation, it'll start
2205 			 * with the target budget.
2206 			 */
2207 			excess = now->vnow - vtime - ioc->margins.target;
2208 			if (excess > 0) {
2209 				u32 old_hwi;
2210 
2211 				current_hweight(iocg, NULL, &old_hwi);
2212 				ioc->vtime_err -= div64_u64(excess * old_hwi,
2213 							    WEIGHT_ONE);
2214 			}
2215 
2216 			TRACE_IOCG_PATH(iocg_idle, iocg, now,
2217 					atomic64_read(&iocg->active_period),
2218 					atomic64_read(&ioc->cur_period), vtime);
2219 			__propagate_weights(iocg, 0, 0, false, now);
2220 			list_del_init(&iocg->active_list);
2221 		}
2222 
2223 		spin_unlock(&iocg->waitq.lock);
2224 	}
2225 
2226 	commit_weights(ioc);
2227 	return nr_debtors;
2228 }
2229 
2230 static void ioc_timer_fn(struct timer_list *timer)
2231 {
2232 	struct ioc *ioc = container_of(timer, struct ioc, timer);
2233 	struct ioc_gq *iocg, *tiocg;
2234 	struct ioc_now now;
2235 	LIST_HEAD(surpluses);
2236 	int nr_debtors, nr_shortages = 0, nr_lagging = 0;
2237 	u64 usage_us_sum = 0;
2238 	u32 ppm_rthr;
2239 	u32 ppm_wthr;
2240 	u32 missed_ppm[2], rq_wait_pct;
2241 	u64 period_vtime;
2242 	int prev_busy_level;
2243 
2244 	/* how were the latencies during the period? */
2245 	ioc_lat_stat(ioc, missed_ppm, &rq_wait_pct);
2246 
2247 	/* take care of active iocgs */
2248 	spin_lock_irq(&ioc->lock);
2249 
2250 	ppm_rthr = MILLION - ioc->params.qos[QOS_RPPM];
2251 	ppm_wthr = MILLION - ioc->params.qos[QOS_WPPM];
2252 	ioc_now(ioc, &now);
2253 
2254 	period_vtime = now.vnow - ioc->period_at_vtime;
2255 	if (WARN_ON_ONCE(!period_vtime)) {
2256 		spin_unlock_irq(&ioc->lock);
2257 		return;
2258 	}
2259 
2260 	nr_debtors = ioc_check_iocgs(ioc, &now);
2261 
2262 	/*
2263 	 * Wait and indebt stat are flushed above and the donation calculation
2264 	 * below needs updated usage stat. Let's bring stat up-to-date.
2265 	 */
2266 	iocg_flush_stat(&ioc->active_iocgs, &now);
2267 
2268 	/* calc usage and see whether some weights need to be moved around */
2269 	list_for_each_entry(iocg, &ioc->active_iocgs, active_list) {
2270 		u64 vdone, vtime, usage_us;
2271 		u32 hw_active, hw_inuse;
2272 
2273 		/*
2274 		 * Collect unused and wind vtime closer to vnow to prevent
2275 		 * iocgs from accumulating a large amount of budget.
2276 		 */
2277 		vdone = atomic64_read(&iocg->done_vtime);
2278 		vtime = atomic64_read(&iocg->vtime);
2279 		current_hweight(iocg, &hw_active, &hw_inuse);
2280 
2281 		/*
2282 		 * Latency QoS detection doesn't account for IOs which are
2283 		 * in-flight for longer than a period.  Detect them by
2284 		 * comparing vdone against period start.  If lagging behind
2285 		 * IOs from past periods, don't increase vrate.
2286 		 */
2287 		if ((ppm_rthr != MILLION || ppm_wthr != MILLION) &&
2288 		    !atomic_read(&iocg_to_blkg(iocg)->use_delay) &&
2289 		    time_after64(vtime, vdone) &&
2290 		    time_after64(vtime, now.vnow -
2291 				 MAX_LAGGING_PERIODS * period_vtime) &&
2292 		    time_before64(vdone, now.vnow - period_vtime))
2293 			nr_lagging++;
2294 
2295 		/*
2296 		 * Determine absolute usage factoring in in-flight IOs to avoid
2297 		 * high-latency completions appearing as idle.
2298 		 */
2299 		usage_us = iocg->usage_delta_us;
2300 		usage_us_sum += usage_us;
2301 
2302 		/* see whether there's surplus vtime */
2303 		WARN_ON_ONCE(!list_empty(&iocg->surplus_list));
2304 		if (hw_inuse < hw_active ||
2305 		    (!waitqueue_active(&iocg->waitq) &&
2306 		     time_before64(vtime, now.vnow - ioc->margins.low))) {
2307 			u32 hwa, old_hwi, hwm, new_hwi, usage;
2308 			u64 usage_dur;
2309 
2310 			if (vdone != vtime) {
2311 				u64 inflight_us = DIV64_U64_ROUND_UP(
2312 					cost_to_abs_cost(vtime - vdone, hw_inuse),
2313 					ioc->vtime_base_rate);
2314 
2315 				usage_us = max(usage_us, inflight_us);
2316 			}
2317 
2318 			/* convert to hweight based usage ratio */
2319 			if (time_after64(iocg->activated_at, ioc->period_at))
2320 				usage_dur = max_t(u64, now.now - iocg->activated_at, 1);
2321 			else
2322 				usage_dur = max_t(u64, now.now - ioc->period_at, 1);
2323 
2324 			usage = clamp_t(u32,
2325 				DIV64_U64_ROUND_UP(usage_us * WEIGHT_ONE,
2326 						   usage_dur),
2327 				1, WEIGHT_ONE);
2328 
2329 			/*
2330 			 * Already donating or accumulated enough to start.
2331 			 * Determine the donation amount.
2332 			 */
2333 			current_hweight(iocg, &hwa, &old_hwi);
2334 			hwm = current_hweight_max(iocg);
2335 			new_hwi = hweight_after_donation(iocg, old_hwi, hwm,
2336 							 usage, &now);
2337 			/*
2338 			 * Donation calculation assumes hweight_after_donation
2339 			 * to be positive, a condition that a donor w/ hwa < 2
2340 			 * can't meet. Don't bother with donation if hwa is
2341 			 * below 2. It's not gonna make a meaningful difference
2342 			 * anyway.
2343 			 */
2344 			if (new_hwi < hwm && hwa >= 2) {
2345 				iocg->hweight_donating = hwa;
2346 				iocg->hweight_after_donation = new_hwi;
2347 				list_add(&iocg->surplus_list, &surpluses);
2348 			} else if (!iocg->abs_vdebt) {
2349 				/*
2350 				 * @iocg doesn't have enough to donate. Reset
2351 				 * its inuse to active.
2352 				 *
2353 				 * Don't reset debtors as their inuse's are
2354 				 * owned by debt handling. This shouldn't affect
2355 				 * donation calculuation in any meaningful way
2356 				 * as @iocg doesn't have a meaningful amount of
2357 				 * share anyway.
