1 /* SPDX-License-Identifier: GPL-2.0 2 * 3 * IO cost model based controller. 4 * 5 * Copyright (C) 2019 Tejun Heo <tj@kernel.org> 6 * Copyright (C) 2019 Andy Newell <newella@fb.com> 7 * Copyright (C) 2019 Facebook 8 * 9 * One challenge of controlling IO resources is the lack of trivially 10 * observable cost metric. This is distinguished from CPU and memory where 11 * wallclock time and the number of bytes can serve as accurate enough 12 * approximations. 13 * 14 * Bandwidth and iops are the most commonly used metrics for IO devices but 15 * depending on the type and specifics of the device, different IO patterns 16 * easily lead to multiple orders of magnitude variations rendering them 17 * useless for the purpose of IO capacity distribution. While on-device 18 * time, with a lot of clutches, could serve as a useful approximation for 19 * non-queued rotational devices, this is no longer viable with modern 20 * devices, even the rotational ones. 21 * 22 * While there is no cost metric we can trivially observe, it isn't a 23 * complete mystery. For example, on a rotational device, seek cost 24 * dominates while a contiguous transfer contributes a smaller amount 25 * proportional to the size. If we can characterize at least the relative 26 * costs of these different types of IOs, it should be possible to 27 * implement a reasonable work-conserving proportional IO resource 28 * distribution. 29 * 30 * 1. IO Cost Model 31 * 32 * IO cost model estimates the cost of an IO given its basic parameters and 33 * history (e.g. the end sector of the last IO). The cost is measured in 34 * device time. If a given IO is estimated to cost 10ms, the device should 35 * be able to process ~100 of those IOs in a second. 36 * 37 * Currently, there's only one builtin cost model - linear. Each IO is 38 * classified as sequential or random and given a base cost accordingly. 39 * On top of that, a size cost proportional to the length of the IO is 40 * added. While simple, this model captures the operational 41 * characteristics of a wide varienty of devices well enough. Default 42 * parameters for several different classes of devices are provided and the 43 * parameters can be configured from userspace via 44 * /sys/fs/cgroup/io.cost.model. 45 * 46 * If needed, tools/cgroup/iocost_coef_gen.py can be used to generate 47 * device-specific coefficients. 48 * 49 * 2. Control Strategy 50 * 51 * The device virtual time (vtime) is used as the primary control metric. 52 * The control strategy is composed of the following three parts. 53 * 54 * 2-1. Vtime Distribution 55 * 56 * When a cgroup becomes active in terms of IOs, its hierarchical share is 57 * calculated. Please consider the following hierarchy where the numbers 58 * inside parentheses denote the configured weights. 59 * 60 * root 61 * / \ 62 * A (w:100) B (w:300) 63 * / \ 64 * A0 (w:100) A1 (w:100) 65 * 66 * If B is idle and only A0 and A1 are actively issuing IOs, as the two are 67 * of equal weight, each gets 50% share. If then B starts issuing IOs, B 68 * gets 300/(100+300) or 75% share, and A0 and A1 equally splits the rest, 69 * 12.5% each. The distribution mechanism only cares about these flattened 70 * shares. They're called hweights (hierarchical weights) and always add 71 * upto 1 (WEIGHT_ONE). 72 * 73 * A given cgroup's vtime runs slower in inverse proportion to its hweight. 74 * For example, with 12.5% weight, A0's time runs 8 times slower (100/12.5) 75 * against the device vtime - an IO which takes 10ms on the underlying 76 * device is considered to take 80ms on A0. 77 * 78 * This constitutes the basis of IO capacity distribution. Each cgroup's 79 * vtime is running at a rate determined by its hweight. A cgroup tracks 80 * the vtime consumed by past IOs and can issue a new IO if doing so 81 * wouldn't outrun the current device vtime. Otherwise, the IO is 82 * suspended until the vtime has progressed enough to cover it. 83 * 84 * 2-2. Vrate Adjustment 85 * 86 * It's unrealistic to expect the cost model to be perfect. There are too 87 * many devices and even on the same device the overall performance 88 * fluctuates depending on numerous factors such as IO mixture and device 89 * internal garbage collection. The controller needs to adapt dynamically. 90 * 91 * This is achieved by adjusting the overall IO rate according to how busy 92 * the device is. If the device becomes overloaded, we're sending down too 93 * many IOs and should generally slow down. If there are waiting issuers 94 * but the device isn't saturated, we're issuing too few and should 95 * generally speed up. 96 * 97 * To slow down, we lower the vrate - the rate at which the device vtime 98 * passes compared to the wall clock. For example, if the vtime is running 99 * at the vrate of 75%, all cgroups added up would only be able to issue 100 * 750ms worth of IOs per second, and vice-versa for speeding up. 101 * 102 * Device business is determined using two criteria - rq wait and 103 * completion latencies. 104 * 105 * When a device gets saturated, the on-device and then the request queues 106 * fill up and a bio which is ready to be issued has to wait for a request 107 * to become available. When this delay becomes noticeable, it's a clear 108 * indication that the device is saturated and we lower the vrate. This 109 * saturation signal is fairly conservative as it only triggers when both 110 * hardware and software queues are filled up, and is used as the default 111 * busy signal. 112 * 113 * As devices can have deep queues and be unfair in how the queued commands 114 * are executed, solely depending on rq wait may not result in satisfactory 115 * control quality. For a better control quality, completion latency QoS 116 * parameters can be configured so that the device is considered saturated 117 * if N'th percentile completion latency rises above the set point. 118 * 119 * The completion latency requirements are a function of both the 120 * underlying device characteristics and the desired IO latency quality of 121 * service. There is an inherent trade-off - the tighter the latency QoS, 122 * the higher the bandwidth lossage. Latency QoS is disabled by default 123 * and can be set through /sys/fs/cgroup/io.cost.qos. 124 * 125 * 2-3. Work Conservation 126 * 127 * Imagine two cgroups A and B with equal weights. A is issuing a small IO 128 * periodically while B is sending out enough parallel IOs to saturate the 129 * device on its own. Let's say A's usage amounts to 100ms worth of IO 130 * cost per second, i.e., 10% of the device capacity. The naive 131 * distribution of half and half would lead to 60% utilization of the 132 * device, a significant reduction in the total amount of work done 133 * compared to free-for-all competition. This is too high a cost to pay 134 * for IO control. 135 * 136 * To conserve the total amount of work done, we keep track of how much 137 * each active cgroup is actually using and yield part of its weight if 138 * there are other cgroups which can make use of it. In the above case, 139 * A's weight will be lowered so that it hovers above the actual usage and 140 * B would be able to use the rest. 141 * 142 * As we don't want to penalize a cgroup for donating its weight, the 143 * surplus weight adjustment factors in a margin and has an immediate 144 * snapback mechanism in case the cgroup needs more IO vtime for itself. 145 * 146 * Note that adjusting down surplus weights has the same effects as 147 * accelerating vtime for other cgroups and work conservation can also be 148 * implemented by adjusting vrate dynamically. However, squaring who can 149 * donate and should take back how much requires hweight propagations 150 * anyway making it easier to implement and understand as a separate 151 * mechanism. 152 * 153 * 3. Monitoring 154 * 155 * Instead of debugfs or other clumsy monitoring mechanisms, this 156 * controller uses a drgn based monitoring script - 157 * tools/cgroup/iocost_monitor.py. For details on drgn, please see 158 * https://github.com/osandov/drgn. The output looks like the following. 159 * 160 * sdb RUN per=300ms cur_per=234.218:v203.695 busy= +1 vrate= 62.12% 161 * active weight hweight% inflt% dbt delay usages% 162 * test/a * 50/ 50 33.33/ 33.33 27.65 2 0*041 033:033:033 163 * test/b * 100/ 100 66.67/ 66.67 17.56 0 0*000 066:079:077 164 * 165 * - per : Timer period 166 * - cur_per : Internal wall and device vtime clock 167 * - vrate : Device virtual time rate against wall clock 168 * - weight : Surplus-adjusted and configured weights 169 * - hweight : Surplus-adjusted and configured hierarchical weights 170 * - inflt : The percentage of in-flight IO cost at the end of last period 171 * - del_ms : Deferred issuer delay induction level and duration 172 * - usages : Usage history 173 */ 174 175 #include <linux/kernel.h> 176 #include <linux/module.h> 177 #include <linux/timer.h> 178 #include <linux/time64.h> 179 #include <linux/parser.h> 180 #include <linux/sched/signal.h> 181 #include <asm/local.h> 182 #include <asm/local64.h> 183 #include "blk-rq-qos.h" 184 #include "blk-stat.h" 185 #include "blk-wbt.h" 186 #include "blk-cgroup.h" 187 188 #ifdef CONFIG_TRACEPOINTS 189 190 /* copied from TRACE_CGROUP_PATH, see cgroup-internal.h */ 191 #define TRACE_IOCG_PATH_LEN 1024 192 static DEFINE_SPINLOCK(trace_iocg_path_lock); 193 static char trace_iocg_path[TRACE_IOCG_PATH_LEN]; 194 195 #define TRACE_IOCG_PATH(type, iocg, ...) \ 196 do { \ 197 unsigned long flags; \ 198 if (trace_iocost_##type##_enabled()) { \ 199 spin_lock_irqsave(&trace_iocg_path_lock, flags); \ 200 cgroup_path(iocg_to_blkg(iocg)->blkcg->css.cgroup, \ 201 trace_iocg_path, TRACE_IOCG_PATH_LEN); \ 202 trace_iocost_##type(iocg, trace_iocg_path, \ 203 ##__VA_ARGS__); \ 204 spin_unlock_irqrestore(&trace_iocg_path_lock, flags); \ 205 } \ 206 } while (0) 207 208 #else /* CONFIG_TRACE_POINTS */ 209 #define TRACE_IOCG_PATH(type, iocg, ...) do { } while (0) 210 #endif /* CONFIG_TRACE_POINTS */ 211 212 enum { 213 MILLION = 1000000, 214 215 /* timer period is calculated from latency requirements, bound it */ 216 MIN_PERIOD = USEC_PER_MSEC, 217 MAX_PERIOD = USEC_PER_SEC, 218 219 /* 220 * iocg->vtime is targeted at 50% behind the device vtime, which 221 * serves as its IO credit buffer. Surplus weight adjustment is 222 * immediately canceled if the vtime margin runs below 10%. 223 */ 224 MARGIN_MIN_PCT = 10, 225 MARGIN_LOW_PCT = 20, 226 MARGIN_TARGET_PCT = 50, 227 228 INUSE_ADJ_STEP_PCT = 25, 229 230 /* Have some play in timer operations */ 231 TIMER_SLACK_PCT = 1, 232 233 /* 1/64k is granular enough and can easily be handled w/ u32 */ 234 WEIGHT_ONE = 1 << 16, 235 }; 236 237 enum { 238 /* 239 * As vtime is used to calculate the cost of each IO, it needs to 240 * be fairly high precision. For example, it should be able to 241 * represent the cost of a single page worth of discard with 242 * suffificient accuracy. At the same time, it should be able to 243 * represent reasonably long enough durations to be useful and 244 * convenient during operation. 245 * 246 * 1s worth of vtime is 2^37. This gives us both sub-nanosecond 247 * granularity and days of wrap-around time even at extreme vrates. 248 */ 249 VTIME_PER_SEC_SHIFT = 37, 250 VTIME_PER_SEC = 1LLU << VTIME_PER_SEC_SHIFT, 251 VTIME_PER_USEC = VTIME_PER_SEC / USEC_PER_SEC, 252 VTIME_PER_NSEC = VTIME_PER_SEC / NSEC_PER_SEC, 253 254 /* bound vrate adjustments within two orders of magnitude */ 255 VRATE_MIN_PPM = 10000, /* 1% */ 256 VRATE_MAX_PPM = 100000000, /* 10000% */ 257 258 VRATE_MIN = VTIME_PER_USEC * VRATE_MIN_PPM / MILLION, 259 VRATE_CLAMP_ADJ_PCT = 4, 260 261 /* switch iff the conditions are met for longer than this */ 262 AUTOP_CYCLE_NSEC = 10LLU * NSEC_PER_SEC, 263 }; 264 265 enum { 266 /* if IOs end up waiting for requests, issue less */ 267 RQ_WAIT_BUSY_PCT = 5, 268 269 /* unbusy hysterisis */ 270 UNBUSY_THR_PCT = 75, 271 272 /* 273 * The effect of delay is indirect and non-linear and a huge amount of 274 * future debt can accumulate abruptly while unthrottled. Linearly scale 275 * up delay as debt is going up and then let it decay exponentially. 276 * This gives us quick ramp ups while delay is accumulating and long 277 * tails which can help reducing the frequency of debt explosions on 278 * unthrottle. The parameters are experimentally determined. 279 * 280 * The delay mechanism provides adequate protection and behavior in many 281 * cases. However, this is far from ideal and falls shorts on both 282 * fronts. The debtors are often throttled too harshly costing a 283 * significant level of fairness and possibly total work while the 284 * protection against their impacts on the system can be choppy and 285 * unreliable. 286 * 287 * The shortcoming primarily stems from the fact that, unlike for page 288 * cache, the kernel doesn't have well-defined back-pressure propagation 289 * mechanism and policies for anonymous memory. Fully addressing this 290 * issue will likely require substantial improvements in the area. 291 */ 292 MIN_DELAY_THR_PCT = 500, 293 MAX_DELAY_THR_PCT = 25000, 294 MIN_DELAY = 250, 295 MAX_DELAY = 250 * USEC_PER_MSEC, 296 297 /* halve debts if avg usage over 100ms is under 50% */ 298 DFGV_USAGE_PCT = 50, 299 DFGV_PERIOD = 100 * USEC_PER_MSEC, 300 301 /* don't let cmds which take a very long time pin lagging for too long */ 302 MAX_LAGGING_PERIODS = 10, 303 304 /* 305 * Count IO size in 4k pages. The 12bit shift helps keeping 306 * size-proportional components of cost calculation in closer 307 * numbers of digits to per-IO cost components. 