xref: /linux/block/blk-iocost.c (revision 9facce84f4062f782ebde18daa7006a23d40b607)
1 /* SPDX-License-Identifier: GPL-2.0
2  *
3  * IO cost model based controller.
4  *
5  * Copyright (C) 2019 Tejun Heo <tj@kernel.org>
6  * Copyright (C) 2019 Andy Newell <newella@fb.com>
7  * Copyright (C) 2019 Facebook
8  *
9  * One challenge of controlling IO resources is the lack of trivially
10  * observable cost metric.  This is distinguished from CPU and memory where
11  * wallclock time and the number of bytes can serve as accurate enough
12  * approximations.
13  *
14  * Bandwidth and iops are the most commonly used metrics for IO devices but
15  * depending on the type and specifics of the device, different IO patterns
16  * easily lead to multiple orders of magnitude variations rendering them
17  * useless for the purpose of IO capacity distribution.  While on-device
18  * time, with a lot of clutches, could serve as a useful approximation for
19  * non-queued rotational devices, this is no longer viable with modern
20  * devices, even the rotational ones.
21  *
22  * While there is no cost metric we can trivially observe, it isn't a
23  * complete mystery.  For example, on a rotational device, seek cost
24  * dominates while a contiguous transfer contributes a smaller amount
25  * proportional to the size.  If we can characterize at least the relative
26  * costs of these different types of IOs, it should be possible to
27  * implement a reasonable work-conserving proportional IO resource
28  * distribution.
29  *
30  * 1. IO Cost Model
31  *
32  * IO cost model estimates the cost of an IO given its basic parameters and
33  * history (e.g. the end sector of the last IO).  The cost is measured in
34  * device time.  If a given IO is estimated to cost 10ms, the device should
35  * be able to process ~100 of those IOs in a second.
36  *
37  * Currently, there's only one builtin cost model - linear.  Each IO is
38  * classified as sequential or random and given a base cost accordingly.
39  * On top of that, a size cost proportional to the length of the IO is
40  * added.  While simple, this model captures the operational
41  * characteristics of a wide varienty of devices well enough.  Default
42  * parameters for several different classes of devices are provided and the
43  * parameters can be configured from userspace via
44  * /sys/fs/cgroup/io.cost.model.
45  *
46  * If needed, tools/cgroup/iocost_coef_gen.py can be used to generate
47  * device-specific coefficients.
48  *
49  * 2. Control Strategy
50  *
51  * The device virtual time (vtime) is used as the primary control metric.
52  * The control strategy is composed of the following three parts.
53  *
54  * 2-1. Vtime Distribution
55  *
56  * When a cgroup becomes active in terms of IOs, its hierarchical share is
57  * calculated.  Please consider the following hierarchy where the numbers
58  * inside parentheses denote the configured weights.
59  *
60  *           root
61  *         /       \
62  *      A (w:100)  B (w:300)
63  *      /       \
64  *  A0 (w:100)  A1 (w:100)
65  *
66  * If B is idle and only A0 and A1 are actively issuing IOs, as the two are
67  * of equal weight, each gets 50% share.  If then B starts issuing IOs, B
68  * gets 300/(100+300) or 75% share, and A0 and A1 equally splits the rest,
69  * 12.5% each.  The distribution mechanism only cares about these flattened
70  * shares.  They're called hweights (hierarchical weights) and always add
71  * upto 1 (WEIGHT_ONE).
72  *
73  * A given cgroup's vtime runs slower in inverse proportion to its hweight.
74  * For example, with 12.5% weight, A0's time runs 8 times slower (100/12.5)
75  * against the device vtime - an IO which takes 10ms on the underlying
76  * device is considered to take 80ms on A0.
77  *
78  * This constitutes the basis of IO capacity distribution.  Each cgroup's
79  * vtime is running at a rate determined by its hweight.  A cgroup tracks
80  * the vtime consumed by past IOs and can issue a new IO if doing so
81  * wouldn't outrun the current device vtime.  Otherwise, the IO is
82  * suspended until the vtime has progressed enough to cover it.
83  *
84  * 2-2. Vrate Adjustment
85  *
86  * It's unrealistic to expect the cost model to be perfect.  There are too
87  * many devices and even on the same device the overall performance
88  * fluctuates depending on numerous factors such as IO mixture and device
89  * internal garbage collection.  The controller needs to adapt dynamically.
90  *
91  * This is achieved by adjusting the overall IO rate according to how busy
92  * the device is.  If the device becomes overloaded, we're sending down too
93  * many IOs and should generally slow down.  If there are waiting issuers
94  * but the device isn't saturated, we're issuing too few and should
95  * generally speed up.
96  *
97  * To slow down, we lower the vrate - the rate at which the device vtime
98  * passes compared to the wall clock.  For example, if the vtime is running
99  * at the vrate of 75%, all cgroups added up would only be able to issue
100  * 750ms worth of IOs per second, and vice-versa for speeding up.
101  *
102  * Device business is determined using two criteria - rq wait and
103  * completion latencies.
104  *
105  * When a device gets saturated, the on-device and then the request queues
106  * fill up and a bio which is ready to be issued has to wait for a request
107  * to become available.  When this delay becomes noticeable, it's a clear
108  * indication that the device is saturated and we lower the vrate.  This
109  * saturation signal is fairly conservative as it only triggers when both
110  * hardware and software queues are filled up, and is used as the default
111  * busy signal.
112  *
113  * As devices can have deep queues and be unfair in how the queued commands
114  * are executed, solely depending on rq wait may not result in satisfactory
115  * control quality.  For a better control quality, completion latency QoS
116  * parameters can be configured so that the device is considered saturated
117  * if N'th percentile completion latency rises above the set point.
118  *
119  * The completion latency requirements are a function of both the
120  * underlying device characteristics and the desired IO latency quality of
121  * service.  There is an inherent trade-off - the tighter the latency QoS,
122  * the higher the bandwidth lossage.  Latency QoS is disabled by default
123  * and can be set through /sys/fs/cgroup/io.cost.qos.
124  *
125  * 2-3. Work Conservation
126  *
127  * Imagine two cgroups A and B with equal weights.  A is issuing a small IO
128  * periodically while B is sending out enough parallel IOs to saturate the
129  * device on its own.  Let's say A's usage amounts to 100ms worth of IO
130  * cost per second, i.e., 10% of the device capacity.  The naive
131  * distribution of half and half would lead to 60% utilization of the
132  * device, a significant reduction in the total amount of work done
133  * compared to free-for-all competition.  This is too high a cost to pay
134  * for IO control.
135  *
136  * To conserve the total amount of work done, we keep track of how much
137  * each active cgroup is actually using and yield part of its weight if
138  * there are other cgroups which can make use of it.  In the above case,
139  * A's weight will be lowered so that it hovers above the actual usage and
140  * B would be able to use the rest.
141  *
142  * As we don't want to penalize a cgroup for donating its weight, the
143  * surplus weight adjustment factors in a margin and has an immediate
144  * snapback mechanism in case the cgroup needs more IO vtime for itself.
145  *
146  * Note that adjusting down surplus weights has the same effects as
147  * accelerating vtime for other cgroups and work conservation can also be
148  * implemented by adjusting vrate dynamically.  However, squaring who can
149  * donate and should take back how much requires hweight propagations
150  * anyway making it easier to implement and understand as a separate
151  * mechanism.
152  *
153  * 3. Monitoring
154  *
155  * Instead of debugfs or other clumsy monitoring mechanisms, this
156  * controller uses a drgn based monitoring script -
157  * tools/cgroup/iocost_monitor.py.  For details on drgn, please see
158  * https://github.com/osandov/drgn.  The output looks like the following.
159  *
160  *  sdb RUN   per=300ms cur_per=234.218:v203.695 busy= +1 vrate= 62.12%
161  *                 active      weight      hweight% inflt% dbt  delay usages%
162  *  test/a              *    50/   50  33.33/ 33.33  27.65   2  0*041 033:033:033
163  *  test/b              *   100/  100  66.67/ 66.67  17.56   0  0*000 066:079:077
164  *
165  * - per	: Timer period
166  * - cur_per	: Internal wall and device vtime clock
167  * - vrate	: Device virtual time rate against wall clock
168  * - weight	: Surplus-adjusted and configured weights
169  * - hweight	: Surplus-adjusted and configured hierarchical weights
170  * - inflt	: The percentage of in-flight IO cost at the end of last period
171  * - del_ms	: Deferred issuer delay induction level and duration
172  * - usages	: Usage history
173  */
174 
175 #include <linux/kernel.h>
176 #include <linux/module.h>
177 #include <linux/timer.h>
178 #include <linux/time64.h>
179 #include <linux/parser.h>
180 #include <linux/sched/signal.h>
181 #include <asm/local.h>
182 #include <asm/local64.h>
183 #include "blk-rq-qos.h"
184 #include "blk-stat.h"
185 #include "blk-wbt.h"
186 #include "blk-cgroup.h"
187 
188 #ifdef CONFIG_TRACEPOINTS
189 
190 /* copied from TRACE_CGROUP_PATH, see cgroup-internal.h */
191 #define TRACE_IOCG_PATH_LEN 1024
192 static DEFINE_SPINLOCK(trace_iocg_path_lock);
193 static char trace_iocg_path[TRACE_IOCG_PATH_LEN];
194 
195 #define TRACE_IOCG_PATH(type, iocg, ...)					\
196 	do {									\
197 		unsigned long flags;						\
198 		if (trace_iocost_##type##_enabled()) {				\
199 			spin_lock_irqsave(&trace_iocg_path_lock, flags);	\
200 			cgroup_path(iocg_to_blkg(iocg)->blkcg->css.cgroup,	\
201 				    trace_iocg_path, TRACE_IOCG_PATH_LEN);	\
202 			trace_iocost_##type(iocg, trace_iocg_path,		\
203 					      ##__VA_ARGS__);			\
204 			spin_unlock_irqrestore(&trace_iocg_path_lock, flags);	\
205 		}								\
206 	} while (0)
207 
208 #else	/* CONFIG_TRACE_POINTS */
209 #define TRACE_IOCG_PATH(type, iocg, ...)	do { } while (0)
210 #endif	/* CONFIG_TRACE_POINTS */
211 
212 enum {
213 	MILLION			= 1000000,
214 
215 	/* timer period is calculated from latency requirements, bound it */
216 	MIN_PERIOD		= USEC_PER_MSEC,
217 	MAX_PERIOD		= USEC_PER_SEC,
218 
219 	/*
220 	 * iocg->vtime is targeted at 50% behind the device vtime, which
221 	 * serves as its IO credit buffer.  Surplus weight adjustment is
222 	 * immediately canceled if the vtime margin runs below 10%.
223 	 */
224 	MARGIN_MIN_PCT		= 10,
225 	MARGIN_LOW_PCT		= 20,
226 	MARGIN_TARGET_PCT	= 50,
227 
228 	INUSE_ADJ_STEP_PCT	= 25,
229 
230 	/* Have some play in timer operations */
231 	TIMER_SLACK_PCT		= 1,
232 
233 	/* 1/64k is granular enough and can easily be handled w/ u32 */
234 	WEIGHT_ONE		= 1 << 16,
235 };
236 
237 enum {
238 	/*
239 	 * As vtime is used to calculate the cost of each IO, it needs to
240 	 * be fairly high precision.  For example, it should be able to
241 	 * represent the cost of a single page worth of discard with
242 	 * suffificient accuracy.  At the same time, it should be able to
243 	 * represent reasonably long enough durations to be useful and
244 	 * convenient during operation.
245 	 *
246 	 * 1s worth of vtime is 2^37.  This gives us both sub-nanosecond
247 	 * granularity and days of wrap-around time even at extreme vrates.
248 	 */
249 	VTIME_PER_SEC_SHIFT	= 37,
250 	VTIME_PER_SEC		= 1LLU << VTIME_PER_SEC_SHIFT,
251 	VTIME_PER_USEC		= VTIME_PER_SEC / USEC_PER_SEC,
252 	VTIME_PER_NSEC		= VTIME_PER_SEC / NSEC_PER_SEC,
253 
254 	/* bound vrate adjustments within two orders of magnitude */
255 	VRATE_MIN_PPM		= 10000,	/* 1% */
256 	VRATE_MAX_PPM		= 100000000,	/* 10000% */
257 
258 	VRATE_MIN		= VTIME_PER_USEC * VRATE_MIN_PPM / MILLION,
259 	VRATE_CLAMP_ADJ_PCT	= 4,
260 
261 	/* switch iff the conditions are met for longer than this */
262 	AUTOP_CYCLE_NSEC	= 10LLU * NSEC_PER_SEC,
263 };
264 
265 enum {
266 	/* if IOs end up waiting for requests, issue less */
267 	RQ_WAIT_BUSY_PCT	= 5,
268 
269 	/* unbusy hysterisis */
270 	UNBUSY_THR_PCT		= 75,
271 
272 	/*
273 	 * The effect of delay is indirect and non-linear and a huge amount of
274 	 * future debt can accumulate abruptly while unthrottled. Linearly scale
275 	 * up delay as debt is going up and then let it decay exponentially.
276 	 * This gives us quick ramp ups while delay is accumulating and long
277 	 * tails which can help reducing the frequency of debt explosions on
278 	 * unthrottle. The parameters are experimentally determined.
279 	 *
280 	 * The delay mechanism provides adequate protection and behavior in many
281 	 * cases. However, this is far from ideal and falls shorts on both
282 	 * fronts. The debtors are often throttled too harshly costing a
283 	 * significant level of fairness and possibly total work while the
284 	 * protection against their impacts on the system can be choppy and
285 	 * unreliable.
286 	 *
287 	 * The shortcoming primarily stems from the fact that, unlike for page
288 	 * cache, the kernel doesn't have well-defined back-pressure propagation
289 	 * mechanism and policies for anonymous memory. Fully addressing this
290 	 * issue will likely require substantial improvements in the area.
291 	 */
292 	MIN_DELAY_THR_PCT	= 500,
293 	MAX_DELAY_THR_PCT	= 25000,
294 	MIN_DELAY		= 250,
295 	MAX_DELAY		= 250 * USEC_PER_MSEC,
296 
297 	/* halve debts if avg usage over 100ms is under 50% */
298 	DFGV_USAGE_PCT		= 50,
299 	DFGV_PERIOD		= 100 * USEC_PER_MSEC,
300 
301 	/* don't let cmds which take a very long time pin lagging for too long */
302 	MAX_LAGGING_PERIODS	= 10,
303 
304 	/*
305 	 * Count IO size in 4k pages.  The 12bit shift helps keeping
306 	 * size-proportional components of cost calculation in closer
307 	 * numbers of digits to per-IO cost components.
