xref: /linux/block/blk-iocost.c (revision dbb60c8a26daf388f183f599e1e96de5bb9f96e1)
1 /* SPDX-License-Identifier: GPL-2.0
2  *
3  * IO cost model based controller.
4  *
5  * Copyright (C) 2019 Tejun Heo <tj@kernel.org>
6  * Copyright (C) 2019 Andy Newell <newella@fb.com>
7  * Copyright (C) 2019 Facebook
8  *
9  * One challenge of controlling IO resources is the lack of trivially
10  * observable cost metric.  This is distinguished from CPU and memory where
11  * wallclock time and the number of bytes can serve as accurate enough
12  * approximations.
13  *
14  * Bandwidth and iops are the most commonly used metrics for IO devices but
15  * depending on the type and specifics of the device, different IO patterns
16  * easily lead to multiple orders of magnitude variations rendering them
17  * useless for the purpose of IO capacity distribution.  While on-device
18  * time, with a lot of clutches, could serve as a useful approximation for
19  * non-queued rotational devices, this is no longer viable with modern
20  * devices, even the rotational ones.
21  *
22  * While there is no cost metric we can trivially observe, it isn't a
23  * complete mystery.  For example, on a rotational device, seek cost
24  * dominates while a contiguous transfer contributes a smaller amount
25  * proportional to the size.  If we can characterize at least the relative
26  * costs of these different types of IOs, it should be possible to
27  * implement a reasonable work-conserving proportional IO resource
28  * distribution.
29  *
30  * 1. IO Cost Model
31  *
32  * IO cost model estimates the cost of an IO given its basic parameters and
33  * history (e.g. the end sector of the last IO).  The cost is measured in
34  * device time.  If a given IO is estimated to cost 10ms, the device should
35  * be able to process ~100 of those IOs in a second.
36  *
37  * Currently, there's only one builtin cost model - linear.  Each IO is
38  * classified as sequential or random and given a base cost accordingly.
39  * On top of that, a size cost proportional to the length of the IO is
40  * added.  While simple, this model captures the operational
41  * characteristics of a wide varienty of devices well enough.  Default
42  * parameters for several different classes of devices are provided and the
43  * parameters can be configured from userspace via
44  * /sys/fs/cgroup/io.cost.model.
45  *
46  * If needed, tools/cgroup/iocost_coef_gen.py can be used to generate
47  * device-specific coefficients.
48  *
49  * 2. Control Strategy
50  *
51  * The device virtual time (vtime) is used as the primary control metric.
52  * The control strategy is composed of the following three parts.
53  *
54  * 2-1. Vtime Distribution
55  *
56  * When a cgroup becomes active in terms of IOs, its hierarchical share is
57  * calculated.  Please consider the following hierarchy where the numbers
58  * inside parentheses denote the configured weights.
59  *
60  *           root
61  *         /       \
62  *      A (w:100)  B (w:300)
63  *      /       \
64  *  A0 (w:100)  A1 (w:100)
65  *
66  * If B is idle and only A0 and A1 are actively issuing IOs, as the two are
67  * of equal weight, each gets 50% share.  If then B starts issuing IOs, B
68  * gets 300/(100+300) or 75% share, and A0 and A1 equally splits the rest,
69  * 12.5% each.  The distribution mechanism only cares about these flattened
70  * shares.  They're called hweights (hierarchical weights) and always add
71  * upto 1 (WEIGHT_ONE).
72  *
73  * A given cgroup's vtime runs slower in inverse proportion to its hweight.
74  * For example, with 12.5% weight, A0's time runs 8 times slower (100/12.5)
75  * against the device vtime - an IO which takes 10ms on the underlying
76  * device is considered to take 80ms on A0.
77  *
78  * This constitutes the basis of IO capacity distribution.  Each cgroup's
79  * vtime is running at a rate determined by its hweight.  A cgroup tracks
80  * the vtime consumed by past IOs and can issue a new IO if doing so
81  * wouldn't outrun the current device vtime.  Otherwise, the IO is
82  * suspended until the vtime has progressed enough to cover it.
83  *
84  * 2-2. Vrate Adjustment
85  *
86  * It's unrealistic to expect the cost model to be perfect.  There are too
87  * many devices and even on the same device the overall performance
88  * fluctuates depending on numerous factors such as IO mixture and device
89  * internal garbage collection.  The controller needs to adapt dynamically.
90  *
91  * This is achieved by adjusting the overall IO rate according to how busy
92  * the device is.  If the device becomes overloaded, we're sending down too
93  * many IOs and should generally slow down.  If there are waiting issuers
94  * but the device isn't saturated, we're issuing too few and should
95  * generally speed up.
96  *
97  * To slow down, we lower the vrate - the rate at which the device vtime
98  * passes compared to the wall clock.  For example, if the vtime is running
99  * at the vrate of 75%, all cgroups added up would only be able to issue
100  * 750ms worth of IOs per second, and vice-versa for speeding up.
101  *
102  * Device business is determined using two criteria - rq wait and
103  * completion latencies.
104  *
105  * When a device gets saturated, the on-device and then the request queues
106  * fill up and a bio which is ready to be issued has to wait for a request
107  * to become available.  When this delay becomes noticeable, it's a clear
108  * indication that the device is saturated and we lower the vrate.  This
109  * saturation signal is fairly conservative as it only triggers when both
110  * hardware and software queues are filled up, and is used as the default
111  * busy signal.
112  *
113  * As devices can have deep queues and be unfair in how the queued commands
114  * are executed, soley depending on rq wait may not result in satisfactory
115  * control quality.  For a better control quality, completion latency QoS
116  * parameters can be configured so that the device is considered saturated
117  * if N'th percentile completion latency rises above the set point.
118  *
119  * The completion latency requirements are a function of both the
120  * underlying device characteristics and the desired IO latency quality of
121  * service.  There is an inherent trade-off - the tighter the latency QoS,
122  * the higher the bandwidth lossage.  Latency QoS is disabled by default
123  * and can be set through /sys/fs/cgroup/io.cost.qos.
124  *
125  * 2-3. Work Conservation
126  *
127  * Imagine two cgroups A and B with equal weights.  A is issuing a small IO
128  * periodically while B is sending out enough parallel IOs to saturate the
129  * device on its own.  Let's say A's usage amounts to 100ms worth of IO
130  * cost per second, i.e., 10% of the device capacity.  The naive
131  * distribution of half and half would lead to 60% utilization of the
132  * device, a significant reduction in the total amount of work done
133  * compared to free-for-all competition.  This is too high a cost to pay
134  * for IO control.
135  *
136  * To conserve the total amount of work done, we keep track of how much
137  * each active cgroup is actually using and yield part of its weight if
138  * there are other cgroups which can make use of it.  In the above case,
139  * A's weight will be lowered so that it hovers above the actual usage and
140  * B would be able to use the rest.
141  *
142  * As we don't want to penalize a cgroup for donating its weight, the
143  * surplus weight adjustment factors in a margin and has an immediate
144  * snapback mechanism in case the cgroup needs more IO vtime for itself.
145  *
146  * Note that adjusting down surplus weights has the same effects as
147  * accelerating vtime for other cgroups and work conservation can also be
148  * implemented by adjusting vrate dynamically.  However, squaring who can
149  * donate and should take back how much requires hweight propagations
150  * anyway making it easier to implement and understand as a separate
151  * mechanism.
152  *
153  * 3. Monitoring
154  *
155  * Instead of debugfs or other clumsy monitoring mechanisms, this
156  * controller uses a drgn based monitoring script -
157  * tools/cgroup/iocost_monitor.py.  For details on drgn, please see
158  * https://github.com/osandov/drgn.  The output looks like the following.
159  *
160  *  sdb RUN   per=300ms cur_per=234.218:v203.695 busy= +1 vrate= 62.12%
161  *                 active      weight      hweight% inflt% dbt  delay usages%
162  *  test/a              *    50/   50  33.33/ 33.33  27.65   2  0*041 033:033:033
163  *  test/b              *   100/  100  66.67/ 66.67  17.56   0  0*000 066:079:077
164  *
165  * - per	: Timer period
166  * - cur_per	: Internal wall and device vtime clock
167  * - vrate	: Device virtual time rate against wall clock
168  * - weight	: Surplus-adjusted and configured weights
169  * - hweight	: Surplus-adjusted and configured hierarchical weights
170  * - inflt	: The percentage of in-flight IO cost at the end of last period
171  * - del_ms	: Deferred issuer delay induction level and duration
172  * - usages	: Usage history
173  */
174 
175 #include <linux/kernel.h>
176 #include <linux/module.h>
177 #include <linux/timer.h>
178 #include <linux/time64.h>
179 #include <linux/parser.h>
180 #include <linux/sched/signal.h>
181 #include <asm/local.h>
182 #include <asm/local64.h>
183 #include "blk-rq-qos.h"
184 #include "blk-stat.h"
185 #include "blk-wbt.h"
186 #include "blk-cgroup.h"
187 
188 #ifdef CONFIG_TRACEPOINTS
189 
190 /* copied from TRACE_CGROUP_PATH, see cgroup-internal.h */
191 #define TRACE_IOCG_PATH_LEN 1024
192 static DEFINE_SPINLOCK(trace_iocg_path_lock);
193 static char trace_iocg_path[TRACE_IOCG_PATH_LEN];
194 
195 #define TRACE_IOCG_PATH(type, iocg, ...)					\
196 	do {									\
197 		unsigned long flags;						\
198 		if (trace_iocost_##type##_enabled()) {				\
199 			spin_lock_irqsave(&trace_iocg_path_lock, flags);	\
200 			cgroup_path(iocg_to_blkg(iocg)->blkcg->css.cgroup,	\
201 				    trace_iocg_path, TRACE_IOCG_PATH_LEN);	\
202 			trace_iocost_##type(iocg, trace_iocg_path,		\
203 					      ##__VA_ARGS__);			\
204 			spin_unlock_irqrestore(&trace_iocg_path_lock, flags);	\
205 		}								\
206 	} while (0)
207 
208 #else	/* CONFIG_TRACE_POINTS */
209 #define TRACE_IOCG_PATH(type, iocg, ...)	do { } while (0)
210 #endif	/* CONFIG_TRACE_POINTS */
211 
212 enum {
213 	MILLION			= 1000000,
214 
215 	/* timer period is calculated from latency requirements, bound it */
216 	MIN_PERIOD		= USEC_PER_MSEC,
217 	MAX_PERIOD		= USEC_PER_SEC,
218 
219 	/*
220 	 * iocg->vtime is targeted at 50% behind the device vtime, which
221 	 * serves as its IO credit buffer.  Surplus weight adjustment is
222 	 * immediately canceled if the vtime margin runs below 10%.
223 	 */
224 	MARGIN_MIN_PCT		= 10,
225 	MARGIN_LOW_PCT		= 20,
226 	MARGIN_TARGET_PCT	= 50,
227 
228 	INUSE_ADJ_STEP_PCT	= 25,
229 
230 	/* Have some play in timer operations */
231 	TIMER_SLACK_PCT		= 1,
232 
233 	/* 1/64k is granular enough and can easily be handled w/ u32 */
234 	WEIGHT_ONE		= 1 << 16,
235 
236 	/*
237 	 * As vtime is used to calculate the cost of each IO, it needs to
238 	 * be fairly high precision.  For example, it should be able to
239 	 * represent the cost of a single page worth of discard with
240 	 * suffificient accuracy.  At the same time, it should be able to
241 	 * represent reasonably long enough durations to be useful and
242 	 * convenient during operation.
243 	 *
244 	 * 1s worth of vtime is 2^37.  This gives us both sub-nanosecond
245 	 * granularity and days of wrap-around time even at extreme vrates.
246 	 */
247 	VTIME_PER_SEC_SHIFT	= 37,
248 	VTIME_PER_SEC		= 1LLU << VTIME_PER_SEC_SHIFT,
249 	VTIME_PER_USEC		= VTIME_PER_SEC / USEC_PER_SEC,
250 	VTIME_PER_NSEC		= VTIME_PER_SEC / NSEC_PER_SEC,
251 
252 	/* bound vrate adjustments within two orders of magnitude */
253 	VRATE_MIN_PPM		= 10000,	/* 1% */
254 	VRATE_MAX_PPM		= 100000000,	/* 10000% */
255 
256 	VRATE_MIN		= VTIME_PER_USEC * VRATE_MIN_PPM / MILLION,
257 	VRATE_CLAMP_ADJ_PCT	= 4,
258 
259 	/* if IOs end up waiting for requests, issue less */
260 	RQ_WAIT_BUSY_PCT	= 5,
261 
262 	/* unbusy hysterisis */
263 	UNBUSY_THR_PCT		= 75,
264 
265 	/*
266 	 * The effect of delay is indirect and non-linear and a huge amount of
267 	 * future debt can accumulate abruptly while unthrottled. Linearly scale
268 	 * up delay as debt is going up and then let it decay exponentially.
269 	 * This gives us quick ramp ups while delay is accumulating and long
270 	 * tails which can help reducing the frequency of debt explosions on
271 	 * unthrottle. The parameters are experimentally determined.
272 	 *
273 	 * The delay mechanism provides adequate protection and behavior in many
274 	 * cases. However, this is far from ideal and falls shorts on both
275 	 * fronts. The debtors are often throttled too harshly costing a
276 	 * significant level of fairness and possibly total work while the
277 	 * protection against their impacts on the system can be choppy and
278 	 * unreliable.
279 	 *
280 	 * The shortcoming primarily stems from the fact that, unlike for page
281 	 * cache, the kernel doesn't have well-defined back-pressure propagation
282 	 * mechanism and policies for anonymous memory. Fully addressing this
283 	 * issue will likely require substantial improvements in the area.
284 	 */
285 	MIN_DELAY_THR_PCT	= 500,
286 	MAX_DELAY_THR_PCT	= 25000,
287 	MIN_DELAY		= 250,
288 	MAX_DELAY		= 250 * USEC_PER_MSEC,
289 
290 	/* halve debts if avg usage over 100ms is under 50% */
291 	DFGV_USAGE_PCT		= 50,
292 	DFGV_PERIOD		= 100 * USEC_PER_MSEC,
293 
294 	/* don't let cmds which take a very long time pin lagging for too long */
295 	MAX_LAGGING_PERIODS	= 10,
296 
297 	/* switch iff the conditions are met for longer than this */
298 	AUTOP_CYCLE_NSEC	= 10LLU * NSEC_PER_SEC,
299 
300 	/*
301 	 * Count IO size in 4k pages.  The 12bit shift helps keeping
302 	 * size-proportional components of cost calculation in closer
303 	 * numbers of digits to per-IO cost components.
304 	 */
305 	IOC_PAGE_SHIFT		= 12,
306 	IOC_PAGE_SIZE		= 1 << IOC_PAGE_SHIFT,
307 	IOC_SECT_TO_PAGE_SHIFT	= IOC_PAGE_SHIFT - SECTOR_SHIFT,
308 
309 	/* if apart further than 16M, consider randio for linear model */
310 	LCOEF_RANDIO_PAGES	= 4096,
311 };
312 
313 enum ioc_running {
314 	IOC_IDLE,
315 	IOC_RUNNING,
316 	IOC_STOP,
317 };
318 
319 /* io.cost.qos controls including per-dev enable of the whole controller */
320 enum {
321 	QOS_ENABLE,
322 	QOS_CTRL,
323 	NR_QOS_CTRL_PARAMS,
324 };
325 
326 /* io.cost.qos params */
327 enum {
328 	QOS_RPPM,
329 	QOS_RLAT,
330 	QOS_WPPM,
331 	QOS_WLAT,
332 	QOS_MIN,
333 	QOS_MAX,
334 	NR_QOS_PARAMS,
335 };
336 
337 /* io.cost.model controls */
338 enum {
339 	COST_CTRL,
340 	COST_MODEL,
341 	NR_COST_CTRL_PARAMS,
342 };
343 
344 /* builtin linear cost model coefficients */
345 enum {
346 	I_LCOEF_RBPS,
347 	I_LCOEF_RSEQIOPS,
348 	I_LCOEF_RRANDIOPS,
349 	I_LCOEF_WBPS,
350 	I_LCOEF_WSEQIOPS,
351 	I_LCOEF_WRANDIOPS,
352 	NR_I_LCOEFS,
353 };
354 
355 enum {
356 	LCOEF_RPAGE,
357 	LCOEF_RSEQIO,
358 	LCOEF_RRANDIO,
359 	LCOEF_WPAGE,
360 	LCOEF_WSEQIO,
361 	LCOEF_WRANDIO,
362 	NR_LCOEFS,
363 };
364 
365 enum {
366 	AUTOP_INVALID,
367 	AUTOP_HDD,
368 	AUTOP_SSD_QD1,
369 	AUTOP_SSD_DFL,
370 	AUTOP_SSD_FAST,
371 };
372 
373 struct ioc_params {
374 	u32				qos[NR_QOS_PARAMS];
375 	u64				i_lcoefs[NR_I_LCOEFS];
376 	u64				lcoefs[NR_LCOEFS];
377 	u32				too_fast_vrate_pct;
378 	u32				too_slow_vrate_pct;
379 };
380 
381 struct ioc_margins {
382 	s64				min;
383 	s64				low;
384 	s64				target;
385 };
386 
387 struct ioc_missed {
388 	local_t				nr_met;
389 	local_t				nr_missed;
390 	u32				last_met;
391 	u32				last_missed;
392 };
393 
394 struct ioc_pcpu_stat {
395 	struct ioc_missed		missed[2];
396 
397 	local64_t			rq_wait_ns;
398 	u64				last_rq_wait_ns;
399 };
400 
401 /* per device */
402 struct ioc {
403 	struct rq_qos			rqos;
404 
405 	bool				enabled;
406 
407 	struct ioc_params		params;
408 	struct ioc_margins		margins;
409 	u32				period_us;
410 	u32				timer_slack_ns;
411 	u64				vrate_min;
412 	u64				vrate_max;
413 
414 	spinlock_t			lock;
415 	struct timer_list		timer;
416 	struct list_head		active_iocgs;	/* active cgroups */
417 	struct ioc_pcpu_stat __percpu	*pcpu_stat;
418 
419 	enum ioc_running		running;
420 	atomic64_t			vtime_rate;
421 	u64				vtime_base_rate;
422 	s64				vtime_err;
423 
424 	seqcount_spinlock_t		period_seqcount;
425 	u64				period_at;	/* wallclock starttime */
426 	u64				period_at_vtime; /* vtime starttime */
427 
428 	atomic64_t			cur_period;	/* inc'd each period */
429 	int				busy_level;	/* saturation history */
430 
431 	bool				weights_updated;
432 	atomic_t			hweight_gen;	/* for lazy hweights */
433 
434 	/* debt forgivness */
435 	u64				dfgv_period_at;
436 	u64				dfgv_period_rem;
437 	u64				dfgv_usage_us_sum;
438 
439 	u64				autop_too_fast_at;
440 	u64				autop_too_slow_at;
441 	int				autop_idx;
442 	bool				user_qos_params:1;
443 	bool				user_cost_model:1;
444 };
445 
446 struct iocg_pcpu_stat {
447 	local64_t			abs_vusage;
448 };
449 
450 struct iocg_stat {
451 	u64				usage_us;
452 	u64				wait_us;
453 	u64				indebt_us;
454 	u64				indelay_us;
455 };
456 
457 /* per device-cgroup pair */
458 struct ioc_gq {
459 	struct blkg_policy_data		pd;
460 	struct ioc			*ioc;
461 
462 	/*
463 	 * A iocg can get its weight from two sources - an explicit
464 	 * per-device-cgroup configuration or the default weight of the
465 	 * cgroup.  `cfg_weight` is the explicit per-device-cgroup
466 	 * configuration.  `weight` is the effective considering both
467 	 * sources.