308 */ 309 IOC_PAGE_SHIFT = 12, 310 IOC_PAGE_SIZE = 1 << IOC_PAGE_SHIFT, 311 IOC_SECT_TO_PAGE_SHIFT = IOC_PAGE_SHIFT - SECTOR_SHIFT, 312 313 /* if apart further than 16M, consider randio for linear model */ 314 LCOEF_RANDIO_PAGES = 4096, 315 }; 316 317 enum ioc_running { 318 IOC_IDLE, 319 IOC_RUNNING, 320 IOC_STOP, 321 }; 322 323 /* io.cost.qos controls including per-dev enable of the whole controller */ 324 enum { 325 QOS_ENABLE, 326 QOS_CTRL, 327 NR_QOS_CTRL_PARAMS, 328 }; 329 330 /* io.cost.qos params */ 331 enum { 332 QOS_RPPM, 333 QOS_RLAT, 334 QOS_WPPM, 335 QOS_WLAT, 336 QOS_MIN, 337 QOS_MAX, 338 NR_QOS_PARAMS, 339 }; 340 341 /* io.cost.model controls */ 342 enum { 343 COST_CTRL, 344 COST_MODEL, 345 NR_COST_CTRL_PARAMS, 346 }; 347 348 /* builtin linear cost model coefficients */ 349 enum { 350 I_LCOEF_RBPS, 351 I_LCOEF_RSEQIOPS, 352 I_LCOEF_RRANDIOPS, 353 I_LCOEF_WBPS, 354 I_LCOEF_WSEQIOPS, 355 I_LCOEF_WRANDIOPS, 356 NR_I_LCOEFS, 357 }; 358 359 enum { 360 LCOEF_RPAGE, 361 LCOEF_RSEQIO, 362 LCOEF_RRANDIO, 363 LCOEF_WPAGE, 364 LCOEF_WSEQIO, 365 LCOEF_WRANDIO, 366 NR_LCOEFS, 367 }; 368 369 enum { 370 AUTOP_INVALID, 371 AUTOP_HDD, 372 AUTOP_SSD_QD1, 373 AUTOP_SSD_DFL, 374 AUTOP_SSD_FAST, 375 }; 376 377 struct ioc_params { 378 u32 qos[NR_QOS_PARAMS]; 379 u64 i_lcoefs[NR_I_LCOEFS]; 380 u64 lcoefs[NR_LCOEFS]; 381 u32 too_fast_vrate_pct; 382 u32 too_slow_vrate_pct; 383 }; 384 385 struct ioc_margins { 386 s64 min; 387 s64 low; 388 s64 target; 389 }; 390 391 struct ioc_missed { 392 local_t nr_met; 393 local_t nr_missed; 394 u32 last_met; 395 u32 last_missed; 396 }; 397 398 struct ioc_pcpu_stat { 399 struct ioc_missed missed[2]; 400 401 local64_t rq_wait_ns; 402 u64 last_rq_wait_ns; 403 }; 404 405 /* per device */ 406 struct ioc { 407 struct rq_qos rqos; 408 409 bool enabled; 410 411 struct ioc_params params; 412 struct ioc_margins margins; 413 u32 period_us; 414 u32 timer_slack_ns; 415 u64 vrate_min; 416 u64 vrate_max; 417 418 spinlock_t lock; 419 struct timer_list timer; 420 struct list_head active_iocgs; /* active cgroups */ 421 struct ioc_pcpu_stat __percpu *pcpu_stat; 422 423 enum ioc_running running; 424 atomic64_t vtime_rate; 425 u64 vtime_base_rate; 426 s64 vtime_err; 427 428 seqcount_spinlock_t period_seqcount; 429 u64 period_at; /* wallclock starttime */ 430 u64 period_at_vtime; /* vtime starttime */ 431 432 atomic64_t cur_period; /* inc'd each period */ 433 int busy_level; /* saturation history */ 434 435 bool weights_updated; 436 atomic_t hweight_gen; /* for lazy hweights */ 437 438 /* debt forgivness */ 439 u64 dfgv_period_at; 440 u64 dfgv_period_rem; 441 u64 dfgv_usage_us_sum; 442 443 u64 autop_too_fast_at; 444 u64 autop_too_slow_at; 445 int autop_idx; 446 bool user_qos_params:1; 447 bool user_cost_model:1; 448 }; 449 450 struct iocg_pcpu_stat { 451 local64_t abs_vusage; 452 }; 453 454 struct iocg_stat { 455 u64 usage_us; 456 u64 wait_us; 457 u64 indebt_us; 458 u64 indelay_us; 459 }; 460 461 /* per device-cgroup pair */ 462 struct ioc_gq { 463 struct blkg_policy_data pd; 464 struct ioc *ioc; 465 466 /* 467 * A iocg can get its weight from two sources - an explicit 468 * per-device-cgroup configuration or the default weight of the 469 * cgroup. `cfg_weight` is the explicit per-device-cgroup 470 * configuration. `weight` is the effective considering both 471 * sources. 472 * 473 * When an idle cgroup becomes active its `active` goes from 0 to 474 * `weight`. `inuse` is the surplus adjusted active weight. 475 * `active` and `inuse` are used to calculate `hweight_active` and 476 * `hweight_inuse`. 477 * 478 * `last_inuse` remembers `inuse` while an iocg is idle to persist 479 * surplus adjustments. 480 * 481 * `inuse` may be adjusted dynamically during period. `saved_*` are used 482 * to determine and track adjustments. 483 */ 484 u32 cfg_weight; 485 u32 weight; 486 u32 active; 487 u32 inuse; 488 489 u32 last_inuse; 490 s64 saved_margin; 491 492 sector_t cursor; /* to detect randio */ 493 494 /* 495 * `vtime` is this iocg's vtime cursor which progresses as IOs are 496 * issued. If lagging behind device vtime, the delta represents 497 * the currently available IO budget. If running ahead, the 498 * overage. 499 * 500 * `vtime_done` is the same but progressed on completion rather 501 * than issue. The delta behind `vtime` represents the cost of 502 * currently in-flight IOs. 503 */ 504 atomic64_t vtime; 505 atomic64_t done_vtime; 506 u64 abs_vdebt; 507 508 /* current delay in effect and when it started */ 509 u64 delay; 510 u64 delay_at; 511 512 /* 513 * The period this iocg was last active in. Used for deactivation 514 * and invalidating `vtime`. 515 */ 516 atomic64_t active_period; 517 struct list_head active_list; 518 519 /* see __propagate_weights() and current_hweight() for details */ 520 u64 child_active_sum; 521 u64 child_inuse_sum; 522 u64 child_adjusted_sum; 523 int hweight_gen; 524 u32 hweight_active; 525 u32 hweight_inuse; 526 u32 hweight_donating; 527 u32 hweight_after_donation; 528 529 struct list_head walk_list; 530 struct list_head surplus_list; 531 532 struct wait_queue_head waitq; 533 struct hrtimer waitq_timer; 534 535 /* timestamp at the latest activation */ 536 u64 activated_at; 537 538 /* statistics */ 539 struct iocg_pcpu_stat __percpu *pcpu_stat; 540 struct iocg_stat stat; 541 struct iocg_stat last_stat; 542 u64 last_stat_abs_vusage; 543 u64 usage_delta_us; 544 u64 wait_since; 545 u64 indebt_since; 546 u64 indelay_since; 547 548 /* this iocg's depth in the hierarchy and ancestors including self */ 549 int level; 550 struct ioc_gq *ancestors[]; 551 }; 552 553 /* per cgroup */ 554 struct ioc_cgrp { 555 struct blkcg_policy_data cpd; 556 unsigned int dfl_weight; 557 }; 558 559 struct ioc_now { 560 u64 now_ns; 561 u64 now; 562 u64 vnow; 563 }; 564 565 struct iocg_wait { 566 struct wait_queue_entry wait; 567 struct bio *bio; 568 u64 abs_cost; 569 bool committed; 570 }; 571 572 struct iocg_wake_ctx { 573 struct ioc_gq *iocg; 574 u32 hw_inuse; 575 s64 vbudget; 576 }; 577 578 static const struct ioc_params autop[] = { 579 [AUTOP_HDD] = { 580 .qos = { 581 [QOS_RLAT] = 250000, /* 250ms */ 582 [QOS_WLAT] = 250000, 583 [QOS_MIN] = VRATE_MIN_PPM, 584 [QOS_MAX] = VRATE_MAX_PPM, 585 }, 586 .i_lcoefs = { 587 [I_LCOEF_RBPS] = 174019176, 588 [I_LCOEF_RSEQIOPS] = 41708, 589 [I_LCOEF_RRANDIOPS] = 370, 590 [I_LCOEF_WBPS] = 178075866, 591 [I_LCOEF_WSEQIOPS] = 42705, 592 [I_LCOEF_WRANDIOPS] = 378, 593 }, 594 }, 595 [AUTOP_SSD_QD1] = { 596 .qos = { 597 [QOS_RLAT] = 25000, /* 25ms */ 598 [QOS_WLAT] = 25000, 599 [QOS_MIN] = VRATE_MIN_PPM, 600 [QOS_MAX] = VRATE_MAX_PPM, 601 }, 602 .i_lcoefs = { 603 [I_LCOEF_RBPS] = 245855193, 604 [I_LCOEF_RSEQIOPS] = 61575, 605 [I_LCOEF_RRANDIOPS] = 6946, 606 [I_LCOEF_WBPS] = 141365009, 607 [I_LCOEF_WSEQIOPS] = 33716, 608 [I_LCOEF_WRANDIOPS] = 26796, 609 }, 610 }, 611 [AUTOP_SSD_DFL] = { 612 .qos = { 613 [QOS_RLAT] = 25000, /* 25ms */ 614 [QOS_WLAT] = 25000, 615 [QOS_MIN] = VRATE_MIN_PPM, 616 [QOS_MAX] = VRATE_MAX_PPM, 617 }, 618 .i_lcoefs = { 619 [I_LCOEF_RBPS] = 488636629, 620 [I_LCOEF_RSEQIOPS] = 8932, 621 [I_LCOEF_RRANDIOPS] = 8518, 622 [I_LCOEF_WBPS] = 427891549, 623 [I_LCOEF_WSEQIOPS] = 28755, 624 [I_LCOEF_WRANDIOPS] = 21940, 625 }, 626 .too_fast_vrate_pct = 500, 627 }, 628 [AUTOP_SSD_FAST] = { 629 .qos = { 630 [QOS_RLAT] = 5000, /* 5ms */ 631 [QOS_WLAT] = 5000, 632 [QOS_MIN] = VRATE_MIN_PPM, 633 [QOS_MAX] = VRATE_MAX_PPM, 634 }, 635 .i_lcoefs = { 636 [I_LCOEF_RBPS] = 3102524156LLU, 637 [I_LCOEF_RSEQIOPS] = 724816, 638 [I_LCOEF_RRANDIOPS] = 778122, 639 [I_LCOEF_WBPS] = 1742780862LLU, 640 [I_LCOEF_WSEQIOPS] = 425702, 641 [I_LCOEF_WRANDIOPS] = 443193, 642 }, 643 .too_slow_vrate_pct = 10, 644 }, 645 }; 646 647 /* 648 * vrate adjust percentages indexed by ioc->busy_level. We adjust up on 649 * vtime credit shortage and down on device saturation. 650 */ 651 static u32 vrate_adj_pct[] = 652 { 0, 0, 0, 0, 653 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 654 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 655 4, 4, 4, 4, 4, 4, 4, 4, 8, 8, 8, 8, 8, 8, 8, 8, 16 }; 656 657 static struct blkcg_policy blkcg_policy_iocost; 658 659 /* accessors and helpers */ 660 static struct ioc *rqos_to_ioc(struct rq_qos *rqos) 661 { 662 return container_of(rqos, struct ioc, rqos); 663 } 664 665 static struct ioc *q_to_ioc(struct request_queue *q) 666 { 667 return rqos_to_ioc(rq_qos_id(q, RQ_QOS_COST)); 668 } 669 670 static const char __maybe_unused *ioc_name(struct ioc *ioc) 671 { 672 struct gendisk *disk = ioc->rqos.disk; 673 674 if (!disk) 675 return "<unknown>"; 676 return disk->disk_name; 677 } 678 679 static struct ioc_gq *pd_to_iocg(struct blkg_policy_data *pd) 680 { 681 return pd ? container_of(pd, struct ioc_gq, pd) : NULL; 682 } 683 684 static struct ioc_gq *blkg_to_iocg(struct blkcg_gq *blkg) 685 { 686 return pd_to_iocg(blkg_to_pd(blkg, &blkcg_policy_iocost)); 687 } 688 689 static struct blkcg_gq *iocg_to_blkg(struct ioc_gq *iocg) 690 { 691 return pd_to_blkg(&iocg->pd); 692 } 693 694 static struct ioc_cgrp *blkcg_to_iocc(struct blkcg *blkcg) 695 { 696 return container_of(blkcg_to_cpd(blkcg, &blkcg_policy_iocost), 697 struct ioc_cgrp, cpd); 698 } 699 700 /* 701 * Scale @abs_cost to the inverse of @hw_inuse. The lower the hierarchical 702 * weight, the more expensive each IO. Must round up. 703 */ 704 static u64 abs_cost_to_cost(u64 abs_cost, u32 hw_inuse) 705 { 706 return DIV64_U64_ROUND_UP(abs_cost * WEIGHT_ONE, hw_inuse); 707 } 708 709 /* 710 * The inverse of abs_cost_to_cost(). Must round up. 711 */ 712 static u64 cost_to_abs_cost(u64 cost, u32 hw_inuse) 713 { 714 return DIV64_U64_ROUND_UP(cost * hw_inuse, WEIGHT_ONE); 715 } 716 717 static void iocg_commit_bio(struct ioc_gq *iocg, struct bio *bio, 718 u64 abs_cost, u64 cost) 719 { 720 struct iocg_pcpu_stat *gcs; 721 722 bio->bi_iocost_cost = cost; 723 atomic64_add(cost, &iocg->vtime); 724 725 gcs = get_cpu_ptr(iocg->pcpu_stat); 726 local64_add(abs_cost, &gcs->abs_vusage); 727 put_cpu_ptr(gcs); 728 } 729 730 static void iocg_lock(struct ioc_gq *iocg, bool lock_ioc, unsigned long *flags) 731 { 732 if (lock_ioc) { 733 spin_lock_irqsave(&iocg->ioc->lock, *flags); 734 spin_lock(&iocg->waitq.lock); 735 } else { 736 spin_lock_irqsave(&iocg->waitq.lock, *flags); 737 } 738 } 739 740 static void iocg_unlock(struct ioc_gq *iocg, bool unlock_ioc, unsigned long *flags) 741 { 742 if (unlock_ioc) { 743 spin_unlock(&iocg->waitq.lock); 744 spin_unlock_irqrestore(&iocg->ioc->lock, *flags); 745 } else { 746 spin_unlock_irqrestore(&iocg->waitq.lock, *flags); 747 } 748 } 749 750 #define CREATE_TRACE_POINTS 751 #include <trace/events/iocost.h> 752 753 static void ioc_refresh_margins(struct ioc *ioc) 754 { 755 struct ioc_margins *margins = &ioc->margins; 756 u32 period_us = ioc->period_us; 757 u64 vrate = ioc->vtime_base_rate; 758 759 margins->min = (period_us * MARGIN_MIN_PCT / 100) * vrate; 760 margins->low = (period_us * MARGIN_LOW_PCT / 100) * vrate; 761 margins->target = (period_us * MARGIN_TARGET_PCT / 100) * vrate; 762 } 763 764 /* latency Qos params changed, update period_us and all the dependent params */ 765 static void ioc_refresh_period_us(struct ioc *ioc) 766 { 767 u32 ppm, lat, multi, period_us; 768 769 lockdep_assert_held(&ioc->lock); 770 771 /* pick the higher latency target */ 772 if (ioc->params.qos[QOS_RLAT] >= ioc->params.qos[QOS_WLAT]) { 773 ppm = ioc->params.qos[QOS_RPPM]; 774 lat = ioc->params.qos[QOS_RLAT]; 775 } else { 776 ppm = ioc->params.qos[QOS_WPPM]; 777 lat = ioc->params.qos[QOS_WLAT]; 778 } 779 780 /* 781 * We want the period to be long enough to contain a healthy number 782 * of IOs while short enough for granular control. Define it as a 783 * multiple of the latency target. Ideally, the multiplier should 784 * be scaled according to the percentile so that it would nominally 785 * contain a certain number of requests. Let's be simpler and 786 * scale it linearly so that it's 2x >= pct(90) and 10x at pct(50). 787 */ 788 if (ppm) 789 multi = max_t(u32, (MILLION - ppm) / 50000, 2); 790 else 791 multi = 2; 792 period_us = multi * lat; 793 period_us = clamp_t(u32, period_us, MIN_PERIOD, MAX_PERIOD); 794 795 /* calculate dependent params */ 796 ioc->period_us = period_us; 797 ioc->timer_slack_ns = div64_u64( 798 (u64)period_us * NSEC_PER_USEC * TIMER_SLACK_PCT, 799 100); 800 ioc_refresh_margins(ioc); 801 } 802 803 /* 804 * ioc->rqos.disk isn't initialized when this function is called from 805 * the init path. 806 */ 807 static int ioc_autop_idx(struct ioc *ioc, struct gendisk *disk) 808 { 809 int idx = ioc->autop_idx; 810 const struct ioc_params *p = &autop[idx]; 811 u32 vrate_pct; 812 u64 now_ns; 813 814 /* rotational? */ 815 if (!blk_queue_nonrot(disk->queue)) 816 return AUTOP_HDD; 817 818 /* handle SATA SSDs w/ broken NCQ */ 819 if (blk_queue_depth(disk->queue) == 1) 820 return AUTOP_SSD_QD1; 821 822 /* use one of the normal ssd sets */ 823 if (idx < AUTOP_SSD_DFL) 824 return AUTOP_SSD_DFL; 825 826 /* if user is overriding anything, maintain what was there */ 827 if (ioc->user_qos_params || ioc->user_cost_model) 828 return idx; 829 830 /* step up/down based on the vrate */ 831 vrate_pct = div64_u64(ioc->vtime_base_rate * 100, VTIME_PER_USEC); 832 now_ns = blk_time_get_ns(); 833 834 if (p->too_fast_vrate_pct && p->too_fast_vrate_pct <= vrate_pct) { 835 if (!ioc->autop_too_fast_at) 836 ioc->autop_too_fast_at = now_ns; 837 if (now_ns - ioc->autop_too_fast_at >= AUTOP_CYCLE_NSEC) 838 return idx + 1; 839 } else { 840 ioc->autop_too_fast_at = 0; 841 } 842 843 if (p->too_slow_vrate_pct && p->too_slow_vrate_pct >= vrate_pct) { 844 if (!ioc->autop_too_slow_at) 845 ioc->autop_too_slow_at = now_ns; 846 if (now_ns - ioc->autop_too_slow_at >= AUTOP_CYCLE_NSEC) 847 return idx - 1; 848 } else { 849 ioc->autop_too_slow_at = 0; 850 } 851 852 return idx; 853 } 854 855 /* 856 * Take the followings as input 857 * 858 * @bps maximum sequential throughput 859 * @seqiops maximum sequential 4k iops 860 * @randiops maximum random 4k iops 861 * 862 * and calculate the linear model cost coefficients. 