1 /* SPDX-License-Identifier: GPL-2.0 2 * 3 * IO cost model based controller. 4 * 5 * Copyright (C) 2019 Tejun Heo <tj@kernel.org> 6 * Copyright (C) 2019 Andy Newell <newella@fb.com> 7 * Copyright (C) 2019 Facebook 8 * 9 * One challenge of controlling IO resources is the lack of trivially 10 * observable cost metric. This is distinguished from CPU and memory where 11 * wallclock time and the number of bytes can serve as accurate enough 12 * approximations. 13 * 14 * Bandwidth and iops are the most commonly used metrics for IO devices but 15 * depending on the type and specifics of the device, different IO patterns 16 * easily lead to multiple orders of magnitude variations rendering them 17 * useless for the purpose of IO capacity distribution. While on-device 18 * time, with a lot of clutches, could serve as a useful approximation for 19 * non-queued rotational devices, this is no longer viable with modern 20 * devices, even the rotational ones. 21 * 22 * While there is no cost metric we can trivially observe, it isn't a 23 * complete mystery. For example, on a rotational device, seek cost 24 * dominates while a contiguous transfer contributes a smaller amount 25 * proportional to the size. If we can characterize at least the relative 26 * costs of these different types of IOs, it should be possible to 27 * implement a reasonable work-conserving proportional IO resource 28 * distribution. 29 * 30 * 1. IO Cost Model 31 * 32 * IO cost model estimates the cost of an IO given its basic parameters and 33 * history (e.g. the end sector of the last IO). The cost is measured in 34 * device time. If a given IO is estimated to cost 10ms, the device should 35 * be able to process ~100 of those IOs in a second. 36 * 37 * Currently, there's only one builtin cost model - linear. Each IO is 38 * classified as sequential or random and given a base cost accordingly. 39 * On top of that, a size cost proportional to the length of the IO is 40 * added. While simple, this model captures the operational 41 * characteristics of a wide varienty of devices well enough. Default 42 * parameters for several different classes of devices are provided and the 43 * parameters can be configured from userspace via 44 * /sys/fs/cgroup/io.cost.model. 45 * 46 * If needed, tools/cgroup/iocost_coef_gen.py can be used to generate 47 * device-specific coefficients. 48 * 49 * 2. Control Strategy 50 * 51 * The device virtual time (vtime) is used as the primary control metric. 52 * The control strategy is composed of the following three parts. 53 * 54 * 2-1. Vtime Distribution 55 * 56 * When a cgroup becomes active in terms of IOs, its hierarchical share is 57 * calculated. Please consider the following hierarchy where the numbers 58 * inside parentheses denote the configured weights. 59 * 60 * root 61 * / \ 62 * A (w:100) B (w:300) 63 * / \ 64 * A0 (w:100) A1 (w:100) 65 * 66 * If B is idle and only A0 and A1 are actively issuing IOs, as the two are 67 * of equal weight, each gets 50% share. If then B starts issuing IOs, B 68 * gets 300/(100+300) or 75% share, and A0 and A1 equally splits the rest, 69 * 12.5% each. The distribution mechanism only cares about these flattened 70 * shares. They're called hweights (hierarchical weights) and always add 71 * upto 1 (WEIGHT_ONE). 72 * 73 * A given cgroup's vtime runs slower in inverse proportion to its hweight. 74 * For example, with 12.5% weight, A0's time runs 8 times slower (100/12.5) 75 * against the device vtime - an IO which takes 10ms on the underlying 76 * device is considered to take 80ms on A0. 77 * 78 * This constitutes the basis of IO capacity distribution. Each cgroup's 79 * vtime is running at a rate determined by its hweight. A cgroup tracks 80 * the vtime consumed by past IOs and can issue a new IO if doing so 81 * wouldn't outrun the current device vtime. Otherwise, the IO is 82 * suspended until the vtime has progressed enough to cover it. 83 * 84 * 2-2. Vrate Adjustment 85 * 86 * It's unrealistic to expect the cost model to be perfect. There are too 87 * many devices and even on the same device the overall performance 88 * fluctuates depending on numerous factors such as IO mixture and device 89 * internal garbage collection. The controller needs to adapt dynamically. 90 * 91 * This is achieved by adjusting the overall IO rate according to how busy 92 * the device is. If the device becomes overloaded, we're sending down too 93 * many IOs and should generally slow down. If there are waiting issuers 94 * but the device isn't saturated, we're issuing too few and should 95 * generally speed up. 96 * 97 * To slow down, we lower the vrate - the rate at which the device vtime 98 * passes compared to the wall clock. For example, if the vtime is running 99 * at the vrate of 75%, all cgroups added up would only be able to issue 100 * 750ms worth of IOs per second, and vice-versa for speeding up. 101 * 102 * Device business is determined using two criteria - rq wait and 103 * completion latencies. 104 * 105 * When a device gets saturated, the on-device and then the request queues 106 * fill up and a bio which is ready to be issued has to wait for a request 107 * to become available. When this delay becomes noticeable, it's a clear 108 * indication that the device is saturated and we lower the vrate. This 109 * saturation signal is fairly conservative as it only triggers when both 110 * hardware and software queues are filled up, and is used as the default 111 * busy signal. 112 * 113 * As devices can have deep queues and be unfair in how the queued commands 114 * are executed, soley depending on rq wait may not result in satisfactory 115 * control quality. For a better control quality, completion latency QoS 116 * parameters can be configured so that the device is considered saturated 117 * if N'th percentile completion latency rises above the set point. 118 * 119 * The completion latency requirements are a function of both the 120 * underlying device characteristics and the desired IO latency quality of 121 * service. There is an inherent trade-off - the tighter the latency QoS, 122 * the higher the bandwidth lossage. Latency QoS is disabled by default 123 * and can be set through /sys/fs/cgroup/io.cost.qos. 124 * 125 * 2-3. Work Conservation 126 * 127 * Imagine two cgroups A and B with equal weights. A is issuing a small IO 128 * periodically while B is sending out enough parallel IOs to saturate the 129 * device on its own. Let's say A's usage amounts to 100ms worth of IO 130 * cost per second, i.e., 10% of the device capacity. The naive 131 * distribution of half and half would lead to 60% utilization of the 132 * device, a significant reduction in the total amount of work done 133 * compared to free-for-all competition. This is too high a cost to pay 134 * for IO control. 135 * 136 * To conserve the total amount of work done, we keep track of how much 137 * each active cgroup is actually using and yield part of its weight if 138 * there are other cgroups which can make use of it. In the above case, 139 * A's weight will be lowered so that it hovers above the actual usage and 140 * B would be able to use the rest. 141 * 142 * As we don't want to penalize a cgroup for donating its weight, the 143 * surplus weight adjustment factors in a margin and has an immediate 144 * snapback mechanism in case the cgroup needs more IO vtime for itself. 145 * 146 * Note that adjusting down surplus weights has the same effects as 147 * accelerating vtime for other cgroups and work conservation can also be 148 * implemented by adjusting vrate dynamically. However, squaring who can 149 * donate and should take back how much requires hweight propagations 150 * anyway making it easier to implement and understand as a separate 151 * mechanism. 152 * 153 * 3. Monitoring 154 * 155 * Instead of debugfs or other clumsy monitoring mechanisms, this 156 * controller uses a drgn based monitoring script - 157 * tools/cgroup/iocost_monitor.py. For details on drgn, please see 158 * https://github.com/osandov/drgn. The output looks like the following. 159 * 160 * sdb RUN per=300ms cur_per=234.218:v203.695 busy= +1 vrate= 62.12% 161 * active weight hweight% inflt% dbt delay usages% 162 * test/a * 50/ 50 33.33/ 33.33 27.65 2 0*041 033:033:033 163 * test/b * 100/ 100 66.67/ 66.67 17.56 0 0*000 066:079:077 164 * 165 * - per : Timer period 166 * - cur_per : Internal wall and device vtime clock 167 * - vrate : Device virtual time rate against wall clock 168 * - weight : Surplus-adjusted and configured weights 169 * - hweight : Surplus-adjusted and configured hierarchical weights 170 * - inflt : The percentage of in-flight IO cost at the end of last period 171 * - del_ms : Deferred issuer delay induction level and duration 172 * - usages : Usage history 173 */ 174 175 #include <linux/kernel.h> 176 #include <linux/module.h> 177 #include <linux/timer.h> 178 #include <linux/time64.h> 179 #include <linux/parser.h> 180 #include <linux/sched/signal.h> 181 #include <linux/blk-cgroup.h> 182 #include <asm/local.h> 183 #include <asm/local64.h> 184 #include "blk-rq-qos.h" 185 #include "blk-stat.h" 186 #include "blk-wbt.h" 187 188 #ifdef CONFIG_TRACEPOINTS 189 190 /* copied from TRACE_CGROUP_PATH, see cgroup-internal.h */ 191 #define TRACE_IOCG_PATH_LEN 1024 192 static DEFINE_SPINLOCK(trace_iocg_path_lock); 193 static char trace_iocg_path[TRACE_IOCG_PATH_LEN]; 194 195 #define TRACE_IOCG_PATH(type, iocg, ...) \ 196 do { \ 197 unsigned long flags; \ 198 if (trace_iocost_##type##_enabled()) { \ 199 spin_lock_irqsave(&trace_iocg_path_lock, flags); \ 200 cgroup_path(iocg_to_blkg(iocg)->blkcg->css.cgroup, \ 201 trace_iocg_path, TRACE_IOCG_PATH_LEN); \ 202 trace_iocost_##type(iocg, trace_iocg_path, \ 203 ##__VA_ARGS__); \ 204 spin_unlock_irqrestore(&trace_iocg_path_lock, flags); \ 205 } \ 206 } while (0) 207 208 #else /* CONFIG_TRACE_POINTS */ 209 #define TRACE_IOCG_PATH(type, iocg, ...) do { } while (0) 210 #endif /* CONFIG_TRACE_POINTS */ 211 212 enum { 213 MILLION = 1000000, 214 215 /* timer period is calculated from latency requirements, bound it */ 216 MIN_PERIOD = USEC_PER_MSEC, 217 MAX_PERIOD = USEC_PER_SEC, 218 219 /* 220 * iocg->vtime is targeted at 50% behind the device vtime, which 221 * serves as its IO credit buffer. Surplus weight adjustment is 222 * immediately canceled if the vtime margin runs below 10%. 223 */ 224 MARGIN_MIN_PCT = 10, 225 MARGIN_LOW_PCT = 20, 226 MARGIN_TARGET_PCT = 50, 227 228 INUSE_ADJ_STEP_PCT = 25, 229 230 /* Have some play in timer operations */ 231 TIMER_SLACK_PCT = 1, 232 233 /* 1/64k is granular enough and can easily be handled w/ u32 */ 234 WEIGHT_ONE = 1 << 16, 235 236 /* 237 * As vtime is used to calculate the cost of each IO, it needs to 238 * be fairly high precision. For example, it should be able to 239 * represent the cost of a single page worth of discard with 240 * suffificient accuracy. At the same time, it should be able to 241 * represent reasonably long enough durations to be useful and 242 * convenient during operation. 243 * 244 * 1s worth of vtime is 2^37. This gives us both sub-nanosecond 245 * granularity and days of wrap-around time even at extreme vrates. 246 */ 247 VTIME_PER_SEC_SHIFT = 37, 248 VTIME_PER_SEC = 1LLU << VTIME_PER_SEC_SHIFT, 249 VTIME_PER_USEC = VTIME_PER_SEC / USEC_PER_SEC, 250 VTIME_PER_NSEC = VTIME_PER_SEC / NSEC_PER_SEC, 251 252 /* bound vrate adjustments within two orders of magnitude */ 253 VRATE_MIN_PPM = 10000, /* 1% */ 254 VRATE_MAX_PPM = 100000000, /* 10000% */ 255 256 VRATE_MIN = VTIME_PER_USEC * VRATE_MIN_PPM / MILLION, 257 VRATE_CLAMP_ADJ_PCT = 4, 258 259 /* if IOs end up waiting for requests, issue less */ 260 RQ_WAIT_BUSY_PCT = 5, 261 262 /* unbusy hysterisis */ 263 UNBUSY_THR_PCT = 75, 264 265 /* 266 * The effect of delay is indirect and non-linear and a huge amount of 267 * future debt can accumulate abruptly while unthrottled. Linearly scale 268 * up delay as debt is going up and then let it decay exponentially. 269 * This gives us quick ramp ups while delay is accumulating and long 270 * tails which can help reducing the frequency of debt explosions on 271 * unthrottle. The parameters are experimentally determined. 272 * 273 * The delay mechanism provides adequate protection and behavior in many 274 * cases. However, this is far from ideal and falls shorts on both 275 * fronts. The debtors are often throttled too harshly costing a 276 * significant level of fairness and possibly total work while the 277 * protection against their impacts on the system can be choppy and 278 * unreliable. 279 * 280 * The shortcoming primarily stems from the fact that, unlike for page 281 * cache, the kernel doesn't have well-defined back-pressure propagation 282 * mechanism and policies for anonymous memory. Fully addressing this 283 * issue will likely require substantial improvements in the area. 284 */ 285 MIN_DELAY_THR_PCT = 500, 286 MAX_DELAY_THR_PCT = 25000, 287 MIN_DELAY = 250, 288 MAX_DELAY = 250 * USEC_PER_MSEC, 289 290 /* halve debts if avg usage over 100ms is under 50% */ 291 DFGV_USAGE_PCT = 50, 292 DFGV_PERIOD = 100 * USEC_PER_MSEC, 293 294 /* don't let cmds which take a very long time pin lagging for too long */ 295 MAX_LAGGING_PERIODS = 10, 296 297 /* switch iff the conditions are met for longer than this */ 298 AUTOP_CYCLE_NSEC = 10LLU * NSEC_PER_SEC, 299 300 /* 301 * Count IO size in 4k pages. The 12bit shift helps keeping 302 * size-proportional components of cost calculation in closer 303 * numbers of digits to per-IO cost components. 