2358 				 */
2359 				TRACE_IOCG_PATH(inuse_shortage, iocg, &now,
2360 						iocg->inuse, iocg->active,
2361 						iocg->hweight_inuse, new_hwi);
2362 
2363 				__propagate_weights(iocg, iocg->active,
2364 						    iocg->active, true, &now);
2365 				nr_shortages++;
2366 			}
2367 		} else {
2368 			/* genuinely short on vtime */
2369 			nr_shortages++;
2370 		}
2371 	}
2372 
2373 	if (!list_empty(&surpluses) && nr_shortages)
2374 		transfer_surpluses(&surpluses, &now);
2375 
2376 	commit_weights(ioc);
2377 
2378 	/* surplus list should be dissolved after use */
2379 	list_for_each_entry_safe(iocg, tiocg, &surpluses, surplus_list)
2380 		list_del_init(&iocg->surplus_list);
2381 
2382 	/*
2383 	 * If q is getting clogged or we're missing too much, we're issuing
2384 	 * too much IO and should lower vtime rate.  If we're not missing
2385 	 * and experiencing shortages but not surpluses, we're too stingy
2386 	 * and should increase vtime rate.
2387 	 */
2388 	prev_busy_level = ioc->busy_level;
2389 	if (rq_wait_pct > RQ_WAIT_BUSY_PCT ||
2390 	    missed_ppm[READ] > ppm_rthr ||
2391 	    missed_ppm[WRITE] > ppm_wthr) {
2392 		/* clearly missing QoS targets, slow down vrate */
2393 		ioc->busy_level = max(ioc->busy_level, 0);
2394 		ioc->busy_level++;
2395 	} else if (rq_wait_pct <= RQ_WAIT_BUSY_PCT * UNBUSY_THR_PCT / 100 &&
2396 		   missed_ppm[READ] <= ppm_rthr * UNBUSY_THR_PCT / 100 &&
2397 		   missed_ppm[WRITE] <= ppm_wthr * UNBUSY_THR_PCT / 100) {
2398 		/* QoS targets are being met with >25% margin */
2399 		if (nr_shortages) {
2400 			/*
2401 			 * We're throttling while the device has spare
2402 			 * capacity.  If vrate was being slowed down, stop.
2403 			 */
2404 			ioc->busy_level = min(ioc->busy_level, 0);
2405 
2406 			/*
2407 			 * If there are IOs spanning multiple periods, wait
2408 			 * them out before pushing the device harder.
2409 			 */
2410 			if (!nr_lagging)
2411 				ioc->busy_level--;
2412 		} else {
2413 			/*
2414 			 * Nobody is being throttled and the users aren't
2415 			 * issuing enough IOs to saturate the device.  We
2416 			 * simply don't know how close the device is to
2417 			 * saturation.  Coast.
2418 			 */
2419 			ioc->busy_level = 0;
2420 		}
2421 	} else {
2422 		/* inside the hysterisis margin, we're good */
2423 		ioc->busy_level = 0;
2424 	}
2425 
2426 	ioc->busy_level = clamp(ioc->busy_level, -1000, 1000);
2427 
2428 	ioc_adjust_base_vrate(ioc, rq_wait_pct, nr_lagging, nr_shortages,
2429 			      prev_busy_level, missed_ppm);
2430 
2431 	ioc_refresh_params(ioc, false);
2432 
2433 	ioc_forgive_debts(ioc, usage_us_sum, nr_debtors, &now);
2434 
2435 	/*
2436 	 * This period is done.  Move onto the next one.  If nothing's
2437 	 * going on with the device, stop the timer.
2438 	 */
2439 	atomic64_inc(&ioc->cur_period);
2440 
2441 	if (ioc->running != IOC_STOP) {
2442 		if (!list_empty(&ioc->active_iocgs)) {
2443 			ioc_start_period(ioc, &now);
2444 		} else {
2445 			ioc->busy_level = 0;
2446 			ioc->vtime_err = 0;
2447 			ioc->running = IOC_IDLE;
2448 		}
2449 
2450 		ioc_refresh_vrate(ioc, &now);
2451 	}
2452 
2453 	spin_unlock_irq(&ioc->lock);
2454 }
2455 
2456 static u64 adjust_inuse_and_calc_cost(struct ioc_gq *iocg, u64 vtime,
2457 				      u64 abs_cost, struct ioc_now *now)
2458 {
2459 	struct ioc *ioc = iocg->ioc;
2460 	struct ioc_margins *margins = &ioc->margins;
2461 	u32 __maybe_unused old_inuse = iocg->inuse, __maybe_unused old_hwi;
2462 	u32 hwi, adj_step;
2463 	s64 margin;
2464 	u64 cost, new_inuse;
2465 	unsigned long flags;
2466 
2467 	current_hweight(iocg, NULL, &hwi);
2468 	old_hwi = hwi;
2469 	cost = abs_cost_to_cost(abs_cost, hwi);
2470 	margin = now->vnow - vtime - cost;
2471 
2472 	/* debt handling owns inuse for debtors */
2473 	if (iocg->abs_vdebt)
2474 		return cost;
2475 
2476 	/*
2477 	 * We only increase inuse during period and do so if the margin has
2478 	 * deteriorated since the previous adjustment.
2479 	 */
2480 	if (margin >= iocg->saved_margin || margin >= margins->low ||
2481 	    iocg->inuse == iocg->active)
2482 		return cost;
2483 
2484 	spin_lock_irqsave(&ioc->lock, flags);
2485 
2486 	/* we own inuse only when @iocg is in the normal active state */
2487 	if (iocg->abs_vdebt || list_empty(&iocg->active_list)) {
2488 		spin_unlock_irqrestore(&ioc->lock, flags);
2489 		return cost;
2490 	}
2491 
2492 	/*
2493 	 * Bump up inuse till @abs_cost fits in the existing budget.
2494 	 * adj_step must be determined after acquiring ioc->lock - we might
2495 	 * have raced and lost to another thread for activation and could
2496 	 * be reading 0 iocg->active before ioc->lock which will lead to
2497 	 * infinite loop.