468 	 *
469 	 * When an idle cgroup becomes active its `active` goes from 0 to
470 	 * `weight`.  `inuse` is the surplus adjusted active weight.
471 	 * `active` and `inuse` are used to calculate `hweight_active` and
472 	 * `hweight_inuse`.
473 	 *
474 	 * `last_inuse` remembers `inuse` while an iocg is idle to persist
475 	 * surplus adjustments.
476 	 *
477 	 * `inuse` may be adjusted dynamically during period. `saved_*` are used
478 	 * to determine and track adjustments.
479 	 */
480 	u32				cfg_weight;
481 	u32				weight;
482 	u32				active;
483 	u32				inuse;
484 
485 	u32				last_inuse;
486 	s64				saved_margin;
487 
488 	sector_t			cursor;		/* to detect randio */
489 
490 	/*
491 	 * `vtime` is this iocg's vtime cursor which progresses as IOs are
492 	 * issued.  If lagging behind device vtime, the delta represents
493 	 * the currently available IO budget.  If running ahead, the
494 	 * overage.
495 	 *
496 	 * `vtime_done` is the same but progressed on completion rather
497 	 * than issue.  The delta behind `vtime` represents the cost of
498 	 * currently in-flight IOs.
499 	 */
500 	atomic64_t			vtime;
501 	atomic64_t			done_vtime;
502 	u64				abs_vdebt;
503 
504 	/* current delay in effect and when it started */
505 	u64				delay;
506 	u64				delay_at;
507 
508 	/*
509 	 * The period this iocg was last active in.  Used for deactivation
510 	 * and invalidating `vtime`.
511 	 */
512 	atomic64_t			active_period;
513 	struct list_head		active_list;
514 
515 	/* see __propagate_weights() and current_hweight() for details */
516 	u64				child_active_sum;
517 	u64				child_inuse_sum;
518 	u64				child_adjusted_sum;
519 	int				hweight_gen;
520 	u32				hweight_active;
521 	u32				hweight_inuse;
522 	u32				hweight_donating;
523 	u32				hweight_after_donation;
524 
525 	struct list_head		walk_list;
526 	struct list_head		surplus_list;
527 
528 	struct wait_queue_head		waitq;
529 	struct hrtimer			waitq_timer;
530 
531 	/* timestamp at the latest activation */
532 	u64				activated_at;
533 
534 	/* statistics */
535 	struct iocg_pcpu_stat __percpu	*pcpu_stat;
536 	struct iocg_stat		stat;
537 	struct iocg_stat		last_stat;
538 	u64				last_stat_abs_vusage;
539 	u64				usage_delta_us;
540 	u64				wait_since;
541 	u64				indebt_since;
542 	u64				indelay_since;
543 
544 	/* this iocg's depth in the hierarchy and ancestors including self */
545 	int				level;
546 	struct ioc_gq			*ancestors[];
547 };
548 
549 /* per cgroup */
550 struct ioc_cgrp {
551 	struct blkcg_policy_data	cpd;
552 	unsigned int			dfl_weight;
553 };
554 
555 struct ioc_now {
556 	u64				now_ns;
557 	u64				now;
558 	u64				vnow;
559 	u64				vrate;
560 };
561 
562 struct iocg_wait {
563 	struct wait_queue_entry		wait;
564 	struct bio			*bio;
565 	u64				abs_cost;
566 	bool				committed;
567 };
568 
569 struct iocg_wake_ctx {
570 	struct ioc_gq			*iocg;
571 	u32				hw_inuse;
572 	s64				vbudget;
573 };
574 
575 static const struct ioc_params autop[] = {
576 	[AUTOP_HDD] = {
577 		.qos				= {
578 			[QOS_RLAT]		=        250000, /* 250ms */
579 			[QOS_WLAT]		=        250000,
580 			[QOS_MIN]		= VRATE_MIN_PPM,
581 			[QOS_MAX]		= VRATE_MAX_PPM,
582 		},
583 		.i_lcoefs			= {
584 			[I_LCOEF_RBPS]		=     174019176,
585 			[I_LCOEF_RSEQIOPS]	=         41708,
586 			[I_LCOEF_RRANDIOPS]	=           370,
587 			[I_LCOEF_WBPS]		=     178075866,
588 			[I_LCOEF_WSEQIOPS]	=         42705,
589 			[I_LCOEF_WRANDIOPS]	=           378,
590 		},
591 	},
592 	[AUTOP_SSD_QD1] = {
593 		.qos				= {
594 			[QOS_RLAT]		=         25000, /* 25ms */
595 			[QOS_WLAT]		=         25000,
596 			[QOS_MIN]		= VRATE_MIN_PPM,
597 			[QOS_MAX]		= VRATE_MAX_PPM,
598 		},
599 		.i_lcoefs			= {
600 			[I_LCOEF_RBPS]		=     245855193,
601 			[I_LCOEF_RSEQIOPS]	=         61575,
602 			[I_LCOEF_RRANDIOPS]	=          6946,
603 			[I_LCOEF_WBPS]		=     141365009,
604 			[I_LCOEF_WSEQIOPS]	=         33716,
605 			[I_LCOEF_WRANDIOPS]	=         26796,
606 		},
607 	},
608 	[AUTOP_SSD_DFL] = {
609 		.qos				= {
610 			[QOS_RLAT]		=         25000, /* 25ms */
611 			[QOS_WLAT]		=         25000,
612 			[QOS_MIN]		= VRATE_MIN_PPM,
613 			[QOS_MAX]		= VRATE_MAX_PPM,
614 		},
615 		.i_lcoefs			= {
616 			[I_LCOEF_RBPS]		=     488636629,
617 			[I_LCOEF_RSEQIOPS]	=          8932,
618 			[I_LCOEF_RRANDIOPS]	=          8518,
619 			[I_LCOEF_WBPS]		=     427891549,
620 			[I_LCOEF_WSEQIOPS]	=         28755,
621 			[I_LCOEF_WRANDIOPS]	=         21940,
622 		},
623 		.too_fast_vrate_pct		=           500,
624 	},
625 	[AUTOP_SSD_FAST] = {
626 		.qos				= {
627 			[QOS_RLAT]		=          5000, /* 5ms */
628 			[QOS_WLAT]		=          5000,
629 			[QOS_MIN]		= VRATE_MIN_PPM,
630 			[QOS_MAX]		= VRATE_MAX_PPM,
631 		},
632 		.i_lcoefs			= {
633 			[I_LCOEF_RBPS]		=    3102524156LLU,
634 			[I_LCOEF_RSEQIOPS]	=        724816,
635 			[I_LCOEF_RRANDIOPS]	=        778122,
636 			[I_LCOEF_WBPS]		=    1742780862LLU,
637 			[I_LCOEF_WSEQIOPS]	=        425702,
638 			[I_LCOEF_WRANDIOPS]	=	 443193,
639 		},
640 		.too_slow_vrate_pct		=            10,
641 	},
642 };
643 
644 /*
645  * vrate adjust percentages indexed by ioc->busy_level.  We adjust up on
646  * vtime credit shortage and down on device saturation.
647  */
648 static u32 vrate_adj_pct[] =
649 	{ 0, 0, 0, 0,
650 	  1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
651 	  2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
652 	  4, 4, 4, 4, 4, 4, 4, 4, 8, 8, 8, 8, 8, 8, 8, 8, 16 };
653 
654 static struct blkcg_policy blkcg_policy_iocost;
655 
656 /* accessors and helpers */
657 static struct ioc *rqos_to_ioc(struct rq_qos *rqos)
658 {
659 	return container_of(rqos, struct ioc, rqos);
660 }
661 
662 static struct ioc *q_to_ioc(struct request_queue *q)
663 {
664 	return rqos_to_ioc(rq_qos_id(q, RQ_QOS_COST));
665 }
666 
667 static const char __maybe_unused *ioc_name(struct ioc *ioc)
668 {
669 	struct gendisk *disk = ioc->rqos.q->disk;
670 
671 	if (!disk)
672 		return "<unknown>";
673 	return disk->disk_name;
674 }
675 
676 static struct ioc_gq *pd_to_iocg(struct blkg_policy_data *pd)
677 {
678 	return pd ? container_of(pd, struct ioc_gq, pd) : NULL;
679 }
680 
681 static struct ioc_gq *blkg_to_iocg(struct blkcg_gq *blkg)
682 {
683 	return pd_to_iocg(blkg_to_pd(blkg, &blkcg_policy_iocost));
684 }
685 
686 static struct blkcg_gq *iocg_to_blkg(struct ioc_gq *iocg)
687 {
688 	return pd_to_blkg(&iocg->pd);
689 }
690 
691 static struct ioc_cgrp *blkcg_to_iocc(struct blkcg *blkcg)
692 {
693 	return container_of(blkcg_to_cpd(blkcg, &blkcg_policy_iocost),
694 			    struct ioc_cgrp, cpd);
695 }
696 
697 /*
698  * Scale @abs_cost to the inverse of @hw_inuse.  The lower the hierarchical
699  * weight, the more expensive each IO.  Must round up.
700  */
701 static u64 abs_cost_to_cost(u64 abs_cost, u32 hw_inuse)
702 {
703 	return DIV64_U64_ROUND_UP(abs_cost * WEIGHT_ONE, hw_inuse);
704 }
705 
706 /*
707  * The inverse of abs_cost_to_cost().  Must round up.
708  */
709 static u64 cost_to_abs_cost(u64 cost, u32 hw_inuse)
710 {
711 	return DIV64_U64_ROUND_UP(cost * hw_inuse, WEIGHT_ONE);
712 }
713 
714 static void iocg_commit_bio(struct ioc_gq *iocg, struct bio *bio,
715 			    u64 abs_cost, u64 cost)
716 {
717 	struct iocg_pcpu_stat *gcs;
718 
719 	bio->bi_iocost_cost = cost;
720 	atomic64_add(cost, &iocg->vtime);
721 
722 	gcs = get_cpu_ptr(iocg->pcpu_stat);
723 	local64_add(abs_cost, &gcs->abs_vusage);
724 	put_cpu_ptr(gcs);
725 }
726 
727 static void iocg_lock(struct ioc_gq *iocg, bool lock_ioc, unsigned long *flags)
728 {
729 	if (lock_ioc) {
730 		spin_lock_irqsave(&iocg->ioc->lock, *flags);
731 		spin_lock(&iocg->waitq.lock);
732 	} else {
733 		spin_lock_irqsave(&iocg->waitq.lock, *flags);
734 	}
735 }
736 
737 static void iocg_unlock(struct ioc_gq *iocg, bool unlock_ioc, unsigned long *flags)
738 {
739 	if (unlock_ioc) {
740 		spin_unlock(&iocg->waitq.lock);
741 		spin_unlock_irqrestore(&iocg->ioc->lock, *flags);
742 	} else {
743 		spin_unlock_irqrestore(&iocg->waitq.lock, *flags);
744 	}
745 }
746 
747 #define CREATE_TRACE_POINTS
748 #include <trace/events/iocost.h>
749 
750 static void ioc_refresh_margins(struct ioc *ioc)
751 {
752 	struct ioc_margins *margins = &ioc->margins;
753 	u32 period_us = ioc->period_us;
754 	u64 vrate = ioc->vtime_base_rate;
755 
756 	margins->min = (period_us * MARGIN_MIN_PCT / 100) * vrate;
757 	margins->low = (period_us * MARGIN_LOW_PCT / 100) * vrate;
758 	margins->target = (period_us * MARGIN_TARGET_PCT / 100) * vrate;
759 }
760 
761 /* latency Qos params changed, update period_us and all the dependent params */
762 static void ioc_refresh_period_us(struct ioc *ioc)
763 {
764 	u32 ppm, lat, multi, period_us;
765 
766 	lockdep_assert_held(&ioc->lock);
767 
768 	/* pick the higher latency target */
769 	if (ioc->params.qos[QOS_RLAT] >= ioc->params.qos[QOS_WLAT]) {
770 		ppm = ioc->params.qos[QOS_RPPM];
771 		lat = ioc->params.qos[QOS_RLAT];
772 	} else {
773 		ppm = ioc->params.qos[QOS_WPPM];
774 		lat = ioc->params.qos[QOS_WLAT];
775 	}
776 
777 	/*
778 	 * We want the period to be long enough to contain a healthy number
779 	 * of IOs while short enough for granular control.  Define it as a
780 	 * multiple of the latency target.  Ideally, the multiplier should
781 	 * be scaled according to the percentile so that it would nominally
782 	 * contain a certain number of requests.  Let's be simpler and
783 	 * scale it linearly so that it's 2x >= pct(90) and 10x at pct(50).
784 	 */
785 	if (ppm)
786 		multi = max_t(u32, (MILLION - ppm) / 50000, 2);
787 	else
788 		multi = 2;
789 	period_us = multi * lat;
790 	period_us = clamp_t(u32, period_us, MIN_PERIOD, MAX_PERIOD);
791 
792 	/* calculate dependent params */
793 	ioc->period_us = period_us;
794 	ioc->timer_slack_ns = div64_u64(
795 		(u64)period_us * NSEC_PER_USEC * TIMER_SLACK_PCT,
796 		100);
797 	ioc_refresh_margins(ioc);
798 }
799 
800 static int ioc_autop_idx(struct ioc *ioc)
801 {
802 	int idx = ioc->autop_idx;
803 	const struct ioc_params *p = &autop[idx];
804 	u32 vrate_pct;
805 	u64 now_ns;
806 
807 	/* rotational? */
808 	if (!blk_queue_nonrot(ioc->rqos.q))
809 		return AUTOP_HDD;
810 
811 	/* handle SATA SSDs w/ broken NCQ */
812 	if (blk_queue_depth(ioc->rqos.q) == 1)
813 		return AUTOP_SSD_QD1;
814 
815 	/* use one of the normal ssd sets */
816 	if (idx < AUTOP_SSD_DFL)
817 		return AUTOP_SSD_DFL;
818 
819 	/* if user is overriding anything, maintain what was there */
820 	if (ioc->user_qos_params || ioc->user_cost_model)
821 		return idx;
822 
823 	/* step up/down based on the vrate */
824 	vrate_pct = div64_u64(ioc->vtime_base_rate * 100, VTIME_PER_USEC);
825 	now_ns = ktime_get_ns();
826 
827 	if (p->too_fast_vrate_pct && p->too_fast_vrate_pct <= vrate_pct) {
828 		if (!ioc->autop_too_fast_at)
829 			ioc->autop_too_fast_at = now_ns;
830 		if (now_ns - ioc->autop_too_fast_at >= AUTOP_CYCLE_NSEC)
831 			return idx + 1;
832 	} else {
833 		ioc->autop_too_fast_at = 0;
834 	}
835 
836 	if (p->too_slow_vrate_pct && p->too_slow_vrate_pct >= vrate_pct) {
837 		if (!ioc->autop_too_slow_at)
838 			ioc->autop_too_slow_at = now_ns;
839 		if (now_ns - ioc->autop_too_slow_at >= AUTOP_CYCLE_NSEC)
840 			return idx - 1;
841 	} else {
842 		ioc->autop_too_slow_at = 0;
843 	}
844 
845 	return idx;
846 }
847 
848 /*
849  * Take the followings as input
850  *
851  *  @bps	maximum sequential throughput
852  *  @seqiops	maximum sequential 4k iops
853  *  @randiops	maximum random 4k iops
854  *
855  * and calculate the linear model cost coefficients.
856  *
857  *  *@page	per-page cost		1s / (@bps / 4096)
858  *  *@seqio	base cost of a seq IO	max((1s / @seqiops) - *@page, 0)
859  *  @randiops	base cost of a rand IO	max((1s / @randiops) - *@page, 0)
860  */
861 static void calc_lcoefs(u64 bps, u64 seqiops, u64 randiops,
862 			u64 *page, u64 *seqio, u64 *randio)
863 {
864 	u64 v;
865 
866 	*page = *seqio = *randio = 0;
867 
868 	if (bps)
869 		*page = DIV64_U64_ROUND_UP(VTIME_PER_SEC,
870 					   DIV_ROUND_UP_ULL(bps, IOC_PAGE_SIZE));
871 
872 	if (seqiops) {
873 		v = DIV64_U64_ROUND_UP(VTIME_PER_SEC, seqiops);
874 		if (v > *page)
875 			*seqio = v - *page;
876 	}
877 
878 	if (randiops) {
879 		v = DIV64_U64_ROUND_UP(VTIME_PER_SEC, randiops);
880 		if (v > *page)
881 			*randio = v - *page;
882 	}
883 }
884 
885 static void ioc_refresh_lcoefs(struct ioc *ioc)
886 {
887 	u64 *u = ioc->params.i_lcoefs;
888 	u64 *c = ioc->params.lcoefs;
889 
890 	calc_lcoefs(u[I_LCOEF_RBPS], u[I_LCOEF_RSEQIOPS], u[I_LCOEF_RRANDIOPS],
891 		    &c[LCOEF_RPAGE], &c[LCOEF_RSEQIO], &c[LCOEF_RRANDIO]);
892 	calc_lcoefs(u[I_LCOEF_WBPS], u[I_LCOEF_WSEQIOPS], u[I_LCOEF_WRANDIOPS],
893 		    &c[LCOEF_WPAGE], &c[LCOEF_WSEQIO], &c[LCOEF_WRANDIO]);
894 }
895 
896 static bool ioc_refresh_params(struct ioc *ioc, bool force)
897 {
898 	const struct ioc_params *p;
899 	int idx;
900 
901 	lockdep_assert_held(&ioc->lock);
902 
903 	idx = ioc_autop_idx(ioc);
904 	p = &autop[idx];
905 
906 	if (idx == ioc->autop_idx && !force)
907 		return false;
908 
909 	if (idx != ioc->autop_idx)
910 		atomic64_set(&ioc->vtime_rate, VTIME_PER_USEC);
911 
912 	ioc->autop_idx = idx;
913 	ioc->autop_too_fast_at = 0;
914 	ioc->autop_too_slow_at = 0;
915 
916 	if (!ioc->user_qos_params)
917 		memcpy(ioc->params.qos, p->qos, sizeof(p->qos));
918 	if (!ioc->user_cost_model)
919 		memcpy(ioc->params.i_lcoefs, p->i_lcoefs, sizeof(p->i_lcoefs));
920 
921 	ioc_refresh_period_us(ioc);
922 	ioc_refresh_lcoefs(ioc);
923 
924 	ioc->vrate_min = DIV64_U64_ROUND_UP((u64)ioc->params.qos[QOS_MIN] *
925 					    VTIME_PER_USEC, MILLION);
926 	ioc->vrate_max = div64_u64((u64)ioc->params.qos[QOS_MAX] *
927 				   VTIME_PER_USEC, MILLION);
928 
929 	return true;
930 }
931 
932 /*
933  * When an iocg accumulates too much vtime or gets deactivated, we throw away
934  * some vtime, which lowers the overall device utilization. As the exact amount
935  * which is being thrown away is known, we can compensate by accelerating the
936  * vrate accordingly so that the extra vtime generated in the current period
937  * matches what got lost.