304 */ 305 IOC_PAGE_SHIFT = 12, 306 IOC_PAGE_SIZE = 1 << IOC_PAGE_SHIFT, 307 IOC_SECT_TO_PAGE_SHIFT = IOC_PAGE_SHIFT - SECTOR_SHIFT, 308 309 /* if apart further than 16M, consider randio for linear model */ 310 LCOEF_RANDIO_PAGES = 4096, 311 }; 312 313 enum ioc_running { 314 IOC_IDLE, 315 IOC_RUNNING, 316 IOC_STOP, 317 }; 318 319 /* io.cost.qos controls including per-dev enable of the whole controller */ 320 enum { 321 QOS_ENABLE, 322 QOS_CTRL, 323 NR_QOS_CTRL_PARAMS, 324 }; 325 326 /* io.cost.qos params */ 327 enum { 328 QOS_RPPM, 329 QOS_RLAT, 330 QOS_WPPM, 331 QOS_WLAT, 332 QOS_MIN, 333 QOS_MAX, 334 NR_QOS_PARAMS, 335 }; 336 337 /* io.cost.model controls */ 338 enum { 339 COST_CTRL, 340 COST_MODEL, 341 NR_COST_CTRL_PARAMS, 342 }; 343 344 /* builtin linear cost model coefficients */ 345 enum { 346 I_LCOEF_RBPS, 347 I_LCOEF_RSEQIOPS, 348 I_LCOEF_RRANDIOPS, 349 I_LCOEF_WBPS, 350 I_LCOEF_WSEQIOPS, 351 I_LCOEF_WRANDIOPS, 352 NR_I_LCOEFS, 353 }; 354 355 enum { 356 LCOEF_RPAGE, 357 LCOEF_RSEQIO, 358 LCOEF_RRANDIO, 359 LCOEF_WPAGE, 360 LCOEF_WSEQIO, 361 LCOEF_WRANDIO, 362 NR_LCOEFS, 363 }; 364 365 enum { 366 AUTOP_INVALID, 367 AUTOP_HDD, 368 AUTOP_SSD_QD1, 369 AUTOP_SSD_DFL, 370 AUTOP_SSD_FAST, 371 }; 372 373 struct ioc_params { 374 u32 qos[NR_QOS_PARAMS]; 375 u64 i_lcoefs[NR_I_LCOEFS]; 376 u64 lcoefs[NR_LCOEFS]; 377 u32 too_fast_vrate_pct; 378 u32 too_slow_vrate_pct; 379 }; 380 381 struct ioc_margins { 382 s64 min; 383 s64 low; 384 s64 target; 385 }; 386 387 struct ioc_missed { 388 local_t nr_met; 389 local_t nr_missed; 390 u32 last_met; 391 u32 last_missed; 392 }; 393 394 struct ioc_pcpu_stat { 395 struct ioc_missed missed[2]; 396 397 local64_t rq_wait_ns; 398 u64 last_rq_wait_ns; 399 }; 400 401 /* per device */ 402 struct ioc { 403 struct rq_qos rqos; 404 405 bool enabled; 406 407 struct ioc_params params; 408 struct ioc_margins margins; 409 u32 period_us; 410 u32 timer_slack_ns; 411 u64 vrate_min; 412 u64 vrate_max; 413 414 spinlock_t lock; 415 struct timer_list timer; 416 struct list_head active_iocgs; /* active cgroups */ 417 struct ioc_pcpu_stat __percpu *pcpu_stat; 418 419 enum ioc_running running; 420 atomic64_t vtime_rate; 421 u64 vtime_base_rate; 422 s64 vtime_err; 423 424 seqcount_spinlock_t period_seqcount; 425 u64 period_at; /* wallclock starttime */ 426 u64 period_at_vtime; /* vtime starttime */ 427 428 atomic64_t cur_period; /* inc'd each period */ 429 int busy_level; /* saturation history */ 430 431 bool weights_updated; 432 atomic_t hweight_gen; /* for lazy hweights */ 433 434 /* debt forgivness */ 435 u64 dfgv_period_at; 436 u64 dfgv_period_rem; 437 u64 dfgv_usage_us_sum; 438 439 u64 autop_too_fast_at; 440 u64 autop_too_slow_at; 441 int autop_idx; 442 bool user_qos_params:1; 443 bool user_cost_model:1; 444 }; 445 446 struct iocg_pcpu_stat { 447 local64_t abs_vusage; 448 }; 449 450 struct iocg_stat { 451 u64 usage_us; 452 u64 wait_us; 453 u64 indebt_us; 454 u64 indelay_us; 455 }; 456 457 /* per device-cgroup pair */ 458 struct ioc_gq { 459 struct blkg_policy_data pd; 460 struct ioc *ioc; 461 462 /* 463 * A iocg can get its weight from two sources - an explicit 464 * per-device-cgroup configuration or the default weight of the 465 * cgroup. `cfg_weight` is the explicit per-device-cgroup 466 * configuration. `weight` is the effective considering both 467 * sources. 468 * 469 * When an idle cgroup becomes active its `active` goes from 0 to 470 * `weight`. `inuse` is the surplus adjusted active weight. 471 * `active` and `inuse` are used to calculate `hweight_active` and 472 * `hweight_inuse`. 473 * 474 * `last_inuse` remembers `inuse` while an iocg is idle to persist 475 * surplus adjustments. 476 * 477 * `inuse` may be adjusted dynamically during period. `saved_*` are used 478 * to determine and track adjustments. 479 */ 480 u32 cfg_weight; 481 u32 weight; 482 u32 active; 483 u32 inuse; 484 485 u32 last_inuse; 486 s64 saved_margin; 487 488 sector_t cursor; /* to detect randio */ 489 490 /* 491 * `vtime` is this iocg's vtime cursor which progresses as IOs are 492 * issued. If lagging behind device vtime, the delta represents 493 * the currently available IO budget. If running ahead, the 494 * overage. 495 * 496 * `vtime_done` is the same but progressed on completion rather 497 * than issue. The delta behind `vtime` represents the cost of 498 * currently in-flight IOs. 499 */ 500 atomic64_t vtime; 501 atomic64_t done_vtime; 502 u64 abs_vdebt; 503 504 /* current delay in effect and when it started */ 505 u64 delay; 506 u64 delay_at; 507 508 /* 509 * The period this iocg was last active in. Used for deactivation 510 * and invalidating `vtime`. 511 */ 512 atomic64_t active_period; 513 struct list_head active_list; 514 515 /* see __propagate_weights() and current_hweight() for details */ 516 u64 child_active_sum; 517 u64 child_inuse_sum; 518 u64 child_adjusted_sum; 519 int hweight_gen; 520 u32 hweight_active; 521 u32 hweight_inuse; 522 u32 hweight_donating; 523 u32 hweight_after_donation; 524 525 struct list_head walk_list; 526 struct list_head surplus_list; 527 528 struct wait_queue_head waitq; 529 struct hrtimer waitq_timer; 530 531 /* timestamp at the latest activation */ 532 u64 activated_at; 533 534 /* statistics */ 535 struct iocg_pcpu_stat __percpu *pcpu_stat; 536 struct iocg_stat local_stat; 537 struct iocg_stat desc_stat; 538 struct iocg_stat last_stat; 539 u64 last_stat_abs_vusage; 540 u64 usage_delta_us; 541 u64 wait_since; 542 u64 indebt_since; 543 u64 indelay_since; 544 545 /* this iocg's depth in the hierarchy and ancestors including self */ 546 int level; 547 struct ioc_gq *ancestors[]; 548 }; 549 550 /* per cgroup */ 551 struct ioc_cgrp { 552 struct blkcg_policy_data cpd; 553 unsigned int dfl_weight; 554 }; 555 556 struct ioc_now { 557 u64 now_ns; 558 u64 now; 559 u64 vnow; 560 u64 vrate; 561 }; 562 563 struct iocg_wait { 564 struct wait_queue_entry wait; 565 struct bio *bio; 566 u64 abs_cost; 567 bool committed; 568 }; 569 570 struct iocg_wake_ctx { 571 struct ioc_gq *iocg; 572 u32 hw_inuse; 573 s64 vbudget; 574 }; 575 576 static const struct ioc_params autop[] = { 577 [AUTOP_HDD] = { 578 .qos = { 579 [QOS_RLAT] = 250000, /* 250ms */ 580 [QOS_WLAT] = 250000, 581 [QOS_MIN] = VRATE_MIN_PPM, 582 [QOS_MAX] = VRATE_MAX_PPM, 583 }, 584 .i_lcoefs = { 585 [I_LCOEF_RBPS] = 174019176, 586 [I_LCOEF_RSEQIOPS] = 41708, 587 [I_LCOEF_RRANDIOPS] = 370, 588 [I_LCOEF_WBPS] = 178075866, 589 [I_LCOEF_WSEQIOPS] = 42705, 590 [I_LCOEF_WRANDIOPS] = 378, 591 }, 592 }, 593 [AUTOP_SSD_QD1] = { 594 .qos = { 595 [QOS_RLAT] = 25000, /* 25ms */ 596 [QOS_WLAT] = 25000, 597 [QOS_MIN] = VRATE_MIN_PPM, 598 [QOS_MAX] = VRATE_MAX_PPM, 599 }, 600 .i_lcoefs = { 601 [I_LCOEF_RBPS] = 245855193, 602 [I_LCOEF_RSEQIOPS] = 61575, 603 [I_LCOEF_RRANDIOPS] = 6946, 604 [I_LCOEF_WBPS] = 141365009, 605 [I_LCOEF_WSEQIOPS] = 33716, 606 [I_LCOEF_WRANDIOPS] = 26796, 607 }, 608 }, 609 [AUTOP_SSD_DFL] = { 610 .qos = { 611 [QOS_RLAT] = 25000, /* 25ms */ 612 [QOS_WLAT] = 25000, 613 [QOS_MIN] = VRATE_MIN_PPM, 614 [QOS_MAX] = VRATE_MAX_PPM, 615 }, 616 .i_lcoefs = { 617 [I_LCOEF_RBPS] = 488636629, 618 [I_LCOEF_RSEQIOPS] = 8932, 619 [I_LCOEF_RRANDIOPS] = 8518, 620 [I_LCOEF_WBPS] = 427891549, 621 [I_LCOEF_WSEQIOPS] = 28755, 622 [I_LCOEF_WRANDIOPS] = 21940, 623 }, 624 .too_fast_vrate_pct = 500, 625 }, 626 [AUTOP_SSD_FAST] = { 627 .qos = { 628 [QOS_RLAT] = 5000, /* 5ms */ 629 [QOS_WLAT] = 5000, 630 [QOS_MIN] = VRATE_MIN_PPM, 631 [QOS_MAX] = VRATE_MAX_PPM, 632 }, 633 .i_lcoefs = { 634 [I_LCOEF_RBPS] = 3102524156LLU, 635 [I_LCOEF_RSEQIOPS] = 724816, 636 [I_LCOEF_RRANDIOPS] = 778122, 637 [I_LCOEF_WBPS] = 1742780862LLU, 638 [I_LCOEF_WSEQIOPS] = 425702, 639 [I_LCOEF_WRANDIOPS] = 443193, 640 }, 641 .too_slow_vrate_pct = 10, 642 }, 643 }; 644 645 /* 646 * vrate adjust percentages indexed by ioc->busy_level. We adjust up on 647 * vtime credit shortage and down on device saturation. 648 */ 649 static u32 vrate_adj_pct[] = 650 { 0, 0, 0, 0, 651 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 652 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 653 4, 4, 4, 4, 4, 4, 4, 4, 8, 8, 8, 8, 8, 8, 8, 8, 16 }; 654 655 static struct blkcg_policy blkcg_policy_iocost; 656 657 /* accessors and helpers */ 658 static struct ioc *rqos_to_ioc(struct rq_qos *rqos) 659 { 660 return container_of(rqos, struct ioc, rqos); 661 } 662 663 static struct ioc *q_to_ioc(struct request_queue *q) 664 { 665 return rqos_to_ioc(rq_qos_id(q, RQ_QOS_COST)); 666 } 667 668 static const char *q_name(struct request_queue *q) 669 { 670 if (blk_queue_registered(q)) 671 return kobject_name(q->kobj.parent); 672 else 673 return "<unknown>"; 674 } 675 676 static const char __maybe_unused *ioc_name(struct ioc *ioc) 677 { 678 return q_name(ioc->rqos.q); 679 } 680 681 static struct ioc_gq *pd_to_iocg(struct blkg_policy_data *pd) 682 { 683 return pd ? container_of(pd, struct ioc_gq, pd) : NULL; 684 } 685 686 static struct ioc_gq *blkg_to_iocg(struct blkcg_gq *blkg) 687 { 688 return pd_to_iocg(blkg_to_pd(blkg, &blkcg_policy_iocost)); 689 } 690 691 static struct blkcg_gq *iocg_to_blkg(struct ioc_gq *iocg) 692 { 693 return pd_to_blkg(&iocg->pd); 694 } 695 696 static struct ioc_cgrp *blkcg_to_iocc(struct blkcg *blkcg) 697 { 698 return container_of(blkcg_to_cpd(blkcg, &blkcg_policy_iocost), 699 struct ioc_cgrp, cpd); 700 } 701 702 /* 703 * Scale @abs_cost to the inverse of @hw_inuse. The lower the hierarchical 704 * weight, the more expensive each IO. Must round up. 705 */ 706 static u64 abs_cost_to_cost(u64 abs_cost, u32 hw_inuse) 707 { 708 return DIV64_U64_ROUND_UP(abs_cost * WEIGHT_ONE, hw_inuse); 709 } 710 711 /* 712 * The inverse of abs_cost_to_cost(). Must round up. 713 */ 714 static u64 cost_to_abs_cost(u64 cost, u32 hw_inuse) 715 { 716 return DIV64_U64_ROUND_UP(cost * hw_inuse, WEIGHT_ONE); 717 } 718 719 static void iocg_commit_bio(struct ioc_gq *iocg, struct bio *bio, 720 u64 abs_cost, u64 cost) 721 { 722 struct iocg_pcpu_stat *gcs; 723 724 bio->bi_iocost_cost = cost; 725 atomic64_add(cost, &iocg->vtime); 726 727 gcs = get_cpu_ptr(iocg->pcpu_stat); 728 local64_add(abs_cost, &gcs->abs_vusage); 729 put_cpu_ptr(gcs); 730 } 731 732 static void iocg_lock(struct ioc_gq *iocg, bool lock_ioc, unsigned long *flags) 733 { 734 if (lock_ioc) { 735 spin_lock_irqsave(&iocg->ioc->lock, *flags); 736 spin_lock(&iocg->waitq.lock); 737 } else { 738 spin_lock_irqsave(&iocg->waitq.lock, *flags); 739 } 740 } 741 742 static void iocg_unlock(struct ioc_gq *iocg, bool unlock_ioc, unsigned long *flags) 743 { 744 if (unlock_ioc) { 745 spin_unlock(&iocg->waitq.lock); 746 spin_unlock_irqrestore(&iocg->ioc->lock, *flags); 747 } else { 748 spin_unlock_irqrestore(&iocg->waitq.lock, *flags); 749 } 750 } 751 752 #define CREATE_TRACE_POINTS 753 #include <trace/events/iocost.h> 754 755 static void ioc_refresh_margins(struct ioc *ioc) 756 { 757 struct ioc_margins *margins = &ioc->margins; 758 u32 period_us = ioc->period_us; 759 u64 vrate = ioc->vtime_base_rate; 760 761 margins->min = (period_us * MARGIN_MIN_PCT / 100) * vrate; 762 margins->low = (period_us * MARGIN_LOW_PCT / 100) * vrate; 763 margins->target = (period_us * MARGIN_TARGET_PCT / 100) * vrate; 764 } 765 766 /* latency Qos params changed, update period_us and all the dependent params */ 767 static void ioc_refresh_period_us(struct ioc *ioc) 768 { 769 u32 ppm, lat, multi, period_us; 770 771 lockdep_assert_held(&ioc->lock); 772 773 /* pick the higher latency target */ 774 if (ioc->params.qos[QOS_RLAT] >= ioc->params.qos[QOS_WLAT]) { 775 ppm = ioc->params.qos[QOS_RPPM]; 776 lat = ioc->params.qos[QOS_RLAT]; 777 } else { 778 ppm = ioc->params.qos[QOS_WPPM]; 779 lat = ioc->params.qos[QOS_WLAT]; 780 } 781 782 /* 783 * We want the period to be long enough to contain a healthy number 784 * of IOs while short enough for granular control. Define it as a 785 * multiple of the latency target. Ideally, the multiplier should 786 * be scaled according to the percentile so that it would nominally 787 * contain a certain number of requests. Let's be simpler and 788 * scale it linearly so that it's 2x >= pct(90) and 10x at pct(50). 789 */ 790 if (ppm) 791 multi = max_t(u32, (MILLION - ppm) / 50000, 2); 792 else 793 multi = 2; 794 period_us = multi * lat; 795 period_us = clamp_t(u32, period_us, MIN_PERIOD, MAX_PERIOD); 796 797 /* calculate dependent params */ 798 ioc->period_us = period_us; 799 ioc->timer_slack_ns = div64_u64( 800 (u64)period_us * NSEC_PER_USEC * TIMER_SLACK_PCT, 801 100); 802 ioc_refresh_margins(ioc); 803 } 804 805 static int ioc_autop_idx(struct ioc *ioc) 806 { 807 int idx = ioc->autop_idx; 808 const struct ioc_params *p = &autop[idx]; 809 u32 vrate_pct; 810 u64 now_ns; 811 812 /* rotational? */ 813 if (!blk_queue_nonrot(ioc->rqos.q)) 814 return AUTOP_HDD; 815 816 /* handle SATA SSDs w/ broken NCQ */ 817 if (blk_queue_depth(ioc->rqos.q) == 1) 818 return AUTOP_SSD_QD1; 819 820 /* use one of the normal ssd sets */ 821 if (idx < AUTOP_SSD_DFL) 822 return AUTOP_SSD_DFL; 823 824 /* if user is overriding anything, maintain what was there */ 825 if (ioc->user_qos_params || ioc->user_cost_model) 826 return idx; 827 828 /* step up/down based on the vrate */ 829 vrate_pct = div64_u64(ioc->vtime_base_rate * 100, VTIME_PER_USEC); 830 now_ns = ktime_get_ns(); 831 832 if (p->too_fast_vrate_pct && p->too_fast_vrate_pct <= vrate_pct) { 833 if (!ioc->autop_too_fast_at) 834 ioc->autop_too_fast_at = now_ns; 835 if (now_ns - ioc->autop_too_fast_at >= AUTOP_CYCLE_NSEC) 836 return idx + 1; 837 } else { 838 ioc->autop_too_fast_at = 0; 839 } 840 841 if (p->too_slow_vrate_pct && p->too_slow_vrate_pct >= vrate_pct) { 842 if (!ioc->autop_too_slow_at) 843 ioc->autop_too_slow_at = now_ns; 844 if (now_ns - ioc->autop_too_slow_at >= AUTOP_CYCLE_NSEC) 845 return idx - 1; 846 } else { 847 ioc->autop_too_slow_at = 0; 848 } 849 850 return idx; 851 } 852 853 /* 854 * Take the followings as input 855 * 856 * @bps maximum sequential throughput 857 * @seqiops maximum sequential 4k iops 858 * @randiops maximum random 4k iops 859 * 860 * and calculate the linear model cost coefficients. 