308 	 */
309 	IOC_PAGE_SHIFT		= 12,
310 	IOC_PAGE_SIZE		= 1 << IOC_PAGE_SHIFT,
311 	IOC_SECT_TO_PAGE_SHIFT	= IOC_PAGE_SHIFT - SECTOR_SHIFT,
312 
313 	/* if apart further than 16M, consider randio for linear model */
314 	LCOEF_RANDIO_PAGES	= 4096,
315 };
316 
317 enum ioc_running {
318 	IOC_IDLE,
319 	IOC_RUNNING,
320 	IOC_STOP,
321 };
322 
323 /* io.cost.qos controls including per-dev enable of the whole controller */
324 enum {
325 	QOS_ENABLE,
326 	QOS_CTRL,
327 	NR_QOS_CTRL_PARAMS,
328 };
329 
330 /* io.cost.qos params */
331 enum {
332 	QOS_RPPM,
333 	QOS_RLAT,
334 	QOS_WPPM,
335 	QOS_WLAT,
336 	QOS_MIN,
337 	QOS_MAX,
338 	NR_QOS_PARAMS,
339 };
340 
341 /* io.cost.model controls */
342 enum {
343 	COST_CTRL,
344 	COST_MODEL,
345 	NR_COST_CTRL_PARAMS,
346 };
347 
348 /* builtin linear cost model coefficients */
349 enum {
350 	I_LCOEF_RBPS,
351 	I_LCOEF_RSEQIOPS,
352 	I_LCOEF_RRANDIOPS,
353 	I_LCOEF_WBPS,
354 	I_LCOEF_WSEQIOPS,
355 	I_LCOEF_WRANDIOPS,
356 	NR_I_LCOEFS,
357 };
358 
359 enum {
360 	LCOEF_RPAGE,
361 	LCOEF_RSEQIO,
362 	LCOEF_RRANDIO,
363 	LCOEF_WPAGE,
364 	LCOEF_WSEQIO,
365 	LCOEF_WRANDIO,
366 	NR_LCOEFS,
367 };
368 
369 enum {
370 	AUTOP_INVALID,
371 	AUTOP_HDD,
372 	AUTOP_SSD_QD1,
373 	AUTOP_SSD_DFL,
374 	AUTOP_SSD_FAST,
375 };
376 
377 struct ioc_params {
378 	u32				qos[NR_QOS_PARAMS];
379 	u64				i_lcoefs[NR_I_LCOEFS];
380 	u64				lcoefs[NR_LCOEFS];
381 	u32				too_fast_vrate_pct;
382 	u32				too_slow_vrate_pct;
383 };
384 
385 struct ioc_margins {
386 	s64				min;
387 	s64				low;
388 	s64				target;
389 };
390 
391 struct ioc_missed {
392 	local_t				nr_met;
393 	local_t				nr_missed;
394 	u32				last_met;
395 	u32				last_missed;
396 };
397 
398 struct ioc_pcpu_stat {
399 	struct ioc_missed		missed[2];
400 
401 	local64_t			rq_wait_ns;
402 	u64				last_rq_wait_ns;
403 };
404 
405 /* per device */
406 struct ioc {
407 	struct rq_qos			rqos;
408 
409 	bool				enabled;
410 
411 	struct ioc_params		params;
412 	struct ioc_margins		margins;
413 	u32				period_us;
414 	u32				timer_slack_ns;
415 	u64				vrate_min;
416 	u64				vrate_max;
417 
418 	spinlock_t			lock;
419 	struct timer_list		timer;
420 	struct list_head		active_iocgs;	/* active cgroups */
421 	struct ioc_pcpu_stat __percpu	*pcpu_stat;
422 
423 	enum ioc_running		running;
424 	atomic64_t			vtime_rate;
425 	u64				vtime_base_rate;
426 	s64				vtime_err;
427 
428 	seqcount_spinlock_t		period_seqcount;
429 	u64				period_at;	/* wallclock starttime */
430 	u64				period_at_vtime; /* vtime starttime */
431 
432 	atomic64_t			cur_period;	/* inc'd each period */
433 	int				busy_level;	/* saturation history */
434 
435 	bool				weights_updated;
436 	atomic_t			hweight_gen;	/* for lazy hweights */
437 
438 	/* debt forgivness */
439 	u64				dfgv_period_at;
440 	u64				dfgv_period_rem;
441 	u64				dfgv_usage_us_sum;
442 
443 	u64				autop_too_fast_at;
444 	u64				autop_too_slow_at;
445 	int				autop_idx;
446 	bool				user_qos_params:1;
447 	bool				user_cost_model:1;
448 };
449 
450 struct iocg_pcpu_stat {
451 	local64_t			abs_vusage;
452 };
453 
454 struct iocg_stat {
455 	u64				usage_us;
456 	u64				wait_us;
457 	u64				indebt_us;
458 	u64				indelay_us;
459 };
460 
461 /* per device-cgroup pair */
462 struct ioc_gq {
463 	struct blkg_policy_data		pd;
464 	struct ioc			*ioc;
465 
466 	/*
467 	 * A iocg can get its weight from two sources - an explicit
468 	 * per-device-cgroup configuration or the default weight of the
469 	 * cgroup.  `cfg_weight` is the explicit per-device-cgroup
470 	 * configuration.  `weight` is the effective considering both
471 	 * sources.
472 	 *
473 	 * When an idle cgroup becomes active its `active` goes from 0 to
474 	 * `weight`.  `inuse` is the surplus adjusted active weight.
475 	 * `active` and `inuse` are used to calculate `hweight_active` and
476 	 * `hweight_inuse`.
477 	 *
478 	 * `last_inuse` remembers `inuse` while an iocg is idle to persist
479 	 * surplus adjustments.
480 	 *
481 	 * `inuse` may be adjusted dynamically during period. `saved_*` are used
482 	 * to determine and track adjustments.
483 	 */
484 	u32				cfg_weight;
485 	u32				weight;
486 	u32				active;
487 	u32				inuse;
488 
489 	u32				last_inuse;
490 	s64				saved_margin;
491 
492 	sector_t			cursor;		/* to detect randio */
493 
494 	/*
495 	 * `vtime` is this iocg's vtime cursor which progresses as IOs are
496 	 * issued.  If lagging behind device vtime, the delta represents
497 	 * the currently available IO budget.  If running ahead, the
498 	 * overage.
499 	 *
500 	 * `vtime_done` is the same but progressed on completion rather
501 	 * than issue.  The delta behind `vtime` represents the cost of
502 	 * currently in-flight IOs.
503 	 */
504 	atomic64_t			vtime;
505 	atomic64_t			done_vtime;
506 	u64				abs_vdebt;
507 
508 	/* current delay in effect and when it started */
509 	u64				delay;
510 	u64				delay_at;
511 
512 	/*
513 	 * The period this iocg was last active in.  Used for deactivation
514 	 * and invalidating `vtime`.
515 	 */
516 	atomic64_t			active_period;
517 	struct list_head		active_list;
518 
519 	/* see __propagate_weights() and current_hweight() for details */
520 	u64				child_active_sum;
521 	u64				child_inuse_sum;
522 	u64				child_adjusted_sum;
523 	int				hweight_gen;
524 	u32				hweight_active;
525 	u32				hweight_inuse;
526 	u32				hweight_donating;
527 	u32				hweight_after_donation;
528 
529 	struct list_head		walk_list;
530 	struct list_head		surplus_list;
531 
532 	struct wait_queue_head		waitq;
533 	struct hrtimer			waitq_timer;
534 
535 	/* timestamp at the latest activation */
536 	u64				activated_at;
537 
538 	/* statistics */
539 	struct iocg_pcpu_stat __percpu	*pcpu_stat;
540 	struct iocg_stat		stat;
541 	struct iocg_stat		last_stat;
542 	u64				last_stat_abs_vusage;
543 	u64				usage_delta_us;
544 	u64				wait_since;
545 	u64				indebt_since;
546 	u64				indelay_since;
547 
548 	/* this iocg's depth in the hierarchy and ancestors including self */
549 	int				level;
550 	struct ioc_gq			*ancestors[];
551 };
552 
553 /* per cgroup */
554 struct ioc_cgrp {
555 	struct blkcg_policy_data	cpd;
556 	unsigned int			dfl_weight;
557 };
558 
559 struct ioc_now {
560 	u64				now_ns;
561 	u64				now;
562 	u64				vnow;
563 };
564 
565 struct iocg_wait {
566 	struct wait_queue_entry		wait;
567 	struct bio			*bio;
568 	u64				abs_cost;
569 	bool				committed;
570 };
571 
572 struct iocg_wake_ctx {
573 	struct ioc_gq			*iocg;
574 	u32				hw_inuse;
575 	s64				vbudget;
576 };
577 
578 static const struct ioc_params autop[] = {
579 	[AUTOP_HDD] = {
580 		.qos				= {
581 			[QOS_RLAT]		=        250000, /* 250ms */
582 			[QOS_WLAT]		=        250000,
583 			[QOS_MIN]		= VRATE_MIN_PPM,
584 			[QOS_MAX]		= VRATE_MAX_PPM,
585 		},
586 		.i_lcoefs			= {
587 			[I_LCOEF_RBPS]		=     174019176,
588 			[I_LCOEF_RSEQIOPS]	=         41708,
589 			[I_LCOEF_RRANDIOPS]	=           370,
590 			[I_LCOEF_WBPS]		=     178075866,
591 			[I_LCOEF_WSEQIOPS]	=         42705,
592 			[I_LCOEF_WRANDIOPS]	=           378,
593 		},
594 	},
595 	[AUTOP_SSD_QD1] = {
596 		.qos				= {
597 			[QOS_RLAT]		=         25000, /* 25ms */
598 			[QOS_WLAT]		=         25000,
599 			[QOS_MIN]		= VRATE_MIN_PPM,
600 			[QOS_MAX]		= VRATE_MAX_PPM,
601 		},
602 		.i_lcoefs			= {
603 			[I_LCOEF_RBPS]		=     245855193,
604 			[I_LCOEF_RSEQIOPS]	=         61575,
605 			[I_LCOEF_RRANDIOPS]	=          6946,
606 			[I_LCOEF_WBPS]		=     141365009,
607 			[I_LCOEF_WSEQIOPS]	=         33716,
608 			[I_LCOEF_WRANDIOPS]	=         26796,
609 		},
610 	},
611 	[AUTOP_SSD_DFL] = {
612 		.qos				= {
613 			[QOS_RLAT]		=         25000, /* 25ms */
614 			[QOS_WLAT]		=         25000,
615 			[QOS_MIN]		= VRATE_MIN_PPM,
616 			[QOS_MAX]		= VRATE_MAX_PPM,
617 		},
618 		.i_lcoefs			= {
619 			[I_LCOEF_RBPS]		=     488636629,
620 			[I_LCOEF_RSEQIOPS]	=          8932,
621 			[I_LCOEF_RRANDIOPS]	=          8518,
622 			[I_LCOEF_WBPS]		=     427891549,
623 			[I_LCOEF_WSEQIOPS]	=         28755,
624 			[I_LCOEF_WRANDIOPS]	=         21940,
625 		},
626 		.too_fast_vrate_pct		=           500,
627 	},
628 	[AUTOP_SSD_FAST] = {
629 		.qos				= {
630 			[QOS_RLAT]		=          5000, /* 5ms */
631 			[QOS_WLAT]		=          5000,
632 			[QOS_MIN]		= VRATE_MIN_PPM,
633 			[QOS_MAX]		= VRATE_MAX_PPM,
634 		},
635 		.i_lcoefs			= {
636 			[I_LCOEF_RBPS]		=    3102524156LLU,
637 			[I_LCOEF_RSEQIOPS]	=        724816,
638 			[I_LCOEF_RRANDIOPS]	=        778122,
639 			[I_LCOEF_WBPS]		=    1742780862LLU,
640 			[I_LCOEF_WSEQIOPS]	=        425702,
641 			[I_LCOEF_WRANDIOPS]	=	 443193,
642 		},
643 		.too_slow_vrate_pct		=            10,
644 	},
645 };
646 
647 /*
648  * vrate adjust percentages indexed by ioc->busy_level.  We adjust up on
649  * vtime credit shortage and down on device saturation.
650  */
651 static const u32 vrate_adj_pct[] =
652 	{ 0, 0, 0, 0,
653 	  1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
654 	  2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
655 	  4, 4, 4, 4, 4, 4, 4, 4, 8, 8, 8, 8, 8, 8, 8, 8, 16 };
656 
657 static struct blkcg_policy blkcg_policy_iocost;
658 
659 /* accessors and helpers */
660 static struct ioc *rqos_to_ioc(struct rq_qos *rqos)
661 {
662 	return container_of(rqos, struct ioc, rqos);
663 }
664 
665 static struct ioc *q_to_ioc(struct request_queue *q)
666 {
667 	return rqos_to_ioc(rq_qos_id(q, RQ_QOS_COST));
668 }
669 
670 static const char __maybe_unused *ioc_name(struct ioc *ioc)
671 {
672 	struct gendisk *disk = ioc->rqos.disk;
673 
674 	if (!disk)
675 		return "<unknown>";
676 	return disk->disk_name;
677 }
678 
679 static struct ioc_gq *pd_to_iocg(struct blkg_policy_data *pd)
680 {
681 	return pd ? container_of(pd, struct ioc_gq, pd) : NULL;
682 }
683 
684 static struct ioc_gq *blkg_to_iocg(struct blkcg_gq *blkg)
685 {
686 	return pd_to_iocg(blkg_to_pd(blkg, &blkcg_policy_iocost));
687 }
688 
689 static struct blkcg_gq *iocg_to_blkg(struct ioc_gq *iocg)
690 {
691 	return pd_to_blkg(&iocg->pd);
692 }
693 
694 static struct ioc_cgrp *blkcg_to_iocc(struct blkcg *blkcg)
695 {
696 	return container_of(blkcg_to_cpd(blkcg, &blkcg_policy_iocost),
697 			    struct ioc_cgrp, cpd);
698 }
699 
700 /*
701  * Scale @abs_cost to the inverse of @hw_inuse.  The lower the hierarchical
702  * weight, the more expensive each IO.  Must round up.