863 * 864 * *@page per-page cost 1s / (@bps / 4096) 865 * *@seqio base cost of a seq IO max((1s / @seqiops) - *@page, 0) 866 * @randiops base cost of a rand IO max((1s / @randiops) - *@page, 0) 867 */ 868 static void calc_lcoefs(u64 bps, u64 seqiops, u64 randiops, 869 u64 *page, u64 *seqio, u64 *randio) 870 { 871 u64 v; 872 873 *page = *seqio = *randio = 0; 874 875 if (bps) { 876 u64 bps_pages = DIV_ROUND_UP_ULL(bps, IOC_PAGE_SIZE); 877 878 if (bps_pages) 879 *page = DIV64_U64_ROUND_UP(VTIME_PER_SEC, bps_pages); 880 else 881 *page = 1; 882 } 883 884 if (seqiops) { 885 v = DIV64_U64_ROUND_UP(VTIME_PER_SEC, seqiops); 886 if (v > *page) 887 *seqio = v - *page; 888 } 889 890 if (randiops) { 891 v = DIV64_U64_ROUND_UP(VTIME_PER_SEC, randiops); 892 if (v > *page) 893 *randio = v - *page; 894 } 895 } 896 897 static void ioc_refresh_lcoefs(struct ioc *ioc) 898 { 899 u64 *u = ioc->params.i_lcoefs; 900 u64 *c = ioc->params.lcoefs; 901 902 calc_lcoefs(u[I_LCOEF_RBPS], u[I_LCOEF_RSEQIOPS], u[I_LCOEF_RRANDIOPS], 903 &c[LCOEF_RPAGE], &c[LCOEF_RSEQIO], &c[LCOEF_RRANDIO]); 904 calc_lcoefs(u[I_LCOEF_WBPS], u[I_LCOEF_WSEQIOPS], u[I_LCOEF_WRANDIOPS], 905 &c[LCOEF_WPAGE], &c[LCOEF_WSEQIO], &c[LCOEF_WRANDIO]); 906 } 907 908 /* 909 * struct gendisk is required as an argument because ioc->rqos.disk 910 * is not properly initialized when called from the init path. 911 */ 912 static bool ioc_refresh_params_disk(struct ioc *ioc, bool force, 913 struct gendisk *disk) 914 { 915 const struct ioc_params *p; 916 int idx; 917 918 lockdep_assert_held(&ioc->lock); 919 920 idx = ioc_autop_idx(ioc, disk); 921 p = &autop[idx]; 922 923 if (idx == ioc->autop_idx && !force) 924 return false; 925 926 if (idx != ioc->autop_idx) { 927 atomic64_set(&ioc->vtime_rate, VTIME_PER_USEC); 928 ioc->vtime_base_rate = VTIME_PER_USEC; 929 } 930 931 ioc->autop_idx = idx; 932 ioc->autop_too_fast_at = 0; 933 ioc->autop_too_slow_at = 0; 934 935 if (!ioc->user_qos_params) 936 memcpy(ioc->params.qos, p->qos, sizeof(p->qos)); 937 if (!ioc->user_cost_model) 938 memcpy(ioc->params.i_lcoefs, p->i_lcoefs, sizeof(p->i_lcoefs)); 939 940 ioc_refresh_period_us(ioc); 941 ioc_refresh_lcoefs(ioc); 942 943 ioc->vrate_min = DIV64_U64_ROUND_UP((u64)ioc->params.qos[QOS_MIN] * 944 VTIME_PER_USEC, MILLION); 945 ioc->vrate_max = DIV64_U64_ROUND_UP((u64)ioc->params.qos[QOS_MAX] * 946 VTIME_PER_USEC, MILLION); 947 948 return true; 949 } 950 951 static bool ioc_refresh_params(struct ioc *ioc, bool force) 952 { 953 return ioc_refresh_params_disk(ioc, force, ioc->rqos.disk); 954 } 955 956 /* 957 * When an iocg accumulates too much vtime or gets deactivated, we throw away 958 * some vtime, which lowers the overall device utilization. As the exact amount 959 * which is being thrown away is known, we can compensate by accelerating the 960 * vrate accordingly so that the extra vtime generated in the current period 961 * matches what got lost. 962 */ 963 static void ioc_refresh_vrate(struct ioc *ioc, struct ioc_now *now) 964 { 965 s64 pleft = ioc->period_at + ioc->period_us - now->now; 966 s64 vperiod = ioc->period_us * ioc->vtime_base_rate; 967 s64 vcomp, vcomp_min, vcomp_max; 968 969 lockdep_assert_held(&ioc->lock); 970 971 /* we need some time left in this period */ 972 if (pleft <= 0) 973 goto done; 974 975 /* 976 * Calculate how much vrate should be adjusted to offset the error. 977 * Limit the amount of adjustment and deduct the adjusted amount from 978 * the error. 979 */ 980 vcomp = -div64_s64(ioc->vtime_err, pleft); 981 vcomp_min = -(ioc->vtime_base_rate >> 1); 982 vcomp_max = ioc->vtime_base_rate; 983 vcomp = clamp(vcomp, vcomp_min, vcomp_max); 984 985 ioc->vtime_err += vcomp * pleft; 986 987 atomic64_set(&ioc->vtime_rate, ioc->vtime_base_rate + vcomp); 988 done: 989 /* bound how much error can accumulate */ 990 ioc->vtime_err = clamp(ioc->vtime_err, -vperiod, vperiod); 991 } 992 993 static void ioc_adjust_base_vrate(struct ioc *ioc, u32 rq_wait_pct, 994 int nr_lagging, int nr_shortages, 995 int prev_busy_level, u32 *missed_ppm) 996 { 997 u64 vrate = ioc->vtime_base_rate; 998 u64 vrate_min = ioc->vrate_min, vrate_max = ioc->vrate_max; 999 1000 if (!ioc->busy_level || (ioc->busy_level < 0 && nr_lagging)) { 1001 if (ioc->busy_level != prev_busy_level || nr_lagging) 1002 trace_iocost_ioc_vrate_adj(ioc, vrate, 1003 missed_ppm, rq_wait_pct, 1004 nr_lagging, nr_shortages); 1005 1006 return; 1007 } 1008 1009 /* 1010 * If vrate is out of bounds, apply clamp gradually as the 1011 * bounds can change abruptly. Otherwise, apply busy_level 1012 * based adjustment. 1013 */ 1014 if (vrate < vrate_min) { 1015 vrate = div64_u64(vrate * (100 + VRATE_CLAMP_ADJ_PCT), 100); 1016 vrate = min(vrate, vrate_min); 1017 } else if (vrate > vrate_max) { 1018 vrate = div64_u64(vrate * (100 - VRATE_CLAMP_ADJ_PCT), 100); 1019 vrate = max(vrate, vrate_max); 1020 } else { 1021 int idx = min_t(int, abs(ioc->busy_level), 1022 ARRAY_SIZE(vrate_adj_pct) - 1); 1023 u32 adj_pct = vrate_adj_pct[idx]; 1024 1025 if (ioc->busy_level > 0) 1026 adj_pct = 100 - adj_pct; 1027 else 1028 adj_pct = 100 + adj_pct; 1029 1030 vrate = clamp(DIV64_U64_ROUND_UP(vrate * adj_pct, 100), 1031 vrate_min, vrate_max); 1032 } 1033 1034 trace_iocost_ioc_vrate_adj(ioc, vrate, missed_ppm, rq_wait_pct, 1035 nr_lagging, nr_shortages); 1036 1037 ioc->vtime_base_rate = vrate; 1038 ioc_refresh_margins(ioc); 1039 } 1040 1041 /* take a snapshot of the current [v]time and vrate */ 1042 static void ioc_now(struct ioc *ioc, struct ioc_now *now) 1043 { 1044 unsigned seq; 1045 u64 vrate; 1046 1047 now->now_ns = blk_time_get_ns(); 1048 now->now = ktime_to_us(now->now_ns); 1049 vrate = atomic64_read(&ioc->vtime_rate); 1050 1051 /* 1052 * The current vtime is 1053 * 1054 * vtime at period start + (wallclock time since the start) * vrate 1055 * 1056 * As a consistent snapshot of `period_at_vtime` and `period_at` is 1057 * needed, they're seqcount protected. 1058 */ 1059 do { 1060 seq = read_seqcount_begin(&ioc->period_seqcount); 1061 now->vnow = ioc->period_at_vtime + 1062 (now->now - ioc->period_at) * vrate; 1063 } while (read_seqcount_retry(&ioc->period_seqcount, seq)); 1064 } 1065 1066 static void ioc_start_period(struct ioc *ioc, struct ioc_now *now) 1067 { 1068 WARN_ON_ONCE(ioc->running != IOC_RUNNING); 1069 1070 write_seqcount_begin(&ioc->period_seqcount); 1071 ioc->period_at = now->now; 1072 ioc->period_at_vtime = now->vnow; 1073 write_seqcount_end(&ioc->period_seqcount); 1074 1075 ioc->timer.expires = jiffies + usecs_to_jiffies(ioc->period_us); 1076 add_timer(&ioc->timer); 1077 } 1078 1079 /* 1080 * Update @iocg's `active` and `inuse` to @active and @inuse, update level 1081 * weight sums and propagate upwards accordingly. If @save, the current margin 1082 * is saved to be used as reference for later inuse in-period adjustments. 1083 */ 1084 static void __propagate_weights(struct ioc_gq *iocg, u32 active, u32 inuse, 1085 bool save, struct ioc_now *now) 1086 { 1087 struct ioc *ioc = iocg->ioc; 1088 int lvl; 1089 1090 lockdep_assert_held(&ioc->lock); 1091 1092 /* 1093 * For an active leaf node, its inuse shouldn't be zero or exceed 1094 * @active. An active internal node's inuse is solely determined by the 1095 * inuse to active ratio of its children regardless of @inuse. 1096 */ 1097 if (list_empty(&iocg->active_list) && iocg->child_active_sum) { 1098 inuse = DIV64_U64_ROUND_UP(active * iocg->child_inuse_sum, 1099 iocg->child_active_sum); 1100 } else { 1101 inuse = clamp_t(u32, inuse, 1, active); 1102 } 1103 1104 iocg->last_inuse = iocg->inuse; 1105 if (save) 1106 iocg->saved_margin = now->vnow - atomic64_read(&iocg->vtime); 1107 1108 if (active == iocg->active && inuse == iocg->inuse) 1109 return; 1110 1111 for (lvl = iocg->level - 1; lvl >= 0; lvl--) { 1112 struct ioc_gq *parent = iocg->ancestors[lvl]; 1113 struct ioc_gq *child = iocg->ancestors[lvl + 1]; 1114 u32 parent_active = 0, parent_inuse = 0; 1115 1116 /* update the level sums */ 1117 parent->child_active_sum += (s32)(active - child->active); 1118 parent->child_inuse_sum += (s32)(inuse - child->inuse); 1119 /* apply the updates */ 1120 child->active = active; 1121 child->inuse = inuse; 1122 1123 /* 1124 * The delta between inuse and active sums indicates that 1125 * much of weight is being given away. Parent's inuse 1126 * and active should reflect the ratio. 1127 */ 1128 if (parent->child_active_sum) { 1129 parent_active = parent->weight; 1130 parent_inuse = DIV64_U64_ROUND_UP( 1131 parent_active * parent->child_inuse_sum, 1132 parent->child_active_sum); 1133 } 1134 1135 /* do we need to keep walking up? */ 1136 if (parent_active == parent->active && 1137 parent_inuse == parent->inuse) 1138 break; 1139 1140 active = parent_active; 1141 inuse = parent_inuse; 1142 } 1143 1144 ioc->weights_updated = true; 1145 } 1146 1147 static void commit_weights(struct ioc *ioc) 1148 { 1149 lockdep_assert_held(&ioc->lock); 1150 1151 if (ioc->weights_updated) { 1152 /* paired with rmb in current_hweight(), see there */ 1153 smp_wmb(); 1154 atomic_inc(&ioc->hweight_gen); 1155 ioc->weights_updated = false; 1156 } 1157 } 1158 1159 static void propagate_weights(struct ioc_gq *iocg, u32 active, u32 inuse, 1160 bool save, struct ioc_now *now) 1161 { 1162 __propagate_weights(iocg, active, inuse, save, now); 1163 commit_weights(iocg->ioc); 1164 } 1165 1166 static void current_hweight(struct ioc_gq *iocg, u32 *hw_activep, u32 *hw_inusep) 1167 { 1168 struct ioc *ioc = iocg->ioc; 1169 int lvl; 1170 u32 hwa, hwi; 1171 int ioc_gen; 1172 1173 /* hot path - if uptodate, use cached */ 1174 ioc_gen = atomic_read(&ioc->hweight_gen); 1175 if (ioc_gen == iocg->hweight_gen) 1176 goto out; 1177 1178 /* 1179 * Paired with wmb in commit_weights(). If we saw the updated 1180 * hweight_gen, all the weight updates from __propagate_weights() are 1181 * visible too. 1182 * 1183 * We can race with weight updates during calculation and get it 1184 * wrong. However, hweight_gen would have changed and a future 1185 * reader will recalculate and we're guaranteed to discard the 1186 * wrong result soon. 1187 */ 1188 smp_rmb(); 1189 1190 hwa = hwi = WEIGHT_ONE; 1191 for (lvl = 0; lvl <= iocg->level - 1; lvl++) { 1192 struct ioc_gq *parent = iocg->ancestors[lvl]; 1193 struct ioc_gq *child = iocg->ancestors[lvl + 1]; 1194 u64 active_sum = READ_ONCE(parent->child_active_sum); 1195 u64 inuse_sum = READ_ONCE(parent->child_inuse_sum); 1196 u32 active = READ_ONCE(child->active); 1197 u32 inuse = READ_ONCE(child->inuse); 1198 1199 /* we can race with deactivations and either may read as zero */ 1200 if (!active_sum || !inuse_sum) 1201 continue; 1202 1203 active_sum = max_t(u64, active, active_sum); 1204 hwa = div64_u64((u64)hwa * active, active_sum); 1205 1206 inuse_sum = max_t(u64, inuse, inuse_sum); 1207 hwi = div64_u64((u64)hwi * inuse, inuse_sum); 1208 } 1209 1210 iocg->hweight_active = max_t(u32, hwa, 1); 1211 iocg->hweight_inuse = max_t(u32, hwi, 1); 1212 iocg->hweight_gen = ioc_gen; 1213 out: 1214 if (hw_activep) 1215 *hw_activep = iocg->hweight_active; 1216 if (hw_inusep) 1217 *hw_inusep = iocg->hweight_inuse; 1218 } 1219 1220 /* 1221 * Calculate the hweight_inuse @iocg would get with max @inuse assuming all the 1222 * other weights stay unchanged. 1223 */ 1224 static u32 current_hweight_max(struct ioc_gq *iocg) 1225 { 1226 u32 hwm = WEIGHT_ONE; 1227 u32 inuse = iocg->active; 1228 u64 child_inuse_sum; 1229 int lvl; 1230 1231 lockdep_assert_held(&iocg->ioc->lock); 1232 1233 for (lvl = iocg->level - 1; lvl >= 0; lvl--) { 1234 struct ioc_gq *parent = iocg->ancestors[lvl]; 1235 struct ioc_gq *child = iocg->ancestors[lvl + 1]; 1236 1237 child_inuse_sum = parent->child_inuse_sum + inuse - child->inuse; 1238 hwm = div64_u64((u64)hwm * inuse, child_inuse_sum); 1239 inuse = DIV64_U64_ROUND_UP(parent->active * child_inuse_sum, 1240 parent->child_active_sum); 1241 } 1242 1243 return max_t(u32, hwm, 1); 1244 } 1245 1246 static void weight_updated(struct ioc_gq *iocg, struct ioc_now *now) 1247 { 1248 struct ioc *ioc = iocg->ioc; 1249 struct blkcg_gq *blkg = iocg_to_blkg(iocg); 1250 struct ioc_cgrp *iocc = blkcg_to_iocc(blkg->blkcg); 1251 u32 weight; 1252 1253 lockdep_assert_held(&ioc->lock); 1254 1255 weight = iocg->cfg_weight ?: iocc->dfl_weight; 1256 if (weight != iocg->weight && iocg->active) 1257 propagate_weights(iocg, weight, iocg->inuse, true, now); 1258 iocg->weight = weight; 1259 } 1260 1261 static bool iocg_activate(struct ioc_gq *iocg, struct ioc_now *now) 1262 { 1263 struct ioc *ioc = iocg->ioc; 1264 u64 __maybe_unused last_period, cur_period; 1265 u64 vtime, vtarget; 1266 int i; 1267 1268 /* 1269 * If seem to be already active, just update the stamp to tell the 1270 * timer that we're still active. We don't mind occassional races. 1271 */ 1272 if (!list_empty(&iocg->active_list)) { 1273 ioc_now(ioc, now); 1274 cur_period = atomic64_read(&ioc->cur_period); 1275 if (atomic64_read(&iocg->active_period) != cur_period) 1276 atomic64_set(&iocg->active_period, cur_period); 1277 return true; 1278 } 1279 1280 /* racy check on internal node IOs, treat as root level IOs */ 1281 if (iocg->child_active_sum) 1282 return false; 1283 1284 spin_lock_irq(&ioc->lock); 1285 1286 ioc_now(ioc, now); 1287 1288 /* update period */ 1289 cur_period = atomic64_read(&ioc->cur_period); 1290 last_period = atomic64_read(&iocg->active_period); 1291 atomic64_set(&iocg->active_period, cur_period); 1292 1293 /* already activated or breaking leaf-only constraint? */ 1294 if (!list_empty(&iocg->active_list)) 1295 goto succeed_unlock; 1296 for (i = iocg->level - 1; i > 0; i--) 1297 if (!list_empty(&iocg->ancestors[i]->active_list)) 1298 goto fail_unlock; 1299 1300 if (iocg->child_active_sum) 1301 goto fail_unlock; 1302 1303 /* 1304 * Always start with the target budget. On deactivation, we throw away 1305 * anything above it. 1306 */ 1307 vtarget = now->vnow - ioc->margins.target; 1308 vtime = atomic64_read(&iocg->vtime); 1309 1310 atomic64_add(vtarget - vtime, &iocg->vtime); 1311 atomic64_add(vtarget - vtime, &iocg->done_vtime); 1312 vtime = vtarget; 1313 1314 /* 1315 * Activate, propagate weight and start period timer if not 1316 * running. Reset hweight_gen to avoid accidental match from 1317 * wrapping. 