861 * 862 * *@page per-page cost 1s / (@bps / 4096) 863 * *@seqio base cost of a seq IO max((1s / @seqiops) - *@page, 0) 864 * @randiops base cost of a rand IO max((1s / @randiops) - *@page, 0) 865 */ 866 static void calc_lcoefs(u64 bps, u64 seqiops, u64 randiops, 867 u64 *page, u64 *seqio, u64 *randio) 868 { 869 u64 v; 870 871 *page = *seqio = *randio = 0; 872 873 if (bps) 874 *page = DIV64_U64_ROUND_UP(VTIME_PER_SEC, 875 DIV_ROUND_UP_ULL(bps, IOC_PAGE_SIZE)); 876 877 if (seqiops) { 878 v = DIV64_U64_ROUND_UP(VTIME_PER_SEC, seqiops); 879 if (v > *page) 880 *seqio = v - *page; 881 } 882 883 if (randiops) { 884 v = DIV64_U64_ROUND_UP(VTIME_PER_SEC, randiops); 885 if (v > *page) 886 *randio = v - *page; 887 } 888 } 889 890 static void ioc_refresh_lcoefs(struct ioc *ioc) 891 { 892 u64 *u = ioc->params.i_lcoefs; 893 u64 *c = ioc->params.lcoefs; 894 895 calc_lcoefs(u[I_LCOEF_RBPS], u[I_LCOEF_RSEQIOPS], u[I_LCOEF_RRANDIOPS], 896 &c[LCOEF_RPAGE], &c[LCOEF_RSEQIO], &c[LCOEF_RRANDIO]); 897 calc_lcoefs(u[I_LCOEF_WBPS], u[I_LCOEF_WSEQIOPS], u[I_LCOEF_WRANDIOPS], 898 &c[LCOEF_WPAGE], &c[LCOEF_WSEQIO], &c[LCOEF_WRANDIO]); 899 } 900 901 static bool ioc_refresh_params(struct ioc *ioc, bool force) 902 { 903 const struct ioc_params *p; 904 int idx; 905 906 lockdep_assert_held(&ioc->lock); 907 908 idx = ioc_autop_idx(ioc); 909 p = &autop[idx]; 910 911 if (idx == ioc->autop_idx && !force) 912 return false; 913 914 if (idx != ioc->autop_idx) 915 atomic64_set(&ioc->vtime_rate, VTIME_PER_USEC); 916 917 ioc->autop_idx = idx; 918 ioc->autop_too_fast_at = 0; 919 ioc->autop_too_slow_at = 0; 920 921 if (!ioc->user_qos_params) 922 memcpy(ioc->params.qos, p->qos, sizeof(p->qos)); 923 if (!ioc->user_cost_model) 924 memcpy(ioc->params.i_lcoefs, p->i_lcoefs, sizeof(p->i_lcoefs)); 925 926 ioc_refresh_period_us(ioc); 927 ioc_refresh_lcoefs(ioc); 928 929 ioc->vrate_min = DIV64_U64_ROUND_UP((u64)ioc->params.qos[QOS_MIN] * 930 VTIME_PER_USEC, MILLION); 931 ioc->vrate_max = div64_u64((u64)ioc->params.qos[QOS_MAX] * 932 VTIME_PER_USEC, MILLION); 933 934 return true; 935 } 936 937 /* 938 * When an iocg accumulates too much vtime or gets deactivated, we throw away 939 * some vtime, which lowers the overall device utilization. As the exact amount 940 * which is being thrown away is known, we can compensate by accelerating the 941 * vrate accordingly so that the extra vtime generated in the current period 942 * matches what got lost. 943 */ 944 static void ioc_refresh_vrate(struct ioc *ioc, struct ioc_now *now) 945 { 946 s64 pleft = ioc->period_at + ioc->period_us - now->now; 947 s64 vperiod = ioc->period_us * ioc->vtime_base_rate; 948 s64 vcomp, vcomp_min, vcomp_max; 949 950 lockdep_assert_held(&ioc->lock); 951 952 /* we need some time left in this period */ 953 if (pleft <= 0) 954 goto done; 955 956 /* 957 * Calculate how much vrate should be adjusted to offset the error. 958 * Limit the amount of adjustment and deduct the adjusted amount from 959 * the error. 960 */ 961 vcomp = -div64_s64(ioc->vtime_err, pleft); 962 vcomp_min = -(ioc->vtime_base_rate >> 1); 963 vcomp_max = ioc->vtime_base_rate; 964 vcomp = clamp(vcomp, vcomp_min, vcomp_max); 965 966 ioc->vtime_err += vcomp * pleft; 967 968 atomic64_set(&ioc->vtime_rate, ioc->vtime_base_rate + vcomp); 969 done: 970 /* bound how much error can accumulate */ 971 ioc->vtime_err = clamp(ioc->vtime_err, -vperiod, vperiod); 972 } 973 974 static void ioc_adjust_base_vrate(struct ioc *ioc, u32 rq_wait_pct, 975 int nr_lagging, int nr_shortages, 976 int prev_busy_level, u32 *missed_ppm) 977 { 978 u64 vrate = ioc->vtime_base_rate; 979 u64 vrate_min = ioc->vrate_min, vrate_max = ioc->vrate_max; 980 981 if (!ioc->busy_level || (ioc->busy_level < 0 && nr_lagging)) { 982 if (ioc->busy_level != prev_busy_level || nr_lagging) 983 trace_iocost_ioc_vrate_adj(ioc, atomic64_read(&ioc->vtime_rate), 984 missed_ppm, rq_wait_pct, 985 nr_lagging, nr_shortages); 986 987 return; 988 } 989 990 /* 991 * If vrate is out of bounds, apply clamp gradually as the 992 * bounds can change abruptly. Otherwise, apply busy_level 993 * based adjustment. 994 */ 995 if (vrate < vrate_min) { 996 vrate = div64_u64(vrate * (100 + VRATE_CLAMP_ADJ_PCT), 100); 997 vrate = min(vrate, vrate_min); 998 } else if (vrate > vrate_max) { 999 vrate = div64_u64(vrate * (100 - VRATE_CLAMP_ADJ_PCT), 100); 1000 vrate = max(vrate, vrate_max); 1001 } else { 1002 int idx = min_t(int, abs(ioc->busy_level), 1003 ARRAY_SIZE(vrate_adj_pct) - 1); 1004 u32 adj_pct = vrate_adj_pct[idx]; 1005 1006 if (ioc->busy_level > 0) 1007 adj_pct = 100 - adj_pct; 1008 else 1009 adj_pct = 100 + adj_pct; 1010 1011 vrate = clamp(DIV64_U64_ROUND_UP(vrate * adj_pct, 100), 1012 vrate_min, vrate_max); 1013 } 1014 1015 trace_iocost_ioc_vrate_adj(ioc, vrate, missed_ppm, rq_wait_pct, 1016 nr_lagging, nr_shortages); 1017 1018 ioc->vtime_base_rate = vrate; 1019 ioc_refresh_margins(ioc); 1020 } 1021 1022 /* take a snapshot of the current [v]time and vrate */ 1023 static void ioc_now(struct ioc *ioc, struct ioc_now *now) 1024 { 1025 unsigned seq; 1026 1027 now->now_ns = ktime_get(); 1028 now->now = ktime_to_us(now->now_ns); 1029 now->vrate = atomic64_read(&ioc->vtime_rate); 1030 1031 /* 1032 * The current vtime is 1033 * 1034 * vtime at period start + (wallclock time since the start) * vrate 1035 * 1036 * As a consistent snapshot of `period_at_vtime` and `period_at` is 1037 * needed, they're seqcount protected. 1038 */ 1039 do { 1040 seq = read_seqcount_begin(&ioc->period_seqcount); 1041 now->vnow = ioc->period_at_vtime + 1042 (now->now - ioc->period_at) * now->vrate; 1043 } while (read_seqcount_retry(&ioc->period_seqcount, seq)); 1044 } 1045 1046 static void ioc_start_period(struct ioc *ioc, struct ioc_now *now) 1047 { 1048 WARN_ON_ONCE(ioc->running != IOC_RUNNING); 1049 1050 write_seqcount_begin(&ioc->period_seqcount); 1051 ioc->period_at = now->now; 1052 ioc->period_at_vtime = now->vnow; 1053 write_seqcount_end(&ioc->period_seqcount); 1054 1055 ioc->timer.expires = jiffies + usecs_to_jiffies(ioc->period_us); 1056 add_timer(&ioc->timer); 1057 } 1058 1059 /* 1060 * Update @iocg's `active` and `inuse` to @active and @inuse, update level 1061 * weight sums and propagate upwards accordingly. If @save, the current margin 1062 * is saved to be used as reference for later inuse in-period adjustments. 1063 */ 1064 static void __propagate_weights(struct ioc_gq *iocg, u32 active, u32 inuse, 1065 bool save, struct ioc_now *now) 1066 { 1067 struct ioc *ioc = iocg->ioc; 1068 int lvl; 1069 1070 lockdep_assert_held(&ioc->lock); 1071 1072 inuse = clamp_t(u32, inuse, 1, active); 1073 1074 iocg->last_inuse = iocg->inuse; 1075 if (save) 1076 iocg->saved_margin = now->vnow - atomic64_read(&iocg->vtime); 1077 1078 if (active == iocg->active && inuse == iocg->inuse) 1079 return; 1080 1081 for (lvl = iocg->level - 1; lvl >= 0; lvl--) { 1082 struct ioc_gq *parent = iocg->ancestors[lvl]; 1083 struct ioc_gq *child = iocg->ancestors[lvl + 1]; 1084 u32 parent_active = 0, parent_inuse = 0; 1085 1086 /* update the level sums */ 1087 parent->child_active_sum += (s32)(active - child->active); 1088 parent->child_inuse_sum += (s32)(inuse - child->inuse); 1089 /* apply the udpates */ 1090 child->active = active; 1091 child->inuse = inuse; 1092 1093 /* 1094 * The delta between inuse and active sums indicates that 1095 * much of weight is being given away. Parent's inuse 1096 * and active should reflect the ratio. 1097 */ 1098 if (parent->child_active_sum) { 1099 parent_active = parent->weight; 1100 parent_inuse = DIV64_U64_ROUND_UP( 1101 parent_active * parent->child_inuse_sum, 1102 parent->child_active_sum); 1103 } 1104 1105 /* do we need to keep walking up? */ 1106 if (parent_active == parent->active && 1107 parent_inuse == parent->inuse) 1108 break; 1109 1110 active = parent_active; 1111 inuse = parent_inuse; 1112 } 1113 1114 ioc->weights_updated = true; 1115 } 1116 1117 static void commit_weights(struct ioc *ioc) 1118 { 1119 lockdep_assert_held(&ioc->lock); 1120 1121 if (ioc->weights_updated) { 1122 /* paired with rmb in current_hweight(), see there */ 1123 smp_wmb(); 1124 atomic_inc(&ioc->hweight_gen); 1125 ioc->weights_updated = false; 1126 } 1127 } 1128 1129 static void propagate_weights(struct ioc_gq *iocg, u32 active, u32 inuse, 1130 bool save, struct ioc_now *now) 1131 { 1132 __propagate_weights(iocg, active, inuse, save, now); 1133 commit_weights(iocg->ioc); 1134 } 1135 1136 static void current_hweight(struct ioc_gq *iocg, u32 *hw_activep, u32 *hw_inusep) 1137 { 1138 struct ioc *ioc = iocg->ioc; 1139 int lvl; 1140 u32 hwa, hwi; 1141 int ioc_gen; 1142 1143 /* hot path - if uptodate, use cached */ 1144 ioc_gen = atomic_read(&ioc->hweight_gen); 1145 if (ioc_gen == iocg->hweight_gen) 1146 goto out; 1147 1148 /* 1149 * Paired with wmb in commit_weights(). If we saw the updated 1150 * hweight_gen, all the weight updates from __propagate_weights() are 1151 * visible too. 1152 * 1153 * We can race with weight updates during calculation and get it 1154 * wrong. However, hweight_gen would have changed and a future 1155 * reader will recalculate and we're guaranteed to discard the 1156 * wrong result soon. 1157 */ 1158 smp_rmb(); 1159 1160 hwa = hwi = WEIGHT_ONE; 1161 for (lvl = 0; lvl <= iocg->level - 1; lvl++) { 1162 struct ioc_gq *parent = iocg->ancestors[lvl]; 1163 struct ioc_gq *child = iocg->ancestors[lvl + 1]; 1164 u64 active_sum = READ_ONCE(parent->child_active_sum); 1165 u64 inuse_sum = READ_ONCE(parent->child_inuse_sum); 1166 u32 active = READ_ONCE(child->active); 1167 u32 inuse = READ_ONCE(child->inuse); 1168 1169 /* we can race with deactivations and either may read as zero */ 1170 if (!active_sum || !inuse_sum) 1171 continue; 1172 1173 active_sum = max_t(u64, active, active_sum); 1174 hwa = div64_u64((u64)hwa * active, active_sum); 1175 1176 inuse_sum = max_t(u64, inuse, inuse_sum); 1177 hwi = div64_u64((u64)hwi * inuse, inuse_sum); 1178 } 1179 1180 iocg->hweight_active = max_t(u32, hwa, 1); 1181 iocg->hweight_inuse = max_t(u32, hwi, 1); 1182 iocg->hweight_gen = ioc_gen; 1183 out: 1184 if (hw_activep) 1185 *hw_activep = iocg->hweight_active; 1186 if (hw_inusep) 1187 *hw_inusep = iocg->hweight_inuse; 1188 } 1189 1190 /* 1191 * Calculate the hweight_inuse @iocg would get with max @inuse assuming all the 1192 * other weights stay unchanged. 1193 */ 1194 static u32 current_hweight_max(struct ioc_gq *iocg) 1195 { 1196 u32 hwm = WEIGHT_ONE; 1197 u32 inuse = iocg->active; 1198 u64 child_inuse_sum; 1199 int lvl; 1200 1201 lockdep_assert_held(&iocg->ioc->lock); 1202 1203 for (lvl = iocg->level - 1; lvl >= 0; lvl--) { 1204 struct ioc_gq *parent = iocg->ancestors[lvl]; 1205 struct ioc_gq *child = iocg->ancestors[lvl + 1]; 1206 1207 child_inuse_sum = parent->child_inuse_sum + inuse - child->inuse; 1208 hwm = div64_u64((u64)hwm * inuse, child_inuse_sum); 1209 inuse = DIV64_U64_ROUND_UP(parent->active * child_inuse_sum, 1210 parent->child_active_sum); 1211 } 1212 1213 return max_t(u32, hwm, 1); 1214 } 1215 1216 static void weight_updated(struct ioc_gq *iocg, struct ioc_now *now) 1217 { 1218 struct ioc *ioc = iocg->ioc; 1219 struct blkcg_gq *blkg = iocg_to_blkg(iocg); 1220 struct ioc_cgrp *iocc = blkcg_to_iocc(blkg->blkcg); 1221 u32 weight; 1222 1223 lockdep_assert_held(&ioc->lock); 1224 1225 weight = iocg->cfg_weight ?: iocc->dfl_weight; 1226 if (weight != iocg->weight && iocg->active) 1227 propagate_weights(iocg, weight, iocg->inuse, true, now); 1228 iocg->weight = weight; 1229 } 1230 1231 static bool iocg_activate(struct ioc_gq *iocg, struct ioc_now *now) 1232 { 1233 struct ioc *ioc = iocg->ioc; 1234 u64 last_period, cur_period; 1235 u64 vtime, vtarget; 1236 int i; 1237 1238 /* 1239 * If seem to be already active, just update the stamp to tell the 1240 * timer that we're still active. We don't mind occassional races. 1241 */ 1242 if (!list_empty(&iocg->active_list)) { 1243 ioc_now(ioc, now); 1244 cur_period = atomic64_read(&ioc->cur_period); 1245 if (atomic64_read(&iocg->active_period) != cur_period) 1246 atomic64_set(&iocg->active_period, cur_period); 1247 return true; 1248 } 1249 1250 /* racy check on internal node IOs, treat as root level IOs */ 1251 if (iocg->child_active_sum) 1252 return false; 1253 1254 spin_lock_irq(&ioc->lock); 1255 1256 ioc_now(ioc, now); 1257 1258 /* update period */ 1259 cur_period = atomic64_read(&ioc->cur_period); 1260 last_period = atomic64_read(&iocg->active_period); 1261 atomic64_set(&iocg->active_period, cur_period); 1262 1263 /* already activated or breaking leaf-only constraint? */ 1264 if (!list_empty(&iocg->active_list)) 1265 goto succeed_unlock; 1266 for (i = iocg->level - 1; i > 0; i--) 1267 if (!list_empty(&iocg->ancestors[i]->active_list)) 1268 goto fail_unlock; 1269 1270 if (iocg->child_active_sum) 1271 goto fail_unlock; 1272 1273 /* 1274 * Always start with the target budget. On deactivation, we throw away 1275 * anything above it. 1276 */ 1277 vtarget = now->vnow - ioc->margins.target; 1278 vtime = atomic64_read(&iocg->vtime); 1279 1280 atomic64_add(vtarget - vtime, &iocg->vtime); 1281 atomic64_add(vtarget - vtime, &iocg->done_vtime); 1282 vtime = vtarget; 1283 1284 /* 1285 * Activate, propagate weight and start period timer if not 1286 * running. Reset hweight_gen to avoid accidental match from 1287 * wrapping. 