703  */
704 static u64 abs_cost_to_cost(u64 abs_cost, u32 hw_inuse)
705 {
706 	return DIV64_U64_ROUND_UP(abs_cost * WEIGHT_ONE, hw_inuse);
707 }
708 
709 /*
710  * The inverse of abs_cost_to_cost().  Must round up.
711  */
712 static u64 cost_to_abs_cost(u64 cost, u32 hw_inuse)
713 {
714 	return DIV64_U64_ROUND_UP(cost * hw_inuse, WEIGHT_ONE);
715 }
716 
717 static void iocg_commit_bio(struct ioc_gq *iocg, struct bio *bio,
718 			    u64 abs_cost, u64 cost)
719 {
720 	struct iocg_pcpu_stat *gcs;
721 
722 	bio->bi_iocost_cost = cost;
723 	atomic64_add(cost, &iocg->vtime);
724 
725 	gcs = get_cpu_ptr(iocg->pcpu_stat);
726 	local64_add(abs_cost, &gcs->abs_vusage);
727 	put_cpu_ptr(gcs);
728 }
729 
730 static void iocg_lock(struct ioc_gq *iocg, bool lock_ioc, unsigned long *flags)
731 {
732 	if (lock_ioc) {
733 		spin_lock_irqsave(&iocg->ioc->lock, *flags);
734 		spin_lock(&iocg->waitq.lock);
735 	} else {
736 		spin_lock_irqsave(&iocg->waitq.lock, *flags);
737 	}
738 }
739 
740 static void iocg_unlock(struct ioc_gq *iocg, bool unlock_ioc, unsigned long *flags)
741 {
742 	if (unlock_ioc) {
743 		spin_unlock(&iocg->waitq.lock);
744 		spin_unlock_irqrestore(&iocg->ioc->lock, *flags);
745 	} else {
746 		spin_unlock_irqrestore(&iocg->waitq.lock, *flags);
747 	}
748 }
749 
750 #define CREATE_TRACE_POINTS
751 #include <trace/events/iocost.h>
752 
753 static void ioc_refresh_margins(struct ioc *ioc)
754 {
755 	struct ioc_margins *margins = &ioc->margins;
756 	u32 period_us = ioc->period_us;
757 	u64 vrate = ioc->vtime_base_rate;
758 
759 	margins->min = (period_us * MARGIN_MIN_PCT / 100) * vrate;
760 	margins->low = (period_us * MARGIN_LOW_PCT / 100) * vrate;
761 	margins->target = (period_us * MARGIN_TARGET_PCT / 100) * vrate;
762 }
763 
764 /* latency Qos params changed, update period_us and all the dependent params */
765 static void ioc_refresh_period_us(struct ioc *ioc)
766 {
767 	u32 ppm, lat, multi, period_us;
768 
769 	lockdep_assert_held(&ioc->lock);
770 
771 	/* pick the higher latency target */
772 	if (ioc->params.qos[QOS_RLAT] >= ioc->params.qos[QOS_WLAT]) {
773 		ppm = ioc->params.qos[QOS_RPPM];
774 		lat = ioc->params.qos[QOS_RLAT];
775 	} else {
776 		ppm = ioc->params.qos[QOS_WPPM];
777 		lat = ioc->params.qos[QOS_WLAT];
778 	}
779 
780 	/*
781 	 * We want the period to be long enough to contain a healthy number
782 	 * of IOs while short enough for granular control.  Define it as a
783 	 * multiple of the latency target.  Ideally, the multiplier should
784 	 * be scaled according to the percentile so that it would nominally
785 	 * contain a certain number of requests.  Let's be simpler and
786 	 * scale it linearly so that it's 2x >= pct(90) and 10x at pct(50).
787 	 */
788 	if (ppm)
789 		multi = max_t(u32, (MILLION - ppm) / 50000, 2);
790 	else
791 		multi = 2;
792 	period_us = multi * lat;
793 	period_us = clamp_t(u32, period_us, MIN_PERIOD, MAX_PERIOD);
794 
795 	/* calculate dependent params */
796 	ioc->period_us = period_us;
797 	ioc->timer_slack_ns = div64_u64(
798 		(u64)period_us * NSEC_PER_USEC * TIMER_SLACK_PCT,
799 		100);
800 	ioc_refresh_margins(ioc);
801 }
802 
803 /*
804  *  ioc->rqos.disk isn't initialized when this function is called from
805  *  the init path.
806  */
807 static int ioc_autop_idx(struct ioc *ioc, struct gendisk *disk)
808 {
809 	int idx = ioc->autop_idx;
810 	const struct ioc_params *p = &autop[idx];
811 	u32 vrate_pct;
812 	u64 now_ns;
813 
814 	/* rotational? */
815 	if (!blk_queue_nonrot(disk->queue))
816 		return AUTOP_HDD;
817 
818 	/* handle SATA SSDs w/ broken NCQ */
819 	if (blk_queue_depth(disk->queue) == 1)
820 		return AUTOP_SSD_QD1;
821 
822 	/* use one of the normal ssd sets */
823 	if (idx < AUTOP_SSD_DFL)
824 		return AUTOP_SSD_DFL;
825 
826 	/* if user is overriding anything, maintain what was there */
827 	if (ioc->user_qos_params || ioc->user_cost_model)
828 		return idx;
829 
830 	/* step up/down based on the vrate */
831 	vrate_pct = div64_u64(ioc->vtime_base_rate * 100, VTIME_PER_USEC);
832 	now_ns = blk_time_get_ns();
833 
834 	if (p->too_fast_vrate_pct && p->too_fast_vrate_pct <= vrate_pct) {
835 		if (!ioc->autop_too_fast_at)
836 			ioc->autop_too_fast_at = now_ns;
837 		if (now_ns - ioc->autop_too_fast_at >= AUTOP_CYCLE_NSEC)
838 			return idx + 1;
839 	} else {
840 		ioc->autop_too_fast_at = 0;
841 	}
842 
843 	if (p->too_slow_vrate_pct && p->too_slow_vrate_pct >= vrate_pct) {
844 		if (!ioc->autop_too_slow_at)
845 			ioc->autop_too_slow_at = now_ns;
846 		if (now_ns - ioc->autop_too_slow_at >= AUTOP_CYCLE_NSEC)
847 			return idx - 1;
848 	} else {
849 		ioc->autop_too_slow_at = 0;
850 	}
851 
852 	return idx;
853 }
854 
855 /*
856  * Take the followings as input
857  *
858  *  @bps	maximum sequential throughput
859  *  @seqiops	maximum sequential 4k iops
860  *  @randiops	maximum random 4k iops
861  *
862  * and calculate the linear model cost coefficients.
863  *
864  *  *@page	per-page cost		1s / (@bps / 4096)
865  *  *@seqio	base cost of a seq IO	max((1s / @seqiops) - *@page, 0)
866  *  @randiops	base cost of a rand IO	max((1s / @randiops) - *@page, 0)
867  */
868 static void calc_lcoefs(u64 bps, u64 seqiops, u64 randiops,
869 			u64 *page, u64 *seqio, u64 *randio)
870 {
871 	u64 v;
872 
873 	*page = *seqio = *randio = 0;
874 
875 	if (bps) {
876 		u64 bps_pages = DIV_ROUND_UP_ULL(bps, IOC_PAGE_SIZE);
877 
878 		if (bps_pages)
879 			*page = DIV64_U64_ROUND_UP(VTIME_PER_SEC, bps_pages);
880 		else
881 			*page = 1;
882 	}
883 
884 	if (seqiops) {
885 		v = DIV64_U64_ROUND_UP(VTIME_PER_SEC, seqiops);
886 		if (v > *page)
887 			*seqio = v - *page;
888 	}
889 
890 	if (randiops) {
891 		v = DIV64_U64_ROUND_UP(VTIME_PER_SEC, randiops);
892 		if (v > *page)
893 			*randio = v - *page;
894 	}
895 }
896 
897 static void ioc_refresh_lcoefs(struct ioc *ioc)
898 {
899 	u64 *u = ioc->params.i_lcoefs;
900 	u64 *c = ioc->params.lcoefs;
901 
902 	calc_lcoefs(u[I_LCOEF_RBPS], u[I_LCOEF_RSEQIOPS], u[I_LCOEF_RRANDIOPS],
903 		    &c[LCOEF_RPAGE], &c[LCOEF_RSEQIO], &c[LCOEF_RRANDIO]);
904 	calc_lcoefs(u[I_LCOEF_WBPS], u[I_LCOEF_WSEQIOPS], u[I_LCOEF_WRANDIOPS],
905 		    &c[LCOEF_WPAGE], &c[LCOEF_WSEQIO], &c[LCOEF_WRANDIO]);
906 }
907 
908 /*
909  * struct gendisk is required as an argument because ioc->rqos.disk
910  * is not properly initialized when called from the init path.
911  */
912 static bool ioc_refresh_params_disk(struct ioc *ioc, bool force,
913 				    struct gendisk *disk)
914 {
915 	const struct ioc_params *p;
916 	int idx;
917 
918 	lockdep_assert_held(&ioc->lock);
919 
920 	idx = ioc_autop_idx(ioc, disk);
921 	p = &autop[idx];
922 
923 	if (idx == ioc->autop_idx && !force)
924 		return false;
925 
926 	if (idx != ioc->autop_idx) {
927 		atomic64_set(&ioc->vtime_rate, VTIME_PER_USEC);
928 		ioc->vtime_base_rate = VTIME_PER_USEC;
929 	}
930 
931 	ioc->autop_idx = idx;
932 	ioc->autop_too_fast_at = 0;
933 	ioc->autop_too_slow_at = 0;
934 
935 	if (!ioc->user_qos_params)
936 		memcpy(ioc->params.qos, p->qos, sizeof(p->qos));
937 	if (!ioc->user_cost_model)
938 		memcpy(ioc->params.i_lcoefs, p->i_lcoefs, sizeof(p->i_lcoefs));
939 
940 	ioc_refresh_period_us(ioc);
941 	ioc_refresh_lcoefs(ioc);
942 
943 	ioc->vrate_min = DIV64_U64_ROUND_UP((u64)ioc->params.qos[QOS_MIN] *
944 					    VTIME_PER_USEC, MILLION);
945 	ioc->vrate_max = DIV64_U64_ROUND_UP((u64)ioc->params.qos[QOS_MAX] *
946 					    VTIME_PER_USEC, MILLION);
947 
948 	return true;
949 }
950 
951 static bool ioc_refresh_params(struct ioc *ioc, bool force)
952 {
953 	return ioc_refresh_params_disk(ioc, force, ioc->rqos.disk);
954 }
955 
956 /*
957  * When an iocg accumulates too much vtime or gets deactivated, we throw away
958  * some vtime, which lowers the overall device utilization. As the exact amount
959  * which is being thrown away is known, we can compensate by accelerating the
960  * vrate accordingly so that the extra vtime generated in the current period
961  * matches what got lost.
962  */
963 static void ioc_refresh_vrate(struct ioc *ioc, struct ioc_now *now)
964 {
965 	s64 pleft = ioc->period_at + ioc->period_us - now->now;
966 	s64 vperiod = ioc->period_us * ioc->vtime_base_rate;
967 	s64 vcomp, vcomp_min, vcomp_max;
968 
969 	lockdep_assert_held(&ioc->lock);
970 
971 	/* we need some time left in this period */
972 	if (pleft <= 0)
973 		goto done;
974 
975 	/*
976 	 * Calculate how much vrate should be adjusted to offset the error.
977 	 * Limit the amount of adjustment and deduct the adjusted amount from
978 	 * the error.
979 	 */
980 	vcomp = -div64_s64(ioc->vtime_err, pleft);
981 	vcomp_min = -(ioc->vtime_base_rate >> 1);
982 	vcomp_max = ioc->vtime_base_rate;
983 	vcomp = clamp(vcomp, vcomp_min, vcomp_max);
984 
985 	ioc->vtime_err += vcomp * pleft;
986 
987 	atomic64_set(&ioc->vtime_rate, ioc->vtime_base_rate + vcomp);
988 done:
989 	/* bound how much error can accumulate */
990 	ioc->vtime_err = clamp(ioc->vtime_err, -vperiod, vperiod);
991 }
992 
993 static void ioc_adjust_base_vrate(struct ioc *ioc, u32 rq_wait_pct,
994 				  int nr_lagging, int nr_shortages,
995 				  int prev_busy_level, u32 *missed_ppm)
996 {
997 	u64 vrate = ioc->vtime_base_rate;
998 	u64 vrate_min = ioc->vrate_min, vrate_max = ioc->vrate_max;
999 
1000 	if (!ioc->busy_level || (ioc->busy_level < 0 && nr_lagging)) {
1001 		if (ioc->busy_level != prev_busy_level || nr_lagging)
1002 			trace_iocost_ioc_vrate_adj(ioc, vrate,
1003 						   missed_ppm, rq_wait_pct,
1004 						   nr_lagging, nr_shortages);
1005 
1006 		return;
1007 	}
1008 
1009 	/*
1010 	 * If vrate is out of bounds, apply clamp gradually as the
1011 	 * bounds can change abruptly.  Otherwise, apply busy_level
1012 	 * based adjustment.
1013 	 */
1014 	if (vrate < vrate_min) {
1015 		vrate = div64_u64(vrate * (100 + VRATE_CLAMP_ADJ_PCT), 100);
1016 		vrate = min(vrate, vrate_min);
1017 	} else if (vrate > vrate_max) {
1018 		vrate = div64_u64(vrate * (100 - VRATE_CLAMP_ADJ_PCT), 100);
1019 		vrate = max(vrate, vrate_max);
1020 	} else {
1021 		int idx = min_t(int, abs(ioc->busy_level),
1022 				ARRAY_SIZE(vrate_adj_pct) - 1);
1023 		u32 adj_pct = vrate_adj_pct[idx];
1024 
1025 		if (ioc->busy_level > 0)
1026 			adj_pct = 100 - adj_pct;
1027 		else
1028 			adj_pct = 100 + adj_pct;
1029 
1030 		vrate = clamp(DIV64_U64_ROUND_UP(vrate * adj_pct, 100),
1031 			      vrate_min, vrate_max);
1032 	}
1033 
1034 	trace_iocost_ioc_vrate_adj(ioc, vrate, missed_ppm, rq_wait_pct,
1035 				   nr_lagging, nr_shortages);
1036 
1037 	ioc->vtime_base_rate = vrate;
1038 	ioc_refresh_margins(ioc);
1039 }
1040 
1041 /* take a snapshot of the current [v]time and vrate */
1042 static void ioc_now(struct ioc *ioc, struct ioc_now *now)
1043 {
1044 	unsigned seq;
1045 	u64 vrate;
1046 
1047 	now->now_ns = blk_time_get_ns();
1048 	now->now = ktime_to_us(now->now_ns);
1049 	vrate = atomic64_read(&ioc->vtime_rate);
1050 
1051 	/*
1052 	 * The current vtime is
1053 	 *
1054 	 *   vtime at period start + (wallclock time since the start) * vrate
1055 	 *
1056 	 * As a consistent snapshot of `period_at_vtime` and `period_at` is
1057 	 * needed, they're seqcount protected.