1318 */ 1319 iocg->hweight_gen = atomic_read(&ioc->hweight_gen) - 1; 1320 list_add(&iocg->active_list, &ioc->active_iocgs); 1321 1322 propagate_weights(iocg, iocg->weight, 1323 iocg->last_inuse ?: iocg->weight, true, now); 1324 1325 TRACE_IOCG_PATH(iocg_activate, iocg, now, 1326 last_period, cur_period, vtime); 1327 1328 iocg->activated_at = now->now; 1329 1330 if (ioc->running == IOC_IDLE) { 1331 ioc->running = IOC_RUNNING; 1332 ioc->dfgv_period_at = now->now; 1333 ioc->dfgv_period_rem = 0; 1334 ioc_start_period(ioc, now); 1335 } 1336 1337 succeed_unlock: 1338 spin_unlock_irq(&ioc->lock); 1339 return true; 1340 1341 fail_unlock: 1342 spin_unlock_irq(&ioc->lock); 1343 return false; 1344 } 1345 1346 static bool iocg_kick_delay(struct ioc_gq *iocg, struct ioc_now *now) 1347 { 1348 struct ioc *ioc = iocg->ioc; 1349 struct blkcg_gq *blkg = iocg_to_blkg(iocg); 1350 u64 tdelta, delay, new_delay, shift; 1351 s64 vover, vover_pct; 1352 u32 hwa; 1353 1354 lockdep_assert_held(&iocg->waitq.lock); 1355 1356 /* 1357 * If the delay is set by another CPU, we may be in the past. No need to 1358 * change anything if so. This avoids decay calculation underflow. 1359 */ 1360 if (time_before64(now->now, iocg->delay_at)) 1361 return false; 1362 1363 /* calculate the current delay in effect - 1/2 every second */ 1364 tdelta = now->now - iocg->delay_at; 1365 shift = div64_u64(tdelta, USEC_PER_SEC); 1366 if (iocg->delay && shift < BITS_PER_LONG) 1367 delay = iocg->delay >> shift; 1368 else 1369 delay = 0; 1370 1371 /* calculate the new delay from the debt amount */ 1372 current_hweight(iocg, &hwa, NULL); 1373 vover = atomic64_read(&iocg->vtime) + 1374 abs_cost_to_cost(iocg->abs_vdebt, hwa) - now->vnow; 1375 vover_pct = div64_s64(100 * vover, 1376 ioc->period_us * ioc->vtime_base_rate); 1377 1378 if (vover_pct <= MIN_DELAY_THR_PCT) 1379 new_delay = 0; 1380 else if (vover_pct >= MAX_DELAY_THR_PCT) 1381 new_delay = MAX_DELAY; 1382 else 1383 new_delay = MIN_DELAY + 1384 div_u64((MAX_DELAY - MIN_DELAY) * 1385 (vover_pct - MIN_DELAY_THR_PCT), 1386 MAX_DELAY_THR_PCT - MIN_DELAY_THR_PCT); 1387 1388 /* pick the higher one and apply */ 1389 if (new_delay > delay) { 1390 iocg->delay = new_delay; 1391 iocg->delay_at = now->now; 1392 delay = new_delay; 1393 } 1394 1395 if (delay >= MIN_DELAY) { 1396 if (!iocg->indelay_since) 1397 iocg->indelay_since = now->now; 1398 blkcg_set_delay(blkg, delay * NSEC_PER_USEC); 1399 return true; 1400 } else { 1401 if (iocg->indelay_since) { 1402 iocg->stat.indelay_us += now->now - iocg->indelay_since; 1403 iocg->indelay_since = 0; 1404 } 1405 iocg->delay = 0; 1406 blkcg_clear_delay(blkg); 1407 return false; 1408 } 1409 } 1410 1411 static void iocg_incur_debt(struct ioc_gq *iocg, u64 abs_cost, 1412 struct ioc_now *now) 1413 { 1414 struct iocg_pcpu_stat *gcs; 1415 1416 lockdep_assert_held(&iocg->ioc->lock); 1417 lockdep_assert_held(&iocg->waitq.lock); 1418 WARN_ON_ONCE(list_empty(&iocg->active_list)); 1419 1420 /* 1421 * Once in debt, debt handling owns inuse. @iocg stays at the minimum 1422 * inuse donating all of it share to others until its debt is paid off. 1423 */ 1424 if (!iocg->abs_vdebt && abs_cost) { 1425 iocg->indebt_since = now->now; 1426 propagate_weights(iocg, iocg->active, 0, false, now); 1427 } 1428 1429 iocg->abs_vdebt += abs_cost; 1430 1431 gcs = get_cpu_ptr(iocg->pcpu_stat); 1432 local64_add(abs_cost, &gcs->abs_vusage); 1433 put_cpu_ptr(gcs); 1434 } 1435 1436 static void iocg_pay_debt(struct ioc_gq *iocg, u64 abs_vpay, 1437 struct ioc_now *now) 1438 { 1439 lockdep_assert_held(&iocg->ioc->lock); 1440 lockdep_assert_held(&iocg->waitq.lock); 1441 1442 /* make sure that nobody messed with @iocg */ 1443 WARN_ON_ONCE(list_empty(&iocg->active_list)); 1444 WARN_ON_ONCE(iocg->inuse > 1); 1445 1446 iocg->abs_vdebt -= min(abs_vpay, iocg->abs_vdebt); 1447 1448 /* if debt is paid in full, restore inuse */ 1449 if (!iocg->abs_vdebt) { 1450 iocg->stat.indebt_us += now->now - iocg->indebt_since; 1451 iocg->indebt_since = 0; 1452 1453 propagate_weights(iocg, iocg->active, iocg->last_inuse, 1454 false, now); 1455 } 1456 } 1457 1458 static int iocg_wake_fn(struct wait_queue_entry *wq_entry, unsigned mode, 1459 int flags, void *key) 1460 { 1461 struct iocg_wait *wait = container_of(wq_entry, struct iocg_wait, wait); 1462 struct iocg_wake_ctx *ctx = key; 1463 u64 cost = abs_cost_to_cost(wait->abs_cost, ctx->hw_inuse); 1464 1465 ctx->vbudget -= cost; 1466 1467 if (ctx->vbudget < 0) 1468 return -1; 1469 1470 iocg_commit_bio(ctx->iocg, wait->bio, wait->abs_cost, cost); 1471 wait->committed = true; 1472 1473 /* 1474 * autoremove_wake_function() removes the wait entry only when it 1475 * actually changed the task state. We want the wait always removed. 1476 * Remove explicitly and use default_wake_function(). Note that the 1477 * order of operations is important as finish_wait() tests whether 1478 * @wq_entry is removed without grabbing the lock. 1479 */ 1480 default_wake_function(wq_entry, mode, flags, key); 1481 list_del_init_careful(&wq_entry->entry); 1482 return 0; 1483 } 1484 1485 /* 1486 * Calculate the accumulated budget, pay debt if @pay_debt and wake up waiters 1487 * accordingly. When @pay_debt is %true, the caller must be holding ioc->lock in 1488 * addition to iocg->waitq.lock. 1489 */ 1490 static void iocg_kick_waitq(struct ioc_gq *iocg, bool pay_debt, 1491 struct ioc_now *now) 1492 { 1493 struct ioc *ioc = iocg->ioc; 1494 struct iocg_wake_ctx ctx = { .iocg = iocg }; 1495 u64 vshortage, expires, oexpires; 1496 s64 vbudget; 1497 u32 hwa; 1498 1499 lockdep_assert_held(&iocg->waitq.lock); 1500 1501 current_hweight(iocg, &hwa, NULL); 1502 vbudget = now->vnow - atomic64_read(&iocg->vtime); 1503 1504 /* pay off debt */ 1505 if (pay_debt && iocg->abs_vdebt && vbudget > 0) { 1506 u64 abs_vbudget = cost_to_abs_cost(vbudget, hwa); 1507 u64 abs_vpay = min_t(u64, abs_vbudget, iocg->abs_vdebt); 1508 u64 vpay = abs_cost_to_cost(abs_vpay, hwa); 1509 1510 lockdep_assert_held(&ioc->lock); 1511 1512 atomic64_add(vpay, &iocg->vtime); 1513 atomic64_add(vpay, &iocg->done_vtime); 1514 iocg_pay_debt(iocg, abs_vpay, now); 1515 vbudget -= vpay; 1516 } 1517 1518 if (iocg->abs_vdebt || iocg->delay) 1519 iocg_kick_delay(iocg, now); 1520 1521 /* 1522 * Debt can still be outstanding if we haven't paid all yet or the 1523 * caller raced and called without @pay_debt. Shouldn't wake up waiters 1524 * under debt. Make sure @vbudget reflects the outstanding amount and is 1525 * not positive. 1526 */ 1527 if (iocg->abs_vdebt) { 1528 s64 vdebt = abs_cost_to_cost(iocg->abs_vdebt, hwa); 1529 vbudget = min_t(s64, 0, vbudget - vdebt); 1530 } 1531 1532 /* 1533 * Wake up the ones which are due and see how much vtime we'll need for 1534 * the next one. As paying off debt restores hw_inuse, it must be read 1535 * after the above debt payment. 1536 */ 1537 ctx.vbudget = vbudget; 1538 current_hweight(iocg, NULL, &ctx.hw_inuse); 1539 1540 __wake_up_locked_key(&iocg->waitq, TASK_NORMAL, &ctx); 1541 1542 if (!waitqueue_active(&iocg->waitq)) { 1543 if (iocg->wait_since) { 1544 iocg->stat.wait_us += now->now - iocg->wait_since; 1545 iocg->wait_since = 0; 1546 } 1547 return; 1548 } 1549 1550 if (!iocg->wait_since) 1551 iocg->wait_since = now->now; 1552 1553 if (WARN_ON_ONCE(ctx.vbudget >= 0)) 1554 return; 1555 1556 /* determine next wakeup, add a timer margin to guarantee chunking */ 1557 vshortage = -ctx.vbudget; 1558 expires = now->now_ns + 1559 DIV64_U64_ROUND_UP(vshortage, ioc->vtime_base_rate) * 1560 NSEC_PER_USEC; 1561 expires += ioc->timer_slack_ns; 1562 1563 /* if already active and close enough, don't bother */ 1564 oexpires = ktime_to_ns(hrtimer_get_softexpires(&iocg->waitq_timer)); 1565 if (hrtimer_is_queued(&iocg->waitq_timer) && 1566 abs(oexpires - expires) <= ioc->timer_slack_ns) 1567 return; 1568 1569 hrtimer_start_range_ns(&iocg->waitq_timer, ns_to_ktime(expires), 1570 ioc->timer_slack_ns, HRTIMER_MODE_ABS); 1571 } 1572 1573 static enum hrtimer_restart iocg_waitq_timer_fn(struct hrtimer *timer) 1574 { 1575 struct ioc_gq *iocg = container_of(timer, struct ioc_gq, waitq_timer); 1576 bool pay_debt = READ_ONCE(iocg->abs_vdebt); 1577 struct ioc_now now; 1578 unsigned long flags; 1579 1580 ioc_now(iocg->ioc, &now); 1581 1582 iocg_lock(iocg, pay_debt, &flags); 1583 iocg_kick_waitq(iocg, pay_debt, &now); 1584 iocg_unlock(iocg, pay_debt, &flags); 1585 1586 return HRTIMER_NORESTART; 1587 } 1588 1589 static void ioc_lat_stat(struct ioc *ioc, u32 *missed_ppm_ar, u32 *rq_wait_pct_p) 1590 { 1591 u32 nr_met[2] = { }; 1592 u32 nr_missed[2] = { }; 1593 u64 rq_wait_ns = 0; 1594 int cpu, rw; 1595 1596 for_each_online_cpu(cpu) { 1597 struct ioc_pcpu_stat *stat = per_cpu_ptr(ioc->pcpu_stat, cpu); 1598 u64 this_rq_wait_ns; 1599 1600 for (rw = READ; rw <= WRITE; rw++) { 1601 u32 this_met = local_read(&stat->missed[rw].nr_met); 1602 u32 this_missed = local_read(&stat->missed[rw].nr_missed); 1603 1604 nr_met[rw] += this_met - stat->missed[rw].last_met; 1605 nr_missed[rw] += this_missed - stat->missed[rw].last_missed; 1606 stat->missed[rw].last_met = this_met; 1607 stat->missed[rw].last_missed = this_missed; 1608 } 1609 1610 this_rq_wait_ns = local64_read(&stat->rq_wait_ns); 1611 rq_wait_ns += this_rq_wait_ns - stat->last_rq_wait_ns; 1612 stat->last_rq_wait_ns = this_rq_wait_ns; 1613 } 1614 1615 for (rw = READ; rw <= WRITE; rw++) { 1616 if (nr_met[rw] + nr_missed[rw]) 1617 missed_ppm_ar[rw] = 1618 DIV64_U64_ROUND_UP((u64)nr_missed[rw] * MILLION, 1619 nr_met[rw] + nr_missed[rw]); 1620 else 1621 missed_ppm_ar[rw] = 0; 1622 } 1623 1624 *rq_wait_pct_p = div64_u64(rq_wait_ns * 100, 1625 ioc->period_us * NSEC_PER_USEC); 1626 } 1627 1628 /* was iocg idle this period? */ 1629 static bool iocg_is_idle(struct ioc_gq *iocg) 1630 { 1631 struct ioc *ioc = iocg->ioc; 1632 1633 /* did something get issued this period? */ 1634 if (atomic64_read(&iocg->active_period) == 1635 atomic64_read(&ioc->cur_period)) 1636 return false; 1637 1638 /* is something in flight? */ 1639 if (atomic64_read(&iocg->done_vtime) != atomic64_read(&iocg->vtime)) 1640 return false; 1641 1642 return true; 1643 } 1644 1645 /* 1646 * Call this function on the target leaf @iocg's to build pre-order traversal 1647 * list of all the ancestors in @inner_walk. The inner nodes are linked through 1648 * ->walk_list and the caller is responsible for dissolving the list after use. 1649 */ 1650 static void iocg_build_inner_walk(struct ioc_gq *iocg, 1651 struct list_head *inner_walk) 1652 { 1653 int lvl; 1654 1655 WARN_ON_ONCE(!list_empty(&iocg->walk_list)); 1656 1657 /* find the first ancestor which hasn't been visited yet */ 1658 for (lvl = iocg->level - 1; lvl >= 0; lvl--) { 1659 if (!list_empty(&iocg->ancestors[lvl]->walk_list)) 1660 break; 1661 } 1662 1663 /* walk down and visit the inner nodes to get pre-order traversal */ 1664 while (++lvl <= iocg->level - 1) { 1665 struct ioc_gq *inner = iocg->ancestors[lvl]; 1666 1667 /* record traversal order */ 1668 list_add_tail(&inner->walk_list, inner_walk); 1669 } 1670 } 1671 1672 /* propagate the deltas to the parent */ 1673 static void iocg_flush_stat_upward(struct ioc_gq *iocg) 1674 { 1675 if (iocg->level > 0) { 1676 struct iocg_stat *parent_stat = 1677 &iocg->ancestors[iocg->level - 1]->stat; 1678 1679 parent_stat->usage_us += 1680 iocg->stat.usage_us - iocg->last_stat.usage_us; 1681 parent_stat->wait_us += 1682 iocg->stat.wait_us - iocg->last_stat.wait_us; 1683 parent_stat->indebt_us += 1684 iocg->stat.indebt_us - iocg->last_stat.indebt_us; 1685 parent_stat->indelay_us += 1686 iocg->stat.indelay_us - iocg->last_stat.indelay_us; 1687 } 1688 1689 iocg->last_stat = iocg->stat; 1690 } 1691 1692 /* collect per-cpu counters and propagate the deltas to the parent */ 1693 static void iocg_flush_stat_leaf(struct ioc_gq *iocg, struct ioc_now *now) 1694 { 1695 struct ioc *ioc = iocg->ioc; 1696 u64 abs_vusage = 0; 1697 u64 vusage_delta; 1698 int cpu; 1699 1700 lockdep_assert_held(&iocg->ioc->lock); 1701 1702 /* collect per-cpu counters */ 1703 for_each_possible_cpu(cpu) { 1704 abs_vusage += local64_read( 1705 per_cpu_ptr(&iocg->pcpu_stat->abs_vusage, cpu)); 1706 } 1707 vusage_delta = abs_vusage - iocg->last_stat_abs_vusage; 1708 iocg->last_stat_abs_vusage = abs_vusage; 1709 1710 iocg->usage_delta_us = div64_u64(vusage_delta, ioc->vtime_base_rate); 1711 iocg->stat.usage_us += iocg->usage_delta_us; 1712 1713 iocg_flush_stat_upward(iocg); 1714 } 1715 1716 /* get stat counters ready for reading on all active iocgs */ 1717 static void iocg_flush_stat(struct list_head *target_iocgs, struct ioc_now *now) 1718 { 1719 LIST_HEAD(inner_walk); 1720 struct ioc_gq *iocg, *tiocg; 1721 1722 /* flush leaves and build inner node walk list */ 1723 list_for_each_entry(iocg, target_iocgs, active_list) { 1724 iocg_flush_stat_leaf(iocg, now); 1725 iocg_build_inner_walk(iocg, &inner_walk); 1726 } 1727 1728 /* keep flushing upwards by walking the inner list backwards */ 1729 list_for_each_entry_safe_reverse(iocg, tiocg, &inner_walk, walk_list) { 1730 iocg_flush_stat_upward(iocg); 1731 list_del_init(&iocg->walk_list); 1732 } 1733 } 1734 1735 /* 1736 * Determine what @iocg's hweight_inuse should be after donating unused 1737 * capacity. @hwm is the upper bound and used to signal no donation. This 1738 * function also throws away @iocg's excess budget. 