1288 */ 1289 iocg->hweight_gen = atomic_read(&ioc->hweight_gen) - 1; 1290 list_add(&iocg->active_list, &ioc->active_iocgs); 1291 1292 propagate_weights(iocg, iocg->weight, 1293 iocg->last_inuse ?: iocg->weight, true, now); 1294 1295 TRACE_IOCG_PATH(iocg_activate, iocg, now, 1296 last_period, cur_period, vtime); 1297 1298 iocg->activated_at = now->now; 1299 1300 if (ioc->running == IOC_IDLE) { 1301 ioc->running = IOC_RUNNING; 1302 ioc->dfgv_period_at = now->now; 1303 ioc->dfgv_period_rem = 0; 1304 ioc_start_period(ioc, now); 1305 } 1306 1307 succeed_unlock: 1308 spin_unlock_irq(&ioc->lock); 1309 return true; 1310 1311 fail_unlock: 1312 spin_unlock_irq(&ioc->lock); 1313 return false; 1314 } 1315 1316 static bool iocg_kick_delay(struct ioc_gq *iocg, struct ioc_now *now) 1317 { 1318 struct ioc *ioc = iocg->ioc; 1319 struct blkcg_gq *blkg = iocg_to_blkg(iocg); 1320 u64 tdelta, delay, new_delay; 1321 s64 vover, vover_pct; 1322 u32 hwa; 1323 1324 lockdep_assert_held(&iocg->waitq.lock); 1325 1326 /* calculate the current delay in effect - 1/2 every second */ 1327 tdelta = now->now - iocg->delay_at; 1328 if (iocg->delay) 1329 delay = iocg->delay >> div64_u64(tdelta, USEC_PER_SEC); 1330 else 1331 delay = 0; 1332 1333 /* calculate the new delay from the debt amount */ 1334 current_hweight(iocg, &hwa, NULL); 1335 vover = atomic64_read(&iocg->vtime) + 1336 abs_cost_to_cost(iocg->abs_vdebt, hwa) - now->vnow; 1337 vover_pct = div64_s64(100 * vover, 1338 ioc->period_us * ioc->vtime_base_rate); 1339 1340 if (vover_pct <= MIN_DELAY_THR_PCT) 1341 new_delay = 0; 1342 else if (vover_pct >= MAX_DELAY_THR_PCT) 1343 new_delay = MAX_DELAY; 1344 else 1345 new_delay = MIN_DELAY + 1346 div_u64((MAX_DELAY - MIN_DELAY) * 1347 (vover_pct - MIN_DELAY_THR_PCT), 1348 MAX_DELAY_THR_PCT - MIN_DELAY_THR_PCT); 1349 1350 /* pick the higher one and apply */ 1351 if (new_delay > delay) { 1352 iocg->delay = new_delay; 1353 iocg->delay_at = now->now; 1354 delay = new_delay; 1355 } 1356 1357 if (delay >= MIN_DELAY) { 1358 if (!iocg->indelay_since) 1359 iocg->indelay_since = now->now; 1360 blkcg_set_delay(blkg, delay * NSEC_PER_USEC); 1361 return true; 1362 } else { 1363 if (iocg->indelay_since) { 1364 iocg->local_stat.indelay_us += now->now - iocg->indelay_since; 1365 iocg->indelay_since = 0; 1366 } 1367 iocg->delay = 0; 1368 blkcg_clear_delay(blkg); 1369 return false; 1370 } 1371 } 1372 1373 static void iocg_incur_debt(struct ioc_gq *iocg, u64 abs_cost, 1374 struct ioc_now *now) 1375 { 1376 struct iocg_pcpu_stat *gcs; 1377 1378 lockdep_assert_held(&iocg->ioc->lock); 1379 lockdep_assert_held(&iocg->waitq.lock); 1380 WARN_ON_ONCE(list_empty(&iocg->active_list)); 1381 1382 /* 1383 * Once in debt, debt handling owns inuse. @iocg stays at the minimum 1384 * inuse donating all of it share to others until its debt is paid off. 1385 */ 1386 if (!iocg->abs_vdebt && abs_cost) { 1387 iocg->indebt_since = now->now; 1388 propagate_weights(iocg, iocg->active, 0, false, now); 1389 } 1390 1391 iocg->abs_vdebt += abs_cost; 1392 1393 gcs = get_cpu_ptr(iocg->pcpu_stat); 1394 local64_add(abs_cost, &gcs->abs_vusage); 1395 put_cpu_ptr(gcs); 1396 } 1397 1398 static void iocg_pay_debt(struct ioc_gq *iocg, u64 abs_vpay, 1399 struct ioc_now *now) 1400 { 1401 lockdep_assert_held(&iocg->ioc->lock); 1402 lockdep_assert_held(&iocg->waitq.lock); 1403 1404 /* make sure that nobody messed with @iocg */ 1405 WARN_ON_ONCE(list_empty(&iocg->active_list)); 1406 WARN_ON_ONCE(iocg->inuse > 1); 1407 1408 iocg->abs_vdebt -= min(abs_vpay, iocg->abs_vdebt); 1409 1410 /* if debt is paid in full, restore inuse */ 1411 if (!iocg->abs_vdebt) { 1412 iocg->local_stat.indebt_us += now->now - iocg->indebt_since; 1413 iocg->indebt_since = 0; 1414 1415 propagate_weights(iocg, iocg->active, iocg->last_inuse, 1416 false, now); 1417 } 1418 } 1419 1420 static int iocg_wake_fn(struct wait_queue_entry *wq_entry, unsigned mode, 1421 int flags, void *key) 1422 { 1423 struct iocg_wait *wait = container_of(wq_entry, struct iocg_wait, wait); 1424 struct iocg_wake_ctx *ctx = (struct iocg_wake_ctx *)key; 1425 u64 cost = abs_cost_to_cost(wait->abs_cost, ctx->hw_inuse); 1426 1427 ctx->vbudget -= cost; 1428 1429 if (ctx->vbudget < 0) 1430 return -1; 1431 1432 iocg_commit_bio(ctx->iocg, wait->bio, wait->abs_cost, cost); 1433 1434 /* 1435 * autoremove_wake_function() removes the wait entry only when it 1436 * actually changed the task state. We want the wait always 1437 * removed. Remove explicitly and use default_wake_function(). 1438 */ 1439 list_del_init(&wq_entry->entry); 1440 wait->committed = true; 1441 1442 default_wake_function(wq_entry, mode, flags, key); 1443 return 0; 1444 } 1445 1446 /* 1447 * Calculate the accumulated budget, pay debt if @pay_debt and wake up waiters 1448 * accordingly. When @pay_debt is %true, the caller must be holding ioc->lock in 1449 * addition to iocg->waitq.lock. 1450 */ 1451 static void iocg_kick_waitq(struct ioc_gq *iocg, bool pay_debt, 1452 struct ioc_now *now) 1453 { 1454 struct ioc *ioc = iocg->ioc; 1455 struct iocg_wake_ctx ctx = { .iocg = iocg }; 1456 u64 vshortage, expires, oexpires; 1457 s64 vbudget; 1458 u32 hwa; 1459 1460 lockdep_assert_held(&iocg->waitq.lock); 1461 1462 current_hweight(iocg, &hwa, NULL); 1463 vbudget = now->vnow - atomic64_read(&iocg->vtime); 1464 1465 /* pay off debt */ 1466 if (pay_debt && iocg->abs_vdebt && vbudget > 0) { 1467 u64 abs_vbudget = cost_to_abs_cost(vbudget, hwa); 1468 u64 abs_vpay = min_t(u64, abs_vbudget, iocg->abs_vdebt); 1469 u64 vpay = abs_cost_to_cost(abs_vpay, hwa); 1470 1471 lockdep_assert_held(&ioc->lock); 1472 1473 atomic64_add(vpay, &iocg->vtime); 1474 atomic64_add(vpay, &iocg->done_vtime); 1475 iocg_pay_debt(iocg, abs_vpay, now); 1476 vbudget -= vpay; 1477 } 1478 1479 if (iocg->abs_vdebt || iocg->delay) 1480 iocg_kick_delay(iocg, now); 1481 1482 /* 1483 * Debt can still be outstanding if we haven't paid all yet or the 1484 * caller raced and called without @pay_debt. Shouldn't wake up waiters 1485 * under debt. Make sure @vbudget reflects the outstanding amount and is 1486 * not positive. 1487 */ 1488 if (iocg->abs_vdebt) { 1489 s64 vdebt = abs_cost_to_cost(iocg->abs_vdebt, hwa); 1490 vbudget = min_t(s64, 0, vbudget - vdebt); 1491 } 1492 1493 /* 1494 * Wake up the ones which are due and see how much vtime we'll need for 1495 * the next one. As paying off debt restores hw_inuse, it must be read 1496 * after the above debt payment. 1497 */ 1498 ctx.vbudget = vbudget; 1499 current_hweight(iocg, NULL, &ctx.hw_inuse); 1500 1501 __wake_up_locked_key(&iocg->waitq, TASK_NORMAL, &ctx); 1502 1503 if (!waitqueue_active(&iocg->waitq)) { 1504 if (iocg->wait_since) { 1505 iocg->local_stat.wait_us += now->now - iocg->wait_since; 1506 iocg->wait_since = 0; 1507 } 1508 return; 1509 } 1510 1511 if (!iocg->wait_since) 1512 iocg->wait_since = now->now; 1513 1514 if (WARN_ON_ONCE(ctx.vbudget >= 0)) 1515 return; 1516 1517 /* determine next wakeup, add a timer margin to guarantee chunking */ 1518 vshortage = -ctx.vbudget; 1519 expires = now->now_ns + 1520 DIV64_U64_ROUND_UP(vshortage, ioc->vtime_base_rate) * 1521 NSEC_PER_USEC; 1522 expires += ioc->timer_slack_ns; 1523 1524 /* if already active and close enough, don't bother */ 1525 oexpires = ktime_to_ns(hrtimer_get_softexpires(&iocg->waitq_timer)); 1526 if (hrtimer_is_queued(&iocg->waitq_timer) && 1527 abs(oexpires - expires) <= ioc->timer_slack_ns) 1528 return; 1529 1530 hrtimer_start_range_ns(&iocg->waitq_timer, ns_to_ktime(expires), 1531 ioc->timer_slack_ns, HRTIMER_MODE_ABS); 1532 } 1533 1534 static enum hrtimer_restart iocg_waitq_timer_fn(struct hrtimer *timer) 1535 { 1536 struct ioc_gq *iocg = container_of(timer, struct ioc_gq, waitq_timer); 1537 bool pay_debt = READ_ONCE(iocg->abs_vdebt); 1538 struct ioc_now now; 1539 unsigned long flags; 1540 1541 ioc_now(iocg->ioc, &now); 1542 1543 iocg_lock(iocg, pay_debt, &flags); 1544 iocg_kick_waitq(iocg, pay_debt, &now); 1545 iocg_unlock(iocg, pay_debt, &flags); 1546 1547 return HRTIMER_NORESTART; 1548 } 1549 1550 static void ioc_lat_stat(struct ioc *ioc, u32 *missed_ppm_ar, u32 *rq_wait_pct_p) 1551 { 1552 u32 nr_met[2] = { }; 1553 u32 nr_missed[2] = { }; 1554 u64 rq_wait_ns = 0; 1555 int cpu, rw; 1556 1557 for_each_online_cpu(cpu) { 1558 struct ioc_pcpu_stat *stat = per_cpu_ptr(ioc->pcpu_stat, cpu); 1559 u64 this_rq_wait_ns; 1560 1561 for (rw = READ; rw <= WRITE; rw++) { 1562 u32 this_met = local_read(&stat->missed[rw].nr_met); 1563 u32 this_missed = local_read(&stat->missed[rw].nr_missed); 1564 1565 nr_met[rw] += this_met - stat->missed[rw].last_met; 1566 nr_missed[rw] += this_missed - stat->missed[rw].last_missed; 1567 stat->missed[rw].last_met = this_met; 1568 stat->missed[rw].last_missed = this_missed; 1569 } 1570 1571 this_rq_wait_ns = local64_read(&stat->rq_wait_ns); 1572 rq_wait_ns += this_rq_wait_ns - stat->last_rq_wait_ns; 1573 stat->last_rq_wait_ns = this_rq_wait_ns; 1574 } 1575 1576 for (rw = READ; rw <= WRITE; rw++) { 1577 if (nr_met[rw] + nr_missed[rw]) 1578 missed_ppm_ar[rw] = 1579 DIV64_U64_ROUND_UP((u64)nr_missed[rw] * MILLION, 1580 nr_met[rw] + nr_missed[rw]); 1581 else 1582 missed_ppm_ar[rw] = 0; 1583 } 1584 1585 *rq_wait_pct_p = div64_u64(rq_wait_ns * 100, 1586 ioc->period_us * NSEC_PER_USEC); 1587 } 1588 1589 /* was iocg idle this period? */ 1590 static bool iocg_is_idle(struct ioc_gq *iocg) 1591 { 1592 struct ioc *ioc = iocg->ioc; 1593 1594 /* did something get issued this period? */ 1595 if (atomic64_read(&iocg->active_period) == 1596 atomic64_read(&ioc->cur_period)) 1597 return false; 1598 1599 /* is something in flight? */ 1600 if (atomic64_read(&iocg->done_vtime) != atomic64_read(&iocg->vtime)) 1601 return false; 1602 1603 return true; 1604 } 1605 1606 /* 1607 * Call this function on the target leaf @iocg's to build pre-order traversal 1608 * list of all the ancestors in @inner_walk. The inner nodes are linked through 1609 * ->walk_list and the caller is responsible for dissolving the list after use. 1610 */ 1611 static void iocg_build_inner_walk(struct ioc_gq *iocg, 1612 struct list_head *inner_walk) 1613 { 1614 int lvl; 1615 1616 WARN_ON_ONCE(!list_empty(&iocg->walk_list)); 1617 1618 /* find the first ancestor which hasn't been visited yet */ 1619 for (lvl = iocg->level - 1; lvl >= 0; lvl--) { 1620 if (!list_empty(&iocg->ancestors[lvl]->walk_list)) 1621 break; 1622 } 1623 1624 /* walk down and visit the inner nodes to get pre-order traversal */ 1625 while (++lvl <= iocg->level - 1) { 1626 struct ioc_gq *inner = iocg->ancestors[lvl]; 1627 1628 /* record traversal order */ 1629 list_add_tail(&inner->walk_list, inner_walk); 1630 } 1631 } 1632 1633 /* collect per-cpu counters and propagate the deltas to the parent */ 1634 static void iocg_flush_stat_one(struct ioc_gq *iocg, struct ioc_now *now) 1635 { 1636 struct ioc *ioc = iocg->ioc; 1637 struct iocg_stat new_stat; 1638 u64 abs_vusage = 0; 1639 u64 vusage_delta; 1640 int cpu; 1641 1642 lockdep_assert_held(&iocg->ioc->lock); 1643 1644 /* collect per-cpu counters */ 1645 for_each_possible_cpu(cpu) { 1646 abs_vusage += local64_read( 1647 per_cpu_ptr(&iocg->pcpu_stat->abs_vusage, cpu)); 1648 } 1649 vusage_delta = abs_vusage - iocg->last_stat_abs_vusage; 1650 iocg->last_stat_abs_vusage = abs_vusage; 1651 1652 iocg->usage_delta_us = div64_u64(vusage_delta, ioc->vtime_base_rate); 1653 iocg->local_stat.usage_us += iocg->usage_delta_us; 1654 1655 /* propagate upwards */ 1656 new_stat.usage_us = 1657 iocg->local_stat.usage_us + iocg->desc_stat.usage_us; 1658 new_stat.wait_us = 1659 iocg->local_stat.wait_us + iocg->desc_stat.wait_us; 1660 new_stat.indebt_us = 1661 iocg->local_stat.indebt_us + iocg->desc_stat.indebt_us; 1662 new_stat.indelay_us = 1663 iocg->local_stat.indelay_us + iocg->desc_stat.indelay_us; 1664 1665 /* propagate the deltas to the parent */ 1666 if (iocg->level > 0) { 1667 struct iocg_stat *parent_stat = 1668 &iocg->ancestors[iocg->level - 1]->desc_stat; 1669 1670 parent_stat->usage_us += 1671 new_stat.usage_us - iocg->last_stat.usage_us; 1672 parent_stat->wait_us += 1673 new_stat.wait_us - iocg->last_stat.wait_us; 1674 parent_stat->indebt_us += 1675 new_stat.indebt_us - iocg->last_stat.indebt_us; 1676 parent_stat->indelay_us += 1677 new_stat.indelay_us - iocg->last_stat.indelay_us; 1678 } 1679 1680 iocg->last_stat = new_stat; 1681 } 1682 1683 /* get stat counters ready for reading on all active iocgs */ 1684 static void iocg_flush_stat(struct list_head *target_iocgs, struct ioc_now *now) 1685 { 1686 LIST_HEAD(inner_walk); 1687 struct ioc_gq *iocg, *tiocg; 1688 1689 /* flush leaves and build inner node walk list */ 1690 list_for_each_entry(iocg, target_iocgs, active_list) { 1691 iocg_flush_stat_one(iocg, now); 1692 iocg_build_inner_walk(iocg, &inner_walk); 1693 } 1694 1695 /* keep flushing upwards by walking the inner list backwards */ 1696 list_for_each_entry_safe_reverse(iocg, tiocg, &inner_walk, walk_list) { 1697 iocg_flush_stat_one(iocg, now); 1698 list_del_init(&iocg->walk_list); 1699 } 1700 } 1701 1702 /* 1703 * Determine what @iocg's hweight_inuse should be after donating unused 1704 * capacity. @hwm is the upper bound and used to signal no donation. This 1705 * function also throws away @iocg's excess budget. 