1058 	 */
1059 	do {
1060 		seq = read_seqcount_begin(&ioc->period_seqcount);
1061 		now->vnow = ioc->period_at_vtime +
1062 			(now->now - ioc->period_at) * vrate;
1063 	} while (read_seqcount_retry(&ioc->period_seqcount, seq));
1064 }
1065 
1066 static void ioc_start_period(struct ioc *ioc, struct ioc_now *now)
1067 {
1068 	WARN_ON_ONCE(ioc->running != IOC_RUNNING);
1069 
1070 	write_seqcount_begin(&ioc->period_seqcount);
1071 	ioc->period_at = now->now;
1072 	ioc->period_at_vtime = now->vnow;
1073 	write_seqcount_end(&ioc->period_seqcount);
1074 
1075 	ioc->timer.expires = jiffies + usecs_to_jiffies(ioc->period_us);
1076 	add_timer(&ioc->timer);
1077 }
1078 
1079 /*
1080  * Update @iocg's `active` and `inuse` to @active and @inuse, update level
1081  * weight sums and propagate upwards accordingly. If @save, the current margin
1082  * is saved to be used as reference for later inuse in-period adjustments.
1083  */
1084 static void __propagate_weights(struct ioc_gq *iocg, u32 active, u32 inuse,
1085 				bool save, struct ioc_now *now)
1086 {
1087 	struct ioc *ioc = iocg->ioc;
1088 	int lvl;
1089 
1090 	lockdep_assert_held(&ioc->lock);
1091 
1092 	/*
1093 	 * For an active leaf node, its inuse shouldn't be zero or exceed
1094 	 * @active. An active internal node's inuse is solely determined by the
1095 	 * inuse to active ratio of its children regardless of @inuse.
1096 	 */
1097 	if (list_empty(&iocg->active_list) && iocg->child_active_sum) {
1098 		inuse = DIV64_U64_ROUND_UP(active * iocg->child_inuse_sum,
1099 					   iocg->child_active_sum);
1100 	} else {
1101 		/*
1102 		 * It may be tempting to turn this into a clamp expression with
1103 		 * a lower limit of 1 but active may be 0, which cannot be used
1104 		 * as an upper limit in that situation. This expression allows
1105 		 * active to clamp inuse unless it is 0, in which case inuse
1106 		 * becomes 1.
1107 		 */
1108 		inuse = min(inuse, active) ?: 1;
1109 	}
1110 
1111 	iocg->last_inuse = iocg->inuse;
1112 	if (save)
1113 		iocg->saved_margin = now->vnow - atomic64_read(&iocg->vtime);
1114 
1115 	if (active == iocg->active && inuse == iocg->inuse)
1116 		return;
1117 
1118 	for (lvl = iocg->level - 1; lvl >= 0; lvl--) {
1119 		struct ioc_gq *parent = iocg->ancestors[lvl];
1120 		struct ioc_gq *child = iocg->ancestors[lvl + 1];
1121 		u32 parent_active = 0, parent_inuse = 0;
1122 
1123 		/* update the level sums */
1124 		parent->child_active_sum += (s32)(active - child->active);
1125 		parent->child_inuse_sum += (s32)(inuse - child->inuse);
1126 		/* apply the updates */
1127 		child->active = active;
1128 		child->inuse = inuse;
1129 
1130 		/*
1131 		 * The delta between inuse and active sums indicates that
1132 		 * much of weight is being given away.  Parent's inuse
1133 		 * and active should reflect the ratio.
1134 		 */
1135 		if (parent->child_active_sum) {
1136 			parent_active = parent->weight;
1137 			parent_inuse = DIV64_U64_ROUND_UP(
1138 				parent_active * parent->child_inuse_sum,
1139 				parent->child_active_sum);
1140 		}
1141 
1142 		/* do we need to keep walking up? */
1143 		if (parent_active == parent->active &&
1144 		    parent_inuse == parent->inuse)
1145 			break;
1146 
1147 		active = parent_active;
1148 		inuse = parent_inuse;
1149 	}
1150 
1151 	ioc->weights_updated = true;
1152 }
1153 
1154 static void commit_weights(struct ioc *ioc)
1155 {
1156 	lockdep_assert_held(&ioc->lock);
1157 
1158 	if (ioc->weights_updated) {
1159 		/* paired with rmb in current_hweight(), see there */
1160 		smp_wmb();
1161 		atomic_inc(&ioc->hweight_gen);
1162 		ioc->weights_updated = false;
1163 	}
1164 }
1165 
1166 static void propagate_weights(struct ioc_gq *iocg, u32 active, u32 inuse,
1167 			      bool save, struct ioc_now *now)
1168 {
1169 	__propagate_weights(iocg, active, inuse, save, now);
1170 	commit_weights(iocg->ioc);
1171 }
1172 
1173 static void current_hweight(struct ioc_gq *iocg, u32 *hw_activep, u32 *hw_inusep)
1174 {
1175 	struct ioc *ioc = iocg->ioc;
1176 	int lvl;
1177 	u32 hwa, hwi;
1178 	int ioc_gen;
1179 
1180 	/* hot path - if uptodate, use cached */
1181 	ioc_gen = atomic_read(&ioc->hweight_gen);
1182 	if (ioc_gen == iocg->hweight_gen)
1183 		goto out;
1184 
1185 	/*
1186 	 * Paired with wmb in commit_weights(). If we saw the updated
1187 	 * hweight_gen, all the weight updates from __propagate_weights() are
1188 	 * visible too.
1189 	 *
1190 	 * We can race with weight updates during calculation and get it
1191 	 * wrong.  However, hweight_gen would have changed and a future
1192 	 * reader will recalculate and we're guaranteed to discard the
1193 	 * wrong result soon.
1194 	 */
1195 	smp_rmb();
1196 
1197 	hwa = hwi = WEIGHT_ONE;
1198 	for (lvl = 0; lvl <= iocg->level - 1; lvl++) {
1199 		struct ioc_gq *parent = iocg->ancestors[lvl];
1200 		struct ioc_gq *child = iocg->ancestors[lvl + 1];
1201 		u64 active_sum = READ_ONCE(parent->child_active_sum);
1202 		u64 inuse_sum = READ_ONCE(parent->child_inuse_sum);
1203 		u32 active = READ_ONCE(child->active);
1204 		u32 inuse = READ_ONCE(child->inuse);
1205 
1206 		/* we can race with deactivations and either may read as zero */
1207 		if (!active_sum || !inuse_sum)
1208 			continue;
1209 
1210 		active_sum = max_t(u64, active, active_sum);
1211 		hwa = div64_u64((u64)hwa * active, active_sum);
1212 
1213 		inuse_sum = max_t(u64, inuse, inuse_sum);
1214 		hwi = div64_u64((u64)hwi * inuse, inuse_sum);
1215 	}
1216 
1217 	iocg->hweight_active = max_t(u32, hwa, 1);
1218 	iocg->hweight_inuse = max_t(u32, hwi, 1);
1219 	iocg->hweight_gen = ioc_gen;
1220 out:
1221 	if (hw_activep)
1222 		*hw_activep = iocg->hweight_active;
1223 	if (hw_inusep)
1224 		*hw_inusep = iocg->hweight_inuse;
1225 }
1226 
1227 /*
1228  * Calculate the hweight_inuse @iocg would get with max @inuse assuming all the
1229  * other weights stay unchanged.
1230  */
1231 static u32 current_hweight_max(struct ioc_gq *iocg)
1232 {
1233 	u32 hwm = WEIGHT_ONE;
1234 	u32 inuse = iocg->active;
1235 	u64 child_inuse_sum;
1236 	int lvl;
1237 
1238 	lockdep_assert_held(&iocg->ioc->lock);
1239 
1240 	for (lvl = iocg->level - 1; lvl >= 0; lvl--) {
1241 		struct ioc_gq *parent = iocg->ancestors[lvl];
1242 		struct ioc_gq *child = iocg->ancestors[lvl + 1];
1243 
1244 		child_inuse_sum = parent->child_inuse_sum + inuse - child->inuse;
1245 		hwm = div64_u64((u64)hwm * inuse, child_inuse_sum);
1246 		inuse = DIV64_U64_ROUND_UP(parent->active * child_inuse_sum,
1247 					   parent->child_active_sum);
1248 	}
1249 
1250 	return max_t(u32, hwm, 1);
1251 }
1252 
1253 static void weight_updated(struct ioc_gq *iocg, struct ioc_now *now)
1254 {
1255 	struct ioc *ioc = iocg->ioc;
1256 	struct blkcg_gq *blkg = iocg_to_blkg(iocg);
1257 	struct ioc_cgrp *iocc = blkcg_to_iocc(blkg->blkcg);
1258 	u32 weight;
1259 
1260 	lockdep_assert_held(&ioc->lock);
1261 
1262 	weight = iocg->cfg_weight ?: iocc->dfl_weight;
1263 	if (weight != iocg->weight && iocg->active)
1264 		propagate_weights(iocg, weight, iocg->inuse, true, now);
1265 	iocg->weight = weight;
1266 }
1267 
1268 static bool iocg_activate(struct ioc_gq *iocg, struct ioc_now *now)
1269 {
1270 	struct ioc *ioc = iocg->ioc;
1271 	u64 __maybe_unused last_period, cur_period;
1272 	u64 vtime, vtarget;
1273 	int i;
1274 
1275 	/*
1276 	 * If seem to be already active, just update the stamp to tell the
1277 	 * timer that we're still active.  We don't mind occassional races.
1278 	 */
1279 	if (!list_empty(&iocg->active_list)) {
1280 		ioc_now(ioc, now);
1281 		cur_period = atomic64_read(&ioc->cur_period);
1282 		if (atomic64_read(&iocg->active_period) != cur_period)
1283 			atomic64_set(&iocg->active_period, cur_period);
1284 		return true;
1285 	}
1286 
1287 	/* racy check on internal node IOs, treat as root level IOs */
1288 	if (iocg->child_active_sum)
1289 		return false;
1290 
1291 	spin_lock_irq(&ioc->lock);
1292 
1293 	ioc_now(ioc, now);
1294 
1295 	/* update period */
1296 	cur_period = atomic64_read(&ioc->cur_period);
1297 	last_period = atomic64_read(&iocg->active_period);
1298 	atomic64_set(&iocg->active_period, cur_period);
1299 
1300 	/* already activated or breaking leaf-only constraint? */
1301 	if (!list_empty(&iocg->active_list))
1302 		goto succeed_unlock;
1303 	for (i = iocg->level - 1; i > 0; i--)
1304 		if (!list_empty(&iocg->ancestors[i]->active_list))
1305 			goto fail_unlock;
1306 
1307 	if (iocg->child_active_sum)
1308 		goto fail_unlock;
1309 
1310 	/*
1311 	 * Always start with the target budget. On deactivation, we throw away
1312 	 * anything above it.
1313 	 */
1314 	vtarget = now->vnow - ioc->margins.target;
1315 	vtime = atomic64_read(&iocg->vtime);
1316 
1317 	atomic64_add(vtarget - vtime, &iocg->vtime);
1318 	atomic64_add(vtarget - vtime, &iocg->done_vtime);
1319 	vtime = vtarget;
1320 
1321 	/*
1322 	 * Activate, propagate weight and start period timer if not
1323 	 * running.  Reset hweight_gen to avoid accidental match from
1324 	 * wrapping.
1325 	 */
1326 	iocg->hweight_gen = atomic_read(&ioc->hweight_gen) - 1;
1327 	list_add(&iocg->active_list, &ioc->active_iocgs);
1328 
1329 	propagate_weights(iocg, iocg->weight,
1330 			  iocg->last_inuse ?: iocg->weight, true, now);
1331 
1332 	TRACE_IOCG_PATH(iocg_activate, iocg, now,
1333 			last_period, cur_period, vtime);
1334 
1335 	iocg->activated_at = now->now;
1336 
1337 	if (ioc->running == IOC_IDLE) {
1338 		ioc->running = IOC_RUNNING;
1339 		ioc->dfgv_period_at = now->now;
1340 		ioc->dfgv_period_rem = 0;
1341 		ioc_start_period(ioc, now);
1342 	}
1343 
1344 succeed_unlock:
1345 	spin_unlock_irq(&ioc->lock);
1346 	return true;
1347 
1348 fail_unlock:
1349 	spin_unlock_irq(&ioc->lock);
1350 	return false;
1351 }
1352 
1353 static bool iocg_kick_delay(struct ioc_gq *iocg, struct ioc_now *now)
1354 {
1355 	struct ioc *ioc = iocg->ioc;
1356 	struct blkcg_gq *blkg = iocg_to_blkg(iocg);
1357 	u64 tdelta, delay, new_delay, shift;
1358 	s64 vover, vover_pct;
1359 	u32 hwa;
1360 
1361 	lockdep_assert_held(&iocg->waitq.lock);
1362 
1363 	/*
1364 	 * If the delay is set by another CPU, we may be in the past. No need to
1365 	 * change anything if so. This avoids decay calculation underflow.