1739 */ 1740 static u32 hweight_after_donation(struct ioc_gq *iocg, u32 old_hwi, u32 hwm, 1741 u32 usage, struct ioc_now *now) 1742 { 1743 struct ioc *ioc = iocg->ioc; 1744 u64 vtime = atomic64_read(&iocg->vtime); 1745 s64 excess, delta, target, new_hwi; 1746 1747 /* debt handling owns inuse for debtors */ 1748 if (iocg->abs_vdebt) 1749 return 1; 1750 1751 /* see whether minimum margin requirement is met */ 1752 if (waitqueue_active(&iocg->waitq) || 1753 time_after64(vtime, now->vnow - ioc->margins.min)) 1754 return hwm; 1755 1756 /* throw away excess above target */ 1757 excess = now->vnow - vtime - ioc->margins.target; 1758 if (excess > 0) { 1759 atomic64_add(excess, &iocg->vtime); 1760 atomic64_add(excess, &iocg->done_vtime); 1761 vtime += excess; 1762 ioc->vtime_err -= div64_u64(excess * old_hwi, WEIGHT_ONE); 1763 } 1764 1765 /* 1766 * Let's say the distance between iocg's and device's vtimes as a 1767 * fraction of period duration is delta. Assuming that the iocg will 1768 * consume the usage determined above, we want to determine new_hwi so 1769 * that delta equals MARGIN_TARGET at the end of the next period. 1770 * 1771 * We need to execute usage worth of IOs while spending the sum of the 1772 * new budget (1 - MARGIN_TARGET) and the leftover from the last period 1773 * (delta): 1774 * 1775 * usage = (1 - MARGIN_TARGET + delta) * new_hwi 1776 * 1777 * Therefore, the new_hwi is: 1778 * 1779 * new_hwi = usage / (1 - MARGIN_TARGET + delta) 1780 */ 1781 delta = div64_s64(WEIGHT_ONE * (now->vnow - vtime), 1782 now->vnow - ioc->period_at_vtime); 1783 target = WEIGHT_ONE * MARGIN_TARGET_PCT / 100; 1784 new_hwi = div64_s64(WEIGHT_ONE * usage, WEIGHT_ONE - target + delta); 1785 1786 return clamp_t(s64, new_hwi, 1, hwm); 1787 } 1788 1789 /* 1790 * For work-conservation, an iocg which isn't using all of its share should 1791 * donate the leftover to other iocgs. There are two ways to achieve this - 1. 1792 * bumping up vrate accordingly 2. lowering the donating iocg's inuse weight. 1793 * 1794 * #1 is mathematically simpler but has the drawback of requiring synchronous 1795 * global hweight_inuse updates when idle iocg's get activated or inuse weights 1796 * change due to donation snapbacks as it has the possibility of grossly 1797 * overshooting what's allowed by the model and vrate. 1798 * 1799 * #2 is inherently safe with local operations. The donating iocg can easily 1800 * snap back to higher weights when needed without worrying about impacts on 1801 * other nodes as the impacts will be inherently correct. This also makes idle 1802 * iocg activations safe. The only effect activations have is decreasing 1803 * hweight_inuse of others, the right solution to which is for those iocgs to 1804 * snap back to higher weights. 1805 * 1806 * So, we go with #2. The challenge is calculating how each donating iocg's 1807 * inuse should be adjusted to achieve the target donation amounts. This is done 1808 * using Andy's method described in the following pdf. 1809 * 1810 * https://drive.google.com/file/d/1PsJwxPFtjUnwOY1QJ5AeICCcsL7BM3bo 1811 * 1812 * Given the weights and target after-donation hweight_inuse values, Andy's 1813 * method determines how the proportional distribution should look like at each 1814 * sibling level to maintain the relative relationship between all non-donating 1815 * pairs. To roughly summarize, it divides the tree into donating and 1816 * non-donating parts, calculates global donation rate which is used to 1817 * determine the target hweight_inuse for each node, and then derives per-level 1818 * proportions. 1819 * 1820 * The following pdf shows that global distribution calculated this way can be 1821 * achieved by scaling inuse weights of donating leaves and propagating the 1822 * adjustments upwards proportionally. 1823 * 1824 * https://drive.google.com/file/d/1vONz1-fzVO7oY5DXXsLjSxEtYYQbOvsE 1825 * 1826 * Combining the above two, we can determine how each leaf iocg's inuse should 1827 * be adjusted to achieve the target donation. 1828 * 1829 * https://drive.google.com/file/d/1WcrltBOSPN0qXVdBgnKm4mdp9FhuEFQN 1830 * 1831 * The inline comments use symbols from the last pdf. 1832 * 1833 * b is the sum of the absolute budgets in the subtree. 1 for the root node. 1834 * f is the sum of the absolute budgets of non-donating nodes in the subtree. 1835 * t is the sum of the absolute budgets of donating nodes in the subtree. 1836 * w is the weight of the node. w = w_f + w_t 1837 * w_f is the non-donating portion of w. w_f = w * f / b 1838 * w_b is the donating portion of w. w_t = w * t / b 1839 * s is the sum of all sibling weights. s = Sum(w) for siblings 1840 * s_f and s_t are the non-donating and donating portions of s. 1841 * 1842 * Subscript p denotes the parent's counterpart and ' the adjusted value - e.g. 1843 * w_pt is the donating portion of the parent's weight and w'_pt the same value 1844 * after adjustments. Subscript r denotes the root node's values. 1845 */ 1846 static void transfer_surpluses(struct list_head *surpluses, struct ioc_now *now) 1847 { 1848 LIST_HEAD(over_hwa); 1849 LIST_HEAD(inner_walk); 1850 struct ioc_gq *iocg, *tiocg, *root_iocg; 1851 u32 after_sum, over_sum, over_target, gamma; 1852 1853 /* 1854 * It's pretty unlikely but possible for the total sum of 1855 * hweight_after_donation's to be higher than WEIGHT_ONE, which will 1856 * confuse the following calculations. If such condition is detected, 1857 * scale down everyone over its full share equally to keep the sum below 1858 * WEIGHT_ONE. 1859 */ 1860 after_sum = 0; 1861 over_sum = 0; 1862 list_for_each_entry(iocg, surpluses, surplus_list) { 1863 u32 hwa; 1864 1865 current_hweight(iocg, &hwa, NULL); 1866 after_sum += iocg->hweight_after_donation; 1867 1868 if (iocg->hweight_after_donation > hwa) { 1869 over_sum += iocg->hweight_after_donation; 1870 list_add(&iocg->walk_list, &over_hwa); 1871 } 1872 } 1873 1874 if (after_sum >= WEIGHT_ONE) { 1875 /* 1876 * The delta should be deducted from the over_sum, calculate 1877 * target over_sum value. 1878 */ 1879 u32 over_delta = after_sum - (WEIGHT_ONE - 1); 1880 WARN_ON_ONCE(over_sum <= over_delta); 1881 over_target = over_sum - over_delta; 1882 } else { 1883 over_target = 0; 1884 } 1885 1886 list_for_each_entry_safe(iocg, tiocg, &over_hwa, walk_list) { 1887 if (over_target) 1888 iocg->hweight_after_donation = 1889 div_u64((u64)iocg->hweight_after_donation * 1890 over_target, over_sum); 1891 list_del_init(&iocg->walk_list); 1892 } 1893 1894 /* 1895 * Build pre-order inner node walk list and prepare for donation 1896 * adjustment calculations. 1897 */ 1898 list_for_each_entry(iocg, surpluses, surplus_list) { 1899 iocg_build_inner_walk(iocg, &inner_walk); 1900 } 1901 1902 root_iocg = list_first_entry(&inner_walk, struct ioc_gq, walk_list); 1903 WARN_ON_ONCE(root_iocg->level > 0); 1904 1905 list_for_each_entry(iocg, &inner_walk, walk_list) { 1906 iocg->child_adjusted_sum = 0; 1907 iocg->hweight_donating = 0; 1908 iocg->hweight_after_donation = 0; 1909 } 1910 1911 /* 1912 * Propagate the donating budget (b_t) and after donation budget (b'_t) 1913 * up the hierarchy. 1914 */ 1915 list_for_each_entry(iocg, surpluses, surplus_list) { 1916 struct ioc_gq *parent = iocg->ancestors[iocg->level - 1]; 1917 1918 parent->hweight_donating += iocg->hweight_donating; 1919 parent->hweight_after_donation += iocg->hweight_after_donation; 1920 } 1921 1922 list_for_each_entry_reverse(iocg, &inner_walk, walk_list) { 1923 if (iocg->level > 0) { 1924 struct ioc_gq *parent = iocg->ancestors[iocg->level - 1]; 1925 1926 parent->hweight_donating += iocg->hweight_donating; 1927 parent->hweight_after_donation += iocg->hweight_after_donation; 1928 } 1929 } 1930 1931 /* 1932 * Calculate inner hwa's (b) and make sure the donation values are 1933 * within the accepted ranges as we're doing low res calculations with 1934 * roundups. 1935 */ 1936 list_for_each_entry(iocg, &inner_walk, walk_list) { 1937 if (iocg->level) { 1938 struct ioc_gq *parent = iocg->ancestors[iocg->level - 1]; 1939 1940 iocg->hweight_active = DIV64_U64_ROUND_UP( 1941 (u64)parent->hweight_active * iocg->active, 1942 parent->child_active_sum); 1943 1944 } 1945 1946 iocg->hweight_donating = min(iocg->hweight_donating, 1947 iocg->hweight_active); 1948 iocg->hweight_after_donation = min(iocg->hweight_after_donation, 1949 iocg->hweight_donating - 1); 1950 if (WARN_ON_ONCE(iocg->hweight_active <= 1 || 1951 iocg->hweight_donating <= 1 || 1952 iocg->hweight_after_donation == 0)) { 1953 pr_warn("iocg: invalid donation weights in "); 1954 pr_cont_cgroup_path(iocg_to_blkg(iocg)->blkcg->css.cgroup); 1955 pr_cont(": active=%u donating=%u after=%u\n", 1956 iocg->hweight_active, iocg->hweight_donating, 1957 iocg->hweight_after_donation); 1958 } 1959 } 1960 1961 /* 1962 * Calculate the global donation rate (gamma) - the rate to adjust 1963 * non-donating budgets by. 1964 * 1965 * No need to use 64bit multiplication here as the first operand is 1966 * guaranteed to be smaller than WEIGHT_ONE (1<<16). 1967 * 1968 * We know that there are beneficiary nodes and the sum of the donating 1969 * hweights can't be whole; however, due to the round-ups during hweight 1970 * calculations, root_iocg->hweight_donating might still end up equal to 1971 * or greater than whole. Limit the range when calculating the divider. 1972 * 1973 * gamma = (1 - t_r') / (1 - t_r) 1974 */ 1975 gamma = DIV_ROUND_UP( 1976 (WEIGHT_ONE - root_iocg->hweight_after_donation) * WEIGHT_ONE, 1977 WEIGHT_ONE - min_t(u32, root_iocg->hweight_donating, WEIGHT_ONE - 1)); 1978 1979 /* 1980 * Calculate adjusted hwi, child_adjusted_sum and inuse for the inner 1981 * nodes. 1982 */ 1983 list_for_each_entry(iocg, &inner_walk, walk_list) { 1984 struct ioc_gq *parent; 1985 u32 inuse, wpt, wptp; 1986 u64 st, sf; 1987 1988 if (iocg->level == 0) { 1989 /* adjusted weight sum for 1st level: s' = s * b_pf / b'_pf */ 1990 iocg->child_adjusted_sum = DIV64_U64_ROUND_UP( 1991 iocg->child_active_sum * (WEIGHT_ONE - iocg->hweight_donating), 1992 WEIGHT_ONE - iocg->hweight_after_donation); 1993 continue; 1994 } 1995 1996 parent = iocg->ancestors[iocg->level - 1]; 1997 1998 /* b' = gamma * b_f + b_t' */ 1999 iocg->hweight_inuse = DIV64_U64_ROUND_UP( 2000 (u64)gamma * (iocg->hweight_active - iocg->hweight_donating), 2001 WEIGHT_ONE) + iocg->hweight_after_donation; 2002 2003 /* w' = s' * b' / b'_p */ 2004 inuse = DIV64_U64_ROUND_UP( 2005 (u64)parent->child_adjusted_sum * iocg->hweight_inuse, 2006 parent->hweight_inuse); 2007 2008 /* adjusted weight sum for children: s' = s_f + s_t * w'_pt / w_pt */ 2009 st = DIV64_U64_ROUND_UP( 2010 iocg->child_active_sum * iocg->hweight_donating, 2011 iocg->hweight_active); 2012 sf = iocg->child_active_sum - st; 2013 wpt = DIV64_U64_ROUND_UP( 2014 (u64)iocg->active * iocg->hweight_donating, 2015 iocg->hweight_active); 2016 wptp = DIV64_U64_ROUND_UP( 2017 (u64)inuse * iocg->hweight_after_donation, 2018 iocg->hweight_inuse); 2019 2020 iocg->child_adjusted_sum = sf + DIV64_U64_ROUND_UP(st * wptp, wpt); 2021 } 2022 2023 /* 2024 * All inner nodes now have ->hweight_inuse and ->child_adjusted_sum and 2025 * we can finally determine leaf adjustments. 2026 */ 2027 list_for_each_entry(iocg, surpluses, surplus_list) { 2028 struct ioc_gq *parent = iocg->ancestors[iocg->level - 1]; 2029 u32 inuse; 2030 2031 /* 2032 * In-debt iocgs participated in the donation calculation with 2033 * the minimum target hweight_inuse. Configuring inuse 2034 * accordingly would work fine but debt handling expects 2035 * @iocg->inuse stay at the minimum and we don't wanna 2036 * interfere. 2037 */ 2038 if (iocg->abs_vdebt) { 2039 WARN_ON_ONCE(iocg->inuse > 1); 2040 continue; 2041 } 2042 2043 /* w' = s' * b' / b'_p, note that b' == b'_t for donating leaves */ 2044 inuse = DIV64_U64_ROUND_UP( 2045 parent->child_adjusted_sum * iocg->hweight_after_donation, 2046 parent->hweight_inuse); 2047 2048 TRACE_IOCG_PATH(inuse_transfer, iocg, now, 2049 iocg->inuse, inuse, 2050 iocg->hweight_inuse, 2051 iocg->hweight_after_donation); 2052 2053 __propagate_weights(iocg, iocg->active, inuse, true, now); 2054 } 2055 2056 /* walk list should be dissolved after use */ 2057 list_for_each_entry_safe(iocg, tiocg, &inner_walk, walk_list) 2058 list_del_init(&iocg->walk_list); 2059 } 2060 2061 /* 2062 * A low weight iocg can amass a large amount of debt, for example, when 2063 * anonymous memory gets reclaimed aggressively. If the system has a lot of 2064 * memory paired with a slow IO device, the debt can span multiple seconds or 2065 * more. If there are no other subsequent IO issuers, the in-debt iocg may end 2066 * up blocked paying its debt while the IO device is idle. 2067 * 2068 * The following protects against such cases. If the device has been 2069 * sufficiently idle for a while, the debts are halved and delays are 2070 * recalculated. 2071 */ 2072 static void ioc_forgive_debts(struct ioc *ioc, u64 usage_us_sum, int nr_debtors, 2073 struct ioc_now *now) 2074 { 2075 struct ioc_gq *iocg; 2076 u64 dur, usage_pct, nr_cycles; 2077 2078 /* if no debtor, reset the cycle */ 2079 if (!nr_debtors) { 2080 ioc->dfgv_period_at = now->now; 2081 ioc->dfgv_period_rem = 0; 2082 ioc->dfgv_usage_us_sum = 0; 2083 return; 2084 } 2085 2086 /* 2087 * Debtors can pass through a lot of writes choking the device and we 2088 * don't want to be forgiving debts while the device is struggling from 2089 * write bursts. If we're missing latency targets, consider the device 2090 * fully utilized. 2091 */ 2092 if (ioc->busy_level > 0) 2093 usage_us_sum = max_t(u64, usage_us_sum, ioc->period_us); 2094 2095 ioc->dfgv_usage_us_sum += usage_us_sum; 2096 if (time_before64(now->now, ioc->dfgv_period_at + DFGV_PERIOD)) 2097 return; 2098 2099 /* 2100 * At least DFGV_PERIOD has passed since the last period. Calculate the 2101 * average usage and reset the period counters. 2102 */ 2103 dur = now->now - ioc->dfgv_period_at; 2104 usage_pct = div64_u64(100 * ioc->dfgv_usage_us_sum, dur); 2105 2106 ioc->dfgv_period_at = now->now; 2107 ioc->dfgv_usage_us_sum = 0; 2108 2109 /* if was too busy, reset everything */ 2110 if (usage_pct > DFGV_USAGE_PCT) { 2111 ioc->dfgv_period_rem = 0; 2112 return; 2113 } 2114 2115 /* 2116 * Usage is lower than threshold. Let's forgive some debts. Debt 2117 * forgiveness runs off of the usual ioc timer but its period usually 2118 * doesn't match ioc's. Compensate the difference by performing the 2119 * reduction as many times as would fit in the duration since the last 2120 * run and carrying over the left-over duration in @ioc->dfgv_period_rem 2121 * - if ioc period is 75% of DFGV_PERIOD, one out of three consecutive 2122 * reductions is doubled. 