2498 	 */
2499 	new_inuse = iocg->inuse;
2500 	adj_step = DIV_ROUND_UP(iocg->active * INUSE_ADJ_STEP_PCT, 100);
2501 	do {
2502 		new_inuse = new_inuse + adj_step;
2503 		propagate_weights(iocg, iocg->active, new_inuse, true, now);
2504 		current_hweight(iocg, NULL, &hwi);
2505 		cost = abs_cost_to_cost(abs_cost, hwi);
2506 	} while (time_after64(vtime + cost, now->vnow) &&
2507 		 iocg->inuse != iocg->active);
2508 
2509 	spin_unlock_irqrestore(&ioc->lock, flags);
2510 
2511 	TRACE_IOCG_PATH(inuse_adjust, iocg, now,
2512 			old_inuse, iocg->inuse, old_hwi, hwi);
2513 
2514 	return cost;
2515 }
2516 
2517 static void calc_vtime_cost_builtin(struct bio *bio, struct ioc_gq *iocg,
2518 				    bool is_merge, u64 *costp)
2519 {
2520 	struct ioc *ioc = iocg->ioc;
2521 	u64 coef_seqio, coef_randio, coef_page;
2522 	u64 pages = max_t(u64, bio_sectors(bio) >> IOC_SECT_TO_PAGE_SHIFT, 1);
2523 	u64 seek_pages = 0;
2524 	u64 cost = 0;
2525 
2526 	/* Can't calculate cost for empty bio */
2527 	if (!bio->bi_iter.bi_size)
2528 		goto out;
2529 
2530 	switch (bio_op(bio)) {
2531 	case REQ_OP_READ:
2532 		coef_seqio	= ioc->params.lcoefs[LCOEF_RSEQIO];
2533 		coef_randio	= ioc->params.lcoefs[LCOEF_RRANDIO];
2534 		coef_page	= ioc->params.lcoefs[LCOEF_RPAGE];
2535 		break;
2536 	case REQ_OP_WRITE:
2537 		coef_seqio	= ioc->params.lcoefs[LCOEF_WSEQIO];
2538 		coef_randio	= ioc->params.lcoefs[LCOEF_WRANDIO];
2539 		coef_page	= ioc->params.lcoefs[LCOEF_WPAGE];
2540 		break;
2541 	default:
2542 		goto out;
2543 	}
2544 
2545 	if (iocg->cursor) {
2546 		seek_pages = abs(bio->bi_iter.bi_sector - iocg->cursor);
2547 		seek_pages >>= IOC_SECT_TO_PAGE_SHIFT;
2548 	}
2549 
2550 	if (!is_merge) {
2551 		if (seek_pages > LCOEF_RANDIO_PAGES) {
2552 			cost += coef_randio;
2553 		} else {
2554 			cost += coef_seqio;
2555 		}
2556 	}
2557 	cost += pages * coef_page;
2558 out:
2559 	*costp = cost;
2560 }
2561 
2562 static u64 calc_vtime_cost(struct bio *bio, struct ioc_gq *iocg, bool is_merge)
2563 {
2564 	u64 cost;
2565 
2566 	calc_vtime_cost_builtin(bio, iocg, is_merge, &cost);
2567 	return cost;
2568 }
2569 
2570 static void calc_size_vtime_cost_builtin(struct request *rq, struct ioc *ioc,
2571 					 u64 *costp)
2572 {
2573 	unsigned int pages = blk_rq_stats_sectors(rq) >> IOC_SECT_TO_PAGE_SHIFT;
2574 
2575 	switch (req_op(rq)) {
2576 	case REQ_OP_READ:
2577 		*costp = pages * ioc->params.lcoefs[LCOEF_RPAGE];
2578 		break;
2579 	case REQ_OP_WRITE:
2580 		*costp = pages * ioc->params.lcoefs[LCOEF_WPAGE];
2581 		break;
2582 	default:
2583 		*costp = 0;
2584 	}
2585 }
2586 
2587 static u64 calc_size_vtime_cost(struct request *rq, struct ioc *ioc)
2588 {
2589 	u64 cost;
2590 
2591 	calc_size_vtime_cost_builtin(rq, ioc, &cost);
2592 	return cost;
2593 }
2594 
2595 static void ioc_rqos_throttle(struct rq_qos *rqos, struct bio *bio)
2596 {
2597 	struct blkcg_gq *blkg = bio->bi_blkg;
2598 	struct ioc *ioc = rqos_to_ioc(rqos);
2599 	struct ioc_gq *iocg = blkg_to_iocg(blkg);
2600 	struct ioc_now now;
2601 	struct iocg_wait wait;
2602 	u64 abs_cost, cost, vtime;
2603 	bool use_debt, ioc_locked;
2604 	unsigned long flags;
2605 
2606 	/* bypass IOs if disabled, still initializing, or for root cgroup */
2607 	if (!ioc->enabled || !iocg || !iocg->level)
2608 		return;
2609 
2610 	/* calculate the absolute vtime cost */
2611 	abs_cost = calc_vtime_cost(bio, iocg, false);
2612 	if (!abs_cost)
2613 		return;
2614 
2615 	if (!iocg_activate(iocg, &now))
2616 		return;
2617 
2618 	iocg->cursor = bio_end_sector(bio);
2619 	vtime = atomic64_read(&iocg->vtime);
2620 	cost = adjust_inuse_and_calc_cost(iocg, vtime, abs_cost, &now);
2621 
2622 	/*
2623 	 * If no one's waiting and within budget, issue right away.  The
2624 	 * tests are racy but the races aren't systemic - we only miss once
2625 	 * in a while which is fine.
2626 	 */
2627 	if (!waitqueue_active(&iocg->waitq) && !iocg->abs_vdebt &&
2628 	    time_before_eq64(vtime + cost, now.vnow)) {
2629 		iocg_commit_bio(iocg, bio, abs_cost, cost);
2630 		return;
2631 	}
2632 
2633 	/*
2634 	 * We're over budget. This can be handled in two ways. IOs which may
2635 	 * cause priority inversions are punted to @ioc->aux_iocg and charged as
2636 	 * debt. Otherwise, the issuer is blocked on @iocg->waitq. Debt handling
2637 	 * requires @ioc->lock, waitq handling @iocg->waitq.lock. Determine
2638 	 * whether debt handling is needed and acquire locks accordingly.
2639 	 */
2640 	use_debt = bio_issue_as_root_blkg(bio) || fatal_signal_pending(current);
2641 	ioc_locked = use_debt || READ_ONCE(iocg->abs_vdebt);
2642 retry_lock:
2643 	iocg_lock(iocg, ioc_locked, &flags);
2644 
2645 	/*
2646 	 * @iocg must stay activated for debt and waitq handling. Deactivation
2647 	 * is synchronized against both ioc->lock and waitq.lock and we won't
2648 	 * get deactivated as long as we're waiting or has debt, so we're good
2649 	 * if we're activated here. In the unlikely cases that we aren't, just
2650 	 * issue the IO.
2651 	 */
2652 	if (unlikely(list_empty(&iocg->active_list))) {
2653 		iocg_unlock(iocg, ioc_locked, &flags);
2654 		iocg_commit_bio(iocg, bio, abs_cost, cost);
2655 		return;
2656 	}
2657 
2658 	/*
2659 	 * We're over budget. If @bio has to be issued regardless, remember
2660 	 * the abs_cost instead of advancing vtime. iocg_kick_waitq() will pay
2661 	 * off the debt before waking more IOs.
2662 	 *
2663 	 * This way, the debt is continuously paid off each period with the
2664 	 * actual budget available to the cgroup. If we just wound vtime, we
2665 	 * would incorrectly use the current hw_inuse for the entire amount
2666 	 * which, for example, can lead to the cgroup staying blocked for a
2667 	 * long time even with substantially raised hw_inuse.
2668 	 *
2669 	 * An iocg with vdebt should stay online so that the timer can keep
2670 	 * deducting its vdebt and [de]activate use_delay mechanism
2671 	 * accordingly. We don't want to race against the timer trying to
2672 	 * clear them and leave @iocg inactive w/ dangling use_delay heavily
2673 	 * penalizing the cgroup and its descendants.
2674 	 */
2675 	if (use_debt) {
2676 		iocg_incur_debt(iocg, abs_cost, &now);
2677 		if (iocg_kick_delay(iocg, &now))
2678 			blkcg_schedule_throttle(rqos->disk,
2679 					(bio->bi_opf & REQ_SWAP) == REQ_SWAP);
2680 		iocg_unlock(iocg, ioc_locked, &flags);
2681 		return;
2682 	}
2683 
2684 	/* guarantee that iocgs w/ waiters have maximum inuse */
2685 	if (!iocg->abs_vdebt && iocg->inuse != iocg->active) {
2686 		if (!ioc_locked) {
2687 			iocg_unlock(iocg, false, &flags);
2688 			ioc_locked = true;
2689 			goto retry_lock;
2690 		}
2691 		propagate_weights(iocg, iocg->active, iocg->active, true,
2692 				  &now);
2693 	}
2694 
2695 	/*
2696 	 * Append self to the waitq and schedule the wakeup timer if we're
2697 	 * the first waiter.  The timer duration is calculated based on the
2698 	 * current vrate.  vtime and hweight changes can make it too short
2699 	 * or too long.  Each wait entry records the absolute cost it's
2700 	 * waiting for to allow re-evaluation using a custom wait entry.