1706 */ 1707 static u32 hweight_after_donation(struct ioc_gq *iocg, u32 old_hwi, u32 hwm, 1708 u32 usage, struct ioc_now *now) 1709 { 1710 struct ioc *ioc = iocg->ioc; 1711 u64 vtime = atomic64_read(&iocg->vtime); 1712 s64 excess, delta, target, new_hwi; 1713 1714 /* debt handling owns inuse for debtors */ 1715 if (iocg->abs_vdebt) 1716 return 1; 1717 1718 /* see whether minimum margin requirement is met */ 1719 if (waitqueue_active(&iocg->waitq) || 1720 time_after64(vtime, now->vnow - ioc->margins.min)) 1721 return hwm; 1722 1723 /* throw away excess above target */ 1724 excess = now->vnow - vtime - ioc->margins.target; 1725 if (excess > 0) { 1726 atomic64_add(excess, &iocg->vtime); 1727 atomic64_add(excess, &iocg->done_vtime); 1728 vtime += excess; 1729 ioc->vtime_err -= div64_u64(excess * old_hwi, WEIGHT_ONE); 1730 } 1731 1732 /* 1733 * Let's say the distance between iocg's and device's vtimes as a 1734 * fraction of period duration is delta. Assuming that the iocg will 1735 * consume the usage determined above, we want to determine new_hwi so 1736 * that delta equals MARGIN_TARGET at the end of the next period. 1737 * 1738 * We need to execute usage worth of IOs while spending the sum of the 1739 * new budget (1 - MARGIN_TARGET) and the leftover from the last period 1740 * (delta): 1741 * 1742 * usage = (1 - MARGIN_TARGET + delta) * new_hwi 1743 * 1744 * Therefore, the new_hwi is: 1745 * 1746 * new_hwi = usage / (1 - MARGIN_TARGET + delta) 1747 */ 1748 delta = div64_s64(WEIGHT_ONE * (now->vnow - vtime), 1749 now->vnow - ioc->period_at_vtime); 1750 target = WEIGHT_ONE * MARGIN_TARGET_PCT / 100; 1751 new_hwi = div64_s64(WEIGHT_ONE * usage, WEIGHT_ONE - target + delta); 1752 1753 return clamp_t(s64, new_hwi, 1, hwm); 1754 } 1755 1756 /* 1757 * For work-conservation, an iocg which isn't using all of its share should 1758 * donate the leftover to other iocgs. There are two ways to achieve this - 1. 1759 * bumping up vrate accordingly 2. lowering the donating iocg's inuse weight. 1760 * 1761 * #1 is mathematically simpler but has the drawback of requiring synchronous 1762 * global hweight_inuse updates when idle iocg's get activated or inuse weights 1763 * change due to donation snapbacks as it has the possibility of grossly 1764 * overshooting what's allowed by the model and vrate. 1765 * 1766 * #2 is inherently safe with local operations. The donating iocg can easily 1767 * snap back to higher weights when needed without worrying about impacts on 1768 * other nodes as the impacts will be inherently correct. This also makes idle 1769 * iocg activations safe. The only effect activations have is decreasing 1770 * hweight_inuse of others, the right solution to which is for those iocgs to 1771 * snap back to higher weights. 1772 * 1773 * So, we go with #2. The challenge is calculating how each donating iocg's 1774 * inuse should be adjusted to achieve the target donation amounts. This is done 1775 * using Andy's method described in the following pdf. 1776 * 1777 * https://drive.google.com/file/d/1PsJwxPFtjUnwOY1QJ5AeICCcsL7BM3bo 1778 * 1779 * Given the weights and target after-donation hweight_inuse values, Andy's 1780 * method determines how the proportional distribution should look like at each 1781 * sibling level to maintain the relative relationship between all non-donating 1782 * pairs. To roughly summarize, it divides the tree into donating and 1783 * non-donating parts, calculates global donation rate which is used to 1784 * determine the target hweight_inuse for each node, and then derives per-level 1785 * proportions. 1786 * 1787 * The following pdf shows that global distribution calculated this way can be 1788 * achieved by scaling inuse weights of donating leaves and propagating the 1789 * adjustments upwards proportionally. 1790 * 1791 * https://drive.google.com/file/d/1vONz1-fzVO7oY5DXXsLjSxEtYYQbOvsE 1792 * 1793 * Combining the above two, we can determine how each leaf iocg's inuse should 1794 * be adjusted to achieve the target donation. 1795 * 1796 * https://drive.google.com/file/d/1WcrltBOSPN0qXVdBgnKm4mdp9FhuEFQN 1797 * 1798 * The inline comments use symbols from the last pdf. 1799 * 1800 * b is the sum of the absolute budgets in the subtree. 1 for the root node. 1801 * f is the sum of the absolute budgets of non-donating nodes in the subtree. 1802 * t is the sum of the absolute budgets of donating nodes in the subtree. 1803 * w is the weight of the node. w = w_f + w_t 1804 * w_f is the non-donating portion of w. w_f = w * f / b 1805 * w_b is the donating portion of w. w_t = w * t / b 1806 * s is the sum of all sibling weights. s = Sum(w) for siblings 1807 * s_f and s_t are the non-donating and donating portions of s. 1808 * 1809 * Subscript p denotes the parent's counterpart and ' the adjusted value - e.g. 1810 * w_pt is the donating portion of the parent's weight and w'_pt the same value 1811 * after adjustments. Subscript r denotes the root node's values. 1812 */ 1813 static void transfer_surpluses(struct list_head *surpluses, struct ioc_now *now) 1814 { 1815 LIST_HEAD(over_hwa); 1816 LIST_HEAD(inner_walk); 1817 struct ioc_gq *iocg, *tiocg, *root_iocg; 1818 u32 after_sum, over_sum, over_target, gamma; 1819 1820 /* 1821 * It's pretty unlikely but possible for the total sum of 1822 * hweight_after_donation's to be higher than WEIGHT_ONE, which will 1823 * confuse the following calculations. If such condition is detected, 1824 * scale down everyone over its full share equally to keep the sum below 1825 * WEIGHT_ONE. 1826 */ 1827 after_sum = 0; 1828 over_sum = 0; 1829 list_for_each_entry(iocg, surpluses, surplus_list) { 1830 u32 hwa; 1831 1832 current_hweight(iocg, &hwa, NULL); 1833 after_sum += iocg->hweight_after_donation; 1834 1835 if (iocg->hweight_after_donation > hwa) { 1836 over_sum += iocg->hweight_after_donation; 1837 list_add(&iocg->walk_list, &over_hwa); 1838 } 1839 } 1840 1841 if (after_sum >= WEIGHT_ONE) { 1842 /* 1843 * The delta should be deducted from the over_sum, calculate 1844 * target over_sum value. 1845 */ 1846 u32 over_delta = after_sum - (WEIGHT_ONE - 1); 1847 WARN_ON_ONCE(over_sum <= over_delta); 1848 over_target = over_sum - over_delta; 1849 } else { 1850 over_target = 0; 1851 } 1852 1853 list_for_each_entry_safe(iocg, tiocg, &over_hwa, walk_list) { 1854 if (over_target) 1855 iocg->hweight_after_donation = 1856 div_u64((u64)iocg->hweight_after_donation * 1857 over_target, over_sum); 1858 list_del_init(&iocg->walk_list); 1859 } 1860 1861 /* 1862 * Build pre-order inner node walk list and prepare for donation 1863 * adjustment calculations. 1864 */ 1865 list_for_each_entry(iocg, surpluses, surplus_list) { 1866 iocg_build_inner_walk(iocg, &inner_walk); 1867 } 1868 1869 root_iocg = list_first_entry(&inner_walk, struct ioc_gq, walk_list); 1870 WARN_ON_ONCE(root_iocg->level > 0); 1871 1872 list_for_each_entry(iocg, &inner_walk, walk_list) { 1873 iocg->child_adjusted_sum = 0; 1874 iocg->hweight_donating = 0; 1875 iocg->hweight_after_donation = 0; 1876 } 1877 1878 /* 1879 * Propagate the donating budget (b_t) and after donation budget (b'_t) 1880 * up the hierarchy. 1881 */ 1882 list_for_each_entry(iocg, surpluses, surplus_list) { 1883 struct ioc_gq *parent = iocg->ancestors[iocg->level - 1]; 1884 1885 parent->hweight_donating += iocg->hweight_donating; 1886 parent->hweight_after_donation += iocg->hweight_after_donation; 1887 } 1888 1889 list_for_each_entry_reverse(iocg, &inner_walk, walk_list) { 1890 if (iocg->level > 0) { 1891 struct ioc_gq *parent = iocg->ancestors[iocg->level - 1]; 1892 1893 parent->hweight_donating += iocg->hweight_donating; 1894 parent->hweight_after_donation += iocg->hweight_after_donation; 1895 } 1896 } 1897 1898 /* 1899 * Calculate inner hwa's (b) and make sure the donation values are 1900 * within the accepted ranges as we're doing low res calculations with 1901 * roundups. 1902 */ 1903 list_for_each_entry(iocg, &inner_walk, walk_list) { 1904 if (iocg->level) { 1905 struct ioc_gq *parent = iocg->ancestors[iocg->level - 1]; 1906 1907 iocg->hweight_active = DIV64_U64_ROUND_UP( 1908 (u64)parent->hweight_active * iocg->active, 1909 parent->child_active_sum); 1910 1911 } 1912 1913 iocg->hweight_donating = min(iocg->hweight_donating, 1914 iocg->hweight_active); 1915 iocg->hweight_after_donation = min(iocg->hweight_after_donation, 1916 iocg->hweight_donating - 1); 1917 if (WARN_ON_ONCE(iocg->hweight_active <= 1 || 1918 iocg->hweight_donating <= 1 || 1919 iocg->hweight_after_donation == 0)) { 1920 pr_warn("iocg: invalid donation weights in "); 1921 pr_cont_cgroup_path(iocg_to_blkg(iocg)->blkcg->css.cgroup); 1922 pr_cont(": active=%u donating=%u after=%u\n", 1923 iocg->hweight_active, iocg->hweight_donating, 1924 iocg->hweight_after_donation); 1925 } 1926 } 1927 1928 /* 1929 * Calculate the global donation rate (gamma) - the rate to adjust 1930 * non-donating budgets by. 1931 * 1932 * No need to use 64bit multiplication here as the first operand is 1933 * guaranteed to be smaller than WEIGHT_ONE (1<<16). 1934 * 1935 * We know that there are beneficiary nodes and the sum of the donating 1936 * hweights can't be whole; however, due to the round-ups during hweight 1937 * calculations, root_iocg->hweight_donating might still end up equal to 1938 * or greater than whole. Limit the range when calculating the divider. 1939 * 1940 * gamma = (1 - t_r') / (1 - t_r) 1941 */ 1942 gamma = DIV_ROUND_UP( 1943 (WEIGHT_ONE - root_iocg->hweight_after_donation) * WEIGHT_ONE, 1944 WEIGHT_ONE - min_t(u32, root_iocg->hweight_donating, WEIGHT_ONE - 1)); 1945 1946 /* 1947 * Calculate adjusted hwi, child_adjusted_sum and inuse for the inner 1948 * nodes. 1949 */ 1950 list_for_each_entry(iocg, &inner_walk, walk_list) { 1951 struct ioc_gq *parent; 1952 u32 inuse, wpt, wptp; 1953 u64 st, sf; 1954 1955 if (iocg->level == 0) { 1956 /* adjusted weight sum for 1st level: s' = s * b_pf / b'_pf */ 1957 iocg->child_adjusted_sum = DIV64_U64_ROUND_UP( 1958 iocg->child_active_sum * (WEIGHT_ONE - iocg->hweight_donating), 1959 WEIGHT_ONE - iocg->hweight_after_donation); 1960 continue; 1961 } 1962 1963 parent = iocg->ancestors[iocg->level - 1]; 1964 1965 /* b' = gamma * b_f + b_t' */ 1966 iocg->hweight_inuse = DIV64_U64_ROUND_UP( 1967 (u64)gamma * (iocg->hweight_active - iocg->hweight_donating), 1968 WEIGHT_ONE) + iocg->hweight_after_donation; 1969 1970 /* w' = s' * b' / b'_p */ 1971 inuse = DIV64_U64_ROUND_UP( 1972 (u64)parent->child_adjusted_sum * iocg->hweight_inuse, 1973 parent->hweight_inuse); 1974 1975 /* adjusted weight sum for children: s' = s_f + s_t * w'_pt / w_pt */ 1976 st = DIV64_U64_ROUND_UP( 1977 iocg->child_active_sum * iocg->hweight_donating, 1978 iocg->hweight_active); 1979 sf = iocg->child_active_sum - st; 1980 wpt = DIV64_U64_ROUND_UP( 1981 (u64)iocg->active * iocg->hweight_donating, 1982 iocg->hweight_active); 1983 wptp = DIV64_U64_ROUND_UP( 1984 (u64)inuse * iocg->hweight_after_donation, 1985 iocg->hweight_inuse); 1986 1987 iocg->child_adjusted_sum = sf + DIV64_U64_ROUND_UP(st * wptp, wpt); 1988 } 1989 1990 /* 1991 * All inner nodes now have ->hweight_inuse and ->child_adjusted_sum and 1992 * we can finally determine leaf adjustments. 1993 */ 1994 list_for_each_entry(iocg, surpluses, surplus_list) { 1995 struct ioc_gq *parent = iocg->ancestors[iocg->level - 1]; 1996 u32 inuse; 1997 1998 /* 1999 * In-debt iocgs participated in the donation calculation with 2000 * the minimum target hweight_inuse. Configuring inuse 2001 * accordingly would work fine but debt handling expects 2002 * @iocg->inuse stay at the minimum and we don't wanna 2003 * interfere. 2004 */ 2005 if (iocg->abs_vdebt) { 2006 WARN_ON_ONCE(iocg->inuse > 1); 2007 continue; 2008 } 2009 2010 /* w' = s' * b' / b'_p, note that b' == b'_t for donating leaves */ 2011 inuse = DIV64_U64_ROUND_UP( 2012 parent->child_adjusted_sum * iocg->hweight_after_donation, 2013 parent->hweight_inuse); 2014 2015 TRACE_IOCG_PATH(inuse_transfer, iocg, now, 2016 iocg->inuse, inuse, 2017 iocg->hweight_inuse, 2018 iocg->hweight_after_donation); 2019 2020 __propagate_weights(iocg, iocg->active, inuse, true, now); 2021 } 2022 2023 /* walk list should be dissolved after use */ 2024 list_for_each_entry_safe(iocg, tiocg, &inner_walk, walk_list) 2025 list_del_init(&iocg->walk_list); 2026 } 2027 2028 /* 2029 * A low weight iocg can amass a large amount of debt, for example, when 2030 * anonymous memory gets reclaimed aggressively. If the system has a lot of 2031 * memory paired with a slow IO device, the debt can span multiple seconds or 2032 * more. If there are no other subsequent IO issuers, the in-debt iocg may end 2033 * up blocked paying its debt while the IO device is idle. 2034 * 2035 * The following protects against such cases. If the device has been 2036 * sufficiently idle for a while, the debts are halved and delays are 2037 * recalculated. 2038 */ 2039 static void ioc_forgive_debts(struct ioc *ioc, u64 usage_us_sum, int nr_debtors, 2040 struct ioc_now *now) 2041 { 2042 struct ioc_gq *iocg; 2043 u64 dur, usage_pct, nr_cycles; 2044 2045 /* if no debtor, reset the cycle */ 2046 if (!nr_debtors) { 2047 ioc->dfgv_period_at = now->now; 2048 ioc->dfgv_period_rem = 0; 2049 ioc->dfgv_usage_us_sum = 0; 2050 return; 2051 } 2052 2053 /* 2054 * Debtors can pass through a lot of writes choking the device and we 2055 * don't want to be forgiving debts while the device is struggling from 2056 * write bursts. If we're missing latency targets, consider the device 2057 * fully utilized. 