1366 	 */
1367 	if (time_before64(now->now, iocg->delay_at))
1368 		return false;
1369 
1370 	/* calculate the current delay in effect - 1/2 every second */
1371 	tdelta = now->now - iocg->delay_at;
1372 	shift = div64_u64(tdelta, USEC_PER_SEC);
1373 	if (iocg->delay && shift < BITS_PER_LONG)
1374 		delay = iocg->delay >> shift;
1375 	else
1376 		delay = 0;
1377 
1378 	/* calculate the new delay from the debt amount */
1379 	current_hweight(iocg, &hwa, NULL);
1380 	vover = atomic64_read(&iocg->vtime) +
1381 		abs_cost_to_cost(iocg->abs_vdebt, hwa) - now->vnow;
1382 	vover_pct = div64_s64(100 * vover,
1383 			      ioc->period_us * ioc->vtime_base_rate);
1384 
1385 	if (vover_pct <= MIN_DELAY_THR_PCT)
1386 		new_delay = 0;
1387 	else if (vover_pct >= MAX_DELAY_THR_PCT)
1388 		new_delay = MAX_DELAY;
1389 	else
1390 		new_delay = MIN_DELAY +
1391 			div_u64((MAX_DELAY - MIN_DELAY) *
1392 				(vover_pct - MIN_DELAY_THR_PCT),
1393 				MAX_DELAY_THR_PCT - MIN_DELAY_THR_PCT);
1394 
1395 	/* pick the higher one and apply */
1396 	if (new_delay > delay) {
1397 		iocg->delay = new_delay;
1398 		iocg->delay_at = now->now;
1399 		delay = new_delay;
1400 	}
1401 
1402 	if (delay >= MIN_DELAY) {
1403 		if (!iocg->indelay_since)
1404 			iocg->indelay_since = now->now;
1405 		blkcg_set_delay(blkg, delay * NSEC_PER_USEC);
1406 		return true;
1407 	} else {
1408 		if (iocg->indelay_since) {
1409 			iocg->stat.indelay_us += now->now - iocg->indelay_since;
1410 			iocg->indelay_since = 0;
1411 		}
1412 		iocg->delay = 0;
1413 		blkcg_clear_delay(blkg);
1414 		return false;
1415 	}
1416 }
1417 
1418 static void iocg_incur_debt(struct ioc_gq *iocg, u64 abs_cost,
1419 			    struct ioc_now *now)
1420 {
1421 	struct iocg_pcpu_stat *gcs;
1422 
1423 	lockdep_assert_held(&iocg->ioc->lock);
1424 	lockdep_assert_held(&iocg->waitq.lock);
1425 	WARN_ON_ONCE(list_empty(&iocg->active_list));
1426 
1427 	/*
1428 	 * Once in debt, debt handling owns inuse. @iocg stays at the minimum
1429 	 * inuse donating all of it share to others until its debt is paid off.
1430 	 */
1431 	if (!iocg->abs_vdebt && abs_cost) {
1432 		iocg->indebt_since = now->now;
1433 		propagate_weights(iocg, iocg->active, 0, false, now);
1434 	}
1435 
1436 	iocg->abs_vdebt += abs_cost;
1437 
1438 	gcs = get_cpu_ptr(iocg->pcpu_stat);
1439 	local64_add(abs_cost, &gcs->abs_vusage);
1440 	put_cpu_ptr(gcs);
1441 }
1442 
1443 static void iocg_pay_debt(struct ioc_gq *iocg, u64 abs_vpay,
1444 			  struct ioc_now *now)
1445 {
1446 	lockdep_assert_held(&iocg->ioc->lock);
1447 	lockdep_assert_held(&iocg->waitq.lock);
1448 
1449 	/*
1450 	 * make sure that nobody messed with @iocg. Check iocg->pd.online
1451 	 * to avoid warn when removing blkcg or disk.
1452 	 */
1453 	WARN_ON_ONCE(list_empty(&iocg->active_list) && iocg->pd.online);
1454 	WARN_ON_ONCE(iocg->inuse > 1);
1455 
1456 	iocg->abs_vdebt -= min(abs_vpay, iocg->abs_vdebt);
1457 
1458 	/* if debt is paid in full, restore inuse */
1459 	if (!iocg->abs_vdebt) {
1460 		iocg->stat.indebt_us += now->now - iocg->indebt_since;
1461 		iocg->indebt_since = 0;
1462 
1463 		propagate_weights(iocg, iocg->active, iocg->last_inuse,
1464 				  false, now);
1465 	}
1466 }
1467 
1468 static int iocg_wake_fn(struct wait_queue_entry *wq_entry, unsigned mode,
1469 			int flags, void *key)
1470 {
1471 	struct iocg_wait *wait = container_of(wq_entry, struct iocg_wait, wait);
1472 	struct iocg_wake_ctx *ctx = key;
1473 	u64 cost = abs_cost_to_cost(wait->abs_cost, ctx->hw_inuse);
1474 
1475 	ctx->vbudget -= cost;
1476 
1477 	if (ctx->vbudget < 0)
1478 		return -1;
1479 
1480 	iocg_commit_bio(ctx->iocg, wait->bio, wait->abs_cost, cost);
1481 	wait->committed = true;
1482 
1483 	/*
1484 	 * autoremove_wake_function() removes the wait entry only when it
1485 	 * actually changed the task state. We want the wait always removed.
1486 	 * Remove explicitly and use default_wake_function(). Note that the
1487 	 * order of operations is important as finish_wait() tests whether
1488 	 * @wq_entry is removed without grabbing the lock.
1489 	 */
1490 	default_wake_function(wq_entry, mode, flags, key);
1491 	list_del_init_careful(&wq_entry->entry);
1492 	return 0;
1493 }
1494 
1495 /*
1496  * Calculate the accumulated budget, pay debt if @pay_debt and wake up waiters
1497  * accordingly. When @pay_debt is %true, the caller must be holding ioc->lock in
1498  * addition to iocg->waitq.lock.
1499  */
1500 static void iocg_kick_waitq(struct ioc_gq *iocg, bool pay_debt,
1501 			    struct ioc_now *now)
1502 {
1503 	struct ioc *ioc = iocg->ioc;
1504 	struct iocg_wake_ctx ctx = { .iocg = iocg };
1505 	u64 vshortage, expires, oexpires;
1506 	s64 vbudget;
1507 	u32 hwa;
1508 
1509 	lockdep_assert_held(&iocg->waitq.lock);
1510 
1511 	current_hweight(iocg, &hwa, NULL);
1512 	vbudget = now->vnow - atomic64_read(&iocg->vtime);
1513 
1514 	/* pay off debt */
1515 	if (pay_debt && iocg->abs_vdebt && vbudget > 0) {
1516 		u64 abs_vbudget = cost_to_abs_cost(vbudget, hwa);
1517 		u64 abs_vpay = min_t(u64, abs_vbudget, iocg->abs_vdebt);
1518 		u64 vpay = abs_cost_to_cost(abs_vpay, hwa);
1519 
1520 		lockdep_assert_held(&ioc->lock);
1521 
1522 		atomic64_add(vpay, &iocg->vtime);
1523 		atomic64_add(vpay, &iocg->done_vtime);
1524 		iocg_pay_debt(iocg, abs_vpay, now);
1525 		vbudget -= vpay;
1526 	}
1527 
1528 	if (iocg->abs_vdebt || iocg->delay)
1529 		iocg_kick_delay(iocg, now);
1530 
1531 	/*
1532 	 * Debt can still be outstanding if we haven't paid all yet or the
1533 	 * caller raced and called without @pay_debt. Shouldn't wake up waiters
1534 	 * under debt. Make sure @vbudget reflects the outstanding amount and is
1535 	 * not positive.
1536 	 */
1537 	if (iocg->abs_vdebt) {
1538 		s64 vdebt = abs_cost_to_cost(iocg->abs_vdebt, hwa);
1539 		vbudget = min_t(s64, 0, vbudget - vdebt);
1540 	}
1541 
1542 	/*
1543 	 * Wake up the ones which are due and see how much vtime we'll need for
1544 	 * the next one. As paying off debt restores hw_inuse, it must be read
1545 	 * after the above debt payment.
1546 	 */
1547 	ctx.vbudget = vbudget;
1548 	current_hweight(iocg, NULL, &ctx.hw_inuse);
1549 
1550 	__wake_up_locked_key(&iocg->waitq, TASK_NORMAL, &ctx);
1551 
1552 	if (!waitqueue_active(&iocg->waitq)) {
1553 		if (iocg->wait_since) {
1554 			iocg->stat.wait_us += now->now - iocg->wait_since;
1555 			iocg->wait_since = 0;
1556 		}
1557 		return;
1558 	}
1559 
1560 	if (!iocg->wait_since)
1561 		iocg->wait_since = now->now;
1562 
1563 	if (WARN_ON_ONCE(ctx.vbudget >= 0))
1564 		return;
1565 
1566 	/* determine next wakeup, add a timer margin to guarantee chunking */
1567 	vshortage = -ctx.vbudget;
1568 	expires = now->now_ns +
1569 		DIV64_U64_ROUND_UP(vshortage, ioc->vtime_base_rate) *
1570 		NSEC_PER_USEC;
1571 	expires += ioc->timer_slack_ns;
1572 
1573 	/* if already active and close enough, don't bother */
1574 	oexpires = ktime_to_ns(hrtimer_get_softexpires(&iocg->waitq_timer));
1575 	if (hrtimer_is_queued(&iocg->waitq_timer) &&
1576 	    abs(oexpires - expires) <= ioc->timer_slack_ns)
1577 		return;
1578 
1579 	hrtimer_start_range_ns(&iocg->waitq_timer, ns_to_ktime(expires),
1580 			       ioc->timer_slack_ns, HRTIMER_MODE_ABS);
1581 }
1582 
1583 static enum hrtimer_restart iocg_waitq_timer_fn(struct hrtimer *timer)
1584 {
1585 	struct ioc_gq *iocg = container_of(timer, struct ioc_gq, waitq_timer);
1586 	bool pay_debt = READ_ONCE(iocg->abs_vdebt);
1587 	struct ioc_now now;
1588 	unsigned long flags;
1589 
1590 	ioc_now(iocg->ioc, &now);
1591 
1592 	iocg_lock(iocg, pay_debt, &flags);
1593 	iocg_kick_waitq(iocg, pay_debt, &now);
1594 	iocg_unlock(iocg, pay_debt, &flags);
1595 
1596 	return HRTIMER_NORESTART;
1597 }
1598 
1599 static void ioc_lat_stat(struct ioc *ioc, u32 *missed_ppm_ar, u32 *rq_wait_pct_p)
1600 {
1601 	u32 nr_met[2] = { };
1602 	u32 nr_missed[2] = { };
1603 	u64 rq_wait_ns = 0;
1604 	int cpu, rw;
1605 
1606 	for_each_online_cpu(cpu) {
1607 		struct ioc_pcpu_stat *stat = per_cpu_ptr(ioc->pcpu_stat, cpu);
1608 		u64 this_rq_wait_ns;
1609 
1610 		for (rw = READ; rw <= WRITE; rw++) {
1611 			u32 this_met = local_read(&stat->missed[rw].nr_met);
1612 			u32 this_missed = local_read(&stat->missed[rw].nr_missed);
1613 
1614 			nr_met[rw] += this_met - stat->missed[rw].last_met;
1615 			nr_missed[rw] += this_missed - stat->missed[rw].last_missed;
1616 			stat->missed[rw].last_met = this_met;
1617 			stat->missed[rw].last_missed = this_missed;
1618 		}
1619 
1620 		this_rq_wait_ns = local64_read(&stat->rq_wait_ns);
1621 		rq_wait_ns += this_rq_wait_ns - stat->last_rq_wait_ns;
1622 		stat->last_rq_wait_ns = this_rq_wait_ns;
1623 	}
1624 
1625 	for (rw = READ; rw <= WRITE; rw++) {
1626 		if (nr_met[rw] + nr_missed[rw])
1627 			missed_ppm_ar[rw] =
1628 				DIV64_U64_ROUND_UP((u64)nr_missed[rw] * MILLION,
1629 						   nr_met[rw] + nr_missed[rw]);
1630 		else
1631 			missed_ppm_ar[rw] = 0;
1632 	}
1633 
1634 	*rq_wait_pct_p = div64_u64(rq_wait_ns * 100,
1635 				   ioc->period_us * NSEC_PER_USEC);
1636 }
1637 
1638 /* was iocg idle this period? */
1639 static bool iocg_is_idle(struct ioc_gq *iocg)
1640 {
1641 	struct ioc *ioc = iocg->ioc;
1642 
1643 	/* did something get issued this period? */
1644 	if (atomic64_read(&iocg->active_period) ==
1645 	    atomic64_read(&ioc->cur_period))
1646 		return false;
1647 
1648 	/* is something in flight? */
1649 	if (atomic64_read(&iocg->done_vtime) != atomic64_read(&iocg->vtime))
1650 		return false;
1651 
1652 	return true;
1653 }
1654 
1655 /*
1656  * Call this function on the target leaf @iocg's to build pre-order traversal
1657  * list of all the ancestors in @inner_walk. The inner nodes are linked through
1658  * ->walk_list and the caller is responsible for dissolving the list after use.
1659  */
1660 static void iocg_build_inner_walk(struct ioc_gq *iocg,
1661 				  struct list_head *inner_walk)
1662 {
1663 	int lvl;
1664 
1665 	WARN_ON_ONCE(!list_empty(&iocg->walk_list));
1666 
1667 	/* find the first ancestor which hasn't been visited yet */
1668 	for (lvl = iocg->level - 1; lvl >= 0; lvl--) {
1669 		if (!list_empty(&iocg->ancestors[lvl]->walk_list))
1670 			break;
1671 	}
1672 
1673 	/* walk down and visit the inner nodes to get pre-order traversal */
1674 	while (++lvl <= iocg->level - 1) {
1675 		struct ioc_gq *inner = iocg->ancestors[lvl];
1676 
1677 		/* record traversal order */
1678 		list_add_tail(&inner->walk_list, inner_walk);
1679 	}
1680 }
1681 
1682 /* propagate the deltas to the parent */
1683 static void iocg_flush_stat_upward(struct ioc_gq *iocg)
1684 {
1685 	if (iocg->level > 0) {
1686 		struct iocg_stat *parent_stat =
1687 			&iocg->ancestors[iocg->level - 1]->stat;
1688 
1689 		parent_stat->usage_us +=
1690 			iocg->stat.usage_us - iocg->last_stat.usage_us;
1691 		parent_stat->wait_us +=
1692 			iocg->stat.wait_us - iocg->last_stat.wait_us;
1693 		parent_stat->indebt_us +=
1694 			iocg->stat.indebt_us - iocg->last_stat.indebt_us;
1695 		parent_stat->indelay_us +=
1696 			iocg->stat.indelay_us - iocg->last_stat.indelay_us;
1697 	}
1698 
1699 	iocg->last_stat = iocg->stat;
1700 }
1701 
1702 /* collect per-cpu counters and propagate the deltas to the parent */
1703 static void iocg_flush_stat_leaf(struct ioc_gq *iocg, struct ioc_now *now)
1704 {
1705 	struct ioc *ioc = iocg->ioc;
1706 	u64 abs_vusage = 0;
1707 	u64 vusage_delta;
1708 	int cpu;
1709 
1710 	lockdep_assert_held(&iocg->ioc->lock);
1711 
1712 	/* collect per-cpu counters */
1713 	for_each_possible_cpu(cpu) {
1714 		abs_vusage += local64_read(
1715 				per_cpu_ptr(&iocg->pcpu_stat->abs_vusage, cpu));
1716 	}
1717 	vusage_delta = abs_vusage - iocg->last_stat_abs_vusage;
1718 	iocg->last_stat_abs_vusage = abs_vusage;
1719 
1720 	iocg->usage_delta_us = div64_u64(vusage_delta, ioc->vtime_base_rate);
1721 	iocg->stat.usage_us += iocg->usage_delta_us;
1722 
1723 	iocg_flush_stat_upward(iocg);
1724 }
1725 
1726 /* get stat counters ready for reading on all active iocgs */
1727 static void iocg_flush_stat(struct list_head *target_iocgs, struct ioc_now *now)
1728 {
1729 	LIST_HEAD(inner_walk);
1730 	struct ioc_gq *iocg, *tiocg;
1731 
1732 	/* flush leaves and build inner node walk list */
1733 	list_for_each_entry(iocg, target_iocgs, active_list) {
1734 		iocg_flush_stat_leaf(iocg, now);
1735 		iocg_build_inner_walk(iocg, &inner_walk);
1736 	}
1737 
1738 	/* keep flushing upwards by walking the inner list backwards */
1739 	list_for_each_entry_safe_reverse(iocg, tiocg, &inner_walk, walk_list) {
1740 		iocg_flush_stat_upward(iocg);
1741 		list_del_init(&iocg->walk_list);
1742 	}
1743 }
1744 
1745 /*
1746  * Determine what @iocg's hweight_inuse should be after donating unused
1747  * capacity. @hwm is the upper bound and used to signal no donation. This
1748  * function also throws away @iocg's excess budget.