2701 	 *
2702 	 * If too short, the timer simply reschedules itself.  If too long,
2703 	 * the period timer will notice and trigger wakeups.
2704 	 *
2705 	 * All waiters are on iocg->waitq and the wait states are
2706 	 * synchronized using waitq.lock.
2707 	 */
2708 	init_waitqueue_func_entry(&wait.wait, iocg_wake_fn);
2709 	wait.wait.private = current;
2710 	wait.bio = bio;
2711 	wait.abs_cost = abs_cost;
2712 	wait.committed = false;	/* will be set true by waker */
2713 
2714 	__add_wait_queue_entry_tail(&iocg->waitq, &wait.wait);
2715 	iocg_kick_waitq(iocg, ioc_locked, &now);
2716 
2717 	iocg_unlock(iocg, ioc_locked, &flags);
2718 
2719 	while (true) {
2720 		set_current_state(TASK_UNINTERRUPTIBLE);
2721 		if (wait.committed)
2722 			break;
2723 		io_schedule();
2724 	}
2725 
2726 	/* waker already committed us, proceed */
2727 	finish_wait(&iocg->waitq, &wait.wait);
2728 }
2729 
2730 static void ioc_rqos_merge(struct rq_qos *rqos, struct request *rq,
2731 			   struct bio *bio)
2732 {
2733 	struct ioc_gq *iocg = blkg_to_iocg(bio->bi_blkg);
2734 	struct ioc *ioc = rqos_to_ioc(rqos);
2735 	sector_t bio_end = bio_end_sector(bio);
2736 	struct ioc_now now;
2737 	u64 vtime, abs_cost, cost;
2738 	unsigned long flags;
2739 
2740 	/* bypass if disabled, still initializing, or for root cgroup */
2741 	if (!ioc->enabled || !iocg || !iocg->level)
2742 		return;
2743 
2744 	abs_cost = calc_vtime_cost(bio, iocg, true);
2745 	if (!abs_cost)
2746 		return;
2747 
2748 	ioc_now(ioc, &now);
2749 
2750 	vtime = atomic64_read(&iocg->vtime);
2751 	cost = adjust_inuse_and_calc_cost(iocg, vtime, abs_cost, &now);
2752 
2753 	/* update cursor if backmerging into the request at the cursor */
2754 	if (blk_rq_pos(rq) < bio_end &&
2755 	    blk_rq_pos(rq) + blk_rq_sectors(rq) == iocg->cursor)
2756 		iocg->cursor = bio_end;
2757 
2758 	/*
2759 	 * Charge if there's enough vtime budget and the existing request has
2760 	 * cost assigned.
2761 	 */
2762 	if (rq->bio && rq->bio->bi_iocost_cost &&
2763 	    time_before_eq64(atomic64_read(&iocg->vtime) + cost, now.vnow)) {
2764 		iocg_commit_bio(iocg, bio, abs_cost, cost);
2765 		return;
2766 	}
2767 
2768 	/*
2769 	 * Otherwise, account it as debt if @iocg is online, which it should
2770 	 * be for the vast majority of cases. See debt handling in
2771 	 * ioc_rqos_throttle() for details.
2772 	 */
2773 	spin_lock_irqsave(&ioc->lock, flags);
2774 	spin_lock(&iocg->waitq.lock);
2775 
2776 	if (likely(!list_empty(&iocg->active_list))) {
2777 		iocg_incur_debt(iocg, abs_cost, &now);
2778 		if (iocg_kick_delay(iocg, &now))
2779 			blkcg_schedule_throttle(rqos->disk,
2780 					(bio->bi_opf & REQ_SWAP) == REQ_SWAP);
2781 	} else {
2782 		iocg_commit_bio(iocg, bio, abs_cost, cost);
2783 	}
2784 
2785 	spin_unlock(&iocg->waitq.lock);
2786 	spin_unlock_irqrestore(&ioc->lock, flags);
2787 }
2788 
2789 static void ioc_rqos_done_bio(struct rq_qos *rqos, struct bio *bio)
2790 {
2791 	struct ioc_gq *iocg = blkg_to_iocg(bio->bi_blkg);
2792 
2793 	if (iocg && bio->bi_iocost_cost)
2794 		atomic64_add(bio->bi_iocost_cost, &iocg->done_vtime);
2795 }
2796 
2797 static void ioc_rqos_done(struct rq_qos *rqos, struct request *rq)
2798 {
2799 	struct ioc *ioc = rqos_to_ioc(rqos);
2800 	struct ioc_pcpu_stat *ccs;
2801 	u64 on_q_ns, rq_wait_ns, size_nsec;
2802 	int pidx, rw;
2803 
2804 	if (!ioc->enabled || !rq->alloc_time_ns || !rq->start_time_ns)
2805 		return;
2806 
2807 	switch (req_op(rq)) {
2808 	case REQ_OP_READ:
2809 		pidx = QOS_RLAT;
2810 		rw = READ;
2811 		break;
2812 	case REQ_OP_WRITE:
2813 		pidx = QOS_WLAT;
2814 		rw = WRITE;
2815 		break;
2816 	default:
2817 		return;
2818 	}
2819 
2820 	on_q_ns = blk_time_get_ns() - rq->alloc_time_ns;
2821 	rq_wait_ns = rq->start_time_ns - rq->alloc_time_ns;
2822 	size_nsec = div64_u64(calc_size_vtime_cost(rq, ioc), VTIME_PER_NSEC);
2823 
2824 	ccs = get_cpu_ptr(ioc->pcpu_stat);
2825 
2826 	if (on_q_ns <= size_nsec ||
2827 	    on_q_ns - size_nsec <= ioc->params.qos[pidx] * NSEC_PER_USEC)
2828 		local_inc(&ccs->missed[rw].nr_met);
2829 	else
2830 		local_inc(&ccs->missed[rw].nr_missed);
2831 
2832 	local64_add(rq_wait_ns, &ccs->rq_wait_ns);
2833 
2834 	put_cpu_ptr(ccs);
2835 }
2836 
2837 static void ioc_rqos_queue_depth_changed(struct rq_qos *rqos)
2838 {
2839 	struct ioc *ioc = rqos_to_ioc(rqos);
2840 
2841 	spin_lock_irq(&ioc->lock);
2842 	ioc_refresh_params(ioc, false);
2843 	spin_unlock_irq(&ioc->lock);
2844 }
2845 
2846 static void ioc_rqos_exit(struct rq_qos *rqos)
2847 {
2848 	struct ioc *ioc = rqos_to_ioc(rqos);
2849 
2850 	blkcg_deactivate_policy(rqos->disk, &blkcg_policy_iocost);
2851 
2852 	spin_lock_irq(&ioc->lock);
2853 	ioc->running = IOC_STOP;
2854 	spin_unlock_irq(&ioc->lock);
2855 
2856 	timer_shutdown_sync(&ioc->timer);