938  */
939 static void ioc_refresh_vrate(struct ioc *ioc, struct ioc_now *now)
940 {
941 	s64 pleft = ioc->period_at + ioc->period_us - now->now;
942 	s64 vperiod = ioc->period_us * ioc->vtime_base_rate;
943 	s64 vcomp, vcomp_min, vcomp_max;
944 
945 	lockdep_assert_held(&ioc->lock);
946 
947 	/* we need some time left in this period */
948 	if (pleft <= 0)
949 		goto done;
950 
951 	/*
952 	 * Calculate how much vrate should be adjusted to offset the error.
953 	 * Limit the amount of adjustment and deduct the adjusted amount from
954 	 * the error.
955 	 */
956 	vcomp = -div64_s64(ioc->vtime_err, pleft);
957 	vcomp_min = -(ioc->vtime_base_rate >> 1);
958 	vcomp_max = ioc->vtime_base_rate;
959 	vcomp = clamp(vcomp, vcomp_min, vcomp_max);
960 
961 	ioc->vtime_err += vcomp * pleft;
962 
963 	atomic64_set(&ioc->vtime_rate, ioc->vtime_base_rate + vcomp);
964 done:
965 	/* bound how much error can accumulate */
966 	ioc->vtime_err = clamp(ioc->vtime_err, -vperiod, vperiod);
967 }
968 
969 static void ioc_adjust_base_vrate(struct ioc *ioc, u32 rq_wait_pct,
970 				  int nr_lagging, int nr_shortages,
971 				  int prev_busy_level, u32 *missed_ppm)
972 {
973 	u64 vrate = ioc->vtime_base_rate;
974 	u64 vrate_min = ioc->vrate_min, vrate_max = ioc->vrate_max;
975 
976 	if (!ioc->busy_level || (ioc->busy_level < 0 && nr_lagging)) {
977 		if (ioc->busy_level != prev_busy_level || nr_lagging)
978 			trace_iocost_ioc_vrate_adj(ioc, atomic64_read(&ioc->vtime_rate),
979 						   missed_ppm, rq_wait_pct,
980 						   nr_lagging, nr_shortages);
981 
982 		return;
983 	}
984 
985 	/*
986 	 * If vrate is out of bounds, apply clamp gradually as the
987 	 * bounds can change abruptly.  Otherwise, apply busy_level
988 	 * based adjustment.
989 	 */
990 	if (vrate < vrate_min) {
991 		vrate = div64_u64(vrate * (100 + VRATE_CLAMP_ADJ_PCT), 100);
992 		vrate = min(vrate, vrate_min);
993 	} else if (vrate > vrate_max) {
994 		vrate = div64_u64(vrate * (100 - VRATE_CLAMP_ADJ_PCT), 100);
995 		vrate = max(vrate, vrate_max);
996 	} else {
997 		int idx = min_t(int, abs(ioc->busy_level),
998 				ARRAY_SIZE(vrate_adj_pct) - 1);
999 		u32 adj_pct = vrate_adj_pct[idx];
1000 
1001 		if (ioc->busy_level > 0)
1002 			adj_pct = 100 - adj_pct;
1003 		else
1004 			adj_pct = 100 + adj_pct;
1005 
1006 		vrate = clamp(DIV64_U64_ROUND_UP(vrate * adj_pct, 100),
1007 			      vrate_min, vrate_max);
1008 	}
1009 
1010 	trace_iocost_ioc_vrate_adj(ioc, vrate, missed_ppm, rq_wait_pct,
1011 				   nr_lagging, nr_shortages);
1012 
1013 	ioc->vtime_base_rate = vrate;
1014 	ioc_refresh_margins(ioc);
1015 }
1016 
1017 /* take a snapshot of the current [v]time and vrate */
1018 static void ioc_now(struct ioc *ioc, struct ioc_now *now)
1019 {
1020 	unsigned seq;
1021 
1022 	now->now_ns = ktime_get();
1023 	now->now = ktime_to_us(now->now_ns);
1024 	now->vrate = atomic64_read(&ioc->vtime_rate);
1025 
1026 	/*
1027 	 * The current vtime is
1028 	 *
1029 	 *   vtime at period start + (wallclock time since the start) * vrate
1030 	 *
1031 	 * As a consistent snapshot of `period_at_vtime` and `period_at` is
1032 	 * needed, they're seqcount protected.
1033 	 */
1034 	do {
1035 		seq = read_seqcount_begin(&ioc->period_seqcount);
1036 		now->vnow = ioc->period_at_vtime +
1037 			(now->now - ioc->period_at) * now->vrate;
1038 	} while (read_seqcount_retry(&ioc->period_seqcount, seq));
1039 }
1040 
1041 static void ioc_start_period(struct ioc *ioc, struct ioc_now *now)
1042 {
1043 	WARN_ON_ONCE(ioc->running != IOC_RUNNING);
1044 
1045 	write_seqcount_begin(&ioc->period_seqcount);
1046 	ioc->period_at = now->now;
1047 	ioc->period_at_vtime = now->vnow;
1048 	write_seqcount_end(&ioc->period_seqcount);
1049 
1050 	ioc->timer.expires = jiffies + usecs_to_jiffies(ioc->period_us);
1051 	add_timer(&ioc->timer);
1052 }
1053 
1054 /*
1055  * Update @iocg's `active` and `inuse` to @active and @inuse, update level
1056  * weight sums and propagate upwards accordingly. If @save, the current margin
1057  * is saved to be used as reference for later inuse in-period adjustments.
1058  */
1059 static void __propagate_weights(struct ioc_gq *iocg, u32 active, u32 inuse,
1060 				bool save, struct ioc_now *now)
1061 {
1062 	struct ioc *ioc = iocg->ioc;
1063 	int lvl;
1064 
1065 	lockdep_assert_held(&ioc->lock);
1066 
1067 	/*
1068 	 * For an active leaf node, its inuse shouldn't be zero or exceed
1069 	 * @active. An active internal node's inuse is solely determined by the
1070 	 * inuse to active ratio of its children regardless of @inuse.
1071 	 */
1072 	if (list_empty(&iocg->active_list) && iocg->child_active_sum) {
1073 		inuse = DIV64_U64_ROUND_UP(active * iocg->child_inuse_sum,
1074 					   iocg->child_active_sum);
1075 	} else {
1076 		inuse = clamp_t(u32, inuse, 1, active);
1077 	}
1078 
1079 	iocg->last_inuse = iocg->inuse;
1080 	if (save)
1081 		iocg->saved_margin = now->vnow - atomic64_read(&iocg->vtime);
1082 
1083 	if (active == iocg->active && inuse == iocg->inuse)
1084 		return;
1085 
1086 	for (lvl = iocg->level - 1; lvl >= 0; lvl--) {
1087 		struct ioc_gq *parent = iocg->ancestors[lvl];
1088 		struct ioc_gq *child = iocg->ancestors[lvl + 1];
1089 		u32 parent_active = 0, parent_inuse = 0;
1090 
1091 		/* update the level sums */
1092 		parent->child_active_sum += (s32)(active - child->active);
1093 		parent->child_inuse_sum += (s32)(inuse - child->inuse);
1094 		/* apply the updates */
1095 		child->active = active;
1096 		child->inuse = inuse;
1097 
1098 		/*
1099 		 * The delta between inuse and active sums indicates that
1100 		 * much of weight is being given away.  Parent's inuse
1101 		 * and active should reflect the ratio.
1102 		 */
1103 		if (parent->child_active_sum) {
1104 			parent_active = parent->weight;
1105 			parent_inuse = DIV64_U64_ROUND_UP(
1106 				parent_active * parent->child_inuse_sum,
1107 				parent->child_active_sum);
1108 		}
1109 
1110 		/* do we need to keep walking up? */
1111 		if (parent_active == parent->active &&
1112 		    parent_inuse == parent->inuse)
1113 			break;
1114 
1115 		active = parent_active;
1116 		inuse = parent_inuse;
1117 	}
1118 
1119 	ioc->weights_updated = true;
1120 }
1121 
1122 static void commit_weights(struct ioc *ioc)
1123 {
1124 	lockdep_assert_held(&ioc->lock);
1125 
1126 	if (ioc->weights_updated) {
1127 		/* paired with rmb in current_hweight(), see there */
1128 		smp_wmb();
1129 		atomic_inc(&ioc->hweight_gen);
1130 		ioc->weights_updated = false;
1131 	}
1132 }
1133 
1134 static void propagate_weights(struct ioc_gq *iocg, u32 active, u32 inuse,
1135 			      bool save, struct ioc_now *now)
1136 {
1137 	__propagate_weights(iocg, active, inuse, save, now);
1138 	commit_weights(iocg->ioc);
1139 }
1140 
1141 static void current_hweight(struct ioc_gq *iocg, u32 *hw_activep, u32 *hw_inusep)
1142 {
1143 	struct ioc *ioc = iocg->ioc;
1144 	int lvl;
1145 	u32 hwa, hwi;
1146 	int ioc_gen;
1147 
1148 	/* hot path - if uptodate, use cached */
1149 	ioc_gen = atomic_read(&ioc->hweight_gen);
1150 	if (ioc_gen == iocg->hweight_gen)
1151 		goto out;
1152 
1153 	/*
1154 	 * Paired with wmb in commit_weights(). If we saw the updated
1155 	 * hweight_gen, all the weight updates from __propagate_weights() are
1156 	 * visible too.
1157 	 *
1158 	 * We can race with weight updates during calculation and get it
1159 	 * wrong.  However, hweight_gen would have changed and a future
1160 	 * reader will recalculate and we're guaranteed to discard the
1161 	 * wrong result soon.
1162 	 */
1163 	smp_rmb();
1164 
1165 	hwa = hwi = WEIGHT_ONE;
1166 	for (lvl = 0; lvl <= iocg->level - 1; lvl++) {
1167 		struct ioc_gq *parent = iocg->ancestors[lvl];
1168 		struct ioc_gq *child = iocg->ancestors[lvl + 1];
1169 		u64 active_sum = READ_ONCE(parent->child_active_sum);
1170 		u64 inuse_sum = READ_ONCE(parent->child_inuse_sum);
1171 		u32 active = READ_ONCE(child->active);
1172 		u32 inuse = READ_ONCE(child->inuse);
1173 
1174 		/* we can race with deactivations and either may read as zero */
1175 		if (!active_sum || !inuse_sum)
1176 			continue;
1177 
1178 		active_sum = max_t(u64, active, active_sum);
1179 		hwa = div64_u64((u64)hwa * active, active_sum);
1180 
1181 		inuse_sum = max_t(u64, inuse, inuse_sum);
1182 		hwi = div64_u64((u64)hwi * inuse, inuse_sum);
1183 	}
1184 
1185 	iocg->hweight_active = max_t(u32, hwa, 1);
1186 	iocg->hweight_inuse = max_t(u32, hwi, 1);
1187 	iocg->hweight_gen = ioc_gen;
1188 out:
1189 	if (hw_activep)
1190 		*hw_activep = iocg->hweight_active;
1191 	if (hw_inusep)
1192 		*hw_inusep = iocg->hweight_inuse;
1193 }
1194 
1195 /*
1196  * Calculate the hweight_inuse @iocg would get with max @inuse assuming all the
1197  * other weights stay unchanged.
1198  */
1199 static u32 current_hweight_max(struct ioc_gq *iocg)
1200 {
1201 	u32 hwm = WEIGHT_ONE;
1202 	u32 inuse = iocg->active;
1203 	u64 child_inuse_sum;
1204 	int lvl;
1205 
1206 	lockdep_assert_held(&iocg->ioc->lock);
1207 
1208 	for (lvl = iocg->level - 1; lvl >= 0; lvl--) {
1209 		struct ioc_gq *parent = iocg->ancestors[lvl];
1210 		struct ioc_gq *child = iocg->ancestors[lvl + 1];
1211 
1212 		child_inuse_sum = parent->child_inuse_sum + inuse - child->inuse;
1213 		hwm = div64_u64((u64)hwm * inuse, child_inuse_sum);
1214 		inuse = DIV64_U64_ROUND_UP(parent->active * child_inuse_sum,
1215 					   parent->child_active_sum);
1216 	}
1217 
1218 	return max_t(u32, hwm, 1);
1219 }
1220 
1221 static void weight_updated(struct ioc_gq *iocg, struct ioc_now *now)
1222 {
1223 	struct ioc *ioc = iocg->ioc;
1224 	struct blkcg_gq *blkg = iocg_to_blkg(iocg);
1225 	struct ioc_cgrp *iocc = blkcg_to_iocc(blkg->blkcg);
1226 	u32 weight;
1227 
1228 	lockdep_assert_held(&ioc->lock);
1229 
1230 	weight = iocg->cfg_weight ?: iocc->dfl_weight;
1231 	if (weight != iocg->weight && iocg->active)
1232 		propagate_weights(iocg, weight, iocg->inuse, true, now);
1233 	iocg->weight = weight;
1234 }
1235 
1236 static bool iocg_activate(struct ioc_gq *iocg, struct ioc_now *now)
1237 {
1238 	struct ioc *ioc = iocg->ioc;
1239 	u64 last_period, cur_period;
1240 	u64 vtime, vtarget;
1241 	int i;
1242 
1243 	/*
1244 	 * If seem to be already active, just update the stamp to tell the
1245 	 * timer that we're still active.  We don't mind occassional races.
1246 	 */
1247 	if (!list_empty(&iocg->active_list)) {
1248 		ioc_now(ioc, now);
1249 		cur_period = atomic64_read(&ioc->cur_period);
1250 		if (atomic64_read(&iocg->active_period) != cur_period)
1251 			atomic64_set(&iocg->active_period, cur_period);
1252 		return true;
1253 	}
1254 
1255 	/* racy check on internal node IOs, treat as root level IOs */
1256 	if (iocg->child_active_sum)
1257 		return false;
1258 
1259 	spin_lock_irq(&ioc->lock);
1260 
1261 	ioc_now(ioc, now);
1262 
1263 	/* update period */
1264 	cur_period = atomic64_read(&ioc->cur_period);
1265 	last_period = atomic64_read(&iocg->active_period);
1266 	atomic64_set(&iocg->active_period, cur_period);
1267 
1268 	/* already activated or breaking leaf-only constraint? */
1269 	if (!list_empty(&iocg->active_list))
1270 		goto succeed_unlock;
1271 	for (i = iocg->level - 1; i > 0; i--)
1272 		if (!list_empty(&iocg->ancestors[i]->active_list))
1273 			goto fail_unlock;
1274 
1275 	if (iocg->child_active_sum)
1276 		goto fail_unlock;
1277 
1278 	/*
1279 	 * Always start with the target budget. On deactivation, we throw away
1280 	 * anything above it.
1281 	 */
1282 	vtarget = now->vnow - ioc->margins.target;
1283 	vtime = atomic64_read(&iocg->vtime);
1284 
1285 	atomic64_add(vtarget - vtime, &iocg->vtime);
1286 	atomic64_add(vtarget - vtime, &iocg->done_vtime);
1287 	vtime = vtarget;
1288 
1289 	/*
1290 	 * Activate, propagate weight and start period timer if not
1291 	 * running.  Reset hweight_gen to avoid accidental match from
1292 	 * wrapping.
1293 	 */
1294 	iocg->hweight_gen = atomic_read(&ioc->hweight_gen) - 1;
1295 	list_add(&iocg->active_list, &ioc->active_iocgs);
1296 
1297 	propagate_weights(iocg, iocg->weight,
1298 			  iocg->last_inuse ?: iocg->weight, true, now);
1299 
1300 	TRACE_IOCG_PATH(iocg_activate, iocg, now,
1301 			last_period, cur_period, vtime);
1302 
1303 	iocg->activated_at = now->now;
1304 
1305 	if (ioc->running == IOC_IDLE) {
1306 		ioc->running = IOC_RUNNING;
1307 		ioc->dfgv_period_at = now->now;
1308 		ioc->dfgv_period_rem = 0;
1309 		ioc_start_period(ioc, now);
1310 	}
1311 
1312 succeed_unlock:
1313 	spin_unlock_irq(&ioc->lock);
1314 	return true;
1315 
1316 fail_unlock:
1317 	spin_unlock_irq(&ioc->lock);
1318 	return false;
1319 }
1320 
1321 static bool iocg_kick_delay(struct ioc_gq *iocg, struct ioc_now *now)
1322 {
1323 	struct ioc *ioc = iocg->ioc;
1324 	struct blkcg_gq *blkg = iocg_to_blkg(iocg);
1325 	u64 tdelta, delay, new_delay;
1326 	s64 vover, vover_pct;
1327 	u32 hwa;
1328 
1329 	lockdep_assert_held(&iocg->waitq.lock);
1330 
1331 	/* calculate the current delay in effect - 1/2 every second */
1332 	tdelta = now->now - iocg->delay_at;
1333 	if (iocg->delay)
1334 		delay = iocg->delay >> div64_u64(tdelta, USEC_PER_SEC);
1335 	else
1336 		delay = 0;
1337 
1338 	/* calculate the new delay from the debt amount */
1339 	current_hweight(iocg, &hwa, NULL);
1340 	vover = atomic64_read(&iocg->vtime) +
1341 		abs_cost_to_cost(iocg->abs_vdebt, hwa) - now->vnow;
1342 	vover_pct = div64_s64(100 * vover,
1343 			      ioc->period_us * ioc->vtime_base_rate);
1344 
1345 	if (vover_pct <= MIN_DELAY_THR_PCT)
1346 		new_delay = 0;
1347 	else if (vover_pct >= MAX_DELAY_THR_PCT)
1348 		new_delay = MAX_DELAY;
1349 	else
1350 		new_delay = MIN_DELAY +
1351 			div_u64((MAX_DELAY - MIN_DELAY) *
1352 				(vover_pct - MIN_DELAY_THR_PCT),
1353 				MAX_DELAY_THR_PCT - MIN_DELAY_THR_PCT);
1354 
1355 	/* pick the higher one and apply */
1356 	if (new_delay > delay) {
1357 		iocg->delay = new_delay;
1358 		iocg->delay_at = now->now;
1359 		delay = new_delay;
1360 	}
1361 
1362 	if (delay >= MIN_DELAY) {
1363 		if (!iocg->indelay_since)
1364 			iocg->indelay_since = now->now;
1365 		blkcg_set_delay(blkg, delay * NSEC_PER_USEC);
1366 		return true;
1367 	} else {
1368 		if (iocg->indelay_since) {
1369 			iocg->stat.indelay_us += now->now - iocg->indelay_since;
1370 			iocg->indelay_since = 0;
1371 		}
1372 		iocg->delay = 0;
1373 		blkcg_clear_delay(blkg);
1374 		return false;
1375 	}
1376 }
1377 
1378 static void iocg_incur_debt(struct ioc_gq *iocg, u64 abs_cost,
1379 			    struct ioc_now *now)
1380 {
1381 	struct iocg_pcpu_stat *gcs;
1382 
1383 	lockdep_assert_held(&iocg->ioc->lock);
1384 	lockdep_assert_held(&iocg->waitq.lock);
1385 	WARN_ON_ONCE(list_empty(&iocg->active_list));
1386 
1387 	/*
1388 	 * Once in debt, debt handling owns inuse. @iocg stays at the minimum
1389 	 * inuse donating all of it share to others until its debt is paid off.