2123 */ 2124 nr_cycles = dur + ioc->dfgv_period_rem; 2125 ioc->dfgv_period_rem = do_div(nr_cycles, DFGV_PERIOD); 2126 2127 list_for_each_entry(iocg, &ioc->active_iocgs, active_list) { 2128 u64 __maybe_unused old_debt, __maybe_unused old_delay; 2129 2130 if (!iocg->abs_vdebt && !iocg->delay) 2131 continue; 2132 2133 spin_lock(&iocg->waitq.lock); 2134 2135 old_debt = iocg->abs_vdebt; 2136 old_delay = iocg->delay; 2137 2138 if (iocg->abs_vdebt) 2139 iocg->abs_vdebt = iocg->abs_vdebt >> nr_cycles ?: 1; 2140 if (iocg->delay) 2141 iocg->delay = iocg->delay >> nr_cycles ?: 1; 2142 2143 iocg_kick_waitq(iocg, true, now); 2144 2145 TRACE_IOCG_PATH(iocg_forgive_debt, iocg, now, usage_pct, 2146 old_debt, iocg->abs_vdebt, 2147 old_delay, iocg->delay); 2148 2149 spin_unlock(&iocg->waitq.lock); 2150 } 2151 } 2152 2153 /* 2154 * Check the active iocgs' state to avoid oversleeping and deactive 2155 * idle iocgs. 2156 * 2157 * Since waiters determine the sleep durations based on the vrate 2158 * they saw at the time of sleep, if vrate has increased, some 2159 * waiters could be sleeping for too long. Wake up tardy waiters 2160 * which should have woken up in the last period and expire idle 2161 * iocgs. 2162 */ 2163 static int ioc_check_iocgs(struct ioc *ioc, struct ioc_now *now) 2164 { 2165 int nr_debtors = 0; 2166 struct ioc_gq *iocg, *tiocg; 2167 2168 list_for_each_entry_safe(iocg, tiocg, &ioc->active_iocgs, active_list) { 2169 if (!waitqueue_active(&iocg->waitq) && !iocg->abs_vdebt && 2170 !iocg->delay && !iocg_is_idle(iocg)) 2171 continue; 2172 2173 spin_lock(&iocg->waitq.lock); 2174 2175 /* flush wait and indebt stat deltas */ 2176 if (iocg->wait_since) { 2177 iocg->stat.wait_us += now->now - iocg->wait_since; 2178 iocg->wait_since = now->now; 2179 } 2180 if (iocg->indebt_since) { 2181 iocg->stat.indebt_us += 2182 now->now - iocg->indebt_since; 2183 iocg->indebt_since = now->now; 2184 } 2185 if (iocg->indelay_since) { 2186 iocg->stat.indelay_us += 2187 now->now - iocg->indelay_since; 2188 iocg->indelay_since = now->now; 2189 } 2190 2191 if (waitqueue_active(&iocg->waitq) || iocg->abs_vdebt || 2192 iocg->delay) { 2193 /* might be oversleeping vtime / hweight changes, kick */ 2194 iocg_kick_waitq(iocg, true, now); 2195 if (iocg->abs_vdebt || iocg->delay) 2196 nr_debtors++; 2197 } else if (iocg_is_idle(iocg)) { 2198 /* no waiter and idle, deactivate */ 2199 u64 vtime = atomic64_read(&iocg->vtime); 2200 s64 excess; 2201 2202 /* 2203 * @iocg has been inactive for a full duration and will 2204 * have a high budget. Account anything above target as 2205 * error and throw away. On reactivation, it'll start 2206 * with the target budget. 2207 */ 2208 excess = now->vnow - vtime - ioc->margins.target; 2209 if (excess > 0) { 2210 u32 old_hwi; 2211 2212 current_hweight(iocg, NULL, &old_hwi); 2213 ioc->vtime_err -= div64_u64(excess * old_hwi, 2214 WEIGHT_ONE); 2215 } 2216 2217 TRACE_IOCG_PATH(iocg_idle, iocg, now, 2218 atomic64_read(&iocg->active_period), 2219 atomic64_read(&ioc->cur_period), vtime); 2220 __propagate_weights(iocg, 0, 0, false, now); 2221 list_del_init(&iocg->active_list); 2222 } 2223 2224 spin_unlock(&iocg->waitq.lock); 2225 } 2226 2227 commit_weights(ioc); 2228 return nr_debtors; 2229 } 2230 2231 static void ioc_timer_fn(struct timer_list *timer) 2232 { 2233 struct ioc *ioc = container_of(timer, struct ioc, timer); 2234 struct ioc_gq *iocg, *tiocg; 2235 struct ioc_now now; 2236 LIST_HEAD(surpluses); 2237 int nr_debtors, nr_shortages = 0, nr_lagging = 0; 2238 u64 usage_us_sum = 0; 2239 u32 ppm_rthr; 2240 u32 ppm_wthr; 2241 u32 missed_ppm[2], rq_wait_pct; 2242 u64 period_vtime; 2243 int prev_busy_level; 2244 2245 /* how were the latencies during the period? */ 2246 ioc_lat_stat(ioc, missed_ppm, &rq_wait_pct); 2247 2248 /* take care of active iocgs */ 2249 spin_lock_irq(&ioc->lock); 2250 2251 ppm_rthr = MILLION - ioc->params.qos[QOS_RPPM]; 2252 ppm_wthr = MILLION - ioc->params.qos[QOS_WPPM]; 2253 ioc_now(ioc, &now); 2254 2255 period_vtime = now.vnow - ioc->period_at_vtime; 2256 if (WARN_ON_ONCE(!period_vtime)) { 2257 spin_unlock_irq(&ioc->lock); 2258 return; 2259 } 2260 2261 nr_debtors = ioc_check_iocgs(ioc, &now); 2262 2263 /* 2264 * Wait and indebt stat are flushed above and the donation calculation 2265 * below needs updated usage stat. Let's bring stat up-to-date. 2266 */ 2267 iocg_flush_stat(&ioc->active_iocgs, &now); 2268 2269 /* calc usage and see whether some weights need to be moved around */ 2270 list_for_each_entry(iocg, &ioc->active_iocgs, active_list) { 2271 u64 vdone, vtime, usage_us; 2272 u32 hw_active, hw_inuse; 2273 2274 /* 2275 * Collect unused and wind vtime closer to vnow to prevent 2276 * iocgs from accumulating a large amount of budget. 2277 */ 2278 vdone = atomic64_read(&iocg->done_vtime); 2279 vtime = atomic64_read(&iocg->vtime); 2280 current_hweight(iocg, &hw_active, &hw_inuse); 2281 2282 /* 2283 * Latency QoS detection doesn't account for IOs which are 2284 * in-flight for longer than a period. Detect them by 2285 * comparing vdone against period start. If lagging behind 2286 * IOs from past periods, don't increase vrate. 2287 */ 2288 if ((ppm_rthr != MILLION || ppm_wthr != MILLION) && 2289 !atomic_read(&iocg_to_blkg(iocg)->use_delay) && 2290 time_after64(vtime, vdone) && 2291 time_after64(vtime, now.vnow - 2292 MAX_LAGGING_PERIODS * period_vtime) && 2293 time_before64(vdone, now.vnow - period_vtime)) 2294 nr_lagging++; 2295 2296 /* 2297 * Determine absolute usage factoring in in-flight IOs to avoid 2298 * high-latency completions appearing as idle. 2299 */ 2300 usage_us = iocg->usage_delta_us; 2301 usage_us_sum += usage_us; 2302 2303 /* see whether there's surplus vtime */ 2304 WARN_ON_ONCE(!list_empty(&iocg->surplus_list)); 2305 if (hw_inuse < hw_active || 2306 (!waitqueue_active(&iocg->waitq) && 2307 time_before64(vtime, now.vnow - ioc->margins.low))) { 2308 u32 hwa, old_hwi, hwm, new_hwi, usage; 2309 u64 usage_dur; 2310 2311 if (vdone != vtime) { 2312 u64 inflight_us = DIV64_U64_ROUND_UP( 2313 cost_to_abs_cost(vtime - vdone, hw_inuse), 2314 ioc->vtime_base_rate); 2315 2316 usage_us = max(usage_us, inflight_us); 2317 } 2318 2319 /* convert to hweight based usage ratio */ 2320 if (time_after64(iocg->activated_at, ioc->period_at)) 2321 usage_dur = max_t(u64, now.now - iocg->activated_at, 1); 2322 else 2323 usage_dur = max_t(u64, now.now - ioc->period_at, 1); 2324 2325 usage = clamp_t(u32, 2326 DIV64_U64_ROUND_UP(usage_us * WEIGHT_ONE, 2327 usage_dur), 2328 1, WEIGHT_ONE); 2329 2330 /* 2331 * Already donating or accumulated enough to start. 2332 * Determine the donation amount. 2333 */ 2334 current_hweight(iocg, &hwa, &old_hwi); 2335 hwm = current_hweight_max(iocg); 2336 new_hwi = hweight_after_donation(iocg, old_hwi, hwm, 2337 usage, &now); 2338 /* 2339 * Donation calculation assumes hweight_after_donation 2340 * to be positive, a condition that a donor w/ hwa < 2 2341 * can't meet. Don't bother with donation if hwa is 2342 * below 2. It's not gonna make a meaningful difference 2343 * anyway. 2344 */ 2345 if (new_hwi < hwm && hwa >= 2) { 2346 iocg->hweight_donating = hwa; 2347 iocg->hweight_after_donation = new_hwi; 2348 list_add(&iocg->surplus_list, &surpluses); 2349 } else if (!iocg->abs_vdebt) { 2350 /* 2351 * @iocg doesn't have enough to donate. Reset 2352 * its inuse to active. 2353 * 2354 * Don't reset debtors as their inuse's are 2355 * owned by debt handling. This shouldn't affect 2356 * donation calculuation in any meaningful way 2357 * as @iocg doesn't have a meaningful amount of 2358 * share anyway. 2359 */ 2360 TRACE_IOCG_PATH(inuse_shortage, iocg, &now, 2361 iocg->inuse, iocg->active, 2362 iocg->hweight_inuse, new_hwi); 2363 2364 __propagate_weights(iocg, iocg->active, 2365 iocg->active, true, &now); 2366 nr_shortages++; 2367 } 2368 } else { 2369 /* genuinely short on vtime */ 2370 nr_shortages++; 2371 } 2372 } 2373 2374 if (!list_empty(&surpluses) && nr_shortages) 2375 transfer_surpluses(&surpluses, &now); 2376 2377 commit_weights(ioc); 2378 2379 /* surplus list should be dissolved after use */ 2380 list_for_each_entry_safe(iocg, tiocg, &surpluses, surplus_list) 2381 list_del_init(&iocg->surplus_list); 2382 2383 /* 2384 * If q is getting clogged or we're missing too much, we're issuing 2385 * too much IO and should lower vtime rate. If we're not missing 2386 * and experiencing shortages but not surpluses, we're too stingy 2387 * and should increase vtime rate. 2388 */ 2389 prev_busy_level = ioc->busy_level; 2390 if (rq_wait_pct > RQ_WAIT_BUSY_PCT || 2391 missed_ppm[READ] > ppm_rthr || 2392 missed_ppm[WRITE] > ppm_wthr) { 2393 /* clearly missing QoS targets, slow down vrate */ 2394 ioc->busy_level = max(ioc->busy_level, 0); 2395 ioc->busy_level++; 2396 } else if (rq_wait_pct <= RQ_WAIT_BUSY_PCT * UNBUSY_THR_PCT / 100 && 2397 missed_ppm[READ] <= ppm_rthr * UNBUSY_THR_PCT / 100 && 2398 missed_ppm[WRITE] <= ppm_wthr * UNBUSY_THR_PCT / 100) { 2399 /* QoS targets are being met with >25% margin */ 2400 if (nr_shortages) { 2401 /* 2402 * We're throttling while the device has spare 2403 * capacity. If vrate was being slowed down, stop. 2404 */ 2405 ioc->busy_level = min(ioc->busy_level, 0); 2406 2407 /* 2408 * If there are IOs spanning multiple periods, wait 2409 * them out before pushing the device harder. 2410 */ 2411 if (!nr_lagging) 2412 ioc->busy_level--; 2413 } else { 2414 /* 2415 * Nobody is being throttled and the users aren't 2416 * issuing enough IOs to saturate the device. We 2417 * simply don't know how close the device is to 2418 * saturation. Coast. 2419 */ 2420 ioc->busy_level = 0; 2421 } 2422 } else { 2423 /* inside the hysterisis margin, we're good */ 2424 ioc->busy_level = 0; 2425 } 2426 2427 ioc->busy_level = clamp(ioc->busy_level, -1000, 1000); 2428 2429 ioc_adjust_base_vrate(ioc, rq_wait_pct, nr_lagging, nr_shortages, 2430 prev_busy_level, missed_ppm); 2431 2432 ioc_refresh_params(ioc, false); 2433 2434 ioc_forgive_debts(ioc, usage_us_sum, nr_debtors, &now); 2435 2436 /* 2437 * This period is done. Move onto the next one. If nothing's 2438 * going on with the device, stop the timer. 2439 */ 2440 atomic64_inc(&ioc->cur_period); 2441 2442 if (ioc->running != IOC_STOP) { 2443 if (!list_empty(&ioc->active_iocgs)) { 2444 ioc_start_period(ioc, &now); 2445 } else { 2446 ioc->busy_level = 0; 2447 ioc->vtime_err = 0; 2448 ioc->running = IOC_IDLE; 2449 } 2450 2451 ioc_refresh_vrate(ioc, &now); 2452 } 2453 2454 spin_unlock_irq(&ioc->lock); 2455 } 2456 2457 static u64 adjust_inuse_and_calc_cost(struct ioc_gq *iocg, u64 vtime, 2458 u64 abs_cost, struct ioc_now *now) 2459 { 2460 struct ioc *ioc = iocg->ioc; 2461 struct ioc_margins *margins = &ioc->margins; 2462 u32 __maybe_unused old_inuse = iocg->inuse, __maybe_unused old_hwi; 2463 u32 hwi, adj_step; 2464 s64 margin; 2465 u64 cost, new_inuse; 2466 unsigned long flags; 2467 2468 current_hweight(iocg, NULL, &hwi); 2469 old_hwi = hwi; 2470 cost = abs_cost_to_cost(abs_cost, hwi); 2471 margin = now->vnow - vtime - cost; 2472 2473 /* debt handling owns inuse for debtors */ 2474 if (iocg->abs_vdebt) 2475 return cost; 2476 2477 /* 2478 * We only increase inuse during period and do so if the margin has 2479 * deteriorated since the previous adjustment. 2480 */ 2481 if (margin >= iocg->saved_margin || margin >= margins->low || 2482 iocg->inuse == iocg->active) 2483 return cost; 2484 2485 spin_lock_irqsave(&ioc->lock, flags); 2486 2487 /* we own inuse only when @iocg is in the normal active state */ 2488 if (iocg->abs_vdebt || list_empty(&iocg->active_list)) { 2489 spin_unlock_irqrestore(&ioc->lock, flags); 2490 return cost; 2491 } 2492 2493 /* 2494 * Bump up inuse till @abs_cost fits in the existing budget. 