2857 	free_percpu(ioc->pcpu_stat);
2858 	kfree(ioc);
2859 }
2860 
2861 static const struct rq_qos_ops ioc_rqos_ops = {
2862 	.throttle = ioc_rqos_throttle,
2863 	.merge = ioc_rqos_merge,
2864 	.done_bio = ioc_rqos_done_bio,
2865 	.done = ioc_rqos_done,
2866 	.queue_depth_changed = ioc_rqos_queue_depth_changed,
2867 	.exit = ioc_rqos_exit,
2868 };
2869 
2870 static int blk_iocost_init(struct gendisk *disk)
2871 {
2872 	struct ioc *ioc;
2873 	int i, cpu, ret;
2874 
2875 	ioc = kzalloc(sizeof(*ioc), GFP_KERNEL);
2876 	if (!ioc)
2877 		return -ENOMEM;
2878 
2879 	ioc->pcpu_stat = alloc_percpu(struct ioc_pcpu_stat);
2880 	if (!ioc->pcpu_stat) {
2881 		kfree(ioc);
2882 		return -ENOMEM;
2883 	}
2884 
2885 	for_each_possible_cpu(cpu) {
2886 		struct ioc_pcpu_stat *ccs = per_cpu_ptr(ioc->pcpu_stat, cpu);
2887 
2888 		for (i = 0; i < ARRAY_SIZE(ccs->missed); i++) {
2889 			local_set(&ccs->missed[i].nr_met, 0);
2890 			local_set(&ccs->missed[i].nr_missed, 0);
2891 		}
2892 		local64_set(&ccs->rq_wait_ns, 0);
2893 	}
2894 
2895 	spin_lock_init(&ioc->lock);
2896 	timer_setup(&ioc->timer, ioc_timer_fn, 0);
2897 	INIT_LIST_HEAD(&ioc->active_iocgs);
2898 
2899 	ioc->running = IOC_IDLE;
2900 	ioc->vtime_base_rate = VTIME_PER_USEC;
2901 	atomic64_set(&ioc->vtime_rate, VTIME_PER_USEC);
2902 	seqcount_spinlock_init(&ioc->period_seqcount, &ioc->lock);
2903 	ioc->period_at = ktime_to_us(blk_time_get());
2904 	atomic64_set(&ioc->cur_period, 0);
2905 	atomic_set(&ioc->hweight_gen, 0);
2906 
2907 	spin_lock_irq(&ioc->lock);
2908 	ioc->autop_idx = AUTOP_INVALID;
2909 	ioc_refresh_params_disk(ioc, true, disk);
2910 	spin_unlock_irq(&ioc->lock);
2911 
2912 	/*
2913 	 * rqos must be added before activation to allow ioc_pd_init() to
2914 	 * lookup the ioc from q. This means that the rqos methods may get
2915 	 * called before policy activation completion, can't assume that the
2916 	 * target bio has an iocg associated and need to test for NULL iocg.
2917 	 */
2918 	ret = rq_qos_add(&ioc->rqos, disk, RQ_QOS_COST, &ioc_rqos_ops);
2919 	if (ret)
2920 		goto err_free_ioc;
2921 
2922 	ret = blkcg_activate_policy(disk, &blkcg_policy_iocost);
2923 	if (ret)
2924 		goto err_del_qos;
2925 	return 0;
2926 
2927 err_del_qos:
2928 	rq_qos_del(&ioc->rqos);
2929 err_free_ioc:
2930 	free_percpu(ioc->pcpu_stat);
2931 	kfree(ioc);
2932 	return ret;
2933 }
2934 
2935 static struct blkcg_policy_data *ioc_cpd_alloc(gfp_t gfp)
2936 {
2937 	struct ioc_cgrp *iocc;
2938 
2939 	iocc = kzalloc(sizeof(struct ioc_cgrp), gfp);
2940 	if (!iocc)
2941 		return NULL;
2942 
2943 	iocc->dfl_weight = CGROUP_WEIGHT_DFL * WEIGHT_ONE;
2944 	return &iocc->cpd;
2945 }
2946 
2947 static void ioc_cpd_free(struct blkcg_policy_data *cpd)
2948 {
2949 	kfree(container_of(cpd, struct ioc_cgrp, cpd));
2950 }
2951 
2952 static struct blkg_policy_data *ioc_pd_alloc(struct gendisk *disk,
2953 		struct blkcg *blkcg, gfp_t gfp)
2954 {
2955 	int levels = blkcg->css.cgroup->level + 1;
2956 	struct ioc_gq *iocg;
2957 
2958 	iocg = kzalloc_node(struct_size(iocg, ancestors, levels), gfp,
2959 			    disk->node_id);
2960 	if (!iocg)
2961 		return NULL;
2962 
2963 	iocg->pcpu_stat = alloc_percpu_gfp(struct iocg_pcpu_stat, gfp);
2964 	if (!iocg->pcpu_stat) {
2965 		kfree(iocg);
2966 		return NULL;
2967 	}
2968 
2969 	return &iocg->pd;
2970 }
2971 
2972 static void ioc_pd_init(struct blkg_policy_data *pd)
2973 {
2974 	struct ioc_gq *iocg = pd_to_iocg(pd);
2975 	struct blkcg_gq *blkg = pd_to_blkg(&iocg->pd);
2976 	struct ioc *ioc = q_to_ioc(blkg->q);
2977 	struct ioc_now now;
2978 	struct blkcg_gq *tblkg;
2979 	unsigned long flags;
2980 
2981 	ioc_now(ioc, &now);
2982 
2983 	iocg->ioc = ioc;
2984 	atomic64_set(&iocg->vtime, now.vnow);
2985 	atomic64_set(&iocg->done_vtime, now.vnow);
2986 	atomic64_set(&iocg->active_period, atomic64_read(&ioc->cur_period));
2987 	INIT_LIST_HEAD(&iocg->active_list);
2988 	INIT_LIST_HEAD(&iocg->walk_list);
2989 	INIT_LIST_HEAD(&iocg->surplus_list);
2990 	iocg->hweight_active = WEIGHT_ONE;
2991 	iocg->hweight_inuse = WEIGHT_ONE;
2992 
2993 	init_waitqueue_head(&iocg->waitq);
2994 	hrtimer_init(&iocg->waitq_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
2995 	iocg->waitq_timer.function = iocg_waitq_timer_fn;
2996 
2997 	iocg->level = blkg->blkcg->css.cgroup->level;
2998 
2999 	for (tblkg = blkg; tblkg; tblkg = tblkg->parent) {
3000 		struct ioc_gq *tiocg = blkg_to_iocg(tblkg);
3001 		iocg->ancestors[tiocg->level] = tiocg;
3002 	}
3003 
3004 	spin_lock_irqsave(&ioc->lock, flags);
3005 	weight_updated(iocg, &now);
3006 	spin_unlock_irqrestore(&ioc->lock, flags);
3007 }
3008 
3009 static void ioc_pd_free(struct blkg_policy_data *pd)
3010 {
3011 	struct ioc_gq *iocg = pd_to_iocg(pd);
3012 	struct ioc *ioc = iocg->ioc;
3013 	unsigned long flags;
3014 