1749  */
1750 static u32 hweight_after_donation(struct ioc_gq *iocg, u32 old_hwi, u32 hwm,
1751 				  u32 usage, struct ioc_now *now)
1752 {
1753 	struct ioc *ioc = iocg->ioc;
1754 	u64 vtime = atomic64_read(&iocg->vtime);
1755 	s64 excess, delta, target, new_hwi;
1756 
1757 	/* debt handling owns inuse for debtors */
1758 	if (iocg->abs_vdebt)
1759 		return 1;
1760 
1761 	/* see whether minimum margin requirement is met */
1762 	if (waitqueue_active(&iocg->waitq) ||
1763 	    time_after64(vtime, now->vnow - ioc->margins.min))
1764 		return hwm;
1765 
1766 	/* throw away excess above target */
1767 	excess = now->vnow - vtime - ioc->margins.target;
1768 	if (excess > 0) {
1769 		atomic64_add(excess, &iocg->vtime);
1770 		atomic64_add(excess, &iocg->done_vtime);
1771 		vtime += excess;
1772 		ioc->vtime_err -= div64_u64(excess * old_hwi, WEIGHT_ONE);
1773 	}
1774 
1775 	/*
1776 	 * Let's say the distance between iocg's and device's vtimes as a
1777 	 * fraction of period duration is delta. Assuming that the iocg will
1778 	 * consume the usage determined above, we want to determine new_hwi so
1779 	 * that delta equals MARGIN_TARGET at the end of the next period.
1780 	 *
1781 	 * We need to execute usage worth of IOs while spending the sum of the
1782 	 * new budget (1 - MARGIN_TARGET) and the leftover from the last period
1783 	 * (delta):
1784 	 *
1785 	 *   usage = (1 - MARGIN_TARGET + delta) * new_hwi
1786 	 *
1787 	 * Therefore, the new_hwi is:
1788 	 *
1789 	 *   new_hwi = usage / (1 - MARGIN_TARGET + delta)
1790 	 */
1791 	delta = div64_s64(WEIGHT_ONE * (now->vnow - vtime),
1792 			  now->vnow - ioc->period_at_vtime);
1793 	target = WEIGHT_ONE * MARGIN_TARGET_PCT / 100;
1794 	new_hwi = div64_s64(WEIGHT_ONE * usage, WEIGHT_ONE - target + delta);
1795 
1796 	return clamp_t(s64, new_hwi, 1, hwm);
1797 }
1798 
1799 /*
1800  * For work-conservation, an iocg which isn't using all of its share should
1801  * donate the leftover to other iocgs. There are two ways to achieve this - 1.
1802  * bumping up vrate accordingly 2. lowering the donating iocg's inuse weight.
1803  *
1804  * #1 is mathematically simpler but has the drawback of requiring synchronous
1805  * global hweight_inuse updates when idle iocg's get activated or inuse weights
1806  * change due to donation snapbacks as it has the possibility of grossly
1807  * overshooting what's allowed by the model and vrate.
1808  *
1809  * #2 is inherently safe with local operations. The donating iocg can easily
1810  * snap back to higher weights when needed without worrying about impacts on
1811  * other nodes as the impacts will be inherently correct. This also makes idle
1812  * iocg activations safe. The only effect activations have is decreasing
1813  * hweight_inuse of others, the right solution to which is for those iocgs to
1814  * snap back to higher weights.
1815  *
1816  * So, we go with #2. The challenge is calculating how each donating iocg's
1817  * inuse should be adjusted to achieve the target donation amounts. This is done
1818  * using Andy's method described in the following pdf.
1819  *
1820  *   https://drive.google.com/file/d/1PsJwxPFtjUnwOY1QJ5AeICCcsL7BM3bo
1821  *
1822  * Given the weights and target after-donation hweight_inuse values, Andy's
1823  * method determines how the proportional distribution should look like at each
1824  * sibling level to maintain the relative relationship between all non-donating
1825  * pairs. To roughly summarize, it divides the tree into donating and
1826  * non-donating parts, calculates global donation rate which is used to
1827  * determine the target hweight_inuse for each node, and then derives per-level
1828  * proportions.
1829  *
1830  * The following pdf shows that global distribution calculated this way can be
1831  * achieved by scaling inuse weights of donating leaves and propagating the
1832  * adjustments upwards proportionally.
1833  *
1834  *   https://drive.google.com/file/d/1vONz1-fzVO7oY5DXXsLjSxEtYYQbOvsE
1835  *
1836  * Combining the above two, we can determine how each leaf iocg's inuse should
1837  * be adjusted to achieve the target donation.
1838  *
1839  *   https://drive.google.com/file/d/1WcrltBOSPN0qXVdBgnKm4mdp9FhuEFQN
1840  *
1841  * The inline comments use symbols from the last pdf.
1842  *
1843  *   b is the sum of the absolute budgets in the subtree. 1 for the root node.
1844  *   f is the sum of the absolute budgets of non-donating nodes in the subtree.
1845  *   t is the sum of the absolute budgets of donating nodes in the subtree.
1846  *   w is the weight of the node. w = w_f + w_t
1847  *   w_f is the non-donating portion of w. w_f = w * f / b
1848  *   w_b is the donating portion of w. w_t = w * t / b
1849  *   s is the sum of all sibling weights. s = Sum(w) for siblings
1850  *   s_f and s_t are the non-donating and donating portions of s.
1851  *
1852  * Subscript p denotes the parent's counterpart and ' the adjusted value - e.g.
1853  * w_pt is the donating portion of the parent's weight and w'_pt the same value
1854  * after adjustments. Subscript r denotes the root node's values.
1855  */
1856 static void transfer_surpluses(struct list_head *surpluses, struct ioc_now *now)
1857 {
1858 	LIST_HEAD(over_hwa);
1859 	LIST_HEAD(inner_walk);
1860 	struct ioc_gq *iocg, *tiocg, *root_iocg;
1861 	u32 after_sum, over_sum, over_target, gamma;
1862 
1863 	/*
1864 	 * It's pretty unlikely but possible for the total sum of
1865 	 * hweight_after_donation's to be higher than WEIGHT_ONE, which will
1866 	 * confuse the following calculations. If such condition is detected,
1867 	 * scale down everyone over its full share equally to keep the sum below
1868 	 * WEIGHT_ONE.
1869 	 */
1870 	after_sum = 0;
1871 	over_sum = 0;
1872 	list_for_each_entry(iocg, surpluses, surplus_list) {
1873 		u32 hwa;
1874 
1875 		current_hweight(iocg, &hwa, NULL);
1876 		after_sum += iocg->hweight_after_donation;
1877 
1878 		if (iocg->hweight_after_donation > hwa) {
1879 			over_sum += iocg->hweight_after_donation;
1880 			list_add(&iocg->walk_list, &over_hwa);
1881 		}
1882 	}
1883 
1884 	if (after_sum >= WEIGHT_ONE) {
1885 		/*
1886 		 * The delta should be deducted from the over_sum, calculate
1887 		 * target over_sum value.
1888 		 */
1889 		u32 over_delta = after_sum - (WEIGHT_ONE - 1);
1890 		WARN_ON_ONCE(over_sum <= over_delta);
1891 		over_target = over_sum - over_delta;
1892 	} else {
1893 		over_target = 0;
1894 	}
1895 
1896 	list_for_each_entry_safe(iocg, tiocg, &over_hwa, walk_list) {
1897 		if (over_target)
1898 			iocg->hweight_after_donation =
1899 				div_u64((u64)iocg->hweight_after_donation *
1900 					over_target, over_sum);
1901 		list_del_init(&iocg->walk_list);
1902 	}
1903 
1904 	/*
1905 	 * Build pre-order inner node walk list and prepare for donation
1906 	 * adjustment calculations.
1907 	 */
1908 	list_for_each_entry(iocg, surpluses, surplus_list) {
1909 		iocg_build_inner_walk(iocg, &inner_walk);
1910 	}
1911 
1912 	root_iocg = list_first_entry(&inner_walk, struct ioc_gq, walk_list);
1913 	WARN_ON_ONCE(root_iocg->level > 0);
1914 
1915 	list_for_each_entry(iocg, &inner_walk, walk_list) {
1916 		iocg->child_adjusted_sum = 0;
1917 		iocg->hweight_donating = 0;
1918 		iocg->hweight_after_donation = 0;
1919 	}
1920 
1921 	/*
1922 	 * Propagate the donating budget (b_t) and after donation budget (b'_t)
1923 	 * up the hierarchy.
1924 	 */
1925 	list_for_each_entry(iocg, surpluses, surplus_list) {
1926 		struct ioc_gq *parent = iocg->ancestors[iocg->level - 1];
1927 
1928 		parent->hweight_donating += iocg->hweight_donating;
1929 		parent->hweight_after_donation += iocg->hweight_after_donation;
1930 	}
1931 
1932 	list_for_each_entry_reverse(iocg, &inner_walk, walk_list) {
1933 		if (iocg->level > 0) {
1934 			struct ioc_gq *parent = iocg->ancestors[iocg->level - 1];
1935 
1936 			parent->hweight_donating += iocg->hweight_donating;
1937 			parent->hweight_after_donation += iocg->hweight_after_donation;
1938 		}
1939 	}
1940 
1941 	/*
1942 	 * Calculate inner hwa's (b) and make sure the donation values are
1943 	 * within the accepted ranges as we're doing low res calculations with
1944 	 * roundups.
1945 	 */
1946 	list_for_each_entry(iocg, &inner_walk, walk_list) {
1947 		if (iocg->level) {
1948 			struct ioc_gq *parent = iocg->ancestors[iocg->level - 1];
1949 
1950 			iocg->hweight_active = DIV64_U64_ROUND_UP(
1951 				(u64)parent->hweight_active * iocg->active,
1952 				parent->child_active_sum);
1953 
1954 		}
1955 
1956 		iocg->hweight_donating = min(iocg->hweight_donating,
1957 					     iocg->hweight_active);
1958 		iocg->hweight_after_donation = min(iocg->hweight_after_donation,
1959 						   iocg->hweight_donating - 1);
1960 		if (WARN_ON_ONCE(iocg->hweight_active <= 1 ||
1961 				 iocg->hweight_donating <= 1 ||
1962 				 iocg->hweight_after_donation == 0)) {
1963 			pr_warn("iocg: invalid donation weights in ");
1964 			pr_cont_cgroup_path(iocg_to_blkg(iocg)->blkcg->css.cgroup);
1965 			pr_cont(": active=%u donating=%u after=%u\n",
1966 				iocg->hweight_active, iocg->hweight_donating,
1967 				iocg->hweight_after_donation);
1968 		}
1969 	}
1970 
1971 	/*
1972 	 * Calculate the global donation rate (gamma) - the rate to adjust
1973 	 * non-donating budgets by.
1974 	 *
1975 	 * No need to use 64bit multiplication here as the first operand is
1976 	 * guaranteed to be smaller than WEIGHT_ONE (1<<16).
1977 	 *
1978 	 * We know that there are beneficiary nodes and the sum of the donating
1979 	 * hweights can't be whole; however, due to the round-ups during hweight
1980 	 * calculations, root_iocg->hweight_donating might still end up equal to
1981 	 * or greater than whole. Limit the range when calculating the divider.
1982 	 *
1983 	 * gamma = (1 - t_r') / (1 - t_r)
1984 	 */
1985 	gamma = DIV_ROUND_UP(
1986 		(WEIGHT_ONE - root_iocg->hweight_after_donation) * WEIGHT_ONE,
1987 		WEIGHT_ONE - min_t(u32, root_iocg->hweight_donating, WEIGHT_ONE - 1));
1988 
1989 	/*
1990 	 * Calculate adjusted hwi, child_adjusted_sum and inuse for the inner
1991 	 * nodes.