2058 */ 2059 if (ioc->busy_level > 0) 2060 usage_us_sum = max_t(u64, usage_us_sum, ioc->period_us); 2061 2062 ioc->dfgv_usage_us_sum += usage_us_sum; 2063 if (time_before64(now->now, ioc->dfgv_period_at + DFGV_PERIOD)) 2064 return; 2065 2066 /* 2067 * At least DFGV_PERIOD has passed since the last period. Calculate the 2068 * average usage and reset the period counters. 2069 */ 2070 dur = now->now - ioc->dfgv_period_at; 2071 usage_pct = div64_u64(100 * ioc->dfgv_usage_us_sum, dur); 2072 2073 ioc->dfgv_period_at = now->now; 2074 ioc->dfgv_usage_us_sum = 0; 2075 2076 /* if was too busy, reset everything */ 2077 if (usage_pct > DFGV_USAGE_PCT) { 2078 ioc->dfgv_period_rem = 0; 2079 return; 2080 } 2081 2082 /* 2083 * Usage is lower than threshold. Let's forgive some debts. Debt 2084 * forgiveness runs off of the usual ioc timer but its period usually 2085 * doesn't match ioc's. Compensate the difference by performing the 2086 * reduction as many times as would fit in the duration since the last 2087 * run and carrying over the left-over duration in @ioc->dfgv_period_rem 2088 * - if ioc period is 75% of DFGV_PERIOD, one out of three consecutive 2089 * reductions is doubled. 2090 */ 2091 nr_cycles = dur + ioc->dfgv_period_rem; 2092 ioc->dfgv_period_rem = do_div(nr_cycles, DFGV_PERIOD); 2093 2094 list_for_each_entry(iocg, &ioc->active_iocgs, active_list) { 2095 u64 __maybe_unused old_debt, __maybe_unused old_delay; 2096 2097 if (!iocg->abs_vdebt && !iocg->delay) 2098 continue; 2099 2100 spin_lock(&iocg->waitq.lock); 2101 2102 old_debt = iocg->abs_vdebt; 2103 old_delay = iocg->delay; 2104 2105 if (iocg->abs_vdebt) 2106 iocg->abs_vdebt = iocg->abs_vdebt >> nr_cycles ?: 1; 2107 if (iocg->delay) 2108 iocg->delay = iocg->delay >> nr_cycles ?: 1; 2109 2110 iocg_kick_waitq(iocg, true, now); 2111 2112 TRACE_IOCG_PATH(iocg_forgive_debt, iocg, now, usage_pct, 2113 old_debt, iocg->abs_vdebt, 2114 old_delay, iocg->delay); 2115 2116 spin_unlock(&iocg->waitq.lock); 2117 } 2118 } 2119 2120 /* 2121 * Check the active iocgs' state to avoid oversleeping and deactive 2122 * idle iocgs. 2123 * 2124 * Since waiters determine the sleep durations based on the vrate 2125 * they saw at the time of sleep, if vrate has increased, some 2126 * waiters could be sleeping for too long. Wake up tardy waiters 2127 * which should have woken up in the last period and expire idle 2128 * iocgs. 2129 */ 2130 static int ioc_check_iocgs(struct ioc *ioc, struct ioc_now *now) 2131 { 2132 int nr_debtors = 0; 2133 struct ioc_gq *iocg, *tiocg; 2134 2135 list_for_each_entry_safe(iocg, tiocg, &ioc->active_iocgs, active_list) { 2136 if (!waitqueue_active(&iocg->waitq) && !iocg->abs_vdebt && 2137 !iocg->delay && !iocg_is_idle(iocg)) 2138 continue; 2139 2140 spin_lock(&iocg->waitq.lock); 2141 2142 /* flush wait and indebt stat deltas */ 2143 if (iocg->wait_since) { 2144 iocg->local_stat.wait_us += now->now - iocg->wait_since; 2145 iocg->wait_since = now->now; 2146 } 2147 if (iocg->indebt_since) { 2148 iocg->local_stat.indebt_us += 2149 now->now - iocg->indebt_since; 2150 iocg->indebt_since = now->now; 2151 } 2152 if (iocg->indelay_since) { 2153 iocg->local_stat.indelay_us += 2154 now->now - iocg->indelay_since; 2155 iocg->indelay_since = now->now; 2156 } 2157 2158 if (waitqueue_active(&iocg->waitq) || iocg->abs_vdebt || 2159 iocg->delay) { 2160 /* might be oversleeping vtime / hweight changes, kick */ 2161 iocg_kick_waitq(iocg, true, now); 2162 if (iocg->abs_vdebt || iocg->delay) 2163 nr_debtors++; 2164 } else if (iocg_is_idle(iocg)) { 2165 /* no waiter and idle, deactivate */ 2166 u64 vtime = atomic64_read(&iocg->vtime); 2167 s64 excess; 2168 2169 /* 2170 * @iocg has been inactive for a full duration and will 2171 * have a high budget. Account anything above target as 2172 * error and throw away. On reactivation, it'll start 2173 * with the target budget. 2174 */ 2175 excess = now->vnow - vtime - ioc->margins.target; 2176 if (excess > 0) { 2177 u32 old_hwi; 2178 2179 current_hweight(iocg, NULL, &old_hwi); 2180 ioc->vtime_err -= div64_u64(excess * old_hwi, 2181 WEIGHT_ONE); 2182 } 2183 2184 TRACE_IOCG_PATH(iocg_idle, iocg, now, 2185 atomic64_read(&iocg->active_period), 2186 atomic64_read(&ioc->cur_period), vtime); 2187 __propagate_weights(iocg, 0, 0, false, now); 2188 list_del_init(&iocg->active_list); 2189 } 2190 2191 spin_unlock(&iocg->waitq.lock); 2192 } 2193 2194 commit_weights(ioc); 2195 return nr_debtors; 2196 } 2197 2198 static void ioc_timer_fn(struct timer_list *timer) 2199 { 2200 struct ioc *ioc = container_of(timer, struct ioc, timer); 2201 struct ioc_gq *iocg, *tiocg; 2202 struct ioc_now now; 2203 LIST_HEAD(surpluses); 2204 int nr_debtors, nr_shortages = 0, nr_lagging = 0; 2205 u64 usage_us_sum = 0; 2206 u32 ppm_rthr = MILLION - ioc->params.qos[QOS_RPPM]; 2207 u32 ppm_wthr = MILLION - ioc->params.qos[QOS_WPPM]; 2208 u32 missed_ppm[2], rq_wait_pct; 2209 u64 period_vtime; 2210 int prev_busy_level; 2211 2212 /* how were the latencies during the period? */ 2213 ioc_lat_stat(ioc, missed_ppm, &rq_wait_pct); 2214 2215 /* take care of active iocgs */ 2216 spin_lock_irq(&ioc->lock); 2217 2218 ioc_now(ioc, &now); 2219 2220 period_vtime = now.vnow - ioc->period_at_vtime; 2221 if (WARN_ON_ONCE(!period_vtime)) { 2222 spin_unlock_irq(&ioc->lock); 2223 return; 2224 } 2225 2226 nr_debtors = ioc_check_iocgs(ioc, &now); 2227 2228 /* 2229 * Wait and indebt stat are flushed above and the donation calculation 2230 * below needs updated usage stat. Let's bring stat up-to-date. 2231 */ 2232 iocg_flush_stat(&ioc->active_iocgs, &now); 2233 2234 /* calc usage and see whether some weights need to be moved around */ 2235 list_for_each_entry(iocg, &ioc->active_iocgs, active_list) { 2236 u64 vdone, vtime, usage_us; 2237 u32 hw_active, hw_inuse; 2238 2239 /* 2240 * Collect unused and wind vtime closer to vnow to prevent 2241 * iocgs from accumulating a large amount of budget. 2242 */ 2243 vdone = atomic64_read(&iocg->done_vtime); 2244 vtime = atomic64_read(&iocg->vtime); 2245 current_hweight(iocg, &hw_active, &hw_inuse); 2246 2247 /* 2248 * Latency QoS detection doesn't account for IOs which are 2249 * in-flight for longer than a period. Detect them by 2250 * comparing vdone against period start. If lagging behind 2251 * IOs from past periods, don't increase vrate. 2252 */ 2253 if ((ppm_rthr != MILLION || ppm_wthr != MILLION) && 2254 !atomic_read(&iocg_to_blkg(iocg)->use_delay) && 2255 time_after64(vtime, vdone) && 2256 time_after64(vtime, now.vnow - 2257 MAX_LAGGING_PERIODS * period_vtime) && 2258 time_before64(vdone, now.vnow - period_vtime)) 2259 nr_lagging++; 2260 2261 /* 2262 * Determine absolute usage factoring in in-flight IOs to avoid 2263 * high-latency completions appearing as idle. 2264 */ 2265 usage_us = iocg->usage_delta_us; 2266 usage_us_sum += usage_us; 2267 2268 /* see whether there's surplus vtime */ 2269 WARN_ON_ONCE(!list_empty(&iocg->surplus_list)); 2270 if (hw_inuse < hw_active || 2271 (!waitqueue_active(&iocg->waitq) && 2272 time_before64(vtime, now.vnow - ioc->margins.low))) { 2273 u32 hwa, old_hwi, hwm, new_hwi, usage; 2274 u64 usage_dur; 2275 2276 if (vdone != vtime) { 2277 u64 inflight_us = DIV64_U64_ROUND_UP( 2278 cost_to_abs_cost(vtime - vdone, hw_inuse), 2279 ioc->vtime_base_rate); 2280 2281 usage_us = max(usage_us, inflight_us); 2282 } 2283 2284 /* convert to hweight based usage ratio */ 2285 if (time_after64(iocg->activated_at, ioc->period_at)) 2286 usage_dur = max_t(u64, now.now - iocg->activated_at, 1); 2287 else 2288 usage_dur = max_t(u64, now.now - ioc->period_at, 1); 2289 2290 usage = clamp_t(u32, 2291 DIV64_U64_ROUND_UP(usage_us * WEIGHT_ONE, 2292 usage_dur), 2293 1, WEIGHT_ONE); 2294 2295 /* 2296 * Already donating or accumulated enough to start. 2297 * Determine the donation amount. 2298 */ 2299 current_hweight(iocg, &hwa, &old_hwi); 2300 hwm = current_hweight_max(iocg); 2301 new_hwi = hweight_after_donation(iocg, old_hwi, hwm, 2302 usage, &now); 2303 if (new_hwi < hwm) { 2304 iocg->hweight_donating = hwa; 2305 iocg->hweight_after_donation = new_hwi; 2306 list_add(&iocg->surplus_list, &surpluses); 2307 } else { 2308 TRACE_IOCG_PATH(inuse_shortage, iocg, &now, 2309 iocg->inuse, iocg->active, 2310 iocg->hweight_inuse, new_hwi); 2311 2312 __propagate_weights(iocg, iocg->active, 2313 iocg->active, true, &now); 2314 nr_shortages++; 2315 } 2316 } else { 2317 /* genuinely short on vtime */ 2318 nr_shortages++; 2319 } 2320 } 2321 2322 if (!list_empty(&surpluses) && nr_shortages) 2323 transfer_surpluses(&surpluses, &now); 2324 2325 commit_weights(ioc); 2326 2327 /* surplus list should be dissolved after use */ 2328 list_for_each_entry_safe(iocg, tiocg, &surpluses, surplus_list) 2329 list_del_init(&iocg->surplus_list); 2330 2331 /* 2332 * If q is getting clogged or we're missing too much, we're issuing 2333 * too much IO and should lower vtime rate. If we're not missing 2334 * and experiencing shortages but not surpluses, we're too stingy 2335 * and should increase vtime rate. 2336 */ 2337 prev_busy_level = ioc->busy_level; 2338 if (rq_wait_pct > RQ_WAIT_BUSY_PCT || 2339 missed_ppm[READ] > ppm_rthr || 2340 missed_ppm[WRITE] > ppm_wthr) { 2341 /* clearly missing QoS targets, slow down vrate */ 2342 ioc->busy_level = max(ioc->busy_level, 0); 2343 ioc->busy_level++; 2344 } else if (rq_wait_pct <= RQ_WAIT_BUSY_PCT * UNBUSY_THR_PCT / 100 && 2345 missed_ppm[READ] <= ppm_rthr * UNBUSY_THR_PCT / 100 && 2346 missed_ppm[WRITE] <= ppm_wthr * UNBUSY_THR_PCT / 100) { 2347 /* QoS targets are being met with >25% margin */ 2348 if (nr_shortages) { 2349 /* 2350 * We're throttling while the device has spare 2351 * capacity. If vrate was being slowed down, stop. 2352 */ 2353 ioc->busy_level = min(ioc->busy_level, 0); 2354 2355 /* 2356 * If there are IOs spanning multiple periods, wait 2357 * them out before pushing the device harder. 2358 */ 2359 if (!nr_lagging) 2360 ioc->busy_level--; 2361 } else { 2362 /* 2363 * Nobody is being throttled and the users aren't 2364 * issuing enough IOs to saturate the device. We 2365 * simply don't know how close the device is to 2366 * saturation. Coast. 2367 */ 2368 ioc->busy_level = 0; 2369 } 2370 } else { 2371 /* inside the hysterisis margin, we're good */ 2372 ioc->busy_level = 0; 2373 } 2374 2375 ioc->busy_level = clamp(ioc->busy_level, -1000, 1000); 2376 2377 ioc_adjust_base_vrate(ioc, rq_wait_pct, nr_lagging, nr_shortages, 2378 prev_busy_level, missed_ppm); 2379 2380 ioc_refresh_params(ioc, false); 2381 2382 ioc_forgive_debts(ioc, usage_us_sum, nr_debtors, &now); 2383 2384 /* 2385 * This period is done. Move onto the next one. If nothing's 2386 * going on with the device, stop the timer. 2387 */ 2388 atomic64_inc(&ioc->cur_period); 2389 2390 if (ioc->running != IOC_STOP) { 2391 if (!list_empty(&ioc->active_iocgs)) { 2392 ioc_start_period(ioc, &now); 2393 } else { 2394 ioc->busy_level = 0; 2395 ioc->vtime_err = 0; 2396 ioc->running = IOC_IDLE; 2397 } 2398 2399 ioc_refresh_vrate(ioc, &now); 2400 } 2401 2402 spin_unlock_irq(&ioc->lock); 2403 } 2404 2405 static u64 adjust_inuse_and_calc_cost(struct ioc_gq *iocg, u64 vtime, 2406 u64 abs_cost, struct ioc_now *now) 2407 { 2408 struct ioc *ioc = iocg->ioc; 2409 struct ioc_margins *margins = &ioc->margins; 2410 u32 __maybe_unused old_inuse = iocg->inuse, __maybe_unused old_hwi; 2411 u32 hwi, adj_step; 2412 s64 margin; 2413 u64 cost, new_inuse; 2414 2415 current_hweight(iocg, NULL, &hwi); 2416 old_hwi = hwi; 2417 cost = abs_cost_to_cost(abs_cost, hwi); 2418 margin = now->vnow - vtime - cost; 2419 2420 /* debt handling owns inuse for debtors */ 2421 if (iocg->abs_vdebt) 2422 return cost; 2423 2424 /* 2425 * We only increase inuse during period and do so if the margin has 2426 * deteriorated since the previous adjustment. 2427 */ 2428 if (margin >= iocg->saved_margin || margin >= margins->low || 2429 iocg->inuse == iocg->active) 2430 return cost; 2431 2432 spin_lock_irq(&ioc->lock); 2433 2434 /* we own inuse only when @iocg is in the normal active state */ 2435 if (iocg->abs_vdebt || list_empty(&iocg->active_list)) { 2436 spin_unlock_irq(&ioc->lock); 2437 return cost; 2438 } 2439 2440 /* 2441 * Bump up inuse till @abs_cost fits in the existing budget. 