3015 	if (ioc) {
3016 		spin_lock_irqsave(&ioc->lock, flags);
3017 
3018 		if (!list_empty(&iocg->active_list)) {
3019 			struct ioc_now now;
3020 
3021 			ioc_now(ioc, &now);
3022 			propagate_weights(iocg, 0, 0, false, &now);
3023 			list_del_init(&iocg->active_list);
3024 		}
3025 
3026 		WARN_ON_ONCE(!list_empty(&iocg->walk_list));
3027 		WARN_ON_ONCE(!list_empty(&iocg->surplus_list));
3028 
3029 		spin_unlock_irqrestore(&ioc->lock, flags);
3030 
3031 		hrtimer_cancel(&iocg->waitq_timer);
3032 	}
3033 	free_percpu(iocg->pcpu_stat);
3034 	kfree(iocg);
3035 }
3036 
3037 static void ioc_pd_stat(struct blkg_policy_data *pd, struct seq_file *s)
3038 {
3039 	struct ioc_gq *iocg = pd_to_iocg(pd);
3040 	struct ioc *ioc = iocg->ioc;
3041 
3042 	if (!ioc->enabled)
3043 		return;
3044 
3045 	if (iocg->level == 0) {
3046 		unsigned vp10k = DIV64_U64_ROUND_CLOSEST(
3047 			ioc->vtime_base_rate * 10000,
3048 			VTIME_PER_USEC);
3049 		seq_printf(s, " cost.vrate=%u.%02u", vp10k / 100, vp10k % 100);
3050 	}
3051 
3052 	seq_printf(s, " cost.usage=%llu", iocg->last_stat.usage_us);
3053 
3054 	if (blkcg_debug_stats)
3055 		seq_printf(s, " cost.wait=%llu cost.indebt=%llu cost.indelay=%llu",
3056 			iocg->last_stat.wait_us,
3057 			iocg->last_stat.indebt_us,
3058 			iocg->last_stat.indelay_us);
3059 }
3060 
3061 static u64 ioc_weight_prfill(struct seq_file *sf, struct blkg_policy_data *pd,
3062 			     int off)
3063 {
3064 	const char *dname = blkg_dev_name(pd->blkg);
3065 	struct ioc_gq *iocg = pd_to_iocg(pd);
3066 
3067 	if (dname && iocg->cfg_weight)
3068 		seq_printf(sf, "%s %u\n", dname, iocg->cfg_weight / WEIGHT_ONE);
3069 	return 0;
3070 }
3071 
3072 
3073 static int ioc_weight_show(struct seq_file *sf, void *v)
3074 {
3075 	struct blkcg *blkcg = css_to_blkcg(seq_css(sf));
3076 	struct ioc_cgrp *iocc = blkcg_to_iocc(blkcg);
3077 
3078 	seq_printf(sf, "default %u\n", iocc->dfl_weight / WEIGHT_ONE);
3079 	blkcg_print_blkgs(sf, blkcg, ioc_weight_prfill,
3080 			  &blkcg_policy_iocost, seq_cft(sf)->private, false);
3081 	return 0;
3082 }
3083 
3084 static ssize_t ioc_weight_write(struct kernfs_open_file *of, char *buf,
3085 				size_t nbytes, loff_t off)
3086 {
3087 	struct blkcg *blkcg = css_to_blkcg(of_css(of));
3088 	struct ioc_cgrp *iocc = blkcg_to_iocc(blkcg);
3089 	struct blkg_conf_ctx ctx;
3090 	struct ioc_now now;
3091 	struct ioc_gq *iocg;
3092 	u32 v;
3093 	int ret;
3094 
3095 	if (!strchr(buf, ':')) {
3096 		struct blkcg_gq *blkg;
3097 
3098 		if (!sscanf(buf, "default %u", &v) && !sscanf(buf, "%u", &v))
3099 			return -EINVAL;
3100 
3101 		if (v < CGROUP_WEIGHT_MIN || v > CGROUP_WEIGHT_MAX)
3102 			return -EINVAL;
3103 
3104 		spin_lock_irq(&blkcg->lock);
3105 		iocc->dfl_weight = v * WEIGHT_ONE;
3106 		hlist_for_each_entry(blkg, &blkcg->blkg_list, blkcg_node) {
3107 			struct ioc_gq *iocg = blkg_to_iocg(blkg);
3108 
3109 			if (iocg) {
3110 				spin_lock(&iocg->ioc->lock);
3111 				ioc_now(iocg->ioc, &now);
3112 				weight_updated(iocg, &now);
3113 				spin_unlock(&iocg->ioc->lock);
3114 			}
3115 		}
3116 		spin_unlock_irq(&blkcg->lock);
3117 
3118 		return nbytes;
3119 	}
3120 
3121 	blkg_conf_init(&ctx, buf);
3122 
3123 	ret = blkg_conf_prep(blkcg, &blkcg_policy_iocost, &ctx);
3124 	if (ret)
3125 		goto err;
3126 
3127 	iocg = blkg_to_iocg(ctx.blkg);
3128 
3129 	if (!strncmp(ctx.body, "default", 7)) {
3130 		v = 0;
3131 	} else {
3132 		if (!sscanf(ctx.body, "%u", &v))
3133 			goto einval;
3134 		if (v < CGROUP_WEIGHT_MIN || v > CGROUP_WEIGHT_MAX)
3135 			goto einval;
3136 	}
3137 
3138 	spin_lock(&iocg->ioc->lock);
3139 	iocg->cfg_weight = v * WEIGHT_ONE;
3140 	ioc_now(iocg->ioc, &now);
3141 	weight_updated(iocg, &now);
3142 	spin_unlock(&iocg->ioc->lock);
3143 
3144 	blkg_conf_exit(&ctx);
3145 	return nbytes;
3146 
3147 einval:
3148 	ret = -EINVAL;
3149 err:
3150 	blkg_conf_exit(&ctx);
3151 	return ret;
3152 }
3153 
3154 static u64 ioc_qos_prfill(struct seq_file *sf, struct blkg_policy_data *pd,
3155 			  int off)
3156 {
3157 	const char *dname = blkg_dev_name(pd->blkg);
3158 	struct ioc *ioc = pd_to_iocg(pd)->ioc;
3159 
3160 	if (!dname)
3161 		return 0;
3162 
3163 	spin_lock_irq(&ioc->lock);
3164 	seq_printf(sf, "%s enable=%d ctrl=%s rpct=%u.%02u rlat=%u wpct=%u.%02u wlat=%u min=%u.%02u max=%u.%02u\n",
3165 		   dname, ioc->enabled, ioc->user_qos_params ? "user" : "auto",
3166 		   ioc->params.qos[QOS_RPPM] / 10000,
3167 		   ioc->params.qos[QOS_RPPM] % 10000 / 100,
3168 		   ioc->params.qos[QOS_RLAT],
3169 		   ioc->params.qos[QOS_WPPM] / 10000,
3170 		   ioc->params.qos[QOS_WPPM] % 10000 / 100,
3171 		   ioc->params.qos[QOS_WLAT],
3172 		   ioc->params.qos[QOS_MIN] / 10000,
3173 		   ioc->params.qos[QOS_MIN] % 10000 / 100,
3174 		   ioc->params.qos[QOS_MAX] / 10000,