1390 	 */
1391 	if (!iocg->abs_vdebt && abs_cost) {
1392 		iocg->indebt_since = now->now;
1393 		propagate_weights(iocg, iocg->active, 0, false, now);
1394 	}
1395 
1396 	iocg->abs_vdebt += abs_cost;
1397 
1398 	gcs = get_cpu_ptr(iocg->pcpu_stat);
1399 	local64_add(abs_cost, &gcs->abs_vusage);
1400 	put_cpu_ptr(gcs);
1401 }
1402 
1403 static void iocg_pay_debt(struct ioc_gq *iocg, u64 abs_vpay,
1404 			  struct ioc_now *now)
1405 {
1406 	lockdep_assert_held(&iocg->ioc->lock);
1407 	lockdep_assert_held(&iocg->waitq.lock);
1408 
1409 	/* make sure that nobody messed with @iocg */
1410 	WARN_ON_ONCE(list_empty(&iocg->active_list));
1411 	WARN_ON_ONCE(iocg->inuse > 1);
1412 
1413 	iocg->abs_vdebt -= min(abs_vpay, iocg->abs_vdebt);
1414 
1415 	/* if debt is paid in full, restore inuse */
1416 	if (!iocg->abs_vdebt) {
1417 		iocg->stat.indebt_us += now->now - iocg->indebt_since;
1418 		iocg->indebt_since = 0;
1419 
1420 		propagate_weights(iocg, iocg->active, iocg->last_inuse,
1421 				  false, now);
1422 	}
1423 }
1424 
1425 static int iocg_wake_fn(struct wait_queue_entry *wq_entry, unsigned mode,
1426 			int flags, void *key)
1427 {
1428 	struct iocg_wait *wait = container_of(wq_entry, struct iocg_wait, wait);
1429 	struct iocg_wake_ctx *ctx = key;
1430 	u64 cost = abs_cost_to_cost(wait->abs_cost, ctx->hw_inuse);
1431 
1432 	ctx->vbudget -= cost;
1433 
1434 	if (ctx->vbudget < 0)
1435 		return -1;
1436 
1437 	iocg_commit_bio(ctx->iocg, wait->bio, wait->abs_cost, cost);
1438 	wait->committed = true;
1439 
1440 	/*
1441 	 * autoremove_wake_function() removes the wait entry only when it
1442 	 * actually changed the task state. We want the wait always removed.
1443 	 * Remove explicitly and use default_wake_function(). Note that the
1444 	 * order of operations is important as finish_wait() tests whether
1445 	 * @wq_entry is removed without grabbing the lock.
1446 	 */
1447 	default_wake_function(wq_entry, mode, flags, key);
1448 	list_del_init_careful(&wq_entry->entry);
1449 	return 0;
1450 }
1451 
1452 /*
1453  * Calculate the accumulated budget, pay debt if @pay_debt and wake up waiters
1454  * accordingly. When @pay_debt is %true, the caller must be holding ioc->lock in
1455  * addition to iocg->waitq.lock.
1456  */
1457 static void iocg_kick_waitq(struct ioc_gq *iocg, bool pay_debt,
1458 			    struct ioc_now *now)
1459 {
1460 	struct ioc *ioc = iocg->ioc;
1461 	struct iocg_wake_ctx ctx = { .iocg = iocg };
1462 	u64 vshortage, expires, oexpires;
1463 	s64 vbudget;
1464 	u32 hwa;
1465 
1466 	lockdep_assert_held(&iocg->waitq.lock);
1467 
1468 	current_hweight(iocg, &hwa, NULL);
1469 	vbudget = now->vnow - atomic64_read(&iocg->vtime);
1470 
1471 	/* pay off debt */
1472 	if (pay_debt && iocg->abs_vdebt && vbudget > 0) {
1473 		u64 abs_vbudget = cost_to_abs_cost(vbudget, hwa);
1474 		u64 abs_vpay = min_t(u64, abs_vbudget, iocg->abs_vdebt);
1475 		u64 vpay = abs_cost_to_cost(abs_vpay, hwa);
1476 
1477 		lockdep_assert_held(&ioc->lock);
1478 
1479 		atomic64_add(vpay, &iocg->vtime);
1480 		atomic64_add(vpay, &iocg->done_vtime);
1481 		iocg_pay_debt(iocg, abs_vpay, now);
1482 		vbudget -= vpay;
1483 	}
1484 
1485 	if (iocg->abs_vdebt || iocg->delay)
1486 		iocg_kick_delay(iocg, now);
1487 
1488 	/*
1489 	 * Debt can still be outstanding if we haven't paid all yet or the
1490 	 * caller raced and called without @pay_debt. Shouldn't wake up waiters
1491 	 * under debt. Make sure @vbudget reflects the outstanding amount and is
1492 	 * not positive.
1493 	 */
1494 	if (iocg->abs_vdebt) {
1495 		s64 vdebt = abs_cost_to_cost(iocg->abs_vdebt, hwa);
1496 		vbudget = min_t(s64, 0, vbudget - vdebt);
1497 	}
1498 
1499 	/*
1500 	 * Wake up the ones which are due and see how much vtime we'll need for
1501 	 * the next one. As paying off debt restores hw_inuse, it must be read
1502 	 * after the above debt payment.
1503 	 */
1504 	ctx.vbudget = vbudget;
1505 	current_hweight(iocg, NULL, &ctx.hw_inuse);
1506 
1507 	__wake_up_locked_key(&iocg->waitq, TASK_NORMAL, &ctx);
1508 
1509 	if (!waitqueue_active(&iocg->waitq)) {
1510 		if (iocg->wait_since) {
1511 			iocg->stat.wait_us += now->now - iocg->wait_since;
1512 			iocg->wait_since = 0;
1513 		}
1514 		return;
1515 	}
1516 
1517 	if (!iocg->wait_since)
1518 		iocg->wait_since = now->now;
1519 
1520 	if (WARN_ON_ONCE(ctx.vbudget >= 0))
1521 		return;
1522 
1523 	/* determine next wakeup, add a timer margin to guarantee chunking */
1524 	vshortage = -ctx.vbudget;
1525 	expires = now->now_ns +
1526 		DIV64_U64_ROUND_UP(vshortage, ioc->vtime_base_rate) *
1527 		NSEC_PER_USEC;
1528 	expires += ioc->timer_slack_ns;
1529 
1530 	/* if already active and close enough, don't bother */
1531 	oexpires = ktime_to_ns(hrtimer_get_softexpires(&iocg->waitq_timer));
1532 	if (hrtimer_is_queued(&iocg->waitq_timer) &&
1533 	    abs(oexpires - expires) <= ioc->timer_slack_ns)
1534 		return;
1535 
1536 	hrtimer_start_range_ns(&iocg->waitq_timer, ns_to_ktime(expires),
1537 			       ioc->timer_slack_ns, HRTIMER_MODE_ABS);
1538 }
1539 
1540 static enum hrtimer_restart iocg_waitq_timer_fn(struct hrtimer *timer)
1541 {
1542 	struct ioc_gq *iocg = container_of(timer, struct ioc_gq, waitq_timer);
1543 	bool pay_debt = READ_ONCE(iocg->abs_vdebt);
1544 	struct ioc_now now;
1545 	unsigned long flags;
1546 
1547 	ioc_now(iocg->ioc, &now);
1548 
1549 	iocg_lock(iocg, pay_debt, &flags);
1550 	iocg_kick_waitq(iocg, pay_debt, &now);
1551 	iocg_unlock(iocg, pay_debt, &flags);
1552 
1553 	return HRTIMER_NORESTART;
1554 }
1555 
1556 static void ioc_lat_stat(struct ioc *ioc, u32 *missed_ppm_ar, u32 *rq_wait_pct_p)
1557 {
1558 	u32 nr_met[2] = { };
1559 	u32 nr_missed[2] = { };
1560 	u64 rq_wait_ns = 0;
1561 	int cpu, rw;
1562 
1563 	for_each_online_cpu(cpu) {
1564 		struct ioc_pcpu_stat *stat = per_cpu_ptr(ioc->pcpu_stat, cpu);
1565 		u64 this_rq_wait_ns;
1566 
1567 		for (rw = READ; rw <= WRITE; rw++) {
1568 			u32 this_met = local_read(&stat->missed[rw].nr_met);
1569 			u32 this_missed = local_read(&stat->missed[rw].nr_missed);
1570 
1571 			nr_met[rw] += this_met - stat->missed[rw].last_met;
1572 			nr_missed[rw] += this_missed - stat->missed[rw].last_missed;
1573 			stat->missed[rw].last_met = this_met;
1574 			stat->missed[rw].last_missed = this_missed;
1575 		}
1576 
1577 		this_rq_wait_ns = local64_read(&stat->rq_wait_ns);
1578 		rq_wait_ns += this_rq_wait_ns - stat->last_rq_wait_ns;
1579 		stat->last_rq_wait_ns = this_rq_wait_ns;
1580 	}
1581 
1582 	for (rw = READ; rw <= WRITE; rw++) {
1583 		if (nr_met[rw] + nr_missed[rw])
1584 			missed_ppm_ar[rw] =
1585 				DIV64_U64_ROUND_UP((u64)nr_missed[rw] * MILLION,
1586 						   nr_met[rw] + nr_missed[rw]);
1587 		else
1588 			missed_ppm_ar[rw] = 0;
1589 	}
1590 
1591 	*rq_wait_pct_p = div64_u64(rq_wait_ns * 100,
1592 				   ioc->period_us * NSEC_PER_USEC);
1593 }
1594 
1595 /* was iocg idle this period? */
1596 static bool iocg_is_idle(struct ioc_gq *iocg)
1597 {
1598 	struct ioc *ioc = iocg->ioc;
1599 
1600 	/* did something get issued this period? */
1601 	if (atomic64_read(&iocg->active_period) ==
1602 	    atomic64_read(&ioc->cur_period))
1603 		return false;
1604 
1605 	/* is something in flight? */
1606 	if (atomic64_read(&iocg->done_vtime) != atomic64_read(&iocg->vtime))
1607 		return false;
1608 
1609 	return true;
1610 }
1611 
1612 /*
1613  * Call this function on the target leaf @iocg's to build pre-order traversal
1614  * list of all the ancestors in @inner_walk. The inner nodes are linked through
1615  * ->walk_list and the caller is responsible for dissolving the list after use.
1616  */
1617 static void iocg_build_inner_walk(struct ioc_gq *iocg,
1618 				  struct list_head *inner_walk)
1619 {
1620 	int lvl;
1621 
1622 	WARN_ON_ONCE(!list_empty(&iocg->walk_list));
1623 
1624 	/* find the first ancestor which hasn't been visited yet */
1625 	for (lvl = iocg->level - 1; lvl >= 0; lvl--) {
1626 		if (!list_empty(&iocg->ancestors[lvl]->walk_list))
1627 			break;
1628 	}
1629 
1630 	/* walk down and visit the inner nodes to get pre-order traversal */
1631 	while (++lvl <= iocg->level - 1) {
1632 		struct ioc_gq *inner = iocg->ancestors[lvl];
1633 
1634 		/* record traversal order */
1635 		list_add_tail(&inner->walk_list, inner_walk);
1636 	}
1637 }
1638 
1639 /* propagate the deltas to the parent */
1640 static void iocg_flush_stat_upward(struct ioc_gq *iocg)
1641 {
1642 	if (iocg->level > 0) {
1643 		struct iocg_stat *parent_stat =
1644 			&iocg->ancestors[iocg->level - 1]->stat;
1645 
1646 		parent_stat->usage_us +=
1647 			iocg->stat.usage_us - iocg->last_stat.usage_us;
1648 		parent_stat->wait_us +=
1649 			iocg->stat.wait_us - iocg->last_stat.wait_us;
1650 		parent_stat->indebt_us +=
1651 			iocg->stat.indebt_us - iocg->last_stat.indebt_us;
1652 		parent_stat->indelay_us +=
1653 			iocg->stat.indelay_us - iocg->last_stat.indelay_us;
1654 	}
1655 
1656 	iocg->last_stat = iocg->stat;
1657 }
1658 
1659 /* collect per-cpu counters and propagate the deltas to the parent */
1660 static void iocg_flush_stat_leaf(struct ioc_gq *iocg, struct ioc_now *now)
1661 {
1662 	struct ioc *ioc = iocg->ioc;
1663 	u64 abs_vusage = 0;
1664 	u64 vusage_delta;
1665 	int cpu;
1666 
1667 	lockdep_assert_held(&iocg->ioc->lock);
1668 
1669 	/* collect per-cpu counters */
1670 	for_each_possible_cpu(cpu) {
1671 		abs_vusage += local64_read(
1672 				per_cpu_ptr(&iocg->pcpu_stat->abs_vusage, cpu));
1673 	}
1674 	vusage_delta = abs_vusage - iocg->last_stat_abs_vusage;
1675 	iocg->last_stat_abs_vusage = abs_vusage;
1676 
1677 	iocg->usage_delta_us = div64_u64(vusage_delta, ioc->vtime_base_rate);
1678 	iocg->stat.usage_us += iocg->usage_delta_us;
1679 
1680 	iocg_flush_stat_upward(iocg);
1681 }
1682 
1683 /* get stat counters ready for reading on all active iocgs */
1684 static void iocg_flush_stat(struct list_head *target_iocgs, struct ioc_now *now)
1685 {
1686 	LIST_HEAD(inner_walk);
1687 	struct ioc_gq *iocg, *tiocg;
1688 
1689 	/* flush leaves and build inner node walk list */
1690 	list_for_each_entry(iocg, target_iocgs, active_list) {
1691 		iocg_flush_stat_leaf(iocg, now);
1692 		iocg_build_inner_walk(iocg, &inner_walk);
1693 	}
1694 
1695 	/* keep flushing upwards by walking the inner list backwards */
1696 	list_for_each_entry_safe_reverse(iocg, tiocg, &inner_walk, walk_list) {
1697 		iocg_flush_stat_upward(iocg);
1698 		list_del_init(&iocg->walk_list);
1699 	}
1700 }
1701 
1702 /*
1703  * Determine what @iocg's hweight_inuse should be after donating unused
1704  * capacity. @hwm is the upper bound and used to signal no donation. This
1705  * function also throws away @iocg's excess budget.
1706  */
1707 static u32 hweight_after_donation(struct ioc_gq *iocg, u32 old_hwi, u32 hwm,
1708 				  u32 usage, struct ioc_now *now)
1709 {
1710 	struct ioc *ioc = iocg->ioc;
1711 	u64 vtime = atomic64_read(&iocg->vtime);
1712 	s64 excess, delta, target, new_hwi;
1713 
1714 	/* debt handling owns inuse for debtors */
1715 	if (iocg->abs_vdebt)
1716 		return 1;
1717 
1718 	/* see whether minimum margin requirement is met */
1719 	if (waitqueue_active(&iocg->waitq) ||
1720 	    time_after64(vtime, now->vnow - ioc->margins.min))
1721 		return hwm;
1722 
1723 	/* throw away excess above target */
1724 	excess = now->vnow - vtime - ioc->margins.target;
1725 	if (excess > 0) {
1726 		atomic64_add(excess, &iocg->vtime);
1727 		atomic64_add(excess, &iocg->done_vtime);
1728 		vtime += excess;
1729 		ioc->vtime_err -= div64_u64(excess * old_hwi, WEIGHT_ONE);
1730 	}
1731 
1732 	/*
1733 	 * Let's say the distance between iocg's and device's vtimes as a
1734 	 * fraction of period duration is delta. Assuming that the iocg will
1735 	 * consume the usage determined above, we want to determine new_hwi so
1736 	 * that delta equals MARGIN_TARGET at the end of the next period.
1737 	 *
1738 	 * We need to execute usage worth of IOs while spending the sum of the
1739 	 * new budget (1 - MARGIN_TARGET) and the leftover from the last period
1740 	 * (delta):
1741 	 *
1742 	 *   usage = (1 - MARGIN_TARGET + delta) * new_hwi
1743 	 *
1744 	 * Therefore, the new_hwi is:
1745 	 *
1746 	 *   new_hwi = usage / (1 - MARGIN_TARGET + delta)
1747 	 */
1748 	delta = div64_s64(WEIGHT_ONE * (now->vnow - vtime),
1749 			  now->vnow - ioc->period_at_vtime);
1750 	target = WEIGHT_ONE * MARGIN_TARGET_PCT / 100;
1751 	new_hwi = div64_s64(WEIGHT_ONE * usage, WEIGHT_ONE - target + delta);
1752 
1753 	return clamp_t(s64, new_hwi, 1, hwm);
1754 }
1755 
1756 /*
1757  * For work-conservation, an iocg which isn't using all of its share should
1758  * donate the leftover to other iocgs. There are two ways to achieve this - 1.