1992 	 */
1993 	list_for_each_entry(iocg, &inner_walk, walk_list) {
1994 		struct ioc_gq *parent;
1995 		u32 inuse, wpt, wptp;
1996 		u64 st, sf;
1997 
1998 		if (iocg->level == 0) {
1999 			/* adjusted weight sum for 1st level: s' = s * b_pf / b'_pf */
2000 			iocg->child_adjusted_sum = DIV64_U64_ROUND_UP(
2001 				iocg->child_active_sum * (WEIGHT_ONE - iocg->hweight_donating),
2002 				WEIGHT_ONE - iocg->hweight_after_donation);
2003 			continue;
2004 		}
2005 
2006 		parent = iocg->ancestors[iocg->level - 1];
2007 
2008 		/* b' = gamma * b_f + b_t' */
2009 		iocg->hweight_inuse = DIV64_U64_ROUND_UP(
2010 			(u64)gamma * (iocg->hweight_active - iocg->hweight_donating),
2011 			WEIGHT_ONE) + iocg->hweight_after_donation;
2012 
2013 		/* w' = s' * b' / b'_p */
2014 		inuse = DIV64_U64_ROUND_UP(
2015 			(u64)parent->child_adjusted_sum * iocg->hweight_inuse,
2016 			parent->hweight_inuse);
2017 
2018 		/* adjusted weight sum for children: s' = s_f + s_t * w'_pt / w_pt */
2019 		st = DIV64_U64_ROUND_UP(
2020 			iocg->child_active_sum * iocg->hweight_donating,
2021 			iocg->hweight_active);
2022 		sf = iocg->child_active_sum - st;
2023 		wpt = DIV64_U64_ROUND_UP(
2024 			(u64)iocg->active * iocg->hweight_donating,
2025 			iocg->hweight_active);
2026 		wptp = DIV64_U64_ROUND_UP(
2027 			(u64)inuse * iocg->hweight_after_donation,
2028 			iocg->hweight_inuse);
2029 
2030 		iocg->child_adjusted_sum = sf + DIV64_U64_ROUND_UP(st * wptp, wpt);
2031 	}
2032 
2033 	/*
2034 	 * All inner nodes now have ->hweight_inuse and ->child_adjusted_sum and
2035 	 * we can finally determine leaf adjustments.
2036 	 */
2037 	list_for_each_entry(iocg, surpluses, surplus_list) {
2038 		struct ioc_gq *parent = iocg->ancestors[iocg->level - 1];
2039 		u32 inuse;
2040 
2041 		/*
2042 		 * In-debt iocgs participated in the donation calculation with
2043 		 * the minimum target hweight_inuse. Configuring inuse
2044 		 * accordingly would work fine but debt handling expects
2045 		 * @iocg->inuse stay at the minimum and we don't wanna
2046 		 * interfere.
2047 		 */
2048 		if (iocg->abs_vdebt) {
2049 			WARN_ON_ONCE(iocg->inuse > 1);
2050 			continue;
2051 		}
2052 
2053 		/* w' = s' * b' / b'_p, note that b' == b'_t for donating leaves */
2054 		inuse = DIV64_U64_ROUND_UP(
2055 			parent->child_adjusted_sum * iocg->hweight_after_donation,
2056 			parent->hweight_inuse);
2057 
2058 		TRACE_IOCG_PATH(inuse_transfer, iocg, now,
2059 				iocg->inuse, inuse,
2060 				iocg->hweight_inuse,
2061 				iocg->hweight_after_donation);
2062 
2063 		__propagate_weights(iocg, iocg->active, inuse, true, now);
2064 	}
2065 
2066 	/* walk list should be dissolved after use */
2067 	list_for_each_entry_safe(iocg, tiocg, &inner_walk, walk_list)
2068 		list_del_init(&iocg->walk_list);
2069 }
2070 
2071 /*
2072  * A low weight iocg can amass a large amount of debt, for example, when
2073  * anonymous memory gets reclaimed aggressively. If the system has a lot of
2074  * memory paired with a slow IO device, the debt can span multiple seconds or
2075  * more. If there are no other subsequent IO issuers, the in-debt iocg may end
2076  * up blocked paying its debt while the IO device is idle.
2077  *
2078  * The following protects against such cases. If the device has been
2079  * sufficiently idle for a while, the debts are halved and delays are
2080  * recalculated.
2081  */
2082 static void ioc_forgive_debts(struct ioc *ioc, u64 usage_us_sum, int nr_debtors,
2083 			      struct ioc_now *now)
2084 {
2085 	struct ioc_gq *iocg;
2086 	u64 dur, usage_pct, nr_cycles, nr_cycles_shift;
2087 
2088 	/* if no debtor, reset the cycle */
2089 	if (!nr_debtors) {
2090 		ioc->dfgv_period_at = now->now;
2091 		ioc->dfgv_period_rem = 0;
2092 		ioc->dfgv_usage_us_sum = 0;
2093 		return;
2094 	}
2095 
2096 	/*
2097 	 * Debtors can pass through a lot of writes choking the device and we
2098 	 * don't want to be forgiving debts while the device is struggling from
2099 	 * write bursts. If we're missing latency targets, consider the device
2100 	 * fully utilized.
2101 	 */
2102 	if (ioc->busy_level > 0)
2103 		usage_us_sum = max_t(u64, usage_us_sum, ioc->period_us);
2104 
2105 	ioc->dfgv_usage_us_sum += usage_us_sum;
2106 	if (time_before64(now->now, ioc->dfgv_period_at + DFGV_PERIOD))
2107 		return;
2108 
2109 	/*
2110 	 * At least DFGV_PERIOD has passed since the last period. Calculate the
2111 	 * average usage and reset the period counters.
2112 	 */
2113 	dur = now->now - ioc->dfgv_period_at;
2114 	usage_pct = div64_u64(100 * ioc->dfgv_usage_us_sum, dur);
2115 
2116 	ioc->dfgv_period_at = now->now;
2117 	ioc->dfgv_usage_us_sum = 0;
2118 
2119 	/* if was too busy, reset everything */
2120 	if (usage_pct > DFGV_USAGE_PCT) {
2121 		ioc->dfgv_period_rem = 0;
2122 		return;
2123 	}
2124 
2125 	/*
2126 	 * Usage is lower than threshold. Let's forgive some debts. Debt
2127 	 * forgiveness runs off of the usual ioc timer but its period usually
2128 	 * doesn't match ioc's. Compensate the difference by performing the
2129 	 * reduction as many times as would fit in the duration since the last
2130 	 * run and carrying over the left-over duration in @ioc->dfgv_period_rem
2131 	 * - if ioc period is 75% of DFGV_PERIOD, one out of three consecutive
2132 	 * reductions is doubled.
2133 	 */
2134 	nr_cycles = dur + ioc->dfgv_period_rem;
2135 	ioc->dfgv_period_rem = do_div(nr_cycles, DFGV_PERIOD);
2136 
2137 	list_for_each_entry(iocg, &ioc->active_iocgs, active_list) {
2138 		u64 __maybe_unused old_debt, __maybe_unused old_delay;
2139 
2140 		if (!iocg->abs_vdebt && !iocg->delay)
2141 			continue;
2142 
2143 		spin_lock(&iocg->waitq.lock);
2144 
2145 		old_debt = iocg->abs_vdebt;
2146 		old_delay = iocg->delay;
2147 
2148 		nr_cycles_shift = min_t(u64, nr_cycles, BITS_PER_LONG - 1);
2149 		if (iocg->abs_vdebt)
2150 			iocg->abs_vdebt = iocg->abs_vdebt >> nr_cycles_shift ?: 1;
2151 
2152 		if (iocg->delay)
2153 			iocg->delay = iocg->delay >> nr_cycles_shift ?: 1;
2154 
2155 		iocg_kick_waitq(iocg, true, now);
2156 
2157 		TRACE_IOCG_PATH(iocg_forgive_debt, iocg, now, usage_pct,
2158 				old_debt, iocg->abs_vdebt,
2159 				old_delay, iocg->delay);
2160 
2161 		spin_unlock(&iocg->waitq.lock);
2162 	}
2163 }
2164 
2165 /*
2166  * Check the active iocgs' state to avoid oversleeping and deactive
2167  * idle iocgs.
2168  *
2169  * Since waiters determine the sleep durations based on the vrate
2170  * they saw at the time of sleep, if vrate has increased, some
2171  * waiters could be sleeping for too long. Wake up tardy waiters
2172  * which should have woken up in the last period and expire idle
2173  * iocgs.
2174  */
2175 static int ioc_check_iocgs(struct ioc *ioc, struct ioc_now *now)
2176 {
2177 	int nr_debtors = 0;
2178 	struct ioc_gq *iocg, *tiocg;
2179 
2180 	list_for_each_entry_safe(iocg, tiocg, &ioc->active_iocgs, active_list) {
2181 		if (!waitqueue_active(&iocg->waitq) && !iocg->abs_vdebt &&
2182 		    !iocg->delay && !iocg_is_idle(iocg))
2183 			continue;
2184 
2185 		spin_lock(&iocg->waitq.lock);
2186 
2187 		/* flush wait and indebt stat deltas */
2188 		if (iocg->wait_since) {
2189 			iocg->stat.wait_us += now->now - iocg->wait_since;
2190 			iocg->wait_since = now->now;
2191 		}
2192 		if (iocg->indebt_since) {
2193 			iocg->stat.indebt_us +=
2194 				now->now - iocg->indebt_since;
2195 			iocg->indebt_since = now->now;
2196 		}
2197 		if (iocg->indelay_since) {
2198 			iocg->stat.indelay_us +=
2199 				now->now - iocg->indelay_since;
2200 			iocg->indelay_since = now->now;
2201 		}
2202 
2203 		if (waitqueue_active(&iocg->waitq) || iocg->abs_vdebt ||
2204 		    iocg->delay) {
2205 			/* might be oversleeping vtime / hweight changes, kick */
2206 			iocg_kick_waitq(iocg, true, now);
2207 			if (iocg->abs_vdebt || iocg->delay)
2208 				nr_debtors++;
2209 		} else if (iocg_is_idle(iocg)) {
2210 			/* no waiter and idle, deactivate */
2211 			u64 vtime = atomic64_read(&iocg->vtime);
2212 			s64 excess;
2213 
2214 			/*
2215 			 * @iocg has been inactive for a full duration and will
2216 			 * have a high budget. Account anything above target as
2217 			 * error and throw away. On reactivation, it'll start
2218 			 * with the target budget.
2219 			 */
2220 			excess = now->vnow - vtime - ioc->margins.target;
2221 			if (excess > 0) {
2222 				u32 old_hwi;
2223 
2224 				current_hweight(iocg, NULL, &old_hwi);
2225 				ioc->vtime_err -= div64_u64(excess * old_hwi,
2226 							    WEIGHT_ONE);
2227 			}
2228 
2229 			TRACE_IOCG_PATH(iocg_idle, iocg, now,
2230 					atomic64_read(&iocg->active_period),
2231 					atomic64_read(&ioc->cur_period), vtime);
2232 			__propagate_weights(iocg, 0, 0, false, now);
2233 			list_del_init(&iocg->active_list);
2234 		}
2235 
2236 		spin_unlock(&iocg->waitq.lock);
2237 	}
2238 
2239 	commit_weights(ioc);
2240 	return nr_debtors;
2241 }
2242 
2243 static void ioc_timer_fn(struct timer_list *timer)
2244 {
2245 	struct ioc *ioc = container_of(timer, struct ioc, timer);
2246 	struct ioc_gq *iocg, *tiocg;
2247 	struct ioc_now now;
2248 	LIST_HEAD(surpluses);
2249 	int nr_debtors, nr_shortages = 0, nr_lagging = 0;
2250 	u64 usage_us_sum = 0;
2251 	u32 ppm_rthr;
2252 	u32 ppm_wthr;
2253 	u32 missed_ppm[2], rq_wait_pct;
2254 	u64 period_vtime;
2255 	int prev_busy_level;
2256 
2257 	/* how were the latencies during the period? */
2258 	ioc_lat_stat(ioc, missed_ppm, &rq_wait_pct);
2259 
2260 	/* take care of active iocgs */
2261 	spin_lock_irq(&ioc->lock);
2262 
2263 	ppm_rthr = MILLION - ioc->params.qos[QOS_RPPM];
2264 	ppm_wthr = MILLION - ioc->params.qos[QOS_WPPM];
2265 	ioc_now(ioc, &now);
2266 
2267 	period_vtime = now.vnow - ioc->period_at_vtime;
2268 	if (WARN_ON_ONCE(!period_vtime)) {
2269 		spin_unlock_irq(&ioc->lock);
2270 		return;
2271 	}
2272 
2273 	nr_debtors = ioc_check_iocgs(ioc, &now);
2274 
2275 	/*
2276 	 * Wait and indebt stat are flushed above and the donation calculation
2277 	 * below needs updated usage stat. Let's bring stat up-to-date.
2278 	 */
2279 	iocg_flush_stat(&ioc->active_iocgs, &now);
2280 
2281 	/* calc usage and see whether some weights need to be moved around */
2282 	list_for_each_entry(iocg, &ioc->active_iocgs, active_list) {
2283 		u64 vdone, vtime, usage_us;
2284 		u32 hw_active, hw_inuse;
2285 
2286 		/*
2287 		 * Collect unused and wind vtime closer to vnow to prevent
2288 		 * iocgs from accumulating a large amount of budget.
2289 		 */
2290 		vdone = atomic64_read(&iocg->done_vtime);
2291 		vtime = atomic64_read(&iocg->vtime);
2292 		current_hweight(iocg, &hw_active, &hw_inuse);
2293 
2294 		/*
2295 		 * Latency QoS detection doesn't account for IOs which are
2296 		 * in-flight for longer than a period.  Detect them by
2297 		 * comparing vdone against period start.  If lagging behind
2298 		 * IOs from past periods, don't increase vrate.
2299 		 */
2300 		if ((ppm_rthr != MILLION || ppm_wthr != MILLION) &&
2301 		    !atomic_read(&iocg_to_blkg(iocg)->use_delay) &&
2302 		    time_after64(vtime, vdone) &&
2303 		    time_after64(vtime, now.vnow -
2304 				 MAX_LAGGING_PERIODS * period_vtime) &&
2305 		    time_before64(vdone, now.vnow - period_vtime))
2306 			nr_lagging++;
2307 
2308 		/*
2309 		 * Determine absolute usage factoring in in-flight IOs to avoid
2310 		 * high-latency completions appearing as idle.