3175 		   ioc->params.qos[QOS_MAX] % 10000 / 100);
3176 	spin_unlock_irq(&ioc->lock);
3177 	return 0;
3178 }
3179 
3180 static int ioc_qos_show(struct seq_file *sf, void *v)
3181 {
3182 	struct blkcg *blkcg = css_to_blkcg(seq_css(sf));
3183 
3184 	blkcg_print_blkgs(sf, blkcg, ioc_qos_prfill,
3185 			  &blkcg_policy_iocost, seq_cft(sf)->private, false);
3186 	return 0;
3187 }
3188 
3189 static const match_table_t qos_ctrl_tokens = {
3190 	{ QOS_ENABLE,		"enable=%u"	},
3191 	{ QOS_CTRL,		"ctrl=%s"	},
3192 	{ NR_QOS_CTRL_PARAMS,	NULL		},
3193 };
3194 
3195 static const match_table_t qos_tokens = {
3196 	{ QOS_RPPM,		"rpct=%s"	},
3197 	{ QOS_RLAT,		"rlat=%u"	},
3198 	{ QOS_WPPM,		"wpct=%s"	},
3199 	{ QOS_WLAT,		"wlat=%u"	},
3200 	{ QOS_MIN,		"min=%s"	},
3201 	{ QOS_MAX,		"max=%s"	},
3202 	{ NR_QOS_PARAMS,	NULL		},
3203 };
3204 
3205 static ssize_t ioc_qos_write(struct kernfs_open_file *of, char *input,
3206 			     size_t nbytes, loff_t off)
3207 {
3208 	struct blkg_conf_ctx ctx;
3209 	struct gendisk *disk;
3210 	struct ioc *ioc;
3211 	u32 qos[NR_QOS_PARAMS];
3212 	bool enable, user;
3213 	char *body, *p;
3214 	int ret;
3215 
3216 	blkg_conf_init(&ctx, input);
3217 
3218 	ret = blkg_conf_open_bdev(&ctx);
3219 	if (ret)
3220 		goto err;
3221 
3222 	body = ctx.body;
3223 	disk = ctx.bdev->bd_disk;
3224 	if (!queue_is_mq(disk->queue)) {
3225 		ret = -EOPNOTSUPP;
3226 		goto err;
3227 	}
3228 
3229 	ioc = q_to_ioc(disk->queue);
3230 	if (!ioc) {
3231 		ret = blk_iocost_init(disk);
3232 		if (ret)
3233 			goto err;
3234 		ioc = q_to_ioc(disk->queue);
3235 	}
3236 
3237 	blk_mq_freeze_queue(disk->queue);
3238 	blk_mq_quiesce_queue(disk->queue);
3239 
3240 	spin_lock_irq(&ioc->lock);
3241 	memcpy(qos, ioc->params.qos, sizeof(qos));
3242 	enable = ioc->enabled;
3243 	user = ioc->user_qos_params;
3244 
3245 	while ((p = strsep(&body, " \t\n"))) {
3246 		substring_t args[MAX_OPT_ARGS];
3247 		char buf[32];
3248 		int tok;
3249 		s64 v;
3250 
3251 		if (!*p)
3252 			continue;
3253 
3254 		switch (match_token(p, qos_ctrl_tokens, args)) {
3255 		case QOS_ENABLE:
3256 			if (match_u64(&args[0], &v))
3257 				goto einval;
3258 			enable = v;
3259 			continue;
3260 		case QOS_CTRL:
3261 			match_strlcpy(buf, &args[0], sizeof(buf));
3262 			if (!strcmp(buf, "auto"))
3263 				user = false;
3264 			else if (!strcmp(buf, "user"))
3265 				user = true;
3266 			else
3267 				goto einval;
3268 			continue;
3269 		}
3270 
3271 		tok = match_token(p, qos_tokens, args);
3272 		switch (tok) {
3273 		case QOS_RPPM:
3274 		case QOS_WPPM:
3275 			if (match_strlcpy(buf, &args[0], sizeof(buf)) >=
3276 			    sizeof(buf))
3277 				goto einval;
3278 			if (cgroup_parse_float(buf, 2, &v))
3279 				goto einval;
3280 			if (v < 0 || v > 10000)
3281 				goto einval;
3282 			qos[tok] = v * 100;
3283 			break;
3284 		case QOS_RLAT:
3285 		case QOS_WLAT:
3286 			if (match_u64(&args[0], &v))
3287 				goto einval;
3288 			qos[tok] = v;
3289 			break;
3290 		case QOS_MIN:
3291 		case QOS_MAX:
3292 			if (match_strlcpy(buf, &args[0], sizeof(buf)) >=
3293 			    sizeof(buf))
3294 				goto einval;
3295 			if (cgroup_parse_float(buf, 2, &v))
3296 				goto einval;
3297 			if (v < 0)
3298 				goto einval;
3299 			qos[tok] = clamp_t(s64, v * 100,
3300 					   VRATE_MIN_PPM, VRATE_MAX_PPM);
3301 			break;
3302 		default:
3303 			goto einval;
3304 		}
3305 		user = true;
3306 	}
3307 
3308 	if (qos[QOS_MIN] > qos[QOS_MAX])
3309 		goto einval;
3310 
3311 	if (enable && !ioc->enabled) {
3312 		blk_stat_enable_accounting(disk->queue);
3313 		blk_queue_flag_set(QUEUE_FLAG_RQ_ALLOC_TIME, disk->queue);
3314 		ioc->enabled = true;
3315 	} else if (!enable && ioc->enabled) {
3316 		blk_stat_disable_accounting(disk->queue);
3317 		blk_queue_flag_clear(QUEUE_FLAG_RQ_ALLOC_TIME, disk->queue);
3318 		ioc->enabled = false;
3319 	}
3320 
3321 	if (user) {
3322 		memcpy(ioc->params.qos, qos, sizeof(qos));
3323 		ioc->user_qos_params = true;
3324 	} else {
3325 		ioc->user_qos_params = false;
3326 	}
3327 
3328 	ioc_refresh_params(ioc, true);
3329 	spin_unlock_irq(&ioc->lock);
3330 
3331 	if (enable)
3332 		wbt_disable_default(disk);
3333 	else
3334 		wbt_enable_default(disk);
3335 
3336 	blk_mq_unquiesce_queue(disk->queue);
3337 	blk_mq_unfreeze_queue(disk->queue);
3338 
3339 	blkg_conf_exit(&ctx);
3340 	return nbytes;
3341 einval:
3342 	spin_unlock_irq(&ioc->lock);
3343 
3344 	blk_mq_unquiesce_queue(disk->queue);
3345 	blk_mq_unfreeze_queue(disk->queue);
3346 
3347 	ret = -EINVAL;
3348 err:
3349 	blkg_conf_exit(&ctx);
3350 	return ret;
3351 }
3352 
3353 static u64 ioc_cost_model_prfill(struct seq_file *sf,
3354 				 struct blkg_policy_data *pd, int off)
3355 {
3356 	const char *dname = blkg_dev_name(pd->blkg);
3357 	struct ioc *ioc = pd_to_iocg(pd)->ioc;
3358 	u64 *u = ioc->params.i_lcoefs;