1759  * bumping up vrate accordingly 2. lowering the donating iocg's inuse weight.
1760  *
1761  * #1 is mathematically simpler but has the drawback of requiring synchronous
1762  * global hweight_inuse updates when idle iocg's get activated or inuse weights
1763  * change due to donation snapbacks as it has the possibility of grossly
1764  * overshooting what's allowed by the model and vrate.
1765  *
1766  * #2 is inherently safe with local operations. The donating iocg can easily
1767  * snap back to higher weights when needed without worrying about impacts on
1768  * other nodes as the impacts will be inherently correct. This also makes idle
1769  * iocg activations safe. The only effect activations have is decreasing
1770  * hweight_inuse of others, the right solution to which is for those iocgs to
1771  * snap back to higher weights.
1772  *
1773  * So, we go with #2. The challenge is calculating how each donating iocg's
1774  * inuse should be adjusted to achieve the target donation amounts. This is done
1775  * using Andy's method described in the following pdf.
1776  *
1777  *   https://drive.google.com/file/d/1PsJwxPFtjUnwOY1QJ5AeICCcsL7BM3bo
1778  *
1779  * Given the weights and target after-donation hweight_inuse values, Andy's
1780  * method determines how the proportional distribution should look like at each
1781  * sibling level to maintain the relative relationship between all non-donating
1782  * pairs. To roughly summarize, it divides the tree into donating and
1783  * non-donating parts, calculates global donation rate which is used to
1784  * determine the target hweight_inuse for each node, and then derives per-level
1785  * proportions.
1786  *
1787  * The following pdf shows that global distribution calculated this way can be
1788  * achieved by scaling inuse weights of donating leaves and propagating the
1789  * adjustments upwards proportionally.
1790  *
1791  *   https://drive.google.com/file/d/1vONz1-fzVO7oY5DXXsLjSxEtYYQbOvsE
1792  *
1793  * Combining the above two, we can determine how each leaf iocg's inuse should
1794  * be adjusted to achieve the target donation.
1795  *
1796  *   https://drive.google.com/file/d/1WcrltBOSPN0qXVdBgnKm4mdp9FhuEFQN
1797  *
1798  * The inline comments use symbols from the last pdf.
1799  *
1800  *   b is the sum of the absolute budgets in the subtree. 1 for the root node.
1801  *   f is the sum of the absolute budgets of non-donating nodes in the subtree.
1802  *   t is the sum of the absolute budgets of donating nodes in the subtree.
1803  *   w is the weight of the node. w = w_f + w_t
1804  *   w_f is the non-donating portion of w. w_f = w * f / b
1805  *   w_b is the donating portion of w. w_t = w * t / b
1806  *   s is the sum of all sibling weights. s = Sum(w) for siblings
1807  *   s_f and s_t are the non-donating and donating portions of s.
1808  *
1809  * Subscript p denotes the parent's counterpart and ' the adjusted value - e.g.
1810  * w_pt is the donating portion of the parent's weight and w'_pt the same value
1811  * after adjustments. Subscript r denotes the root node's values.
1812  */
1813 static void transfer_surpluses(struct list_head *surpluses, struct ioc_now *now)
1814 {
1815 	LIST_HEAD(over_hwa);
1816 	LIST_HEAD(inner_walk);
1817 	struct ioc_gq *iocg, *tiocg, *root_iocg;
1818 	u32 after_sum, over_sum, over_target, gamma;
1819 
1820 	/*
1821 	 * It's pretty unlikely but possible for the total sum of
1822 	 * hweight_after_donation's to be higher than WEIGHT_ONE, which will
1823 	 * confuse the following calculations. If such condition is detected,
1824 	 * scale down everyone over its full share equally to keep the sum below
1825 	 * WEIGHT_ONE.
1826 	 */
1827 	after_sum = 0;
1828 	over_sum = 0;
1829 	list_for_each_entry(iocg, surpluses, surplus_list) {
1830 		u32 hwa;
1831 
1832 		current_hweight(iocg, &hwa, NULL);
1833 		after_sum += iocg->hweight_after_donation;
1834 
1835 		if (iocg->hweight_after_donation > hwa) {
1836 			over_sum += iocg->hweight_after_donation;
1837 			list_add(&iocg->walk_list, &over_hwa);
1838 		}
1839 	}
1840 
1841 	if (after_sum >= WEIGHT_ONE) {
1842 		/*
1843 		 * The delta should be deducted from the over_sum, calculate
1844 		 * target over_sum value.
1845 		 */
1846 		u32 over_delta = after_sum - (WEIGHT_ONE - 1);
1847 		WARN_ON_ONCE(over_sum <= over_delta);
1848 		over_target = over_sum - over_delta;
1849 	} else {
1850 		over_target = 0;
1851 	}
1852 
1853 	list_for_each_entry_safe(iocg, tiocg, &over_hwa, walk_list) {
1854 		if (over_target)
1855 			iocg->hweight_after_donation =
1856 				div_u64((u64)iocg->hweight_after_donation *
1857 					over_target, over_sum);
1858 		list_del_init(&iocg->walk_list);
1859 	}
1860 
1861 	/*
1862 	 * Build pre-order inner node walk list and prepare for donation
1863 	 * adjustment calculations.
1864 	 */
1865 	list_for_each_entry(iocg, surpluses, surplus_list) {
1866 		iocg_build_inner_walk(iocg, &inner_walk);
1867 	}
1868 
1869 	root_iocg = list_first_entry(&inner_walk, struct ioc_gq, walk_list);
1870 	WARN_ON_ONCE(root_iocg->level > 0);
1871 
1872 	list_for_each_entry(iocg, &inner_walk, walk_list) {
1873 		iocg->child_adjusted_sum = 0;
1874 		iocg->hweight_donating = 0;
1875 		iocg->hweight_after_donation = 0;
1876 	}
1877 
1878 	/*
1879 	 * Propagate the donating budget (b_t) and after donation budget (b'_t)
1880 	 * up the hierarchy.
1881 	 */
1882 	list_for_each_entry(iocg, surpluses, surplus_list) {
1883 		struct ioc_gq *parent = iocg->ancestors[iocg->level - 1];
1884 
1885 		parent->hweight_donating += iocg->hweight_donating;
1886 		parent->hweight_after_donation += iocg->hweight_after_donation;
1887 	}
1888 
1889 	list_for_each_entry_reverse(iocg, &inner_walk, walk_list) {
1890 		if (iocg->level > 0) {
1891 			struct ioc_gq *parent = iocg->ancestors[iocg->level - 1];
1892 
1893 			parent->hweight_donating += iocg->hweight_donating;
1894 			parent->hweight_after_donation += iocg->hweight_after_donation;
1895 		}
1896 	}
1897 
1898 	/*
1899 	 * Calculate inner hwa's (b) and make sure the donation values are
1900 	 * within the accepted ranges as we're doing low res calculations with
1901 	 * roundups.
1902 	 */
1903 	list_for_each_entry(iocg, &inner_walk, walk_list) {
1904 		if (iocg->level) {
1905 			struct ioc_gq *parent = iocg->ancestors[iocg->level - 1];
1906 
1907 			iocg->hweight_active = DIV64_U64_ROUND_UP(
1908 				(u64)parent->hweight_active * iocg->active,
1909 				parent->child_active_sum);
1910 
1911 		}
1912 
1913 		iocg->hweight_donating = min(iocg->hweight_donating,
1914 					     iocg->hweight_active);
1915 		iocg->hweight_after_donation = min(iocg->hweight_after_donation,
1916 						   iocg->hweight_donating - 1);
1917 		if (WARN_ON_ONCE(iocg->hweight_active <= 1 ||
1918 				 iocg->hweight_donating <= 1 ||
1919 				 iocg->hweight_after_donation == 0)) {
1920 			pr_warn("iocg: invalid donation weights in ");
1921 			pr_cont_cgroup_path(iocg_to_blkg(iocg)->blkcg->css.cgroup);
1922 			pr_cont(": active=%u donating=%u after=%u\n",
1923 				iocg->hweight_active, iocg->hweight_donating,
1924 				iocg->hweight_after_donation);
1925 		}
1926 	}
1927 
1928 	/*
1929 	 * Calculate the global donation rate (gamma) - the rate to adjust
1930 	 * non-donating budgets by.
1931 	 *
1932 	 * No need to use 64bit multiplication here as the first operand is
1933 	 * guaranteed to be smaller than WEIGHT_ONE (1<<16).
1934 	 *
1935 	 * We know that there are beneficiary nodes and the sum of the donating
1936 	 * hweights can't be whole; however, due to the round-ups during hweight
1937 	 * calculations, root_iocg->hweight_donating might still end up equal to
1938 	 * or greater than whole. Limit the range when calculating the divider.
1939 	 *
1940 	 * gamma = (1 - t_r') / (1 - t_r)
1941 	 */
1942 	gamma = DIV_ROUND_UP(
1943 		(WEIGHT_ONE - root_iocg->hweight_after_donation) * WEIGHT_ONE,
1944 		WEIGHT_ONE - min_t(u32, root_iocg->hweight_donating, WEIGHT_ONE - 1));
1945 
1946 	/*
1947 	 * Calculate adjusted hwi, child_adjusted_sum and inuse for the inner
1948 	 * nodes.
1949 	 */
1950 	list_for_each_entry(iocg, &inner_walk, walk_list) {
1951 		struct ioc_gq *parent;
1952 		u32 inuse, wpt, wptp;
1953 		u64 st, sf;
1954 
1955 		if (iocg->level == 0) {
1956 			/* adjusted weight sum for 1st level: s' = s * b_pf / b'_pf */
1957 			iocg->child_adjusted_sum = DIV64_U64_ROUND_UP(
1958 				iocg->child_active_sum * (WEIGHT_ONE - iocg->hweight_donating),
1959 				WEIGHT_ONE - iocg->hweight_after_donation);
1960 			continue;
1961 		}
1962 
1963 		parent = iocg->ancestors[iocg->level - 1];
1964 
1965 		/* b' = gamma * b_f + b_t' */
1966 		iocg->hweight_inuse = DIV64_U64_ROUND_UP(
1967 			(u64)gamma * (iocg->hweight_active - iocg->hweight_donating),
1968 			WEIGHT_ONE) + iocg->hweight_after_donation;
1969 
1970 		/* w' = s' * b' / b'_p */
1971 		inuse = DIV64_U64_ROUND_UP(
1972 			(u64)parent->child_adjusted_sum * iocg->hweight_inuse,
1973 			parent->hweight_inuse);
1974 
1975 		/* adjusted weight sum for children: s' = s_f + s_t * w'_pt / w_pt */
1976 		st = DIV64_U64_ROUND_UP(
1977 			iocg->child_active_sum * iocg->hweight_donating,
1978 			iocg->hweight_active);
1979 		sf = iocg->child_active_sum - st;
1980 		wpt = DIV64_U64_ROUND_UP(
1981 			(u64)iocg->active * iocg->hweight_donating,
1982 			iocg->hweight_active);
1983 		wptp = DIV64_U64_ROUND_UP(
1984 			(u64)inuse * iocg->hweight_after_donation,
1985 			iocg->hweight_inuse);
1986 
1987 		iocg->child_adjusted_sum = sf + DIV64_U64_ROUND_UP(st * wptp, wpt);
1988 	}
1989 
1990 	/*
1991 	 * All inner nodes now have ->hweight_inuse and ->child_adjusted_sum and
1992 	 * we can finally determine leaf adjustments.
1993 	 */
1994 	list_for_each_entry(iocg, surpluses, surplus_list) {
1995 		struct ioc_gq *parent = iocg->ancestors[iocg->level - 1];
1996 		u32 inuse;
1997 
1998 		/*
1999 		 * In-debt iocgs participated in the donation calculation with
2000 		 * the minimum target hweight_inuse. Configuring inuse
2001 		 * accordingly would work fine but debt handling expects
2002 		 * @iocg->inuse stay at the minimum and we don't wanna
2003 		 * interfere.
2004 		 */
2005 		if (iocg->abs_vdebt) {
2006 			WARN_ON_ONCE(iocg->inuse > 1);
2007 			continue;
2008 		}
2009 
2010 		/* w' = s' * b' / b'_p, note that b' == b'_t for donating leaves */
2011 		inuse = DIV64_U64_ROUND_UP(
2012 			parent->child_adjusted_sum * iocg->hweight_after_donation,
2013 			parent->hweight_inuse);
2014 
2015 		TRACE_IOCG_PATH(inuse_transfer, iocg, now,
2016 				iocg->inuse, inuse,
2017 				iocg->hweight_inuse,
2018 				iocg->hweight_after_donation);
2019 
2020 		__propagate_weights(iocg, iocg->active, inuse, true, now);
2021 	}
2022 
2023 	/* walk list should be dissolved after use */
2024 	list_for_each_entry_safe(iocg, tiocg, &inner_walk, walk_list)
2025 		list_del_init(&iocg->walk_list);
2026 }
2027 
2028 /*
2029  * A low weight iocg can amass a large amount of debt, for example, when
2030  * anonymous memory gets reclaimed aggressively. If the system has a lot of
2031  * memory paired with a slow IO device, the debt can span multiple seconds or
2032  * more. If there are no other subsequent IO issuers, the in-debt iocg may end
2033  * up blocked paying its debt while the IO device is idle.
2034  *
2035  * The following protects against such cases. If the device has been
2036  * sufficiently idle for a while, the debts are halved and delays are
2037  * recalculated.
2038  */
2039 static void ioc_forgive_debts(struct ioc *ioc, u64 usage_us_sum, int nr_debtors,
2040 			      struct ioc_now *now)
2041 {
2042 	struct ioc_gq *iocg;
2043 	u64 dur, usage_pct, nr_cycles;
2044 
2045 	/* if no debtor, reset the cycle */
2046 	if (!nr_debtors) {
2047 		ioc->dfgv_period_at = now->now;
2048 		ioc->dfgv_period_rem = 0;
2049 		ioc->dfgv_usage_us_sum = 0;
2050 		return;
2051 	}
2052 
2053 	/*
2054 	 * Debtors can pass through a lot of writes choking the device and we
2055 	 * don't want to be forgiving debts while the device is struggling from
2056 	 * write bursts. If we're missing latency targets, consider the device
2057 	 * fully utilized.
2058 	 */
2059 	if (ioc->busy_level > 0)
2060 		usage_us_sum = max_t(u64, usage_us_sum, ioc->period_us);
2061 
2062 	ioc->dfgv_usage_us_sum += usage_us_sum;
2063 	if (time_before64(now->now, ioc->dfgv_period_at + DFGV_PERIOD))
2064 		return;
2065 
2066 	/*
2067 	 * At least DFGV_PERIOD has passed since the last period. Calculate the
2068 	 * average usage and reset the period counters.
2069 	 */
2070 	dur = now->now - ioc->dfgv_period_at;
2071 	usage_pct = div64_u64(100 * ioc->dfgv_usage_us_sum, dur);
2072 
2073 	ioc->dfgv_period_at = now->now;
2074 	ioc->dfgv_usage_us_sum = 0;
2075 
2076 	/* if was too busy, reset everything */
2077 	if (usage_pct > DFGV_USAGE_PCT) {
2078 		ioc->dfgv_period_rem = 0;
2079 		return;
2080 	}
2081 
2082 	/*
2083 	 * Usage is lower than threshold. Let's forgive some debts. Debt
2084 	 * forgiveness runs off of the usual ioc timer but its period usually
2085 	 * doesn't match ioc's. Compensate the difference by performing the
2086 	 * reduction as many times as would fit in the duration since the last
2087 	 * run and carrying over the left-over duration in @ioc->dfgv_period_rem
2088 	 * - if ioc period is 75% of DFGV_PERIOD, one out of three consecutive
2089 	 * reductions is doubled.
2090 	 */
2091 	nr_cycles = dur + ioc->dfgv_period_rem;
2092 	ioc->dfgv_period_rem = do_div(nr_cycles, DFGV_PERIOD);
2093 
2094 	list_for_each_entry(iocg, &ioc->active_iocgs, active_list) {
2095 		u64 __maybe_unused old_debt, __maybe_unused old_delay;
2096 
2097 		if (!iocg->abs_vdebt && !iocg->delay)
2098 			continue;
2099 
2100 		spin_lock(&iocg->waitq.lock);
2101 
2102 		old_debt = iocg->abs_vdebt;
2103 		old_delay = iocg->delay;
2104 
2105 		if (iocg->abs_vdebt)
2106 			iocg->abs_vdebt = iocg->abs_vdebt >> nr_cycles ?: 1;
2107 		if (iocg->delay)
2108 			iocg->delay = iocg->delay >> nr_cycles ?: 1;
2109 
2110 		iocg_kick_waitq(iocg, true, now);
2111 
2112 		TRACE_IOCG_PATH(iocg_forgive_debt, iocg, now, usage_pct,
2113 				old_debt, iocg->abs_vdebt,
2114 				old_delay, iocg->delay);
2115 
2116 		spin_unlock(&iocg->waitq.lock);
2117 	}
2118 }
2119 
2120 /*
2121  * Check the active iocgs' state to avoid oversleeping and deactive
2122  * idle iocgs.
2123  *
2124  * Since waiters determine the sleep durations based on the vrate
2125  * they saw at the time of sleep, if vrate has increased, some
2126  * waiters could be sleeping for too long. Wake up tardy waiters
2127  * which should have woken up in the last period and expire idle
2128  * iocgs.
2129  */
2130 static int ioc_check_iocgs(struct ioc *ioc, struct ioc_now *now)
2131 {
2132 	int nr_debtors = 0;
2133 	struct ioc_gq *iocg, *tiocg;
2134 
2135 	list_for_each_entry_safe(iocg, tiocg, &ioc->active_iocgs, active_list) {
2136 		if (!waitqueue_active(&iocg->waitq) && !iocg->abs_vdebt &&
2137 		    !iocg->delay && !iocg_is_idle(iocg))
2138 			continue;
2139 
2140 		spin_lock(&iocg->waitq.lock);
2141 
2142 		/* flush wait and indebt stat deltas */
2143 		if (iocg->wait_since) {
2144 			iocg->stat.wait_us += now->now - iocg->wait_since;
2145 			iocg->wait_since = now->now;
2146 		}
2147 		if (iocg->indebt_since) {
2148 			iocg->stat.indebt_us +=
2149 				now->now - iocg->indebt_since;
2150 			iocg->indebt_since = now->now;
2151 		}
2152 		if (iocg->indelay_since) {
2153 			iocg->stat.indelay_us +=
2154 				now->now - iocg->indelay_since;
2155 			iocg->indelay_since = now->now;
2156 		}
2157 
2158 		if (waitqueue_active(&iocg->waitq) || iocg->abs_vdebt ||
2159 		    iocg->delay) {
2160 			/* might be oversleeping vtime / hweight changes, kick */
2161 			iocg_kick_waitq(iocg, true, now);
2162 			if (iocg->abs_vdebt || iocg->delay)
2163 				nr_debtors++;
2164 		} else if (iocg_is_idle(iocg)) {
2165 			/* no waiter and idle, deactivate */
2166 			u64 vtime = atomic64_read(&iocg->vtime);
2167 			s64 excess;
2168 
2169 			/*
2170 			 * @iocg has been inactive for a full duration and will
2171 			 * have a high budget. Account anything above target as
2172 			 * error and throw away. On reactivation, it'll start
2173 			 * with the target budget.