2495 * adj_step must be determined after acquiring ioc->lock - we might 2496 * have raced and lost to another thread for activation and could 2497 * be reading 0 iocg->active before ioc->lock which will lead to 2498 * infinite loop. 2499 */ 2500 new_inuse = iocg->inuse; 2501 adj_step = DIV_ROUND_UP(iocg->active * INUSE_ADJ_STEP_PCT, 100); 2502 do { 2503 new_inuse = new_inuse + adj_step; 2504 propagate_weights(iocg, iocg->active, new_inuse, true, now); 2505 current_hweight(iocg, NULL, &hwi); 2506 cost = abs_cost_to_cost(abs_cost, hwi); 2507 } while (time_after64(vtime + cost, now->vnow) && 2508 iocg->inuse != iocg->active); 2509 2510 spin_unlock_irqrestore(&ioc->lock, flags); 2511 2512 TRACE_IOCG_PATH(inuse_adjust, iocg, now, 2513 old_inuse, iocg->inuse, old_hwi, hwi); 2514 2515 return cost; 2516 } 2517 2518 static void calc_vtime_cost_builtin(struct bio *bio, struct ioc_gq *iocg, 2519 bool is_merge, u64 *costp) 2520 { 2521 struct ioc *ioc = iocg->ioc; 2522 u64 coef_seqio, coef_randio, coef_page; 2523 u64 pages = max_t(u64, bio_sectors(bio) >> IOC_SECT_TO_PAGE_SHIFT, 1); 2524 u64 seek_pages = 0; 2525 u64 cost = 0; 2526 2527 /* Can't calculate cost for empty bio */ 2528 if (!bio->bi_iter.bi_size) 2529 goto out; 2530 2531 switch (bio_op(bio)) { 2532 case REQ_OP_READ: 2533 coef_seqio = ioc->params.lcoefs[LCOEF_RSEQIO]; 2534 coef_randio = ioc->params.lcoefs[LCOEF_RRANDIO]; 2535 coef_page = ioc->params.lcoefs[LCOEF_RPAGE]; 2536 break; 2537 case REQ_OP_WRITE: 2538 coef_seqio = ioc->params.lcoefs[LCOEF_WSEQIO]; 2539 coef_randio = ioc->params.lcoefs[LCOEF_WRANDIO]; 2540 coef_page = ioc->params.lcoefs[LCOEF_WPAGE]; 2541 break; 2542 default: 2543 goto out; 2544 } 2545 2546 if (iocg->cursor) { 2547 seek_pages = abs(bio->bi_iter.bi_sector - iocg->cursor); 2548 seek_pages >>= IOC_SECT_TO_PAGE_SHIFT; 2549 } 2550 2551 if (!is_merge) { 2552 if (seek_pages > LCOEF_RANDIO_PAGES) { 2553 cost += coef_randio; 2554 } else { 2555 cost += coef_seqio; 2556 } 2557 } 2558 cost += pages * coef_page; 2559 out: 2560 *costp = cost; 2561 } 2562 2563 static u64 calc_vtime_cost(struct bio *bio, struct ioc_gq *iocg, bool is_merge) 2564 { 2565 u64 cost; 2566 2567 calc_vtime_cost_builtin(bio, iocg, is_merge, &cost); 2568 return cost; 2569 } 2570 2571 static void calc_size_vtime_cost_builtin(struct request *rq, struct ioc *ioc, 2572 u64 *costp) 2573 { 2574 unsigned int pages = blk_rq_stats_sectors(rq) >> IOC_SECT_TO_PAGE_SHIFT; 2575 2576 switch (req_op(rq)) { 2577 case REQ_OP_READ: 2578 *costp = pages * ioc->params.lcoefs[LCOEF_RPAGE]; 2579 break; 2580 case REQ_OP_WRITE: 2581 *costp = pages * ioc->params.lcoefs[LCOEF_WPAGE]; 2582 break; 2583 default: 2584 *costp = 0; 2585 } 2586 } 2587 2588 static u64 calc_size_vtime_cost(struct request *rq, struct ioc *ioc) 2589 { 2590 u64 cost; 2591 2592 calc_size_vtime_cost_builtin(rq, ioc, &cost); 2593 return cost; 2594 } 2595 2596 static void ioc_rqos_throttle(struct rq_qos *rqos, struct bio *bio) 2597 { 2598 struct blkcg_gq *blkg = bio->bi_blkg; 2599 struct ioc *ioc = rqos_to_ioc(rqos); 2600 struct ioc_gq *iocg = blkg_to_iocg(blkg); 2601 struct ioc_now now; 2602 struct iocg_wait wait; 2603 u64 abs_cost, cost, vtime; 2604 bool use_debt, ioc_locked; 2605 unsigned long flags; 2606 2607 /* bypass IOs if disabled, still initializing, or for root cgroup */ 2608 if (!ioc->enabled || !iocg || !iocg->level) 2609 return; 2610 2611 /* calculate the absolute vtime cost */ 2612 abs_cost = calc_vtime_cost(bio, iocg, false); 2613 if (!abs_cost) 2614 return; 2615 2616 if (!iocg_activate(iocg, &now)) 2617 return; 2618 2619 iocg->cursor = bio_end_sector(bio); 2620 vtime = atomic64_read(&iocg->vtime); 2621 cost = adjust_inuse_and_calc_cost(iocg, vtime, abs_cost, &now); 2622 2623 /* 2624 * If no one's waiting and within budget, issue right away. The 2625 * tests are racy but the races aren't systemic - we only miss once 2626 * in a while which is fine. 2627 */ 2628 if (!waitqueue_active(&iocg->waitq) && !iocg->abs_vdebt && 2629 time_before_eq64(vtime + cost, now.vnow)) { 2630 iocg_commit_bio(iocg, bio, abs_cost, cost); 2631 return; 2632 } 2633 2634 /* 2635 * We're over budget. This can be handled in two ways. IOs which may 2636 * cause priority inversions are punted to @ioc->aux_iocg and charged as 2637 * debt. Otherwise, the issuer is blocked on @iocg->waitq. Debt handling 2638 * requires @ioc->lock, waitq handling @iocg->waitq.lock. Determine 2639 * whether debt handling is needed and acquire locks accordingly. 2640 */ 2641 use_debt = bio_issue_as_root_blkg(bio) || fatal_signal_pending(current); 2642 ioc_locked = use_debt || READ_ONCE(iocg->abs_vdebt); 2643 retry_lock: 2644 iocg_lock(iocg, ioc_locked, &flags); 2645 2646 /* 2647 * @iocg must stay activated for debt and waitq handling. Deactivation 2648 * is synchronized against both ioc->lock and waitq.lock and we won't 2649 * get deactivated as long as we're waiting or has debt, so we're good 2650 * if we're activated here. In the unlikely cases that we aren't, just 2651 * issue the IO. 2652 */ 2653 if (unlikely(list_empty(&iocg->active_list))) { 2654 iocg_unlock(iocg, ioc_locked, &flags); 2655 iocg_commit_bio(iocg, bio, abs_cost, cost); 2656 return; 2657 } 2658 2659 /* 2660 * We're over budget. If @bio has to be issued regardless, remember 2661 * the abs_cost instead of advancing vtime. iocg_kick_waitq() will pay 2662 * off the debt before waking more IOs. 2663 * 2664 * This way, the debt is continuously paid off each period with the 2665 * actual budget available to the cgroup. If we just wound vtime, we 2666 * would incorrectly use the current hw_inuse for the entire amount 2667 * which, for example, can lead to the cgroup staying blocked for a 2668 * long time even with substantially raised hw_inuse. 2669 * 2670 * An iocg with vdebt should stay online so that the timer can keep 2671 * deducting its vdebt and [de]activate use_delay mechanism 2672 * accordingly. We don't want to race against the timer trying to 2673 * clear them and leave @iocg inactive w/ dangling use_delay heavily 2674 * penalizing the cgroup and its descendants. 2675 */ 2676 if (use_debt) { 2677 iocg_incur_debt(iocg, abs_cost, &now); 2678 if (iocg_kick_delay(iocg, &now)) 2679 blkcg_schedule_throttle(rqos->disk, 2680 (bio->bi_opf & REQ_SWAP) == REQ_SWAP); 2681 iocg_unlock(iocg, ioc_locked, &flags); 2682 return; 2683 } 2684 2685 /* guarantee that iocgs w/ waiters have maximum inuse */ 2686 if (!iocg->abs_vdebt && iocg->inuse != iocg->active) { 2687 if (!ioc_locked) { 2688 iocg_unlock(iocg, false, &flags); 2689 ioc_locked = true; 2690 goto retry_lock; 2691 } 2692 propagate_weights(iocg, iocg->active, iocg->active, true, 2693 &now); 2694 } 2695 2696 /* 2697 * Append self to the waitq and schedule the wakeup timer if we're 2698 * the first waiter. The timer duration is calculated based on the 2699 * current vrate. vtime and hweight changes can make it too short 2700 * or too long. Each wait entry records the absolute cost it's 2701 * waiting for to allow re-evaluation using a custom wait entry. 2702 * 2703 * If too short, the timer simply reschedules itself. If too long, 2704 * the period timer will notice and trigger wakeups. 2705 * 2706 * All waiters are on iocg->waitq and the wait states are 2707 * synchronized using waitq.lock. 2708 */ 2709 init_waitqueue_func_entry(&wait.wait, iocg_wake_fn); 2710 wait.wait.private = current; 2711 wait.bio = bio; 2712 wait.abs_cost = abs_cost; 2713 wait.committed = false; /* will be set true by waker */ 2714 2715 __add_wait_queue_entry_tail(&iocg->waitq, &wait.wait); 2716 iocg_kick_waitq(iocg, ioc_locked, &now); 2717 2718 iocg_unlock(iocg, ioc_locked, &flags); 2719 2720 while (true) { 2721 set_current_state(TASK_UNINTERRUPTIBLE); 2722 if (wait.committed) 2723 break; 2724 io_schedule(); 2725 } 2726 2727 /* waker already committed us, proceed */ 2728 finish_wait(&iocg->waitq, &wait.wait); 2729 } 2730 2731 static void ioc_rqos_merge(struct rq_qos *rqos, struct request *rq, 2732 struct bio *bio) 2733 { 2734 struct ioc_gq *iocg = blkg_to_iocg(bio->bi_blkg); 2735 struct ioc *ioc = rqos_to_ioc(rqos); 2736 sector_t bio_end = bio_end_sector(bio); 2737 struct ioc_now now; 2738 u64 vtime, abs_cost, cost; 2739 unsigned long flags; 2740 2741 /* bypass if disabled, still initializing, or for root cgroup */ 2742 if (!ioc->enabled || !iocg || !iocg->level) 2743 return; 2744 2745 abs_cost = calc_vtime_cost(bio, iocg, true); 2746 if (!abs_cost) 2747 return; 2748 2749 ioc_now(ioc, &now); 2750 2751 vtime = atomic64_read(&iocg->vtime); 2752 cost = adjust_inuse_and_calc_cost(iocg, vtime, abs_cost, &now); 2753 2754 /* update cursor if backmerging into the request at the cursor */ 2755 if (blk_rq_pos(rq) < bio_end && 2756 blk_rq_pos(rq) + blk_rq_sectors(rq) == iocg->cursor) 2757 iocg->cursor = bio_end; 2758 2759 /* 2760 * Charge if there's enough vtime budget and the existing request has 2761 * cost assigned. 2762 */ 2763 if (rq->bio && rq->bio->bi_iocost_cost && 2764 time_before_eq64(atomic64_read(&iocg->vtime) + cost, now.vnow)) { 2765 iocg_commit_bio(iocg, bio, abs_cost, cost); 2766 return; 2767 } 2768 2769 /* 2770 * Otherwise, account it as debt if @iocg is online, which it should 2771 * be for the vast majority of cases. See debt handling in 2772 * ioc_rqos_throttle() for details. 2773 */ 2774 spin_lock_irqsave(&ioc->lock, flags); 2775 spin_lock(&iocg->waitq.lock); 2776 2777 if (likely(!list_empty(&iocg->active_list))) { 2778 iocg_incur_debt(iocg, abs_cost, &now); 2779 if (iocg_kick_delay(iocg, &now)) 2780 blkcg_schedule_throttle(rqos->disk, 2781 (bio->bi_opf & REQ_SWAP) == REQ_SWAP); 2782 } else { 2783 iocg_commit_bio(iocg, bio, abs_cost, cost); 2784 } 2785 2786 spin_unlock(&iocg->waitq.lock); 2787 spin_unlock_irqrestore(&ioc->lock, flags); 2788 } 2789 2790 static void ioc_rqos_done_bio(struct rq_qos *rqos, struct bio *bio) 2791 { 2792 struct ioc_gq *iocg = blkg_to_iocg(bio->bi_blkg); 2793 2794 if (iocg && bio->bi_iocost_cost) 2795 atomic64_add(bio->bi_iocost_cost, &iocg->done_vtime); 2796 } 2797 2798 static void ioc_rqos_done(struct rq_qos *rqos, struct request *rq) 2799 { 2800 struct ioc *ioc = rqos_to_ioc(rqos); 2801 struct ioc_pcpu_stat *ccs; 2802 u64 on_q_ns, rq_wait_ns, size_nsec; 2803 int pidx, rw; 2804 2805 if (!ioc->enabled || !rq->alloc_time_ns || !rq->start_time_ns) 2806 return; 2807 2808 switch (req_op(rq)) { 2809 case REQ_OP_READ: 2810 pidx = QOS_RLAT; 2811 rw = READ; 2812 break; 2813 case REQ_OP_WRITE: 2814 pidx = QOS_WLAT; 2815 rw = WRITE; 2816 break; 2817 default: 2818 return; 2819 } 2820 2821 on_q_ns = blk_time_get_ns() - rq->alloc_time_ns; 2822 rq_wait_ns = rq->start_time_ns - rq->alloc_time_ns; 2823 size_nsec = div64_u64(calc_size_vtime_cost(rq, ioc), VTIME_PER_NSEC); 2824 2825 ccs = get_cpu_ptr(ioc->pcpu_stat); 2826 2827 if (on_q_ns <= size_nsec || 2828 on_q_ns - size_nsec <= ioc->params.qos[pidx] * NSEC_PER_USEC) 2829 local_inc(&ccs->missed[rw].nr_met); 2830 else 2831 local_inc(&ccs->missed[rw].nr_missed); 2832 2833 local64_add(rq_wait_ns, &ccs->rq_wait_ns); 2834 2835 put_cpu_ptr(ccs); 2836 } 2837 2838 static void ioc_rqos_queue_depth_changed(struct rq_qos *rqos) 2839 { 2840 struct ioc *ioc = rqos_to_ioc(rqos); 2841 2842 spin_lock_irq(&ioc->lock); 2843 ioc_refresh_params(ioc, false); 2844 spin_unlock_irq(&ioc->lock); 2845 } 2846 2847 static void ioc_rqos_exit(struct rq_qos *rqos) 2848 { 2849 struct ioc *ioc = rqos_to_ioc(rqos); 2850 2851 blkcg_deactivate_policy(rqos->disk, &blkcg_policy_iocost); 2852 2853 spin_lock_irq(&ioc->lock); 2854 ioc->running = IOC_STOP; 2855 spin_unlock_irq(&ioc->lock); 2856 2857 timer_shutdown_sync(&ioc->timer); 2858 free_percpu(ioc->pcpu_stat); 2859 kfree(ioc); 2860 } 2861 2862 static const struct rq_qos_ops ioc_rqos_ops = { 2863 .throttle = ioc_rqos_throttle, 2864 .merge = ioc_rqos_merge, 2865 .done_bio = ioc_rqos_done_bio, 2866 .done = ioc_rqos_done, 2867 .queue_depth_changed = ioc_rqos_queue_depth_changed, 2868 .exit = ioc_rqos_exit, 2869 }; 2870 2871 static int blk_iocost_init(struct gendisk *disk) 2872 { 2873 struct ioc *ioc; 2874 int i, cpu, ret; 2875 2876 ioc = kzalloc(sizeof(*ioc), GFP_KERNEL); 2877 if (!ioc) 2878 return -ENOMEM; 2879 2880 ioc->pcpu_stat = alloc_percpu(struct ioc_pcpu_stat); 2881 if (!ioc->pcpu_stat) { 2882 kfree(ioc); 2883 return -ENOMEM; 2884 } 2885 2886 for_each_possible_cpu(cpu) { 2887 struct ioc_pcpu_stat *ccs = per_cpu_ptr(ioc->pcpu_stat, cpu); 2888 2889 for (i = 0; i < ARRAY_SIZE(ccs->missed); i++) { 2890 local_set(&ccs->missed[i].nr_met, 0); 2891 local_set(&ccs->missed[i].nr_missed, 0); 2892 } 2893 local64_set(&ccs->rq_wait_ns, 0); 2894 } 2895 2896 spin_lock_init(&ioc->lock); 2897 timer_setup(&ioc->timer, ioc_timer_fn, 0); 2898 INIT_LIST_HEAD(&ioc->active_iocgs); 2899 2900 ioc->running = IOC_IDLE; 2901 ioc->vtime_base_rate = VTIME_PER_USEC; 2902 atomic64_set(&ioc->vtime_rate, VTIME_PER_USEC); 2903 seqcount_spinlock_init(&ioc->period_seqcount, &ioc->lock); 2904 ioc->period_at = ktime_to_us(blk_time_get()); 2905 atomic64_set(&ioc->cur_period, 0); 2906 atomic_set(&ioc->hweight_gen, 0); 2907 2908 spin_lock_irq(&ioc->lock); 2909 ioc->autop_idx = AUTOP_INVALID; 2910 ioc_refresh_params_disk(ioc, true, disk); 2911 spin_unlock_irq(&ioc->lock); 2912 2913 /* 2914 * rqos must be added before activation to allow ioc_pd_init() to 2915 * lookup the ioc from q. This means that the rqos methods may get 2916 * called before policy activation completion, can't assume that the 2917 * target bio has an iocg associated and need to test for NULL iocg. 2918 */ 2919 ret = rq_qos_add(&ioc->rqos, disk, RQ_QOS_COST, &ioc_rqos_ops); 2920 if (ret) 2921 goto err_free_ioc; 2922 2923 ret = blkcg_activate_policy(disk, &blkcg_policy_iocost); 2924 if (ret) 2925 goto err_del_qos; 2926 return 0; 2927 2928 err_del_qos: 2929 rq_qos_del(&ioc->rqos); 2930 err_free_ioc: 2931 free_percpu(ioc->pcpu_stat); 2932 kfree(ioc); 2933 return ret; 2934 } 2935 2936 static struct blkcg_policy_data *ioc_cpd_alloc(gfp_t gfp) 2937 { 2938 struct ioc_cgrp *iocc; 2939 2940 iocc = kzalloc(sizeof(struct ioc_cgrp), gfp); 2941 if (!iocc) 2942 return NULL; 2943 2944 iocc->dfl_weight = CGROUP_WEIGHT_DFL * WEIGHT_ONE; 2945 return &iocc->cpd; 2946 } 2947 2948 static void ioc_cpd_free(struct blkcg_policy_data *cpd) 2949 { 2950 kfree(container_of(cpd, struct ioc_cgrp, cpd)); 2951 } 2952 2953 static struct blkg_policy_data *ioc_pd_alloc(struct gendisk *disk, 2954 struct blkcg *blkcg, gfp_t gfp) 2955 { 2956 int levels = blkcg->css.cgroup->level + 1; 2957 struct ioc_gq *iocg; 2958 2959 iocg = kzalloc_node(struct_size(iocg, ancestors, levels), gfp, 2960 disk->node_id); 2961 if (!iocg) 2962 return NULL; 2963 2964 iocg->pcpu_stat = alloc_percpu_gfp(struct iocg_pcpu_stat, gfp); 2965 if (!iocg->pcpu_stat) { 2966 kfree(iocg); 2967 return NULL; 2968 } 2969 2970 return &iocg->pd; 2971 } 2972 2973 static void ioc_pd_init(struct blkg_policy_data *pd) 2974 { 2975 struct ioc_gq *iocg = pd_to_iocg(pd); 2976 struct blkcg_gq *blkg = pd_to_blkg(&iocg->pd); 2977 struct ioc *ioc = q_to_ioc(blkg->q); 2978 struct ioc_now now; 2979 struct blkcg_gq *tblkg; 2980 unsigned long flags; 2981 2982 ioc_now(ioc, &now); 2983 2984 iocg->ioc = ioc; 2985 atomic64_set(&iocg->vtime, now.vnow); 2986 atomic64_set(&iocg->done_vtime, now.vnow); 2987 atomic64_set(&iocg->active_period, atomic64_read(&ioc->cur_period)); 2988 INIT_LIST_HEAD(&iocg->active_list); 2989 INIT_LIST_HEAD(&iocg->walk_list); 2990 INIT_LIST_HEAD(&iocg->surplus_list); 2991 iocg->hweight_active = WEIGHT_ONE; 2992 iocg->hweight_inuse = WEIGHT_ONE; 2993 2994 init_waitqueue_head(&iocg->waitq); 2995 hrtimer_init(&iocg->waitq_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS); 2996 iocg->waitq_timer.function = iocg_waitq_timer_fn; 2997 2998 iocg->level = blkg->blkcg->css.cgroup->level; 2999 3000 for (tblkg = blkg; tblkg; tblkg = tblkg->parent) { 3001 struct ioc_gq *tiocg = blkg_to_iocg(tblkg); 3002 iocg->ancestors[tiocg->level] = tiocg; 3003 } 3004 3005 spin_lock_irqsave(&ioc->lock, flags); 3006 weight_updated(iocg, &now); 3007 spin_unlock_irqrestore(&ioc->lock, flags); 3008 } 3009 3010 static void ioc_pd_free(struct blkg_policy_data *pd) 3011 { 3012 struct ioc_gq *iocg = pd_to_iocg(pd); 3013 struct ioc *ioc = iocg->ioc; 3014 unsigned long flags; 3015 3016 if (ioc) { 3017 spin_lock_irqsave(&ioc->lock, flags); 3018 3019 if (!list_empty(&iocg->active_list)) { 3020 struct ioc_now now; 3021 3022 ioc_now(ioc, &now); 3023 propagate_weights(iocg, 0, 0, false, &now); 3024 list_del_init(&iocg->active_list); 3025 } 3026 3027 WARN_ON_ONCE(!list_empty(&iocg->walk_list)); 3028 WARN_ON_ONCE(!list_empty(&iocg->surplus_list)); 3029 3030 spin_unlock_irqrestore(&ioc->lock, flags); 3031 3032 hrtimer_cancel(&iocg->waitq_timer); 3033 } 3034 free_percpu(iocg->pcpu_stat); 3035 kfree(iocg); 3036 } 3037 3038 static void ioc_pd_stat(struct blkg_policy_data *pd, struct seq_file *s) 3039 { 3040 struct ioc_gq *iocg = pd_to_iocg(pd); 3041 struct ioc *ioc = iocg->ioc; 3042 3043 if (!ioc->enabled) 3044 return; 3045 3046 if (iocg->level == 0) { 3047 unsigned vp10k = DIV64_U64_ROUND_CLOSEST( 3048 ioc->vtime_base_rate * 10000, 3049 VTIME_PER_USEC); 3050 seq_printf(s, " cost.vrate=%u.