3359 
3360 	if (!dname)
3361 		return 0;
3362 
3363 	spin_lock_irq(&ioc->lock);
3364 	seq_printf(sf, "%s ctrl=%s model=linear "
3365 		   "rbps=%llu rseqiops=%llu rrandiops=%llu "
3366 		   "wbps=%llu wseqiops=%llu wrandiops=%llu\n",
3367 		   dname, ioc->user_cost_model ? "user" : "auto",
3368 		   u[I_LCOEF_RBPS], u[I_LCOEF_RSEQIOPS], u[I_LCOEF_RRANDIOPS],
3369 		   u[I_LCOEF_WBPS], u[I_LCOEF_WSEQIOPS], u[I_LCOEF_WRANDIOPS]);
3370 	spin_unlock_irq(&ioc->lock);
3371 	return 0;
3372 }
3373 
3374 static int ioc_cost_model_show(struct seq_file *sf, void *v)
3375 {
3376 	struct blkcg *blkcg = css_to_blkcg(seq_css(sf));
3377 
3378 	blkcg_print_blkgs(sf, blkcg, ioc_cost_model_prfill,
3379 			  &blkcg_policy_iocost, seq_cft(sf)->private, false);
3380 	return 0;
3381 }
3382 
3383 static const match_table_t cost_ctrl_tokens = {
3384 	{ COST_CTRL,		"ctrl=%s"	},
3385 	{ COST_MODEL,		"model=%s"	},
3386 	{ NR_COST_CTRL_PARAMS,	NULL		},
3387 };
3388 
3389 static const match_table_t i_lcoef_tokens = {
3390 	{ I_LCOEF_RBPS,		"rbps=%u"	},
3391 	{ I_LCOEF_RSEQIOPS,	"rseqiops=%u"	},
3392 	{ I_LCOEF_RRANDIOPS,	"rrandiops=%u"	},
3393 	{ I_LCOEF_WBPS,		"wbps=%u"	},
3394 	{ I_LCOEF_WSEQIOPS,	"wseqiops=%u"	},
3395 	{ I_LCOEF_WRANDIOPS,	"wrandiops=%u"	},
3396 	{ NR_I_LCOEFS,		NULL		},
3397 };
3398 
3399 static ssize_t ioc_cost_model_write(struct kernfs_open_file *of, char *input,
3400 				    size_t nbytes, loff_t off)
3401 {
3402 	struct blkg_conf_ctx ctx;
3403 	struct request_queue *q;
3404 	struct ioc *ioc;
3405 	u64 u[NR_I_LCOEFS];
3406 	bool user;
3407 	char *body, *p;
3408 	int ret;
3409 
3410 	blkg_conf_init(&ctx, input);
3411 
3412 	ret = blkg_conf_open_bdev(&ctx);
3413 	if (ret)
3414 		goto err;
3415 
3416 	body = ctx.body;
3417 	q = bdev_get_queue(ctx.bdev);
3418 	if (!queue_is_mq(q)) {
3419 		ret = -EOPNOTSUPP;
3420 		goto err;
3421 	}
3422 
3423 	ioc = q_to_ioc(q);
3424 	if (!ioc) {
3425 		ret = blk_iocost_init(ctx.bdev->bd_disk);
3426 		if (ret)
3427 			goto err;
3428 		ioc = q_to_ioc(q);
3429 	}
3430 
3431 	blk_mq_freeze_queue(q);
3432 	blk_mq_quiesce_queue(q);
3433 
3434 	spin_lock_irq(&ioc->lock);
3435 	memcpy(u, ioc->params.i_lcoefs, sizeof(u));
3436 	user = ioc->user_cost_model;
3437 
3438 	while ((p = strsep(&body, " \t\n"))) {
3439 		substring_t args[MAX_OPT_ARGS];
3440 		char buf[32];
3441 		int tok;
3442 		u64 v;
3443 
3444 		if (!*p)
3445 			continue;
3446 
3447 		switch (match_token(p, cost_ctrl_tokens, args)) {
3448 		case COST_CTRL:
3449 			match_strlcpy(buf, &args[0], sizeof(buf));
3450 			if (!strcmp(buf, "auto"))
3451 				user = false;
3452 			else if (!strcmp(buf, "user"))
3453 				user = true;
3454 			else
3455 				goto einval;
3456 			continue;
3457 		case COST_MODEL:
3458 			match_strlcpy(buf, &args[0], sizeof(buf));
3459 			if (strcmp(buf, "linear"))
3460 				goto einval;
3461 			continue;
3462 		}
3463 
3464 		tok = match_token(p, i_lcoef_tokens, args);
3465 		if (tok == NR_I_LCOEFS)
3466 			goto einval;
3467 		if (match_u64(&args[0], &v))
3468 			goto einval;
3469 		u[tok] = v;
3470 		user = true;
3471 	}
3472 
3473 	if (user) {
3474 		memcpy(ioc->params.i_lcoefs, u, sizeof(u));
3475 		ioc->user_cost_model = true;
3476 	} else {
3477 		ioc->user_cost_model = false;
3478 	}
3479 	ioc_refresh_params(ioc, true);
3480 	spin_unlock_irq(&ioc->lock);
3481 
3482 	blk_mq_unquiesce_queue(q);
3483 	blk_mq_unfreeze_queue(q);
3484 
3485 	blkg_conf_exit(&ctx);
3486 	return nbytes;
3487 
3488 einval:
3489 	spin_unlock_irq(&ioc->lock);
3490 
3491 	blk_mq_unquiesce_queue(q);
3492 	blk_mq_unfreeze_queue(q);
3493 
3494 	ret = -EINVAL;
3495 err:
3496 	blkg_conf_exit(&ctx);
3497 	return ret;
3498 }
3499 
3500 static struct cftype ioc_files[] = {
3501 	{
3502 		.name = "weight",
3503 		.flags = CFTYPE_NOT_ON_ROOT,
3504 		.seq_show = ioc_weight_show,
3505 		.write = ioc_weight_write,
3506 	},
3507 	{
3508 		.name = "cost.qos",
3509 		.flags = CFTYPE_ONLY_ON_ROOT,
3510 		.seq_show = ioc_qos_show,
3511 		.write = ioc_qos_write,
3512 	},
3513 	{
3514 		.name = "cost.model",
3515 		.flags = CFTYPE_ONLY_ON_ROOT,
3516 		.seq_show = ioc_cost_model_show,
3517 		.write = ioc_cost_model_write,
3518 	},
3519 	{}
3520 };
3521 
3522 static struct blkcg_policy blkcg_policy_iocost = {
3523 	.dfl_cftypes	= ioc_files,
3524 	.cpd_alloc_fn	= ioc_cpd_alloc,
3525 	.cpd_free_fn	= ioc_cpd_free,
3526 	.pd_alloc_fn	= ioc_pd_alloc,
3527 	.pd_init_fn	= ioc_pd_init,
3528 	.pd_free_fn	= ioc_pd_free,
3529 	.pd_stat_fn	= ioc_pd_stat,
3530 };
3531 
3532 static int __init ioc_init(void)
3533 {
3534 	return blkcg_policy_register(&blkcg_policy_iocost);
3535 }
3536 
3537 static void __exit ioc_exit(void)
3538 {
3539 	blkcg_policy_unregister(&blkcg_policy_iocost);
3540 }
3541 
3542 module_init(ioc_init);
3543 module_exit(ioc_exit);
3544