2174 			 */
2175 			excess = now->vnow - vtime - ioc->margins.target;
2176 			if (excess > 0) {
2177 				u32 old_hwi;
2178 
2179 				current_hweight(iocg, NULL, &old_hwi);
2180 				ioc->vtime_err -= div64_u64(excess * old_hwi,
2181 							    WEIGHT_ONE);
2182 			}
2183 
2184 			TRACE_IOCG_PATH(iocg_idle, iocg, now,
2185 					atomic64_read(&iocg->active_period),
2186 					atomic64_read(&ioc->cur_period), vtime);
2187 			__propagate_weights(iocg, 0, 0, false, now);
2188 			list_del_init(&iocg->active_list);
2189 		}
2190 
2191 		spin_unlock(&iocg->waitq.lock);
2192 	}
2193 
2194 	commit_weights(ioc);
2195 	return nr_debtors;
2196 }
2197 
2198 static void ioc_timer_fn(struct timer_list *timer)
2199 {
2200 	struct ioc *ioc = container_of(timer, struct ioc, timer);
2201 	struct ioc_gq *iocg, *tiocg;
2202 	struct ioc_now now;
2203 	LIST_HEAD(surpluses);
2204 	int nr_debtors, nr_shortages = 0, nr_lagging = 0;
2205 	u64 usage_us_sum = 0;
2206 	u32 ppm_rthr = MILLION - ioc->params.qos[QOS_RPPM];
2207 	u32 ppm_wthr = MILLION - ioc->params.qos[QOS_WPPM];
2208 	u32 missed_ppm[2], rq_wait_pct;
2209 	u64 period_vtime;
2210 	int prev_busy_level;
2211 
2212 	/* how were the latencies during the period? */
2213 	ioc_lat_stat(ioc, missed_ppm, &rq_wait_pct);
2214 
2215 	/* take care of active iocgs */
2216 	spin_lock_irq(&ioc->lock);
2217 
2218 	ioc_now(ioc, &now);
2219 
2220 	period_vtime = now.vnow - ioc->period_at_vtime;
2221 	if (WARN_ON_ONCE(!period_vtime)) {
2222 		spin_unlock_irq(&ioc->lock);
2223 		return;
2224 	}
2225 
2226 	nr_debtors = ioc_check_iocgs(ioc, &now);
2227 
2228 	/*
2229 	 * Wait and indebt stat are flushed above and the donation calculation
2230 	 * below needs updated usage stat. Let's bring stat up-to-date.
2231 	 */
2232 	iocg_flush_stat(&ioc->active_iocgs, &now);
2233 
2234 	/* calc usage and see whether some weights need to be moved around */
2235 	list_for_each_entry(iocg, &ioc->active_iocgs, active_list) {
2236 		u64 vdone, vtime, usage_us;
2237 		u32 hw_active, hw_inuse;
2238 
2239 		/*
2240 		 * Collect unused and wind vtime closer to vnow to prevent
2241 		 * iocgs from accumulating a large amount of budget.
2242 		 */
2243 		vdone = atomic64_read(&iocg->done_vtime);
2244 		vtime = atomic64_read(&iocg->vtime);
2245 		current_hweight(iocg, &hw_active, &hw_inuse);
2246 
2247 		/*
2248 		 * Latency QoS detection doesn't account for IOs which are
2249 		 * in-flight for longer than a period.  Detect them by
2250 		 * comparing vdone against period start.  If lagging behind
2251 		 * IOs from past periods, don't increase vrate.
2252 		 */
2253 		if ((ppm_rthr != MILLION || ppm_wthr != MILLION) &&
2254 		    !atomic_read(&iocg_to_blkg(iocg)->use_delay) &&
2255 		    time_after64(vtime, vdone) &&
2256 		    time_after64(vtime, now.vnow -
2257 				 MAX_LAGGING_PERIODS * period_vtime) &&
2258 		    time_before64(vdone, now.vnow - period_vtime))
2259 			nr_lagging++;
2260 
2261 		/*
2262 		 * Determine absolute usage factoring in in-flight IOs to avoid
2263 		 * high-latency completions appearing as idle.
2264 		 */
2265 		usage_us = iocg->usage_delta_us;
2266 		usage_us_sum += usage_us;
2267 
2268 		/* see whether there's surplus vtime */
2269 		WARN_ON_ONCE(!list_empty(&iocg->surplus_list));
2270 		if (hw_inuse < hw_active ||
2271 		    (!waitqueue_active(&iocg->waitq) &&
2272 		     time_before64(vtime, now.vnow - ioc->margins.low))) {
2273 			u32 hwa, old_hwi, hwm, new_hwi, usage;
2274 			u64 usage_dur;
2275 
2276 			if (vdone != vtime) {
2277 				u64 inflight_us = DIV64_U64_ROUND_UP(
2278 					cost_to_abs_cost(vtime - vdone, hw_inuse),
2279 					ioc->vtime_base_rate);
2280 
2281 				usage_us = max(usage_us, inflight_us);
2282 			}
2283 
2284 			/* convert to hweight based usage ratio */
2285 			if (time_after64(iocg->activated_at, ioc->period_at))
2286 				usage_dur = max_t(u64, now.now - iocg->activated_at, 1);
2287 			else
2288 				usage_dur = max_t(u64, now.now - ioc->period_at, 1);
2289 
2290 			usage = clamp_t(u32,
2291 				DIV64_U64_ROUND_UP(usage_us * WEIGHT_ONE,
2292 						   usage_dur),
2293 				1, WEIGHT_ONE);
2294 
2295 			/*
2296 			 * Already donating or accumulated enough to start.
2297 			 * Determine the donation amount.
2298 			 */
2299 			current_hweight(iocg, &hwa, &old_hwi);
2300 			hwm = current_hweight_max(iocg);
2301 			new_hwi = hweight_after_donation(iocg, old_hwi, hwm,
2302 							 usage, &now);
2303 			/*
2304 			 * Donation calculation assumes hweight_after_donation
2305 			 * to be positive, a condition that a donor w/ hwa < 2
2306 			 * can't meet. Don't bother with donation if hwa is
2307 			 * below 2. It's not gonna make a meaningful difference
2308 			 * anyway.
2309 			 */
2310 			if (new_hwi < hwm && hwa >= 2) {
2311 				iocg->hweight_donating = hwa;
2312 				iocg->hweight_after_donation = new_hwi;
2313 				list_add(&iocg->surplus_list, &surpluses);
2314 			} else if (!iocg->abs_vdebt) {
2315 				/*
2316 				 * @iocg doesn't have enough to donate. Reset
2317 				 * its inuse to active.
2318 				 *
2319 				 * Don't reset debtors as their inuse's are
2320 				 * owned by debt handling. This shouldn't affect
2321 				 * donation calculuation in any meaningful way
2322 				 * as @iocg doesn't have a meaningful amount of
2323 				 * share anyway.
2324 				 */
2325 				TRACE_IOCG_PATH(inuse_shortage, iocg, &now,
2326 						iocg->inuse, iocg->active,
2327 						iocg->hweight_inuse, new_hwi);
2328 
2329 				__propagate_weights(iocg, iocg->active,
2330 						    iocg->active, true, &now);
2331 				nr_shortages++;
2332 			}
2333 		} else {
2334 			/* genuinely short on vtime */
2335 			nr_shortages++;
2336 		}
2337 	}
2338 
2339 	if (!list_empty(&surpluses) && nr_shortages)
2340 		transfer_surpluses(&surpluses, &now);
2341 
2342 	commit_weights(ioc);
2343 
2344 	/* surplus list should be dissolved after use */
2345 	list_for_each_entry_safe(iocg, tiocg, &surpluses, surplus_list)
2346 		list_del_init(&iocg->surplus_list);
2347 
2348 	/*
2349 	 * If q is getting clogged or we're missing too much, we're issuing
2350 	 * too much IO and should lower vtime rate.  If we're not missing
2351 	 * and experiencing shortages but not surpluses, we're too stingy
2352 	 * and should increase vtime rate.
2353 	 */
2354 	prev_busy_level = ioc->busy_level;
2355 	if (rq_wait_pct > RQ_WAIT_BUSY_PCT ||
2356 	    missed_ppm[READ] > ppm_rthr ||
2357 	    missed_ppm[WRITE] > ppm_wthr) {
2358 		/* clearly missing QoS targets, slow down vrate */
2359 		ioc->busy_level = max(ioc->busy_level, 0);
2360 		ioc->busy_level++;
2361 	} else if (rq_wait_pct <= RQ_WAIT_BUSY_PCT * UNBUSY_THR_PCT / 100 &&
2362 		   missed_ppm[READ] <= ppm_rthr * UNBUSY_THR_PCT / 100 &&
2363 		   missed_ppm[WRITE] <= ppm_wthr * UNBUSY_THR_PCT / 100) {
2364 		/* QoS targets are being met with >25% margin */
2365 		if (nr_shortages) {
2366 			/*
2367 			 * We're throttling while the device has spare
2368 			 * capacity.  If vrate was being slowed down, stop.
2369 			 */
2370 			ioc->busy_level = min(ioc->busy_level, 0);
2371 
2372 			/*
2373 			 * If there are IOs spanning multiple periods, wait
2374 			 * them out before pushing the device harder.
2375 			 */
2376 			if (!nr_lagging)
2377 				ioc->busy_level--;
2378 		} else {
2379 			/*
2380 			 * Nobody is being throttled and the users aren't
2381 			 * issuing enough IOs to saturate the device.  We
2382 			 * simply don't know how close the device is to
2383 			 * saturation.  Coast.
2384 			 */
2385 			ioc->busy_level = 0;
2386 		}
2387 	} else {
2388 		/* inside the hysterisis margin, we're good */
2389 		ioc->busy_level = 0;
2390 	}
2391 
2392 	ioc->busy_level = clamp(ioc->busy_level, -1000, 1000);
2393 
2394 	ioc_adjust_base_vrate(ioc, rq_wait_pct, nr_lagging, nr_shortages,
2395 			      prev_busy_level, missed_ppm);
2396 
2397 	ioc_refresh_params(ioc, false);
2398 
2399 	ioc_forgive_debts(ioc, usage_us_sum, nr_debtors, &now);
2400 
2401 	/*
2402 	 * This period is done.  Move onto the next one.  If nothing's
2403 	 * going on with the device, stop the timer.
2404 	 */
2405 	atomic64_inc(&ioc->cur_period);
2406 
2407 	if (ioc->running != IOC_STOP) {
2408 		if (!list_empty(&ioc->active_iocgs)) {
2409 			ioc_start_period(ioc, &now);
2410 		} else {
2411 			ioc->busy_level = 0;
2412 			ioc->vtime_err = 0;
2413 			ioc->running = IOC_IDLE;
2414 		}
2415 
2416 		ioc_refresh_vrate(ioc, &now);
2417 	}
2418 
2419 	spin_unlock_irq(&ioc->lock);
2420 }
2421 
2422 static u64 adjust_inuse_and_calc_cost(struct ioc_gq *iocg, u64 vtime,
2423 				      u64 abs_cost, struct ioc_now *now)
2424 {
2425 	struct ioc *ioc = iocg->ioc;
2426 	struct ioc_margins *margins = &ioc->margins;
2427 	u32 __maybe_unused old_inuse = iocg->inuse, __maybe_unused old_hwi;
2428 	u32 hwi, adj_step;
2429 	s64 margin;
2430 	u64 cost, new_inuse;
2431 
2432 	current_hweight(iocg, NULL, &hwi);
2433 	old_hwi = hwi;
2434 	cost = abs_cost_to_cost(abs_cost, hwi);
2435 	margin = now->vnow - vtime - cost;
2436 
2437 	/* debt handling owns inuse for debtors */
2438 	if (iocg->abs_vdebt)
2439 		return cost;
2440 
2441 	/*
2442 	 * We only increase inuse during period and do so if the margin has
2443 	 * deteriorated since the previous adjustment.
2444 	 */
2445 	if (margin >= iocg->saved_margin || margin >= margins->low ||
2446 	    iocg->inuse == iocg->active)
2447 		return cost;
2448 
2449 	spin_lock_irq(&ioc->lock);
2450 
2451 	/* we own inuse only when @iocg is in the normal active state */
2452 	if (iocg->abs_vdebt || list_empty(&iocg->active_list)) {
2453 		spin_unlock_irq(&ioc->lock);
2454 		return cost;
2455 	}
2456 
2457 	/*
2458 	 * Bump up inuse till @abs_cost fits in the existing budget.
2459 	 * adj_step must be determined after acquiring ioc->lock - we might
2460 	 * have raced and lost to another thread for activation and could
2461 	 * be reading 0 iocg->active before ioc->lock which will lead to
2462 	 * infinite loop.
2463 	 */
2464 	new_inuse = iocg->inuse;
2465 	adj_step = DIV_ROUND_UP(iocg->active * INUSE_ADJ_STEP_PCT, 100);
2466 	do {
2467 		new_inuse = new_inuse + adj_step;
2468 		propagate_weights(iocg, iocg->active, new_inuse, true, now);
2469 		current_hweight(iocg, NULL, &hwi);
2470 		cost = abs_cost_to_cost(abs_cost, hwi);
2471 	} while (time_after64(vtime + cost, now->vnow) &&
2472 		 iocg->inuse != iocg->active);
2473 
2474 	spin_unlock_irq(&ioc->lock);
2475 
2476 	TRACE_IOCG_PATH(inuse_adjust, iocg, now,
2477 			old_inuse, iocg->inuse, old_hwi, hwi);
2478 
2479 	return cost;
2480 }
2481 
2482 static void calc_vtime_cost_builtin(struct bio *bio, struct ioc_gq *iocg,
2483 				    bool is_merge, u64 *costp)
2484 {
2485 	struct ioc *ioc = iocg->ioc;
2486 	u64 coef_seqio, coef_randio, coef_page;
2487 	u64 pages = max_t(u64, bio_sectors(bio) >> IOC_SECT_TO_PAGE_SHIFT, 1);
2488 	u64 seek_pages = 0;
2489 	u64 cost = 0;
2490 
2491 	switch (bio_op(bio)) {
2492 	case REQ_OP_READ:
2493 		coef_seqio	= ioc->params.lcoefs[LCOEF_RSEQIO];
2494 		coef_randio	= ioc->params.lcoefs[LCOEF_RRANDIO];
2495 		coef_page	= ioc->params.lcoefs[LCOEF_RPAGE];
2496 		break;
2497 	case REQ_OP_WRITE:
2498 		coef_seqio	= ioc->params.lcoefs[LCOEF_WSEQIO];
2499 		coef_randio	= ioc->params.lcoefs[LCOEF_WRANDIO];
2500 		coef_page	= ioc->params.lcoefs[LCOEF_WPAGE];
2501 		break;
2502 	default:
2503 		goto out;
2504 	}
2505 
2506 	if (iocg->cursor) {
2507 		seek_pages = abs(bio->bi_iter.bi_sector - iocg->cursor);
2508 		seek_pages >>= IOC_SECT_TO_PAGE_SHIFT;
2509 	}
2510 
2511 	if (!is_merge) {
2512 		if (seek_pages > LCOEF_RANDIO_PAGES) {
2513 			cost += coef_randio;
2514 		} else {
2515 			cost += coef_seqio;
2516 		}
2517 	}
2518 	cost += pages * coef_page;
2519 out:
2520 	*costp = cost;
2521 }
2522 
2523 static u64 calc_vtime_cost(struct bio *bio, struct ioc_gq *iocg, bool is_merge)
2524 {
2525 	u64 cost;
2526 
2527 	calc_vtime_cost_builtin(bio, iocg, is_merge, &cost);
2528 	return cost;
2529 }
2530 
2531 static void calc_size_vtime_cost_builtin(struct request *rq, struct ioc *ioc,
2532 					 u64 *costp)
2533 {
2534 	unsigned int pages = blk_rq_stats_sectors(rq) >> IOC_SECT_TO_PAGE_SHIFT;
2535 
2536 	switch (req_op(rq)) {
2537 	case REQ_OP_READ:
2538 		*costp = pages * ioc->params.lcoefs[LCOEF_RPAGE];
2539 		break;
2540 	case REQ_OP_WRITE:
2541 		*costp = pages * ioc->params.lcoefs[LCOEF_WPAGE];
2542 		break;
2543 	default:
2544 		*costp = 0;
2545 	}
2546 }
2547 
2548 static u64 calc_size_vtime_cost(struct request *rq, struct ioc *ioc)
2549 {
2550 	u64 cost;
2551 
2552 	calc_size_vtime_cost_builtin(rq, ioc, &cost);
2553 	return cost;
2554 }
2555 
2556 static void ioc_rqos_throttle(struct rq_qos *rqos, struct bio *bio)
2557 {
2558 	struct blkcg_gq *blkg = bio->bi_blkg;
2559 	struct ioc *ioc = rqos_to_ioc(rqos);
2560 	struct ioc_gq *iocg = blkg_to_iocg(blkg);
2561 	struct ioc_now now;
2562 	struct iocg_wait wait;
2563 	u64 abs_cost, cost, vtime;
2564 	bool use_debt, ioc_locked;
2565 	unsigned long flags;
2566 
2567 	/* bypass IOs if disabled, still initializing, or for root cgroup */
2568 	if (!ioc->enabled || !iocg || !iocg->level)
2569 		return;
2570 
2571 	/* calculate the absolute vtime cost */
2572 	abs_cost = calc_vtime_cost(bio, iocg, false);
2573 	if (!abs_cost)
2574 		return;
2575 
2576 	if (!iocg_activate(iocg, &now))
2577 		return;
2578 
2579 	iocg->cursor = bio_end_sector(bio);
2580 	vtime = atomic64_read(&iocg->vtime);
2581 	cost = adjust_inuse_and_calc_cost(iocg, vtime, abs_cost, &now);
2582 
2583 	/*
2584 	 * If no one's waiting and within budget, issue right away.  The
2585 	 * tests are racy but the races aren't systemic - we only miss once
2586 	 * in a while which is fine.