2442 * adj_step must be determined after acquiring ioc->lock - we might 2443 * have raced and lost to another thread for activation and could 2444 * be reading 0 iocg->active before ioc->lock which will lead to 2445 * infinite loop. 2446 */ 2447 new_inuse = iocg->inuse; 2448 adj_step = DIV_ROUND_UP(iocg->active * INUSE_ADJ_STEP_PCT, 100); 2449 do { 2450 new_inuse = new_inuse + adj_step; 2451 propagate_weights(iocg, iocg->active, new_inuse, true, now); 2452 current_hweight(iocg, NULL, &hwi); 2453 cost = abs_cost_to_cost(abs_cost, hwi); 2454 } while (time_after64(vtime + cost, now->vnow) && 2455 iocg->inuse != iocg->active); 2456 2457 spin_unlock_irq(&ioc->lock); 2458 2459 TRACE_IOCG_PATH(inuse_adjust, iocg, now, 2460 old_inuse, iocg->inuse, old_hwi, hwi); 2461 2462 return cost; 2463 } 2464 2465 static void calc_vtime_cost_builtin(struct bio *bio, struct ioc_gq *iocg, 2466 bool is_merge, u64 *costp) 2467 { 2468 struct ioc *ioc = iocg->ioc; 2469 u64 coef_seqio, coef_randio, coef_page; 2470 u64 pages = max_t(u64, bio_sectors(bio) >> IOC_SECT_TO_PAGE_SHIFT, 1); 2471 u64 seek_pages = 0; 2472 u64 cost = 0; 2473 2474 switch (bio_op(bio)) { 2475 case REQ_OP_READ: 2476 coef_seqio = ioc->params.lcoefs[LCOEF_RSEQIO]; 2477 coef_randio = ioc->params.lcoefs[LCOEF_RRANDIO]; 2478 coef_page = ioc->params.lcoefs[LCOEF_RPAGE]; 2479 break; 2480 case REQ_OP_WRITE: 2481 coef_seqio = ioc->params.lcoefs[LCOEF_WSEQIO]; 2482 coef_randio = ioc->params.lcoefs[LCOEF_WRANDIO]; 2483 coef_page = ioc->params.lcoefs[LCOEF_WPAGE]; 2484 break; 2485 default: 2486 goto out; 2487 } 2488 2489 if (iocg->cursor) { 2490 seek_pages = abs(bio->bi_iter.bi_sector - iocg->cursor); 2491 seek_pages >>= IOC_SECT_TO_PAGE_SHIFT; 2492 } 2493 2494 if (!is_merge) { 2495 if (seek_pages > LCOEF_RANDIO_PAGES) { 2496 cost += coef_randio; 2497 } else { 2498 cost += coef_seqio; 2499 } 2500 } 2501 cost += pages * coef_page; 2502 out: 2503 *costp = cost; 2504 } 2505 2506 static u64 calc_vtime_cost(struct bio *bio, struct ioc_gq *iocg, bool is_merge) 2507 { 2508 u64 cost; 2509 2510 calc_vtime_cost_builtin(bio, iocg, is_merge, &cost); 2511 return cost; 2512 } 2513 2514 static void calc_size_vtime_cost_builtin(struct request *rq, struct ioc *ioc, 2515 u64 *costp) 2516 { 2517 unsigned int pages = blk_rq_stats_sectors(rq) >> IOC_SECT_TO_PAGE_SHIFT; 2518 2519 switch (req_op(rq)) { 2520 case REQ_OP_READ: 2521 *costp = pages * ioc->params.lcoefs[LCOEF_RPAGE]; 2522 break; 2523 case REQ_OP_WRITE: 2524 *costp = pages * ioc->params.lcoefs[LCOEF_WPAGE]; 2525 break; 2526 default: 2527 *costp = 0; 2528 } 2529 } 2530 2531 static u64 calc_size_vtime_cost(struct request *rq, struct ioc *ioc) 2532 { 2533 u64 cost; 2534 2535 calc_size_vtime_cost_builtin(rq, ioc, &cost); 2536 return cost; 2537 } 2538 2539 static void ioc_rqos_throttle(struct rq_qos *rqos, struct bio *bio) 2540 { 2541 struct blkcg_gq *blkg = bio->bi_blkg; 2542 struct ioc *ioc = rqos_to_ioc(rqos); 2543 struct ioc_gq *iocg = blkg_to_iocg(blkg); 2544 struct ioc_now now; 2545 struct iocg_wait wait; 2546 u64 abs_cost, cost, vtime; 2547 bool use_debt, ioc_locked; 2548 unsigned long flags; 2549 2550 /* bypass IOs if disabled, still initializing, or for root cgroup */ 2551 if (!ioc->enabled || !iocg || !iocg->level) 2552 return; 2553 2554 /* calculate the absolute vtime cost */ 2555 abs_cost = calc_vtime_cost(bio, iocg, false); 2556 if (!abs_cost) 2557 return; 2558 2559 if (!iocg_activate(iocg, &now)) 2560 return; 2561 2562 iocg->cursor = bio_end_sector(bio); 2563 vtime = atomic64_read(&iocg->vtime); 2564 cost = adjust_inuse_and_calc_cost(iocg, vtime, abs_cost, &now); 2565 2566 /* 2567 * If no one's waiting and within budget, issue right away. The 2568 * tests are racy but the races aren't systemic - we only miss once 2569 * in a while which is fine. 2570 */ 2571 if (!waitqueue_active(&iocg->waitq) && !iocg->abs_vdebt && 2572 time_before_eq64(vtime + cost, now.vnow)) { 2573 iocg_commit_bio(iocg, bio, abs_cost, cost); 2574 return; 2575 } 2576 2577 /* 2578 * We're over budget. This can be handled in two ways. IOs which may 2579 * cause priority inversions are punted to @ioc->aux_iocg and charged as 2580 * debt. Otherwise, the issuer is blocked on @iocg->waitq. Debt handling 2581 * requires @ioc->lock, waitq handling @iocg->waitq.lock. Determine 2582 * whether debt handling is needed and acquire locks accordingly. 2583 */ 2584 use_debt = bio_issue_as_root_blkg(bio) || fatal_signal_pending(current); 2585 ioc_locked = use_debt || READ_ONCE(iocg->abs_vdebt); 2586 retry_lock: 2587 iocg_lock(iocg, ioc_locked, &flags); 2588 2589 /* 2590 * @iocg must stay activated for debt and waitq handling. Deactivation 2591 * is synchronized against both ioc->lock and waitq.lock and we won't 2592 * get deactivated as long as we're waiting or has debt, so we're good 2593 * if we're activated here. In the unlikely cases that we aren't, just 2594 * issue the IO. 2595 */ 2596 if (unlikely(list_empty(&iocg->active_list))) { 2597 iocg_unlock(iocg, ioc_locked, &flags); 2598 iocg_commit_bio(iocg, bio, abs_cost, cost); 2599 return; 2600 } 2601 2602 /* 2603 * We're over budget. If @bio has to be issued regardless, remember 2604 * the abs_cost instead of advancing vtime. iocg_kick_waitq() will pay 2605 * off the debt before waking more IOs. 2606 * 2607 * This way, the debt is continuously paid off each period with the 2608 * actual budget available to the cgroup. If we just wound vtime, we 2609 * would incorrectly use the current hw_inuse for the entire amount 2610 * which, for example, can lead to the cgroup staying blocked for a 2611 * long time even with substantially raised hw_inuse. 2612 * 2613 * An iocg with vdebt should stay online so that the timer can keep 2614 * deducting its vdebt and [de]activate use_delay mechanism 2615 * accordingly. We don't want to race against the timer trying to 2616 * clear them and leave @iocg inactive w/ dangling use_delay heavily 2617 * penalizing the cgroup and its descendants. 2618 */ 2619 if (use_debt) { 2620 iocg_incur_debt(iocg, abs_cost, &now); 2621 if (iocg_kick_delay(iocg, &now)) 2622 blkcg_schedule_throttle(rqos->q, 2623 (bio->bi_opf & REQ_SWAP) == REQ_SWAP); 2624 iocg_unlock(iocg, ioc_locked, &flags); 2625 return; 2626 } 2627 2628 /* guarantee that iocgs w/ waiters have maximum inuse */ 2629 if (!iocg->abs_vdebt && iocg->inuse != iocg->active) { 2630 if (!ioc_locked) { 2631 iocg_unlock(iocg, false, &flags); 2632 ioc_locked = true; 2633 goto retry_lock; 2634 } 2635 propagate_weights(iocg, iocg->active, iocg->active, true, 2636 &now); 2637 } 2638 2639 /* 2640 * Append self to the waitq and schedule the wakeup timer if we're 2641 * the first waiter. The timer duration is calculated based on the 2642 * current vrate. vtime and hweight changes can make it too short 2643 * or too long. Each wait entry records the absolute cost it's 2644 * waiting for to allow re-evaluation using a custom wait entry. 2645 * 2646 * If too short, the timer simply reschedules itself. If too long, 2647 * the period timer will notice and trigger wakeups. 2648 * 2649 * All waiters are on iocg->waitq and the wait states are 2650 * synchronized using waitq.lock. 2651 */ 2652 init_waitqueue_func_entry(&wait.wait, iocg_wake_fn); 2653 wait.wait.private = current; 2654 wait.bio = bio; 2655 wait.abs_cost = abs_cost; 2656 wait.committed = false; /* will be set true by waker */ 2657 2658 __add_wait_queue_entry_tail(&iocg->waitq, &wait.wait); 2659 iocg_kick_waitq(iocg, ioc_locked, &now); 2660 2661 iocg_unlock(iocg, ioc_locked, &flags); 2662 2663 while (true) { 2664 set_current_state(TASK_UNINTERRUPTIBLE); 2665 if (wait.committed) 2666 break; 2667 io_schedule(); 2668 } 2669 2670 /* waker already committed us, proceed */ 2671 finish_wait(&iocg->waitq, &wait.wait); 2672 } 2673 2674 static void ioc_rqos_merge(struct rq_qos *rqos, struct request *rq, 2675 struct bio *bio) 2676 { 2677 struct ioc_gq *iocg = blkg_to_iocg(bio->bi_blkg); 2678 struct ioc *ioc = rqos_to_ioc(rqos); 2679 sector_t bio_end = bio_end_sector(bio); 2680 struct ioc_now now; 2681 u64 vtime, abs_cost, cost; 2682 unsigned long flags; 2683 2684 /* bypass if disabled, still initializing, or for root cgroup */ 2685 if (!ioc->enabled || !iocg || !iocg->level) 2686 return; 2687 2688 abs_cost = calc_vtime_cost(bio, iocg, true); 2689 if (!abs_cost) 2690 return; 2691 2692 ioc_now(ioc, &now); 2693 2694 vtime = atomic64_read(&iocg->vtime); 2695 cost = adjust_inuse_and_calc_cost(iocg, vtime, abs_cost, &now); 2696 2697 /* update cursor if backmerging into the request at the cursor */ 2698 if (blk_rq_pos(rq) < bio_end && 2699 blk_rq_pos(rq) + blk_rq_sectors(rq) == iocg->cursor) 2700 iocg->cursor = bio_end; 2701 2702 /* 2703 * Charge if there's enough vtime budget and the existing request has 2704 * cost assigned. 2705 */ 2706 if (rq->bio && rq->bio->bi_iocost_cost && 2707 time_before_eq64(atomic64_read(&iocg->vtime) + cost, now.vnow)) { 2708 iocg_commit_bio(iocg, bio, abs_cost, cost); 2709 return; 2710 } 2711 2712 /* 2713 * Otherwise, account it as debt if @iocg is online, which it should 2714 * be for the vast majority of cases. See debt handling in 2715 * ioc_rqos_throttle() for details. 2716 */ 2717 spin_lock_irqsave(&ioc->lock, flags); 2718 spin_lock(&iocg->waitq.lock); 2719 2720 if (likely(!list_empty(&iocg->active_list))) { 2721 iocg_incur_debt(iocg, abs_cost, &now); 2722 if (iocg_kick_delay(iocg, &now)) 2723 blkcg_schedule_throttle(rqos->q, 2724 (bio->bi_opf & REQ_SWAP) == REQ_SWAP); 2725 } else { 2726 iocg_commit_bio(iocg, bio, abs_cost, cost); 2727 } 2728 2729 spin_unlock(&iocg->waitq.lock); 2730 spin_unlock_irqrestore(&ioc->lock, flags); 2731 } 2732 2733 static void ioc_rqos_done_bio(struct rq_qos *rqos, struct bio *bio) 2734 { 2735 struct ioc_gq *iocg = blkg_to_iocg(bio->bi_blkg); 2736 2737 if (iocg && bio->bi_iocost_cost) 2738 atomic64_add(bio->bi_iocost_cost, &iocg->done_vtime); 2739 } 2740 2741 static void ioc_rqos_done(struct rq_qos *rqos, struct request *rq) 2742 { 2743 struct ioc *ioc = rqos_to_ioc(rqos); 2744 struct ioc_pcpu_stat *ccs; 2745 u64 on_q_ns, rq_wait_ns, size_nsec; 2746 int pidx, rw; 2747 2748 if (!ioc->enabled || !rq->alloc_time_ns || !rq->start_time_ns) 2749 return; 2750 2751 switch (req_op(rq) & REQ_OP_MASK) { 2752 case REQ_OP_READ: 2753 pidx = QOS_RLAT; 2754 rw = READ; 2755 break; 2756 case REQ_OP_WRITE: 2757 pidx = QOS_WLAT; 2758 rw = WRITE; 2759 break; 2760 default: 2761 return; 2762 } 2763 2764 on_q_ns = ktime_get_ns() - rq->alloc_time_ns; 2765 rq_wait_ns = rq->start_time_ns - rq->alloc_time_ns; 2766 size_nsec = div64_u64(calc_size_vtime_cost(rq, ioc), VTIME_PER_NSEC); 2767 2768 ccs = get_cpu_ptr(ioc->pcpu_stat); 2769 2770 if (on_q_ns <= size_nsec || 2771 on_q_ns - size_nsec <= ioc->params.qos[pidx] * NSEC_PER_USEC) 2772 local_inc(&ccs->missed[rw].nr_met); 2773 else 2774 local_inc(&ccs->missed[rw].nr_missed); 2775 2776 local64_add(rq_wait_ns, &ccs->rq_wait_ns); 2777 2778 put_cpu_ptr(ccs); 2779 } 2780 2781 static void ioc_rqos_queue_depth_changed(struct rq_qos *rqos) 2782 { 2783 struct ioc *ioc = rqos_to_ioc(rqos); 2784 2785 spin_lock_irq(&ioc->lock); 2786 ioc_refresh_params(ioc, false); 2787 spin_unlock_irq(&ioc->lock); 2788 } 2789 2790 static void ioc_rqos_exit(struct rq_qos *rqos) 2791 { 2792 struct ioc *ioc = rqos_to_ioc(rqos); 2793 2794 blkcg_deactivate_policy(rqos->q, &blkcg_policy_iocost); 2795 2796 spin_lock_irq(&ioc->lock); 2797 ioc->running = IOC_STOP; 2798 spin_unlock_irq(&ioc->lock); 2799 2800 del_timer_sync(&ioc->timer); 2801 free_percpu(ioc->pcpu_stat); 2802 kfree(ioc); 2803 } 2804 2805 static struct rq_qos_ops ioc_rqos_ops = { 2806 .throttle = ioc_rqos_throttle, 2807 .merge = ioc_rqos_merge, 2808 .done_bio = ioc_rqos_done_bio, 2809 .done = ioc_rqos_done, 2810 .queue_depth_changed = ioc_rqos_queue_depth_changed, 2811 .exit = ioc_rqos_exit, 2812 }; 2813 2814 static int blk_iocost_init(struct request_queue *q) 2815 { 2816 struct ioc *ioc; 2817 struct rq_qos *rqos; 2818 int i, cpu, ret; 2819 2820 ioc = kzalloc(sizeof(*ioc), GFP_KERNEL); 2821 if (!ioc) 2822 return -ENOMEM; 2823 2824 ioc->pcpu_stat = alloc_percpu(struct ioc_pcpu_stat); 2825 if (!ioc->pcpu_stat) { 2826 kfree(ioc); 2827 return -ENOMEM; 2828 } 2829 2830 for_each_possible_cpu(cpu) { 2831 struct ioc_pcpu_stat *ccs = per_cpu_ptr(ioc->pcpu_stat, cpu); 2832 2833 for (i = 0; i < ARRAY_SIZE(ccs->missed); i++) { 2834 local_set(&ccs->missed[i].nr_met, 0); 2835 local_set(&ccs->missed[i].nr_missed, 0); 2836 } 2837 local64_set(&ccs->rq_wait_ns, 0); 2838 } 2839 2840 rqos = &ioc->rqos; 2841 rqos->id = RQ_QOS_COST; 2842 rqos->ops = &ioc_rqos_ops; 2843 rqos->q = q; 2844 2845 spin_lock_init(&ioc->lock); 2846 timer_setup(&ioc->timer, ioc_timer_fn, 0); 2847 INIT_LIST_HEAD(&ioc->active_iocgs); 2848 2849 ioc->running = IOC_IDLE; 2850 ioc->vtime_base_rate = VTIME_PER_USEC; 2851 atomic64_set(&ioc->vtime_rate, VTIME_PER_USEC); 2852 seqcount_spinlock_init(&ioc->period_seqcount, &ioc->lock); 2853 ioc->period_at = ktime_to_us(ktime_get()); 2854 atomic64_set(&ioc->cur_period, 0); 2855 atomic_set(&ioc->hweight_gen, 0); 2856 2857 spin_lock_irq(&ioc->lock); 2858 ioc->autop_idx = AUTOP_INVALID; 2859 ioc_refresh_params(ioc, true); 2860 spin_unlock_irq(&ioc->lock); 2861 2862 /* 2863 * rqos must be added before activation to allow iocg_pd_init() to 2864 * lookup the ioc from q. This means that the rqos methods may get 2865 * called before policy activation completion, can't assume that the 2866 * target bio has an iocg associated and need to test for NULL iocg. 2867 */ 2868 rq_qos_add(q, rqos); 2869 ret = blkcg_activate_policy(q, &blkcg_policy_iocost); 2870 if (ret) { 2871 rq_qos_del(q, rqos); 2872 free_percpu(ioc->pcpu_stat); 2873 kfree(ioc); 2874 return ret; 2875 } 2876 return 0; 2877 } 2878 2879 static struct blkcg_policy_data *ioc_cpd_alloc(gfp_t gfp) 2880 { 2881 struct ioc_cgrp *iocc; 2882 2883 iocc = kzalloc(sizeof(struct ioc_cgrp), gfp); 2884 if (!iocc) 2885 return NULL; 2886 2887 iocc->dfl_weight = CGROUP_WEIGHT_DFL * WEIGHT_ONE; 2888 return &iocc->cpd; 2889 } 2890 2891 static void ioc_cpd_free(struct blkcg_policy_data *cpd) 2892 { 2893 kfree(container_of(cpd, struct ioc_cgrp, cpd)); 2894 } 2895 2896 static struct blkg_policy_data *ioc_pd_alloc(gfp_t gfp, struct request_queue *q, 2897 struct blkcg *blkcg) 2898 { 2899 int levels = blkcg->css.cgroup->level + 1; 2900 struct ioc_gq *iocg; 2901 2902 iocg = kzalloc_node(struct_size(iocg, ancestors, levels), gfp, q->node); 2903 if (!iocg) 2904 return NULL; 2905 2906 iocg->pcpu_stat = alloc_percpu_gfp(struct iocg_pcpu_stat, gfp); 2907 if (!iocg->pcpu_stat) { 2908 kfree(iocg); 2909 return NULL; 2910 } 2911 2912 return &iocg->pd; 2913 } 2914 2915 static void ioc_pd_init(struct blkg_policy_data *pd) 2916 { 2917 struct ioc_gq *iocg = pd_to_iocg(pd); 2918 struct blkcg_gq *blkg = pd_to_blkg(&iocg->pd); 2919 struct ioc *ioc = q_to_ioc(blkg->q); 2920 struct ioc_now now; 2921 struct blkcg_gq *tblkg; 2922 unsigned long flags; 2923 2924 ioc_now(ioc, &now); 2925 2926 iocg->ioc = ioc; 2927 atomic64_set(&iocg->vtime, now.vnow); 2928 atomic64_set(&iocg->done_vtime, now.vnow); 2929 atomic64_set(&iocg->active_period, atomic64_read(&ioc->cur_period)); 2930 INIT_LIST_HEAD(&iocg->active_list); 2931 INIT_LIST_HEAD(&iocg->walk_list); 2932 INIT_LIST_HEAD(&iocg->surplus_list); 2933 iocg->hweight_active = WEIGHT_ONE; 2934 iocg->hweight_inuse = WEIGHT_ONE; 2935 2936 init_waitqueue_head(&iocg->waitq); 2937 hrtimer_init(&iocg->waitq_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS); 2938 iocg->waitq_timer.function = iocg_waitq_timer_fn; 2939 2940 iocg->level = blkg->blkcg->css.cgroup->level; 2941 2942 for (tblkg = blkg; tblkg; tblkg = tblkg->parent) { 2943 struct ioc_gq *tiocg = blkg_to_iocg(tblkg); 2944 iocg->ancestors[tiocg->level] = tiocg; 2945 } 2946 2947 spin_lock_irqsave(&ioc->lock, flags); 2948 weight_updated(iocg, &now); 2949 spin_unlock_irqrestore(&ioc->lock, flags); 2950 } 2951 2952 static void ioc_pd_free(struct blkg_policy_data *pd) 2953 { 2954 struct ioc_gq *iocg = pd_to_iocg(pd); 2955 struct ioc *ioc = iocg->ioc; 2956 unsigned long flags; 2957 2958 if (ioc) { 2959 spin_lock_irqsave(&ioc->lock, flags); 2960 2961 if (!list_empty(&iocg->active_list)) { 2962 struct ioc_now now; 2963 2964 ioc_now(ioc, &now); 2965 propagate_weights(iocg, 0, 0, false, &now); 2966 list_del_init(&iocg->active_list); 2967 } 2968 2969 WARN_ON_ONCE(!list_empty(&iocg->walk_list)); 2970 WARN_ON_ONCE(!list_empty(&iocg->surplus_list)); 2971 2972 spin_unlock_irqrestore(&ioc->lock, flags); 2973 2974 hrtimer_cancel(&iocg->waitq_timer); 2975 } 2976 free_percpu(iocg->pcpu_stat); 2977 kfree(iocg); 2978 } 2979 2980 static size_t ioc_pd_stat(struct blkg_policy_data *pd, char *buf, size_t size) 2981 { 2982 struct ioc_gq *iocg = pd_to_iocg(pd); 2983 struct ioc *ioc = iocg->ioc; 2984 size_t pos = 0; 2985 2986 if (!ioc->enabled) 2987 return 0; 2988 2989 if (iocg->level == 0) { 2990 unsigned vp10k = DIV64_U64_ROUND_CLOSEST( 2991 ioc->vtime_base_rate * 10000, 2992 VTIME_PER_USEC); 2993 pos += scnprintf(buf + pos, size - pos, " cost.vrate=%u.