%02u", vp10k / 100, vp10k % 100); 3051 } 3052 3053 seq_printf(s, " cost.usage=%llu", iocg->last_stat.usage_us); 3054 3055 if (blkcg_debug_stats) 3056 seq_printf(s, " cost.wait=%llu cost.indebt=%llu cost.indelay=%llu", 3057 iocg->last_stat.wait_us, 3058 iocg->last_stat.indebt_us, 3059 iocg->last_stat.indelay_us); 3060 } 3061 3062 static u64 ioc_weight_prfill(struct seq_file *sf, struct blkg_policy_data *pd, 3063 int off) 3064 { 3065 const char *dname = blkg_dev_name(pd->blkg); 3066 struct ioc_gq *iocg = pd_to_iocg(pd); 3067 3068 if (dname && iocg->cfg_weight) 3069 seq_printf(sf, "%s %u\n", dname, iocg->cfg_weight / WEIGHT_ONE); 3070 return 0; 3071 } 3072 3073 3074 static int ioc_weight_show(struct seq_file *sf, void *v) 3075 { 3076 struct blkcg *blkcg = css_to_blkcg(seq_css(sf)); 3077 struct ioc_cgrp *iocc = blkcg_to_iocc(blkcg); 3078 3079 seq_printf(sf, "default %u\n", iocc->dfl_weight / WEIGHT_ONE); 3080 blkcg_print_blkgs(sf, blkcg, ioc_weight_prfill, 3081 &blkcg_policy_iocost, seq_cft(sf)->private, false); 3082 return 0; 3083 } 3084 3085 static ssize_t ioc_weight_write(struct kernfs_open_file *of, char *buf, 3086 size_t nbytes, loff_t off) 3087 { 3088 struct blkcg *blkcg = css_to_blkcg(of_css(of)); 3089 struct ioc_cgrp *iocc = blkcg_to_iocc(blkcg); 3090 struct blkg_conf_ctx ctx; 3091 struct ioc_now now; 3092 struct ioc_gq *iocg; 3093 u32 v; 3094 int ret; 3095 3096 if (!strchr(buf, ':')) { 3097 struct blkcg_gq *blkg; 3098 3099 if (!sscanf(buf, "default %u", &v) && !sscanf(buf, "%u", &v)) 3100 return -EINVAL; 3101 3102 if (v < CGROUP_WEIGHT_MIN || v > CGROUP_WEIGHT_MAX) 3103 return -EINVAL; 3104 3105 spin_lock_irq(&blkcg->lock); 3106 iocc->dfl_weight = v * WEIGHT_ONE; 3107 hlist_for_each_entry(blkg, &blkcg->blkg_list, blkcg_node) { 3108 struct ioc_gq *iocg = blkg_to_iocg(blkg); 3109 3110 if (iocg) { 3111 spin_lock(&iocg->ioc->lock); 3112 ioc_now(iocg->ioc, &now); 3113 weight_updated(iocg, &now); 3114 spin_unlock(&iocg->ioc->lock); 3115 } 3116 } 3117 spin_unlock_irq(&blkcg->lock); 3118 3119 return nbytes; 3120 } 3121 3122 blkg_conf_init(&ctx, buf); 3123 3124 ret = blkg_conf_prep(blkcg, &blkcg_policy_iocost, &ctx); 3125 if (ret) 3126 goto err; 3127 3128 iocg = blkg_to_iocg(ctx.blkg); 3129 3130 if (!strncmp(ctx.body, "default", 7)) { 3131 v = 0; 3132 } else { 3133 if (!sscanf(ctx.body, "%u", &v)) 3134 goto einval; 3135 if (v < CGROUP_WEIGHT_MIN || v > CGROUP_WEIGHT_MAX) 3136 goto einval; 3137 } 3138 3139 spin_lock(&iocg->ioc->lock); 3140 iocg->cfg_weight = v * WEIGHT_ONE; 3141 ioc_now(iocg->ioc, &now); 3142 weight_updated(iocg, &now); 3143 spin_unlock(&iocg->ioc->lock); 3144 3145 blkg_conf_exit(&ctx); 3146 return nbytes; 3147 3148 einval: 3149 ret = -EINVAL; 3150 err: 3151 blkg_conf_exit(&ctx); 3152 return ret; 3153 } 3154 3155 static u64 ioc_qos_prfill(struct seq_file *sf, struct blkg_policy_data *pd, 3156 int off) 3157 { 3158 const char *dname = blkg_dev_name(pd->blkg); 3159 struct ioc *ioc = pd_to_iocg(pd)->ioc; 3160 3161 if (!dname) 3162 return 0; 3163 3164 spin_lock_irq(&ioc->lock); 3165 seq_printf(sf, "%s enable=%d ctrl=%s rpct=%u.%02u rlat=%u wpct=%u.%02u wlat=%u min=%u.%02u max=%u.%02u\n", 3166 dname, ioc->enabled, ioc->user_qos_params ? "user" : "auto", 3167 ioc->params.qos[QOS_RPPM] / 10000, 3168 ioc->params.qos[QOS_RPPM] % 10000 / 100, 3169 ioc->params.qos[QOS_RLAT], 3170 ioc->params.qos[QOS_WPPM] / 10000, 3171 ioc->params.qos[QOS_WPPM] % 10000 / 100, 3172 ioc->params.qos[QOS_WLAT], 3173 ioc->params.qos[QOS_MIN] / 10000, 3174 ioc->params.qos[QOS_MIN] % 10000 / 100, 3175 ioc->params.qos[QOS_MAX] / 10000, 3176 ioc->params.qos[QOS_MAX] % 10000 / 100); 3177 spin_unlock_irq(&ioc->lock); 3178 return 0; 3179 } 3180 3181 static int ioc_qos_show(struct seq_file *sf, void *v) 3182 { 3183 struct blkcg *blkcg = css_to_blkcg(seq_css(sf)); 3184 3185 blkcg_print_blkgs(sf, blkcg, ioc_qos_prfill, 3186 &blkcg_policy_iocost, seq_cft(sf)->private, false); 3187 return 0; 3188 } 3189 3190 static const match_table_t qos_ctrl_tokens = { 3191 { QOS_ENABLE, "enable=%u" }, 3192 { QOS_CTRL, "ctrl=%s" }, 3193 { NR_QOS_CTRL_PARAMS, NULL }, 3194 }; 3195 3196 static const match_table_t qos_tokens = { 3197 { QOS_RPPM, "rpct=%s" }, 3198 { QOS_RLAT, "rlat=%u" }, 3199 { QOS_WPPM, "wpct=%s" }, 3200 { QOS_WLAT, "wlat=%u" }, 3201 { QOS_MIN, "min=%s" }, 3202 { QOS_MAX, "max=%s" }, 3203 { NR_QOS_PARAMS, NULL }, 3204 }; 3205 3206 static ssize_t ioc_qos_write(struct kernfs_open_file *of, char *input, 3207 size_t nbytes, loff_t off) 3208 { 3209 struct blkg_conf_ctx ctx; 3210 struct gendisk *disk; 3211 struct ioc *ioc; 3212 u32 qos[NR_QOS_PARAMS]; 3213 bool enable, user; 3214 char *body, *p; 3215 int ret; 3216 3217 blkg_conf_init(&ctx, input); 3218 3219 ret = blkg_conf_open_bdev(&ctx); 3220 if (ret) 3221 goto err; 3222 3223 body = ctx.body; 3224 disk = ctx.bdev->bd_disk; 3225 if (!queue_is_mq(disk->queue)) { 3226 ret = -EOPNOTSUPP; 3227 goto err; 3228 } 3229 3230 ioc = q_to_ioc(disk->queue); 3231 if (!ioc) { 3232 ret = blk_iocost_init(disk); 3233 if (ret) 3234 goto err; 3235 ioc = q_to_ioc(disk->queue); 3236 } 3237 3238 blk_mq_freeze_queue(disk->queue); 3239 blk_mq_quiesce_queue(disk->queue); 3240 3241 spin_lock_irq(&ioc->lock); 3242 memcpy(qos, ioc->params.qos, sizeof(qos)); 3243 enable = ioc->enabled; 3244 user = ioc->user_qos_params; 3245 3246 while ((p = strsep(&body, " \t\n"))) { 3247 substring_t args[MAX_OPT_ARGS]; 3248 char buf[32]; 3249 int tok; 3250 s64 v; 3251 3252 if (!*p) 3253 continue; 3254 3255 switch (match_token(p, qos_ctrl_tokens, args)) { 3256 case QOS_ENABLE: 3257 if (match_u64(&args[0], &v)) 3258 goto einval; 3259 enable = v; 3260 continue; 3261 case QOS_CTRL: 3262 match_strlcpy(buf, &args[0], sizeof(buf)); 3263 if (!strcmp(buf, "auto")) 3264 user = false; 3265 else if (!strcmp(buf, "user")) 3266 user = true; 3267 else 3268 goto einval; 3269 continue; 3270 } 3271 3272 tok = match_token(p, qos_tokens, args); 3273 switch (tok) { 3274 case QOS_RPPM: 3275 case QOS_WPPM: 3276 if (match_strlcpy(buf, &args[0], sizeof(buf)) >= 3277 sizeof(buf)) 3278 goto einval; 3279 if (cgroup_parse_float(buf, 2, &v)) 3280 goto einval; 3281 if (v < 0 || v > 10000) 3282 goto einval; 3283 qos[tok] = v * 100; 3284 break; 3285 case QOS_RLAT: 3286 case QOS_WLAT: 3287 if (match_u64(&args[0], &v)) 3288 goto einval; 3289 qos[tok] = v; 3290 break; 3291 case QOS_MIN: 3292 case QOS_MAX: 3293 if (match_strlcpy(buf, &args[0], sizeof(buf)) >= 3294 sizeof(buf)) 3295 goto einval; 3296 if (cgroup_parse_float(buf, 2, &v)) 3297 goto einval; 3298 if (v < 0) 3299 goto einval; 3300 qos[tok] = clamp_t(s64, v * 100, 3301 VRATE_MIN_PPM, VRATE_MAX_PPM); 3302 break; 3303 default: 3304 goto einval; 3305 } 3306 user = true; 3307 } 3308 3309 if (qos[QOS_MIN] > qos[QOS_MAX]) 3310 goto einval; 3311 3312 if (enable && !ioc->enabled) { 3313 blk_stat_enable_accounting(disk->queue); 3314 blk_queue_flag_set(QUEUE_FLAG_RQ_ALLOC_TIME, disk->queue); 3315 ioc->enabled = true; 3316 } else if (!enable && ioc->enabled) { 3317 blk_stat_disable_accounting(disk->queue); 3318 blk_queue_flag_clear(QUEUE_FLAG_RQ_ALLOC_TIME, disk->queue); 3319 ioc->enabled = false; 3320 } 3321 3322 if (user) { 3323 memcpy(ioc->params.qos, qos, sizeof(qos)); 3324 ioc->user_qos_params = true; 3325 } else { 3326 ioc->user_qos_params = false; 3327 } 3328 3329 ioc_refresh_params(ioc, true); 3330 spin_unlock_irq(&ioc->lock); 3331 3332 if (enable) 3333 wbt_disable_default(disk); 3334 else 3335 wbt_enable_default(disk); 3336 3337 blk_mq_unquiesce_queue(disk->queue); 3338 blk_mq_unfreeze_queue(disk->queue); 3339 3340 blkg_conf_exit(&ctx); 3341 return nbytes; 3342 einval: 3343 spin_unlock_irq(&ioc->lock); 3344 3345 blk_mq_unquiesce_queue(disk->queue); 3346 blk_mq_unfreeze_queue(disk->queue); 3347 3348 ret = -EINVAL; 3349 err: 3350 blkg_conf_exit(&ctx); 3351 return ret; 3352 } 3353 3354 static u64 ioc_cost_model_prfill(struct seq_file *sf, 3355 struct blkg_policy_data *pd, int off) 3356 { 3357 const char *dname = blkg_dev_name(pd->blkg); 3358 struct ioc *ioc = pd_to_iocg(pd)->ioc; 3359 u64 *u = ioc->params.i_lcoefs; 3360 3361 if (!dname) 3362 return 0; 3363 3364 spin_lock_irq(&ioc->lock); 3365 seq_printf(sf, "%s ctrl=%s model=linear " 3366 "rbps=%llu rseqiops=%llu rrandiops=%llu " 3367 "wbps=%llu wseqiops=%llu wrandiops=%llu\n", 3368 dname, ioc->user_cost_model ? "user" : "auto", 3369 u[I_LCOEF_RBPS], u[I_LCOEF_RSEQIOPS], u[I_LCOEF_RRANDIOPS], 3370 u[I_LCOEF_WBPS], u[I_LCOEF_WSEQIOPS], u[I_LCOEF_WRANDIOPS]); 3371 spin_unlock_irq(&ioc->lock); 3372 return 0; 3373 } 3374 3375 static int ioc_cost_model_show(struct seq_file *sf, void *v) 3376 { 3377 struct blkcg *blkcg = css_to_blkcg(seq_css(sf)); 3378 3379 blkcg_print_blkgs(sf, blkcg, ioc_cost_model_prfill, 3380 &blkcg_policy_iocost, seq_cft(sf)->private, false); 3381 return 0; 3382 } 3383 3384 static const match_table_t cost_ctrl_tokens = { 3385 { COST_CTRL, "ctrl=%s" }, 3386 { COST_MODEL, "model=%s" }, 3387 { NR_COST_CTRL_PARAMS, NULL }, 3388 }; 3389 3390 static const match_table_t i_lcoef_tokens = { 3391 { I_LCOEF_RBPS, "rbps=%u" }, 3392 { I_LCOEF_RSEQIOPS, "rseqiops=%u" }, 3393 { I_LCOEF_RRANDIOPS, "rrandiops=%u" }, 3394 { I_LCOEF_WBPS, "wbps=%u" }, 3395 { I_LCOEF_WSEQIOPS, "wseqiops=%u" }, 3396 { I_LCOEF_WRANDIOPS, "wrandiops=%u" }, 3397 { NR_I_LCOEFS, NULL }, 3398 }; 3399 3400 static ssize_t ioc_cost_model_write(struct kernfs_open_file *of, char *input, 3401 size_t nbytes, loff_t off) 3402 { 3403 struct blkg_conf_ctx ctx; 3404 struct request_queue *q; 3405 struct ioc *ioc; 3406 u64 u[NR_I_LCOEFS]; 3407 bool user; 3408 char *body, *p; 3409 int ret; 3410 3411 blkg_conf_init(&ctx, input); 3412 3413 ret = blkg_conf_open_bdev(&ctx); 3414 if (ret) 3415 goto err; 3416 3417 body = ctx.body; 3418 q = bdev_get_queue(ctx.bdev); 3419 if (!queue_is_mq(q)) { 3420 ret = -EOPNOTSUPP; 3421 goto err; 3422 } 3423 3424 ioc = q_to_ioc(q); 3425 if (!ioc) { 3426 ret = blk_iocost_init(ctx.bdev->bd_disk); 3427 if (ret) 3428 goto err; 3429 ioc = q_to_ioc(q); 3430 } 3431 3432 blk_mq_freeze_queue(q); 3433 blk_mq_quiesce_queue(q); 3434 3435 spin_lock_irq(&ioc->lock); 3436 memcpy(u, ioc->params.i_lcoefs, sizeof(u)); 3437 user = ioc->user_cost_model; 3438 3439 while ((p = strsep(&body, " \t\n"))) { 3440 substring_t args[MAX_OPT_ARGS]; 3441 char buf[32]; 3442 int tok; 3443 u64 v; 3444 3445 if (!*p) 3446 continue; 3447 3448 switch (match_token(p, cost_ctrl_tokens, args)) { 3449 case COST_CTRL: 3450 match_strlcpy(buf, &args[0], sizeof(buf)); 3451 if (!strcmp(buf, "auto")) 3452 user = false; 3453 else if (!strcmp(buf, "user")) 3454 user = true; 3455 else 3456 goto einval; 3457 continue; 3458 case COST_MODEL: 3459 match_strlcpy(buf, &args[0], sizeof(buf)); 3460 if (strcmp(buf, "linear")) 3461 goto einval; 3462 continue; 3463 } 3464 3465 tok = match_token(p, i_lcoef_tokens, args); 3466 if (tok == NR_I_LCOEFS) 3467 goto einval; 3468 if (match_u64(&args[0], &v)) 3469 goto einval; 3470 u[tok] = v; 3471 user = true; 3472 } 3473 3474 if (user) { 3475 memcpy(ioc->params.i_lcoefs, u, sizeof(u)); 3476 ioc->user_cost_model = true; 3477 } else { 3478 ioc->user_cost_model = false; 3479 } 3480 ioc_refresh_params(ioc, true); 3481 spin_unlock_irq(&ioc->lock); 3482 3483 blk_mq_unquiesce_queue(q); 3484 blk_mq_unfreeze_queue(q); 3485 3486 blkg_conf_exit(&ctx); 3487 return nbytes; 3488 3489 einval: 3490 spin_unlock_irq(&ioc->lock); 3491 3492 blk_mq_unquiesce_queue(q); 3493 blk_mq_unfreeze_queue(q); 3494 3495 ret = -EINVAL; 3496 err: 3497 blkg_conf_exit(&ctx); 3498 return ret; 3499 } 3500 3501 static struct cftype ioc_files[] = { 3502 { 3503 .name = "weight", 3504 .flags = CFTYPE_NOT_ON_ROOT, 3505 .seq_show = ioc_weight_show, 3506 .write = ioc_weight_write, 3507 }, 3508 { 3509 .name = "cost.qos", 3510 .flags = CFTYPE_ONLY_ON_ROOT, 3511 .seq_show = ioc_qos_show, 3512 .write = ioc_qos_write, 3513 }, 3514 { 3515 .name = "cost.model", 3516 .flags = CFTYPE_ONLY_ON_ROOT, 3517 .seq_show = ioc_cost_model_show, 3518 .write = ioc_cost_model_write, 3519 }, 3520 {} 3521 }; 3522 3523 static struct blkcg_policy blkcg_policy_iocost = { 3524 .dfl_cftypes = ioc_files, 3525 .cpd_alloc_fn = ioc_cpd_alloc, 3526 .cpd_free_fn = ioc_cpd_free, 3527 .pd_alloc_fn = ioc_pd_alloc, 3528 .pd_init_fn = ioc_pd_init, 3529 .pd_free_fn = ioc_pd_free, 3530 .pd_stat_fn = ioc_pd_stat, 3531 }; 3532 3533 static int __init ioc_init(void) 3534 { 3535 return blkcg_policy_register(&blkcg_policy_iocost); 3536 } 3537 3538 static void __exit ioc_exit(void) 3539 { 3540 blkcg_policy_unregister(&blkcg_policy_iocost); 3541 } 3542 3543 module_init(ioc_init); 3544 module_exit(ioc_exit); 3545