2587 	 */
2588 	if (!waitqueue_active(&iocg->waitq) && !iocg->abs_vdebt &&
2589 	    time_before_eq64(vtime + cost, now.vnow)) {
2590 		iocg_commit_bio(iocg, bio, abs_cost, cost);
2591 		return;
2592 	}
2593 
2594 	/*
2595 	 * We're over budget. This can be handled in two ways. IOs which may
2596 	 * cause priority inversions are punted to @ioc->aux_iocg and charged as
2597 	 * debt. Otherwise, the issuer is blocked on @iocg->waitq. Debt handling
2598 	 * requires @ioc->lock, waitq handling @iocg->waitq.lock. Determine
2599 	 * whether debt handling is needed and acquire locks accordingly.
2600 	 */
2601 	use_debt = bio_issue_as_root_blkg(bio) || fatal_signal_pending(current);
2602 	ioc_locked = use_debt || READ_ONCE(iocg->abs_vdebt);
2603 retry_lock:
2604 	iocg_lock(iocg, ioc_locked, &flags);
2605 
2606 	/*
2607 	 * @iocg must stay activated for debt and waitq handling. Deactivation
2608 	 * is synchronized against both ioc->lock and waitq.lock and we won't
2609 	 * get deactivated as long as we're waiting or has debt, so we're good
2610 	 * if we're activated here. In the unlikely cases that we aren't, just
2611 	 * issue the IO.
2612 	 */
2613 	if (unlikely(list_empty(&iocg->active_list))) {
2614 		iocg_unlock(iocg, ioc_locked, &flags);
2615 		iocg_commit_bio(iocg, bio, abs_cost, cost);
2616 		return;
2617 	}
2618 
2619 	/*
2620 	 * We're over budget. If @bio has to be issued regardless, remember
2621 	 * the abs_cost instead of advancing vtime. iocg_kick_waitq() will pay
2622 	 * off the debt before waking more IOs.
2623 	 *
2624 	 * This way, the debt is continuously paid off each period with the
2625 	 * actual budget available to the cgroup. If we just wound vtime, we
2626 	 * would incorrectly use the current hw_inuse for the entire amount
2627 	 * which, for example, can lead to the cgroup staying blocked for a
2628 	 * long time even with substantially raised hw_inuse.
2629 	 *
2630 	 * An iocg with vdebt should stay online so that the timer can keep
2631 	 * deducting its vdebt and [de]activate use_delay mechanism
2632 	 * accordingly. We don't want to race against the timer trying to
2633 	 * clear them and leave @iocg inactive w/ dangling use_delay heavily
2634 	 * penalizing the cgroup and its descendants.
2635 	 */
2636 	if (use_debt) {
2637 		iocg_incur_debt(iocg, abs_cost, &now);
2638 		if (iocg_kick_delay(iocg, &now))
2639 			blkcg_schedule_throttle(rqos->q->disk,
2640 					(bio->bi_opf & REQ_SWAP) == REQ_SWAP);
2641 		iocg_unlock(iocg, ioc_locked, &flags);
2642 		return;
2643 	}
2644 
2645 	/* guarantee that iocgs w/ waiters have maximum inuse */
2646 	if (!iocg->abs_vdebt && iocg->inuse != iocg->active) {
2647 		if (!ioc_locked) {
2648 			iocg_unlock(iocg, false, &flags);
2649 			ioc_locked = true;
2650 			goto retry_lock;
2651 		}
2652 		propagate_weights(iocg, iocg->active, iocg->active, true,
2653 				  &now);
2654 	}
2655 
2656 	/*
2657 	 * Append self to the waitq and schedule the wakeup timer if we're
2658 	 * the first waiter.  The timer duration is calculated based on the
2659 	 * current vrate.  vtime and hweight changes can make it too short
2660 	 * or too long.  Each wait entry records the absolute cost it's
2661 	 * waiting for to allow re-evaluation using a custom wait entry.
2662 	 *
2663 	 * If too short, the timer simply reschedules itself.  If too long,
2664 	 * the period timer will notice and trigger wakeups.
2665 	 *
2666 	 * All waiters are on iocg->waitq and the wait states are
2667 	 * synchronized using waitq.lock.
2668 	 */
2669 	init_waitqueue_func_entry(&wait.wait, iocg_wake_fn);
2670 	wait.wait.private = current;
2671 	wait.bio = bio;
2672 	wait.abs_cost = abs_cost;
2673 	wait.committed = false;	/* will be set true by waker */
2674 
2675 	__add_wait_queue_entry_tail(&iocg->waitq, &wait.wait);
2676 	iocg_kick_waitq(iocg, ioc_locked, &now);
2677 
2678 	iocg_unlock(iocg, ioc_locked, &flags);
2679 
2680 	while (true) {
2681 		set_current_state(TASK_UNINTERRUPTIBLE);
2682 		if (wait.committed)
2683 			break;
2684 		io_schedule();
2685 	}
2686 
2687 	/* waker already committed us, proceed */
2688 	finish_wait(&iocg->waitq, &wait.wait);
2689 }
2690 
2691 static void ioc_rqos_merge(struct rq_qos *rqos, struct request *rq,
2692 			   struct bio *bio)
2693 {
2694 	struct ioc_gq *iocg = blkg_to_iocg(bio->bi_blkg);
2695 	struct ioc *ioc = rqos_to_ioc(rqos);
2696 	sector_t bio_end = bio_end_sector(bio);
2697 	struct ioc_now now;
2698 	u64 vtime, abs_cost, cost;
2699 	unsigned long flags;
2700 
2701 	/* bypass if disabled, still initializing, or for root cgroup */
2702 	if (!ioc->enabled || !iocg || !iocg->level)
2703 		return;
2704 
2705 	abs_cost = calc_vtime_cost(bio, iocg, true);
2706 	if (!abs_cost)
2707 		return;
2708 
2709 	ioc_now(ioc, &now);
2710 
2711 	vtime = atomic64_read(&iocg->vtime);
2712 	cost = adjust_inuse_and_calc_cost(iocg, vtime, abs_cost, &now);
2713 
2714 	/* update cursor if backmerging into the request at the cursor */
2715 	if (blk_rq_pos(rq) < bio_end &&
2716 	    blk_rq_pos(rq) + blk_rq_sectors(rq) == iocg->cursor)
2717 		iocg->cursor = bio_end;
2718 
2719 	/*
2720 	 * Charge if there's enough vtime budget and the existing request has
2721 	 * cost assigned.
2722 	 */
2723 	if (rq->bio && rq->bio->bi_iocost_cost &&
2724 	    time_before_eq64(atomic64_read(&iocg->vtime) + cost, now.vnow)) {
2725 		iocg_commit_bio(iocg, bio, abs_cost, cost);
2726 		return;
2727 	}
2728 
2729 	/*
2730 	 * Otherwise, account it as debt if @iocg is online, which it should
2731 	 * be for the vast majority of cases. See debt handling in
2732 	 * ioc_rqos_throttle() for details.
2733 	 */
2734 	spin_lock_irqsave(&ioc->lock, flags);
2735 	spin_lock(&iocg->waitq.lock);
2736 
2737 	if (likely(!list_empty(&iocg->active_list))) {
2738 		iocg_incur_debt(iocg, abs_cost, &now);
2739 		if (iocg_kick_delay(iocg, &now))
2740 			blkcg_schedule_throttle(rqos->q->disk,
2741 					(bio->bi_opf & REQ_SWAP) == REQ_SWAP);
2742 	} else {
2743 		iocg_commit_bio(iocg, bio, abs_cost, cost);
2744 	}
2745 
2746 	spin_unlock(&iocg->waitq.lock);
2747 	spin_unlock_irqrestore(&ioc->lock, flags);
2748 }
2749 
2750 static void ioc_rqos_done_bio(struct rq_qos *rqos, struct bio *bio)
2751 {
2752 	struct ioc_gq *iocg = blkg_to_iocg(bio->bi_blkg);
2753 
2754 	if (iocg && bio->bi_iocost_cost)
2755 		atomic64_add(bio->bi_iocost_cost, &iocg->done_vtime);
2756 }
2757 
2758 static void ioc_rqos_done(struct rq_qos *rqos, struct request *rq)
2759 {
2760 	struct ioc *ioc = rqos_to_ioc(rqos);
2761 	struct ioc_pcpu_stat *ccs;
2762 	u64 on_q_ns, rq_wait_ns, size_nsec;
2763 	int pidx, rw;
2764 
2765 	if (!ioc->enabled || !rq->alloc_time_ns || !rq->start_time_ns)
2766 		return;
2767 
2768 	switch (req_op(rq)) {
2769 	case REQ_OP_READ:
2770 		pidx = QOS_RLAT;
2771 		rw = READ;
2772 		break;
2773 	case REQ_OP_WRITE:
2774 		pidx = QOS_WLAT;
2775 		rw = WRITE;
2776 		break;
2777 	default:
2778 		return;
2779 	}
2780 
2781 	on_q_ns = ktime_get_ns() - rq->alloc_time_ns;
2782 	rq_wait_ns = rq->start_time_ns - rq->alloc_time_ns;
2783 	size_nsec = div64_u64(calc_size_vtime_cost(rq, ioc), VTIME_PER_NSEC);
2784 
2785 	ccs = get_cpu_ptr(ioc->pcpu_stat);
2786 
2787 	if (on_q_ns <= size_nsec ||
2788 	    on_q_ns - size_nsec <= ioc->params.qos[pidx] * NSEC_PER_USEC)
2789 		local_inc(&ccs->missed[rw].nr_met);
2790 	else
2791 		local_inc(&ccs->missed[rw].nr_missed);
2792 
2793 	local64_add(rq_wait_ns, &ccs->rq_wait_ns);
2794 
2795 	put_cpu_ptr(ccs);
2796 }
2797 
2798 static void ioc_rqos_queue_depth_changed(struct rq_qos *rqos)
2799 {
2800 	struct ioc *ioc = rqos_to_ioc(rqos);
2801 
2802 	spin_lock_irq(&ioc->lock);
2803 	ioc_refresh_params(ioc, false);
2804 	spin_unlock_irq(&ioc->lock);
2805 }
2806 
2807 static void ioc_rqos_exit(struct rq_qos *rqos)
2808 {
2809 	struct ioc *ioc = rqos_to_ioc(rqos);
2810 
2811 	blkcg_deactivate_policy(rqos->q, &blkcg_policy_iocost);
2812 
2813 	spin_lock_irq(&ioc->lock);
2814 	ioc->running = IOC_STOP;
2815 	spin_unlock_irq(&ioc->lock);
2816 
2817 	del_timer_sync(&ioc->timer);
2818 	free_percpu(ioc->pcpu_stat);
2819 	kfree(ioc);
2820 }
2821 
2822 static struct rq_qos_ops ioc_rqos_ops = {
2823 	.throttle = ioc_rqos_throttle,
2824 	.merge = ioc_rqos_merge,
2825 	.done_bio = ioc_rqos_done_bio,
2826 	.done = ioc_rqos_done,
2827 	.queue_depth_changed = ioc_rqos_queue_depth_changed,
2828 	.exit = ioc_rqos_exit,
2829 };
2830 
2831 static int blk_iocost_init(struct gendisk *disk)
2832 {
2833 	struct request_queue *q = disk->queue;
2834 	struct ioc *ioc;
2835 	struct rq_qos *rqos;
2836 	int i, cpu, ret;
2837 
2838 	ioc = kzalloc(sizeof(*ioc), GFP_KERNEL);
2839 	if (!ioc)
2840 		return -ENOMEM;
2841 
2842 	ioc->pcpu_stat = alloc_percpu(struct ioc_pcpu_stat);
2843 	if (!ioc->pcpu_stat) {
2844 		kfree(ioc);
2845 		return -ENOMEM;
2846 	}
2847 
2848 	for_each_possible_cpu(cpu) {
2849 		struct ioc_pcpu_stat *ccs = per_cpu_ptr(ioc->pcpu_stat, cpu);
2850 
2851 		for (i = 0; i < ARRAY_SIZE(ccs->missed); i++) {
2852 			local_set(&ccs->missed[i].nr_met, 0);
2853 			local_set(&ccs->missed[i].nr_missed, 0);
2854 		}
2855 		local64_set(&ccs->rq_wait_ns, 0);
2856 	}
2857 
2858 	rqos = &ioc->rqos;
2859 	rqos->id = RQ_QOS_COST;
2860 	rqos->ops = &ioc_rqos_ops;
2861 	rqos->q = q;
2862 
2863 	spin_lock_init(&ioc->lock);
2864 	timer_setup(&ioc->timer, ioc_timer_fn, 0);
2865 	INIT_LIST_HEAD(&ioc->active_iocgs);
2866 
2867 	ioc->running = IOC_IDLE;
2868 	ioc->vtime_base_rate = VTIME_PER_USEC;
2869 	atomic64_set(&ioc->vtime_rate, VTIME_PER_USEC);
2870 	seqcount_spinlock_init(&ioc->period_seqcount, &ioc->lock);
2871 	ioc->period_at = ktime_to_us(ktime_get());
2872 	atomic64_set(&ioc->cur_period, 0);
2873 	atomic_set(&ioc->hweight_gen, 0);
2874 
2875 	spin_lock_irq(&ioc->lock);
2876 	ioc->autop_idx = AUTOP_INVALID;
2877 	ioc_refresh_params(ioc, true);
2878 	spin_unlock_irq(&ioc->lock);
2879 
2880 	/*
2881 	 * rqos must be added before activation to allow iocg_pd_init() to
2882 	 * lookup the ioc from q. This means that the rqos methods may get
2883 	 * called before policy activation completion, can't assume that the
2884 	 * target bio has an iocg associated and need to test for NULL iocg.