%02u", 2994 vp10k / 100, vp10k % 100); 2995 } 2996 2997 pos += scnprintf(buf + pos, size - pos, " cost.usage=%llu", 2998 iocg->last_stat.usage_us); 2999 3000 if (blkcg_debug_stats) 3001 pos += scnprintf(buf + pos, size - pos, 3002 " cost.wait=%llu cost.indebt=%llu cost.indelay=%llu", 3003 iocg->last_stat.wait_us, 3004 iocg->last_stat.indebt_us, 3005 iocg->last_stat.indelay_us); 3006 3007 return pos; 3008 } 3009 3010 static u64 ioc_weight_prfill(struct seq_file *sf, struct blkg_policy_data *pd, 3011 int off) 3012 { 3013 const char *dname = blkg_dev_name(pd->blkg); 3014 struct ioc_gq *iocg = pd_to_iocg(pd); 3015 3016 if (dname && iocg->cfg_weight) 3017 seq_printf(sf, "%s %u\n", dname, iocg->cfg_weight / WEIGHT_ONE); 3018 return 0; 3019 } 3020 3021 3022 static int ioc_weight_show(struct seq_file *sf, void *v) 3023 { 3024 struct blkcg *blkcg = css_to_blkcg(seq_css(sf)); 3025 struct ioc_cgrp *iocc = blkcg_to_iocc(blkcg); 3026 3027 seq_printf(sf, "default %u\n", iocc->dfl_weight / WEIGHT_ONE); 3028 blkcg_print_blkgs(sf, blkcg, ioc_weight_prfill, 3029 &blkcg_policy_iocost, seq_cft(sf)->private, false); 3030 return 0; 3031 } 3032 3033 static ssize_t ioc_weight_write(struct kernfs_open_file *of, char *buf, 3034 size_t nbytes, loff_t off) 3035 { 3036 struct blkcg *blkcg = css_to_blkcg(of_css(of)); 3037 struct ioc_cgrp *iocc = blkcg_to_iocc(blkcg); 3038 struct blkg_conf_ctx ctx; 3039 struct ioc_now now; 3040 struct ioc_gq *iocg; 3041 u32 v; 3042 int ret; 3043 3044 if (!strchr(buf, ':')) { 3045 struct blkcg_gq *blkg; 3046 3047 if (!sscanf(buf, "default %u", &v) && !sscanf(buf, "%u", &v)) 3048 return -EINVAL; 3049 3050 if (v < CGROUP_WEIGHT_MIN || v > CGROUP_WEIGHT_MAX) 3051 return -EINVAL; 3052 3053 spin_lock(&blkcg->lock); 3054 iocc->dfl_weight = v * WEIGHT_ONE; 3055 hlist_for_each_entry(blkg, &blkcg->blkg_list, blkcg_node) { 3056 struct ioc_gq *iocg = blkg_to_iocg(blkg); 3057 3058 if (iocg) { 3059 spin_lock_irq(&iocg->ioc->lock); 3060 ioc_now(iocg->ioc, &now); 3061 weight_updated(iocg, &now); 3062 spin_unlock_irq(&iocg->ioc->lock); 3063 } 3064 } 3065 spin_unlock(&blkcg->lock); 3066 3067 return nbytes; 3068 } 3069 3070 ret = blkg_conf_prep(blkcg, &blkcg_policy_iocost, buf, &ctx); 3071 if (ret) 3072 return ret; 3073 3074 iocg = blkg_to_iocg(ctx.blkg); 3075 3076 if (!strncmp(ctx.body, "default", 7)) { 3077 v = 0; 3078 } else { 3079 if (!sscanf(ctx.body, "%u", &v)) 3080 goto einval; 3081 if (v < CGROUP_WEIGHT_MIN || v > CGROUP_WEIGHT_MAX) 3082 goto einval; 3083 } 3084 3085 spin_lock(&iocg->ioc->lock); 3086 iocg->cfg_weight = v * WEIGHT_ONE; 3087 ioc_now(iocg->ioc, &now); 3088 weight_updated(iocg, &now); 3089 spin_unlock(&iocg->ioc->lock); 3090 3091 blkg_conf_finish(&ctx); 3092 return nbytes; 3093 3094 einval: 3095 blkg_conf_finish(&ctx); 3096 return -EINVAL; 3097 } 3098 3099 static u64 ioc_qos_prfill(struct seq_file *sf, struct blkg_policy_data *pd, 3100 int off) 3101 { 3102 const char *dname = blkg_dev_name(pd->blkg); 3103 struct ioc *ioc = pd_to_iocg(pd)->ioc; 3104 3105 if (!dname) 3106 return 0; 3107 3108 seq_printf(sf, "%s enable=%d ctrl=%s rpct=%u.%02u rlat=%u wpct=%u.%02u wlat=%u min=%u.%02u max=%u.%02u\n", 3109 dname, ioc->enabled, ioc->user_qos_params ? "user" : "auto", 3110 ioc->params.qos[QOS_RPPM] / 10000, 3111 ioc->params.qos[QOS_RPPM] % 10000 / 100, 3112 ioc->params.qos[QOS_RLAT], 3113 ioc->params.qos[QOS_WPPM] / 10000, 3114 ioc->params.qos[QOS_WPPM] % 10000 / 100, 3115 ioc->params.qos[QOS_WLAT], 3116 ioc->params.qos[QOS_MIN] / 10000, 3117 ioc->params.qos[QOS_MIN] % 10000 / 100, 3118 ioc->params.qos[QOS_MAX] / 10000, 3119 ioc->params.qos[QOS_MAX] % 10000 / 100); 3120 return 0; 3121 } 3122 3123 static int ioc_qos_show(struct seq_file *sf, void *v) 3124 { 3125 struct blkcg *blkcg = css_to_blkcg(seq_css(sf)); 3126 3127 blkcg_print_blkgs(sf, blkcg, ioc_qos_prfill, 3128 &blkcg_policy_iocost, seq_cft(sf)->private, false); 3129 return 0; 3130 } 3131 3132 static const match_table_t qos_ctrl_tokens = { 3133 { QOS_ENABLE, "enable=%u" }, 3134 { QOS_CTRL, "ctrl=%s" }, 3135 { NR_QOS_CTRL_PARAMS, NULL }, 3136 }; 3137 3138 static const match_table_t qos_tokens = { 3139 { QOS_RPPM, "rpct=%s" }, 3140 { QOS_RLAT, "rlat=%u" }, 3141 { QOS_WPPM, "wpct=%s" }, 3142 { QOS_WLAT, "wlat=%u" }, 3143 { QOS_MIN, "min=%s" }, 3144 { QOS_MAX, "max=%s" }, 3145 { NR_QOS_PARAMS, NULL }, 3146 }; 3147 3148 static ssize_t ioc_qos_write(struct kernfs_open_file *of, char *input, 3149 size_t nbytes, loff_t off) 3150 { 3151 struct block_device *bdev; 3152 struct ioc *ioc; 3153 u32 qos[NR_QOS_PARAMS]; 3154 bool enable, user; 3155 char *p; 3156 int ret; 3157 3158 bdev = blkcg_conf_open_bdev(&input); 3159 if (IS_ERR(bdev)) 3160 return PTR_ERR(bdev); 3161 3162 ioc = q_to_ioc(bdev->bd_disk->queue); 3163 if (!ioc) { 3164 ret = blk_iocost_init(bdev->bd_disk->queue); 3165 if (ret) 3166 goto err; 3167 ioc = q_to_ioc(bdev->bd_disk->queue); 3168 } 3169 3170 spin_lock_irq(&ioc->lock); 3171 memcpy(qos, ioc->params.qos, sizeof(qos)); 3172 enable = ioc->enabled; 3173 user = ioc->user_qos_params; 3174 spin_unlock_irq(&ioc->lock); 3175 3176 while ((p = strsep(&input, " \t\n"))) { 3177 substring_t args[MAX_OPT_ARGS]; 3178 char buf[32]; 3179 int tok; 3180 s64 v; 3181 3182 if (!*p) 3183 continue; 3184 3185 switch (match_token(p, qos_ctrl_tokens, args)) { 3186 case QOS_ENABLE: 3187 match_u64(&args[0], &v); 3188 enable = v; 3189 continue; 3190 case QOS_CTRL: 3191 match_strlcpy(buf, &args[0], sizeof(buf)); 3192 if (!strcmp(buf, "auto")) 3193 user = false; 3194 else if (!strcmp(buf, "user")) 3195 user = true; 3196 else 3197 goto einval; 3198 continue; 3199 } 3200 3201 tok = match_token(p, qos_tokens, args); 3202 switch (tok) { 3203 case QOS_RPPM: 3204 case QOS_WPPM: 3205 if (match_strlcpy(buf, &args[0], sizeof(buf)) >= 3206 sizeof(buf)) 3207 goto einval; 3208 if (cgroup_parse_float(buf, 2, &v)) 3209 goto einval; 3210 if (v < 0 || v > 10000) 3211 goto einval; 3212 qos[tok] = v * 100; 3213 break; 3214 case QOS_RLAT: 3215 case QOS_WLAT: 3216 if (match_u64(&args[0], &v)) 3217 goto einval; 3218 qos[tok] = v; 3219 break; 3220 case QOS_MIN: 3221 case QOS_MAX: 3222 if (match_strlcpy(buf, &args[0], sizeof(buf)) >= 3223 sizeof(buf)) 3224 goto einval; 3225 if (cgroup_parse_float(buf, 2, &v)) 3226 goto einval; 3227 if (v < 0) 3228 goto einval; 3229 qos[tok] = clamp_t(s64, v * 100, 3230 VRATE_MIN_PPM, VRATE_MAX_PPM); 3231 break; 3232 default: 3233 goto einval; 3234 } 3235 user = true; 3236 } 3237 3238 if (qos[QOS_MIN] > qos[QOS_MAX]) 3239 goto einval; 3240 3241 spin_lock_irq(&ioc->lock); 3242 3243 if (enable) { 3244 blk_stat_enable_accounting(ioc->rqos.q); 3245 blk_queue_flag_set(QUEUE_FLAG_RQ_ALLOC_TIME, ioc->rqos.q); 3246 ioc->enabled = true; 3247 } else { 3248 blk_queue_flag_clear(QUEUE_FLAG_RQ_ALLOC_TIME, ioc->rqos.q); 3249 ioc->enabled = false; 3250 } 3251 3252 if (user) { 3253 memcpy(ioc->params.qos, qos, sizeof(qos)); 3254 ioc->user_qos_params = true; 3255 } else { 3256 ioc->user_qos_params = false; 3257 } 3258 3259 ioc_refresh_params(ioc, true); 3260 spin_unlock_irq(&ioc->lock); 3261 3262 blkdev_put_no_open(bdev); 3263 return nbytes; 3264 einval: 3265 ret = -EINVAL; 3266 err: 3267 blkdev_put_no_open(bdev); 3268 return ret; 3269 } 3270 3271 static u64 ioc_cost_model_prfill(struct seq_file *sf, 3272 struct blkg_policy_data *pd, int off) 3273 { 3274 const char *dname = blkg_dev_name(pd->blkg); 3275 struct ioc *ioc = pd_to_iocg(pd)->ioc; 3276 u64 *u = ioc->params.i_lcoefs; 3277 3278 if (!dname) 3279 return 0; 3280 3281 seq_printf(sf, "%s ctrl=%s model=linear " 3282 "rbps=%llu rseqiops=%llu rrandiops=%llu " 3283 "wbps=%llu wseqiops=%llu wrandiops=%llu\n", 3284 dname, ioc->user_cost_model ? "user" : "auto", 3285 u[I_LCOEF_RBPS], u[I_LCOEF_RSEQIOPS], u[I_LCOEF_RRANDIOPS], 3286 u[I_LCOEF_WBPS], u[I_LCOEF_WSEQIOPS], u[I_LCOEF_WRANDIOPS]); 3287 return 0; 3288 } 3289 3290 static int ioc_cost_model_show(struct seq_file *sf, void *v) 3291 { 3292 struct blkcg *blkcg = css_to_blkcg(seq_css(sf)); 3293 3294 blkcg_print_blkgs(sf, blkcg, ioc_cost_model_prfill, 3295 &blkcg_policy_iocost, seq_cft(sf)->private, false); 3296 return 0; 3297 } 3298 3299 static const match_table_t cost_ctrl_tokens = { 3300 { COST_CTRL, "ctrl=%s" }, 3301 { COST_MODEL, "model=%s" }, 3302 { NR_COST_CTRL_PARAMS, NULL }, 3303 }; 3304 3305 static const match_table_t i_lcoef_tokens = { 3306 { I_LCOEF_RBPS, "rbps=%u" }, 3307 { I_LCOEF_RSEQIOPS, "rseqiops=%u" }, 3308 { I_LCOEF_RRANDIOPS, "rrandiops=%u" }, 3309 { I_LCOEF_WBPS, "wbps=%u" }, 3310 { I_LCOEF_WSEQIOPS, "wseqiops=%u" }, 3311 { I_LCOEF_WRANDIOPS, "wrandiops=%u" }, 3312 { NR_I_LCOEFS, NULL }, 3313 }; 3314 3315 static ssize_t ioc_cost_model_write(struct kernfs_open_file *of, char *input, 3316 size_t nbytes, loff_t off) 3317 { 3318 struct block_device *bdev; 3319 struct ioc *ioc; 3320 u64 u[NR_I_LCOEFS]; 3321 bool user; 3322 char *p; 3323 int ret; 3324 3325 bdev = blkcg_conf_open_bdev(&input); 3326 if (IS_ERR(bdev)) 3327 return PTR_ERR(bdev); 3328 3329 ioc = q_to_ioc(bdev->bd_disk->queue); 3330 if (!ioc) { 3331 ret = blk_iocost_init(bdev->bd_disk->queue); 3332 if (ret) 3333 goto err; 3334 ioc = q_to_ioc(bdev->bd_disk->queue); 3335 } 3336 3337 spin_lock_irq(&ioc->lock); 3338 memcpy(u, ioc->params.i_lcoefs, sizeof(u)); 3339 user = ioc->user_cost_model; 3340 spin_unlock_irq(&ioc->lock); 3341 3342 while ((p = strsep(&input, " \t\n"))) { 3343 substring_t args[MAX_OPT_ARGS]; 3344 char buf[32]; 3345 int tok; 3346 u64 v; 3347 3348 if (!*p) 3349 continue; 3350 3351 switch (match_token(p, cost_ctrl_tokens, args)) { 3352 case COST_CTRL: 3353 match_strlcpy(buf, &args[0], sizeof(buf)); 3354 if (!strcmp(buf, "auto")) 3355 user = false; 3356 else if (!strcmp(buf, "user")) 3357 user = true; 3358 else 3359 goto einval; 3360 continue; 3361 case COST_MODEL: 3362 match_strlcpy(buf, &args[0], sizeof(buf)); 3363 if (strcmp(buf, "linear")) 3364 goto einval; 3365 continue; 3366 } 3367 3368 tok = match_token(p, i_lcoef_tokens, args); 3369 if (tok == NR_I_LCOEFS) 3370 goto einval; 3371 if (match_u64(&args[0], &v)) 3372 goto einval; 3373 u[tok] = v; 3374 user = true; 3375 } 3376 3377 spin_lock_irq(&ioc->lock); 3378 if (user) { 3379 memcpy(ioc->params.i_lcoefs, u, sizeof(u)); 3380 ioc->user_cost_model = true; 3381 } else { 3382 ioc->user_cost_model = false; 3383 } 3384 ioc_refresh_params(ioc, true); 3385 spin_unlock_irq(&ioc->lock); 3386 3387 blkdev_put_no_open(bdev); 3388 return nbytes; 3389 3390 einval: 3391 ret = -EINVAL; 3392 err: 3393 blkdev_put_no_open(bdev); 3394 return ret; 3395 } 3396 3397 static struct cftype ioc_files[] = { 3398 { 3399 .name = "weight", 3400 .flags = CFTYPE_NOT_ON_ROOT, 3401 .seq_show = ioc_weight_show, 3402 .write = ioc_weight_write, 3403 }, 3404 { 3405 .name = "cost.qos", 3406 .flags = CFTYPE_ONLY_ON_ROOT, 3407 .seq_show = ioc_qos_show, 3408 .write = ioc_qos_write, 3409 }, 3410 { 3411 .name = "cost.model", 3412 .flags = CFTYPE_ONLY_ON_ROOT, 3413 .seq_show = ioc_cost_model_show, 3414 .write = ioc_cost_model_write, 3415 }, 3416 {} 3417 }; 3418 3419 static struct blkcg_policy blkcg_policy_iocost = { 3420 .dfl_cftypes = ioc_files, 3421 .cpd_alloc_fn = ioc_cpd_alloc, 3422 .cpd_free_fn = ioc_cpd_free, 3423 .pd_alloc_fn = ioc_pd_alloc, 3424 .pd_init_fn = ioc_pd_init, 3425 .pd_free_fn = ioc_pd_free, 3426 .pd_stat_fn = ioc_pd_stat, 3427 }; 3428 3429 static int __init ioc_init(void) 3430 { 3431 return blkcg_policy_register(&blkcg_policy_iocost); 3432 } 3433 3434 static void __exit ioc_exit(void) 3435 { 3436 blkcg_policy_unregister(&blkcg_policy_iocost); 3437 } 3438 3439 module_init(ioc_init); 3440 module_exit(ioc_exit); 3441