2885 	 */
2886 	ret = rq_qos_add(q, rqos);
2887 	if (ret)
2888 		goto err_free_ioc;
2889 
2890 	ret = blkcg_activate_policy(q, &blkcg_policy_iocost);
2891 	if (ret)
2892 		goto err_del_qos;
2893 	return 0;
2894 
2895 err_del_qos:
2896 	rq_qos_del(q, rqos);
2897 err_free_ioc:
2898 	free_percpu(ioc->pcpu_stat);
2899 	kfree(ioc);
2900 	return ret;
2901 }
2902 
2903 static struct blkcg_policy_data *ioc_cpd_alloc(gfp_t gfp)
2904 {
2905 	struct ioc_cgrp *iocc;
2906 
2907 	iocc = kzalloc(sizeof(struct ioc_cgrp), gfp);
2908 	if (!iocc)
2909 		return NULL;
2910 
2911 	iocc->dfl_weight = CGROUP_WEIGHT_DFL * WEIGHT_ONE;
2912 	return &iocc->cpd;
2913 }
2914 
2915 static void ioc_cpd_free(struct blkcg_policy_data *cpd)
2916 {
2917 	kfree(container_of(cpd, struct ioc_cgrp, cpd));
2918 }
2919 
2920 static struct blkg_policy_data *ioc_pd_alloc(gfp_t gfp, struct request_queue *q,
2921 					     struct blkcg *blkcg)
2922 {
2923 	int levels = blkcg->css.cgroup->level + 1;
2924 	struct ioc_gq *iocg;
2925 
2926 	iocg = kzalloc_node(struct_size(iocg, ancestors, levels), gfp, q->node);
2927 	if (!iocg)
2928 		return NULL;
2929 
2930 	iocg->pcpu_stat = alloc_percpu_gfp(struct iocg_pcpu_stat, gfp);
2931 	if (!iocg->pcpu_stat) {
2932 		kfree(iocg);
2933 		return NULL;
2934 	}
2935 
2936 	return &iocg->pd;
2937 }
2938 
2939 static void ioc_pd_init(struct blkg_policy_data *pd)
2940 {
2941 	struct ioc_gq *iocg = pd_to_iocg(pd);
2942 	struct blkcg_gq *blkg = pd_to_blkg(&iocg->pd);
2943 	struct ioc *ioc = q_to_ioc(blkg->q);
2944 	struct ioc_now now;
2945 	struct blkcg_gq *tblkg;
2946 	unsigned long flags;
2947 
2948 	ioc_now(ioc, &now);
2949 
2950 	iocg->ioc = ioc;
2951 	atomic64_set(&iocg->vtime, now.vnow);
2952 	atomic64_set(&iocg->done_vtime, now.vnow);
2953 	atomic64_set(&iocg->active_period, atomic64_read(&ioc->cur_period));
2954 	INIT_LIST_HEAD(&iocg->active_list);
2955 	INIT_LIST_HEAD(&iocg->walk_list);
2956 	INIT_LIST_HEAD(&iocg->surplus_list);
2957 	iocg->hweight_active = WEIGHT_ONE;
2958 	iocg->hweight_inuse = WEIGHT_ONE;
2959 
2960 	init_waitqueue_head(&iocg->waitq);
2961 	hrtimer_init(&iocg->waitq_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
2962 	iocg->waitq_timer.function = iocg_waitq_timer_fn;
2963 
2964 	iocg->level = blkg->blkcg->css.cgroup->level;
2965 
2966 	for (tblkg = blkg; tblkg; tblkg = tblkg->parent) {
2967 		struct ioc_gq *tiocg = blkg_to_iocg(tblkg);
2968 		iocg->ancestors[tiocg->level] = tiocg;
2969 	}
2970 
2971 	spin_lock_irqsave(&ioc->lock, flags);
2972 	weight_updated(iocg, &now);
2973 	spin_unlock_irqrestore(&ioc->lock, flags);
2974 }
2975 
2976 static void ioc_pd_free(struct blkg_policy_data *pd)
2977 {
2978 	struct ioc_gq *iocg = pd_to_iocg(pd);
2979 	struct ioc *ioc = iocg->ioc;
2980 	unsigned long flags;
2981 
2982 	if (ioc) {
2983 		spin_lock_irqsave(&ioc->lock, flags);
2984 
2985 		if (!list_empty(&iocg->active_list)) {
2986 			struct ioc_now now;
2987 
2988 			ioc_now(ioc, &now);
2989 			propagate_weights(iocg, 0, 0, false, &now);
2990 			list_del_init(&iocg->active_list);
2991 		}
2992 
2993 		WARN_ON_ONCE(!list_empty(&iocg->walk_list));
2994 		WARN_ON_ONCE(!list_empty(&iocg->surplus_list));
2995 
2996 		spin_unlock_irqrestore(&ioc->lock, flags);
2997 
2998 		hrtimer_cancel(&iocg->waitq_timer);
2999 	}
3000 	free_percpu(iocg->pcpu_stat);
3001 	kfree(iocg);
3002 }
3003 
3004 static void ioc_pd_stat(struct blkg_policy_data *pd, struct seq_file *s)
3005 {
3006 	struct ioc_gq *iocg = pd_to_iocg(pd);
3007 	struct ioc *ioc = iocg->ioc;
3008 
3009 	if (!ioc->enabled)
3010 		return;
3011 
3012 	if (iocg->level == 0) {
3013 		unsigned vp10k = DIV64_U64_ROUND_CLOSEST(
3014 			ioc->vtime_base_rate * 10000,
3015 			VTIME_PER_USEC);
3016 		seq_printf(s, " cost.vrate=%u.%02u", vp10k / 100, vp10k % 100);
3017 	}
3018 
3019 	seq_printf(s, " cost.usage=%llu", iocg->last_stat.usage_us);
3020 
3021 	if (blkcg_debug_stats)
3022 		seq_printf(s, " cost.wait=%llu cost.indebt=%llu cost.indelay=%llu",
3023 			iocg->last_stat.wait_us,
3024 			iocg->last_stat.indebt_us,
3025 			iocg->last_stat.indelay_us);
3026 }
3027 
3028 static u64 ioc_weight_prfill(struct seq_file *sf, struct blkg_policy_data *pd,
3029 			     int off)
3030 {
3031 	const char *dname = blkg_dev_name(pd->blkg);
3032 	struct ioc_gq *iocg = pd_to_iocg(pd);
3033 
3034 	if (dname && iocg->cfg_weight)
3035 		seq_printf(sf, "%s %u\n", dname, iocg->cfg_weight / WEIGHT_ONE);
3036 	return 0;
3037 }
3038 
3039 
3040 static int ioc_weight_show(struct seq_file *sf, void *v)
3041 {
3042 	struct blkcg *blkcg = css_to_blkcg(seq_css(sf));
3043 	struct ioc_cgrp *iocc = blkcg_to_iocc(blkcg);
3044 
3045 	seq_printf(sf, "default %u\n", iocc->dfl_weight / WEIGHT_ONE);
3046 	blkcg_print_blkgs(sf, blkcg, ioc_weight_prfill,
3047 			  &blkcg_policy_iocost, seq_cft(sf)->private, false);
3048 	return 0;
3049 }
3050 
3051 static ssize_t ioc_weight_write(struct kernfs_open_file *of, char *buf,
3052 				size_t nbytes, loff_t off)
3053 {
3054 	struct blkcg *blkcg = css_to_blkcg(of_css(of));
3055 	struct ioc_cgrp *iocc = blkcg_to_iocc(blkcg);
3056 	struct blkg_conf_ctx ctx;
3057 	struct ioc_now now;
3058 	struct ioc_gq *iocg;
3059 	u32 v;
3060 	int ret;
3061 
3062 	if (!strchr(buf, ':')) {
3063 		struct blkcg_gq *blkg;
3064 
3065 		if (!sscanf(buf, "default %u", &v) && !sscanf(buf, "%u", &v))
3066 			return -EINVAL;
3067 
3068 		if (v < CGROUP_WEIGHT_MIN || v > CGROUP_WEIGHT_MAX)
3069 			return -EINVAL;
3070 
3071 		spin_lock_irq(&blkcg->lock);
3072 		iocc->dfl_weight = v * WEIGHT_ONE;
3073 		hlist_for_each_entry(blkg, &blkcg->blkg_list, blkcg_node) {
3074 			struct ioc_gq *iocg = blkg_to_iocg(blkg);
3075 
3076 			if (iocg) {
3077 				spin_lock(&iocg->ioc->lock);
3078 				ioc_now(iocg->ioc, &now);
3079 				weight_updated(iocg, &now);
3080 				spin_unlock(&iocg->ioc->lock);
3081 			}
3082 		}
3083 		spin_unlock_irq(&blkcg->lock);
3084 
3085 		return nbytes;
3086 	}
3087 
3088 	ret = blkg_conf_prep(blkcg, &blkcg_policy_iocost, buf, &ctx);
3089 	if (ret)
3090 		return ret;
3091 
3092 	iocg = blkg_to_iocg(ctx.blkg);
3093 
3094 	if (!strncmp(ctx.body, "default", 7)) {
3095 		v = 0;
3096 	} else {
3097 		if (!sscanf(ctx.body, "%u", &v))
3098 			goto einval;
3099 		if (v < CGROUP_WEIGHT_MIN || v > CGROUP_WEIGHT_MAX)
3100 			goto einval;
3101 	}
3102 
3103 	spin_lock(&iocg->ioc->lock);
3104 	iocg->cfg_weight = v * WEIGHT_ONE;
3105 	ioc_now(iocg->ioc, &now);
3106 	weight_updated(iocg, &now);
3107 	spin_unlock(&iocg->ioc->lock);
3108 
3109 	blkg_conf_finish(&ctx);
3110 	return nbytes;
3111 
3112 einval:
3113 	blkg_conf_finish(&ctx);
3114 	return -EINVAL;
3115 }
3116 
3117 static u64 ioc_qos_prfill(struct seq_file *sf, struct blkg_policy_data *pd,
3118 			  int off)
3119 {
3120 	const char *dname = blkg_dev_name(pd->blkg);
3121 	struct ioc *ioc = pd_to_iocg(pd)->ioc;
3122 
3123 	if (!dname)
3124 		return 0;
3125 
3126 	seq_printf(sf, "%s enable=%d ctrl=%s rpct=%u.%02u rlat=%u wpct=%u.%02u wlat=%u min=%u.%02u max=%u.%02u\n",
3127 		   dname, ioc->enabled, ioc->user_qos_params ? "user" : "auto",
3128 		   ioc->params.qos[QOS_RPPM] / 10000,
3129 		   ioc->params.qos[QOS_RPPM] % 10000 / 100,
3130 		   ioc->params.qos[QOS_RLAT],
3131 		   ioc->params.qos[QOS_WPPM] / 10000,
3132 		   ioc->params.qos[QOS_WPPM] % 10000 / 100,
3133 		   ioc->params.qos[QOS_WLAT],
3134 		   ioc->params.qos[QOS_MIN] / 10000,
3135 		   ioc->params.qos[QOS_MIN] % 10000 / 100,
3136 		   ioc->params.qos[QOS_MAX] / 10000,
3137 		   ioc->params.qos[QOS_MAX] % 10000 / 100);
3138 	return 0;
3139 }
3140 
3141 static int ioc_qos_show(struct seq_file *sf, void *v)
3142 {
3143 	struct blkcg *blkcg = css_to_blkcg(seq_css(sf));
3144 
3145 	blkcg_print_blkgs(sf, blkcg, ioc_qos_prfill,
3146 			  &blkcg_policy_iocost, seq_cft(sf)->private, false);
3147 	return 0;
3148 }
3149 
3150 static const match_table_t qos_ctrl_tokens = {
3151 	{ QOS_ENABLE,		"enable=%u"	},
3152 	{ QOS_CTRL,		"ctrl=%s"	},
3153 	{ NR_QOS_CTRL_PARAMS,	NULL		},
3154 };
3155 
3156 static const match_table_t qos_tokens = {
3157 	{ QOS_RPPM,		"rpct=%s"	},
3158 	{ QOS_RLAT,		"rlat=%u"	},
3159 	{ QOS_WPPM,		"wpct=%s"	},
3160 	{ QOS_WLAT,		"wlat=%u"	},
3161 	{ QOS_MIN,		"min=%s"	},
3162 	{ QOS_MAX,		"max=%s"	},
3163 	{ NR_QOS_PARAMS,	NULL		},
3164 };
3165 
3166 static ssize_t ioc_qos_write(struct kernfs_open_file *of, char *input,
3167 			     size_t nbytes, loff_t off)
3168 {
3169 	struct block_device *bdev;
3170 	struct gendisk *disk;
3171 	struct ioc *ioc;
3172 	u32 qos[NR_QOS_PARAMS];
3173 	bool enable, user;
3174 	char *p;
3175 	int ret;
3176 
3177 	bdev = blkcg_conf_open_bdev(&input);
3178 	if (IS_ERR(bdev))
3179 		return PTR_ERR(bdev);
3180 
3181 	disk = bdev->bd_disk;
3182 	ioc = q_to_ioc(disk->queue);
3183 	if (!ioc) {
3184 		ret = blk_iocost_init(disk);
3185 		if (ret)
3186 			goto err;
3187 		ioc = q_to_ioc(disk->queue);
3188 	}
3189 
3190 	spin_lock_irq(&ioc->lock);
3191 	memcpy(qos, ioc->params.qos, sizeof(qos));
3192 	enable = ioc->enabled;
3193 	user = ioc->user_qos_params;
3194 	spin_unlock_irq(&ioc->lock);
3195 
3196 	while ((p = strsep(&input, " \t\n"))) {
3197 		substring_t args[MAX_OPT_ARGS];
3198 		char buf[32];
3199 		int tok;
3200 		s64 v;
3201 
3202 		if (!*p)
3203 			continue;
3204 
3205 		switch (match_token(p, qos_ctrl_tokens, args)) {
3206 		case QOS_ENABLE:
3207 			match_u64(&args[0], &v);
3208 			enable = v;
3209 			continue;
3210 		case QOS_CTRL:
3211 			match_strlcpy(buf, &args[0], sizeof(buf));
3212 			if (!strcmp(buf, "auto"))
3213 				user = false;
3214 			else if (!strcmp(buf, "user"))
3215 				user = true;
3216 			else
3217 				goto einval;
3218 			continue;
3219 		}
3220 
3221 		tok = match_token(p, qos_tokens, args);
3222 		switch (tok) {
3223 		case QOS_RPPM:
3224 		case QOS_WPPM:
3225 			if (match_strlcpy(buf, &args[0], sizeof(buf)) >=
3226 			    sizeof(buf))
3227 				goto einval;
3228 			if (cgroup_parse_float(buf, 2, &v))
3229 				goto einval;
3230 			if (v < 0 || v > 10000)
3231 				goto einval;
3232 			qos[tok] = v * 100;
3233 			break;
3234 		case QOS_RLAT:
3235 		case QOS_WLAT:
3236 			if (match_u64(&args[0], &v))
3237 				goto einval;
3238 			qos[tok] = v;
3239 			break;
3240 		case QOS_MIN:
3241 		case QOS_MAX:
3242 			if (match_strlcpy(buf, &args[0], sizeof(buf)) >=
3243 			    sizeof(buf))
3244 				goto einval;
3245 			if (cgroup_parse_float(buf, 2, &v))
3246 				goto einval;
3247 			if (v < 0)
3248 				goto einval;
3249 			qos[tok] = clamp_t(s64, v * 100,
3250 					   VRATE_MIN_PPM, VRATE_MAX_PPM);
3251 			break;
3252 		default:
3253 			goto einval;
3254 		}
3255 		user = true;
3256 	}
3257 
3258 	if (qos[QOS_MIN] > qos[QOS_MAX])
3259 		goto einval;
3260 
3261 	spin_lock_irq(&ioc->lock);
3262 
3263 	if (enable) {
3264 		blk_stat_enable_accounting(disk->queue);
3265 		blk_queue_flag_set(QUEUE_FLAG_RQ_ALLOC_TIME, disk->queue);
3266 		ioc->enabled = true;
3267 	} else {
3268 		blk_queue_flag_clear(QUEUE_FLAG_RQ_ALLOC_TIME, disk->queue);
3269 		ioc->enabled = false;
3270 	}
3271 
3272 	if (user) {
3273 		memcpy(ioc->params.qos, qos, sizeof(qos));
3274 		ioc->user_qos_params = true;
3275 	} else {
3276 		ioc->user_qos_params = false;
3277 	}
3278 
3279 	ioc_refresh_params(ioc, true);
3280 	spin_unlock_irq(&ioc->lock);
3281 
3282 	blkdev_put_no_open(bdev);
3283 	return nbytes;
3284 einval:
3285 	ret = -EINVAL;
3286 err:
3287 	blkdev_put_no_open(bdev);
3288 	return ret;
3289 }
3290 
3291 static u64 ioc_cost_model_prfill(struct seq_file *sf,
3292 				 struct blkg_policy_data *pd, int off)
3293 {
3294 	const char *dname = blkg_dev_name(pd->blkg);
3295 	struct ioc *ioc = pd_to_iocg(pd)->ioc;
3296 	u64 *u = ioc->params.i_lcoefs;
3297 
3298 	if (!dname)
3299 		return 0;
3300 
3301 	seq_printf(sf, "%s ctrl=%s model=linear "
3302 		   "rbps=%llu rseqiops=%llu rrandiops=%llu "
3303 		   "wbps=%llu wseqiops=%llu wrandiops=%llu\n",
3304 		   dname, ioc->user_cost_model ? "user" : "auto",
3305 		   u[I_LCOEF_RBPS], u[I_LCOEF_RSEQIOPS], u[I_LCOEF_RRANDIOPS],
3306 		   u[I_LCOEF_WBPS], u[I_LCOEF_WSEQIOPS], u[I_LCOEF_WRANDIOPS]);
3307 	return 0;
3308 }
3309 
3310 static int ioc_cost_model_show(struct seq_file *sf, void *v)
3311 {
3312 	struct blkcg *blkcg = css_to_blkcg(seq_css(sf));
3313 
3314 	blkcg_print_blkgs(sf, blkcg, ioc_cost_model_prfill,
3315 			  &blkcg_policy_iocost, seq_cft(sf)->private, false);
3316 	return 0;
3317 }
3318 
3319 static const match_table_t cost_ctrl_tokens = {
3320 	{ COST_CTRL,		"ctrl=%s"	},
3321 	{ COST_MODEL,		"model=%s"	},
3322 	{ NR_COST_CTRL_PARAMS,	NULL		},
3323 };
3324 
3325 static const match_table_t i_lcoef_tokens = {
3326 	{ I_LCOEF_RBPS,		"rbps=%u"	},
3327 	{ I_LCOEF_RSEQIOPS,	"rseqiops=%u"	},
3328 	{ I_LCOEF_RRANDIOPS,	"rrandiops=%u"	},
3329 	{ I_LCOEF_WBPS,		"wbps=%u"	},
3330 	{ I_LCOEF_WSEQIOPS,	"wseqiops=%u"	},
3331 	{ I_LCOEF_WRANDIOPS,	"wrandiops=%u"	},
3332 	{ NR_I_LCOEFS,		NULL		},
3333 };
3334 
3335 static ssize_t ioc_cost_model_write(struct kernfs_open_file *of, char *input,
3336 				    size_t nbytes, loff_t off)
3337 {
3338 	struct block_device *bdev;
3339 	struct ioc *ioc;
3340 	u64 u[NR_I_LCOEFS];
3341 	bool user;
3342 	char *p;
3343 	int ret;
3344 
3345 	bdev = blkcg_conf_open_bdev(&input);
3346 	if (IS_ERR(bdev))
3347 		return PTR_ERR(bdev);
3348 
3349 	ioc = q_to_ioc(bdev_get_queue(bdev));
3350 	if (!ioc) {
3351 		ret = blk_iocost_init(bdev->bd_disk);
3352 		if (ret)
3353 			goto err;
3354 		ioc = q_to_ioc(bdev_get_queue(bdev));
3355 	}
3356 
3357 	spin_lock_irq(&ioc->lock);
3358 	memcpy(u, ioc->params.i_lcoefs, sizeof(u));
3359 	user = ioc->user_cost_model;
3360 	spin_unlock_irq(&ioc->lock);
3361 
3362 	while ((p = strsep(&input, " \t\n"))) {
3363 		substring_t args[MAX_OPT_ARGS];
3364 		char buf[32];
3365 		int tok;
3366 		u64 v;
3367 
3368 		if (!*p)
3369 			continue;
3370 
3371 		switch (match_token(p, cost_ctrl_tokens, args)) {
3372 		case COST_CTRL:
3373 			match_strlcpy(buf, &args[0], sizeof(buf));
3374 			if (!strcmp(buf, "auto"))
3375 				user = false;
3376 			else if (!strcmp(buf, "user"))
3377 				user = true;
3378 			else
3379 				goto einval;
3380 			continue;
3381 		case COST_MODEL:
3382 			match_strlcpy(buf, &args[0], sizeof(buf));
3383 			if (strcmp(buf, "linear"))
3384 				goto einval;
3385 			continue;
3386 		}
3387 
3388 		tok = match_token(p, i_lcoef_tokens, args);
3389 		if (tok == NR_I_LCOEFS)
3390 			goto einval;
3391 		if (match_u64(&args[0], &v))
3392 			goto einval;
3393 		u[tok] = v;
3394 		user = true;
3395 	}
3396 
3397 	spin_lock_irq(&ioc->lock);
3398 	if (user) {
3399 		memcpy(ioc->params.i_lcoefs, u, sizeof(u));
3400 		ioc->user_cost_model = true;
3401 	} else {
3402 		ioc->user_cost_model = false;
3403 	}
3404 	ioc_refresh_params(ioc, true);
3405 	spin_unlock_irq(&ioc->lock);
3406 
3407 	blkdev_put_no_open(bdev);
3408 	return nbytes;
3409 
3410 einval:
3411 	ret = -EINVAL;
3412 err:
3413 	blkdev_put_no_open(bdev);
3414 	return ret;
3415 }
3416 
3417 static struct cftype ioc_files[] = {
3418 	{
3419 		.name = "weight",
3420 		.flags = CFTYPE_NOT_ON_ROOT,
3421 		.seq_show = ioc_weight_show,
3422 		.write = ioc_weight_write,
3423 	},
3424 	{
3425 		.name = "cost.qos",
3426 		.flags = CFTYPE_ONLY_ON_ROOT,
3427 		.seq_show = ioc_qos_show,
3428 		.write = ioc_qos_write,
3429 	},
3430 	{
3431 		.name = "cost.model",
3432 		.flags = CFTYPE_ONLY_ON_ROOT,
3433 		.seq_show = ioc_cost_model_show,
3434 		.write = ioc_cost_model_write,
3435 	},
3436 	{}
3437 };
3438 
3439 static struct blkcg_policy blkcg_policy_iocost = {
3440 	.dfl_cftypes	= ioc_files,
3441 	.cpd_alloc_fn	= ioc_cpd_alloc,
3442 	.cpd_free_fn	= ioc_cpd_free,
3443 	.pd_alloc_fn	= ioc_pd_alloc,
3444 	.pd_init_fn	= ioc_pd_init,
3445 	.pd_free_fn	= ioc_pd_free,
3446 	.pd_stat_fn	= ioc_pd_stat,
3447 };
3448 
3449 static int __init ioc_init(void)
3450 {
3451 	return blkcg_policy_register(&blkcg_policy_iocost);
3452 }
3453 
3454 static void __exit ioc_exit(void)
3455 {
3456 	blkcg_policy_unregister(&blkcg_policy_iocost);
3457 }
3458 
3459 module_init(ioc_init);
3460 module_exit(ioc_exit);
3461