2311 		 */
2312 		usage_us = iocg->usage_delta_us;
2313 		usage_us_sum += usage_us;
2314 
2315 		/* see whether there's surplus vtime */
2316 		WARN_ON_ONCE(!list_empty(&iocg->surplus_list));
2317 		if (hw_inuse < hw_active ||
2318 		    (!waitqueue_active(&iocg->waitq) &&
2319 		     time_before64(vtime, now.vnow - ioc->margins.low))) {
2320 			u32 hwa, old_hwi, hwm, new_hwi, usage;
2321 			u64 usage_dur;
2322 
2323 			if (vdone != vtime) {
2324 				u64 inflight_us = DIV64_U64_ROUND_UP(
2325 					cost_to_abs_cost(vtime - vdone, hw_inuse),
2326 					ioc->vtime_base_rate);
2327 
2328 				usage_us = max(usage_us, inflight_us);
2329 			}
2330 
2331 			/* convert to hweight based usage ratio */
2332 			if (time_after64(iocg->activated_at, ioc->period_at))
2333 				usage_dur = max_t(u64, now.now - iocg->activated_at, 1);
2334 			else
2335 				usage_dur = max_t(u64, now.now - ioc->period_at, 1);
2336 
2337 			usage = clamp_t(u32,
2338 				DIV64_U64_ROUND_UP(usage_us * WEIGHT_ONE,
2339 						   usage_dur),
2340 				1, WEIGHT_ONE);
2341 
2342 			/*
2343 			 * Already donating or accumulated enough to start.
2344 			 * Determine the donation amount.
2345 			 */
2346 			current_hweight(iocg, &hwa, &old_hwi);
2347 			hwm = current_hweight_max(iocg);
2348 			new_hwi = hweight_after_donation(iocg, old_hwi, hwm,
2349 							 usage, &now);
2350 			/*
2351 			 * Donation calculation assumes hweight_after_donation
2352 			 * to be positive, a condition that a donor w/ hwa < 2
2353 			 * can't meet. Don't bother with donation if hwa is
2354 			 * below 2. It's not gonna make a meaningful difference
2355 			 * anyway.
2356 			 */
2357 			if (new_hwi < hwm && hwa >= 2) {
2358 				iocg->hweight_donating = hwa;
2359 				iocg->hweight_after_donation = new_hwi;
2360 				list_add(&iocg->surplus_list, &surpluses);
2361 			} else if (!iocg->abs_vdebt) {
2362 				/*
2363 				 * @iocg doesn't have enough to donate. Reset
2364 				 * its inuse to active.
2365 				 *
2366 				 * Don't reset debtors as their inuse's are
2367 				 * owned by debt handling. This shouldn't affect
2368 				 * donation calculuation in any meaningful way
2369 				 * as @iocg doesn't have a meaningful amount of
2370 				 * share anyway.
2371 				 */
2372 				TRACE_IOCG_PATH(inuse_shortage, iocg, &now,
2373 						iocg->inuse, iocg->active,
2374 						iocg->hweight_inuse, new_hwi);
2375 
2376 				__propagate_weights(iocg, iocg->active,
2377 						    iocg->active, true, &now);
2378 				nr_shortages++;
2379 			}
2380 		} else {
2381 			/* genuinely short on vtime */
2382 			nr_shortages++;
2383 		}
2384 	}
2385 
2386 	if (!list_empty(&surpluses) && nr_shortages)
2387 		transfer_surpluses(&surpluses, &now);
2388 
2389 	commit_weights(ioc);
2390 
2391 	/* surplus list should be dissolved after use */
2392 	list_for_each_entry_safe(iocg, tiocg, &surpluses, surplus_list)
2393 		list_del_init(&iocg->surplus_list);
2394 
2395 	/*
2396 	 * If q is getting clogged or we're missing too much, we're issuing
2397 	 * too much IO and should lower vtime rate.  If we're not missing
2398 	 * and experiencing shortages but not surpluses, we're too stingy
2399 	 * and should increase vtime rate.
2400 	 */
2401 	prev_busy_level = ioc->busy_level;
2402 	if (rq_wait_pct > RQ_WAIT_BUSY_PCT ||
2403 	    missed_ppm[READ] > ppm_rthr ||
2404 	    missed_ppm[WRITE] > ppm_wthr) {
2405 		/* clearly missing QoS targets, slow down vrate */
2406 		ioc->busy_level = max(ioc->busy_level, 0);
2407 		ioc->busy_level++;
2408 	} else if (rq_wait_pct <= RQ_WAIT_BUSY_PCT * UNBUSY_THR_PCT / 100 &&
2409 		   missed_ppm[READ] <= ppm_rthr * UNBUSY_THR_PCT / 100 &&
2410 		   missed_ppm[WRITE] <= ppm_wthr * UNBUSY_THR_PCT / 100) {
2411 		/* QoS targets are being met with >25% margin */
2412 		if (nr_shortages) {
2413 			/*
2414 			 * We're throttling while the device has spare
2415 			 * capacity.  If vrate was being slowed down, stop.
2416 			 */
2417 			ioc->busy_level = min(ioc->busy_level, 0);
2418 
2419 			/*
2420 			 * If there are IOs spanning multiple periods, wait
2421 			 * them out before pushing the device harder.
2422 			 */
2423 			if (!nr_lagging)
2424 				ioc->busy_level--;
2425 		} else {
2426 			/*
2427 			 * Nobody is being throttled and the users aren't
2428 			 * issuing enough IOs to saturate the device.  We
2429 			 * simply don't know how close the device is to
2430 			 * saturation.  Coast.
2431 			 */
2432 			ioc->busy_level = 0;
2433 		}
2434 	} else {
2435 		/* inside the hysterisis margin, we're good */
2436 		ioc->busy_level = 0;
2437 	}
2438 
2439 	ioc->busy_level = clamp(ioc->busy_level, -1000, 1000);
2440 
2441 	ioc_adjust_base_vrate(ioc, rq_wait_pct, nr_lagging, nr_shortages,
2442 			      prev_busy_level, missed_ppm);
2443 
2444 	ioc_refresh_params(ioc, false);
2445 
2446 	ioc_forgive_debts(ioc, usage_us_sum, nr_debtors, &now);
2447 
2448 	/*
2449 	 * This period is done.  Move onto the next one.  If nothing's
2450 	 * going on with the device, stop the timer.
2451 	 */
2452 	atomic64_inc(&ioc->cur_period);
2453 
2454 	if (ioc->running != IOC_STOP) {
2455 		if (!list_empty(&ioc->active_iocgs)) {
2456 			ioc_start_period(ioc, &now);
2457 		} else {
2458 			ioc->busy_level = 0;
2459 			ioc->vtime_err = 0;
2460 			ioc->running = IOC_IDLE;
2461 		}
2462 
2463 		ioc_refresh_vrate(ioc, &now);
2464 	}
2465 
2466 	spin_unlock_irq(&ioc->lock);
2467 }
2468 
2469 static u64 adjust_inuse_and_calc_cost(struct ioc_gq *iocg, u64 vtime,
2470 				      u64 abs_cost, struct ioc_now *now)
2471 {
2472 	struct ioc *ioc = iocg->ioc;
2473 	struct ioc_margins *margins = &ioc->margins;
2474 	u32 __maybe_unused old_inuse = iocg->inuse, __maybe_unused old_hwi;
2475 	u32 hwi, adj_step;
2476 	s64 margin;
2477 	u64 cost, new_inuse;
2478 	unsigned long flags;
2479 
2480 	current_hweight(iocg, NULL, &hwi);
2481 	old_hwi = hwi;
2482 	cost = abs_cost_to_cost(abs_cost, hwi);
2483 	margin = now->vnow - vtime - cost;
2484 
2485 	/* debt handling owns inuse for debtors */
2486 	if (iocg->abs_vdebt)
2487 		return cost;
2488 
2489 	/*
2490 	 * We only increase inuse during period and do so if the margin has
2491 	 * deteriorated since the previous adjustment.
2492 	 */
2493 	if (margin >= iocg->saved_margin || margin >= margins->low ||
2494 	    iocg->inuse == iocg->active)
2495 		return cost;
2496 
2497 	spin_lock_irqsave(&ioc->lock, flags);
2498 
2499 	/* we own inuse only when @iocg is in the normal active state */
2500 	if (iocg->abs_vdebt || list_empty(&iocg->active_list)) {
2501 		spin_unlock_irqrestore(&ioc->lock, flags);
2502 		return cost;
2503 	}
2504 
2505 	/*
2506 	 * Bump up inuse till @abs_cost fits in the existing budget.
2507 	 * adj_step must be determined after acquiring ioc->lock - we might
2508 	 * have raced and lost to another thread for activation and could
2509 	 * be reading 0 iocg->active before ioc->lock which will lead to
2510 	 * infinite loop.
2511 	 */
2512 	new_inuse = iocg->inuse;
2513 	adj_step = DIV_ROUND_UP(iocg->active * INUSE_ADJ_STEP_PCT, 100);
2514 	do {
2515 		new_inuse = new_inuse + adj_step;
2516 		propagate_weights(iocg, iocg->active, new_inuse, true, now);
2517 		current_hweight(iocg, NULL, &hwi);
2518 		cost = abs_cost_to_cost(abs_cost, hwi);
2519 	} while (time_after64(vtime + cost, now->vnow) &&
2520 		 iocg->inuse != iocg->active);
2521 
2522 	spin_unlock_irqrestore(&ioc->lock, flags);
2523 
2524 	TRACE_IOCG_PATH(inuse_adjust, iocg, now,
2525 			old_inuse, iocg->inuse, old_hwi, hwi);
2526 
2527 	return cost;
2528 }
2529 
2530 static void calc_vtime_cost_builtin(struct bio *bio, struct ioc_gq *iocg,
2531 				    bool is_merge, u64 *costp)
2532 {
2533 	struct ioc *ioc = iocg->ioc;
2534 	u64 coef_seqio, coef_randio, coef_page;
2535 	u64 pages = max_t(u64, bio_sectors(bio) >> IOC_SECT_TO_PAGE_SHIFT, 1);
2536 	u64 seek_pages = 0;
2537 	u64 cost = 0;
2538 
2539 	/* Can't calculate cost for empty bio */
2540 	if (!bio->bi_iter.bi_size)
2541 		goto out;
2542 
2543 	switch (bio_op(bio)) {
2544 	case REQ_OP_READ:
2545 		coef_seqio	= ioc->params.lcoefs[LCOEF_RSEQIO];
2546 		coef_randio	= ioc->params.lcoefs[LCOEF_RRANDIO];
2547 		coef_page	= ioc->params.lcoefs[LCOEF_RPAGE];
2548 		break;
2549 	case REQ_OP_WRITE:
2550 		coef_seqio	= ioc->params.lcoefs[LCOEF_WSEQIO];
2551 		coef_randio	= ioc->params.lcoefs[LCOEF_WRANDIO];
2552 		coef_page	= ioc->params.lcoefs[LCOEF_WPAGE];
2553 		break;
2554 	default:
2555 		goto out;
2556 	}
2557 
2558 	if (iocg->cursor) {
2559 		seek_pages = abs(bio->bi_iter.bi_sector - iocg->cursor);
2560 		seek_pages >>= IOC_SECT_TO_PAGE_SHIFT;
2561 	}
2562 
2563 	if (!is_merge) {
2564 		if (seek_pages > LCOEF_RANDIO_PAGES) {
2565 			cost += coef_randio;
2566 		} else {
2567 			cost += coef_seqio;
2568 		}
2569 	}
2570 	cost += pages * coef_page;
2571 out:
2572 	*costp = cost;
2573 }
2574 
2575 static u64 calc_vtime_cost(struct bio *bio, struct ioc_gq *iocg, bool is_merge)
2576 {
2577 	u64 cost;
2578 
2579 	calc_vtime_cost_builtin(bio, iocg, is_merge, &cost);
2580 	return cost;
2581 }
2582 
2583 static void calc_size_vtime_cost_builtin(struct request *rq, struct ioc *ioc,
2584 					 u64 *costp)
2585 {
2586 	unsigned int pages = blk_rq_stats_sectors(rq) >> IOC_SECT_TO_PAGE_SHIFT;
2587 
2588 	switch (req_op(rq)) {
2589 	case REQ_OP_READ:
2590 		*costp = pages * ioc->params.lcoefs[LCOEF_RPAGE];
2591 		break;
2592 	case REQ_OP_WRITE:
2593 		*costp = pages * ioc->params.lcoefs[LCOEF_WPAGE];
2594 		break;
2595 	default:
2596 		*costp = 0;
2597 	}
2598 }
2599 
2600 static u64 calc_size_vtime_cost(struct request *rq, struct ioc *ioc)
2601 {
2602 	u64 cost;
2603 
2604 	calc_size_vtime_cost_builtin(rq, ioc, &cost);
2605 	return cost;
2606 }
2607 
2608 static void ioc_rqos_throttle(struct rq_qos *rqos, struct bio *bio)
2609 {
2610 	struct blkcg_gq *blkg = bio->bi_blkg;
2611 	struct ioc *ioc = rqos_to_ioc(rqos);
2612 	struct ioc_gq *iocg = blkg_to_iocg(blkg);
2613 	struct ioc_now now;
2614 	struct iocg_wait wait;
2615 	u64 abs_cost, cost, vtime;
2616 	bool use_debt, ioc_locked;
2617 	unsigned long flags;
2618 
2619 	/* bypass IOs if disabled, still initializing, or for root cgroup */
2620 	if (!ioc->enabled || !iocg || !iocg->level)
2621 		return;
2622 
2623 	/* calculate the absolute vtime cost */
2624 	abs_cost = calc_vtime_cost(bio, iocg, false);
2625 	if (!abs_cost)
2626 		return;
2627 
2628 	if (!iocg_activate(iocg, &now))
2629 		return;
2630 
2631 	iocg->cursor = bio_end_sector(bio);
2632 	vtime = atomic64_read(&iocg->vtime);
2633 	cost = adjust_inuse_and_calc_cost(iocg, vtime, abs_cost, &now);
2634 
2635 	/*
2636 	 * If no one's waiting and within budget, issue right away.  The
2637 	 * tests are racy but the races aren't systemic - we only miss once
2638 	 * in a while which is fine.
2639 	 */
2640 	if (!waitqueue_active(&iocg->waitq) && !iocg->abs_vdebt &&
2641 	    time_before_eq64(vtime + cost, now.vnow)) {
2642 		iocg_commit_bio(iocg, bio, abs_cost, cost);
2643 		return;
2644 	}
2645 
2646 	/*
2647 	 * We're over budget. This can be handled in two ways. IOs which may
2648 	 * cause priority inversions are punted to @ioc->aux_iocg and charged as
2649 	 * debt. Otherwise, the issuer is blocked on @iocg->waitq. Debt handling
2650 	 * requires @ioc->lock, waitq handling @iocg->waitq.lock. Determine
2651 	 * whether debt handling is needed and acquire locks accordingly.
2652 	 */
2653 	use_debt = bio_issue_as_root_blkg(bio) || fatal_signal_pending(current);
2654 	ioc_locked = use_debt || READ_ONCE(iocg->abs_vdebt);
2655 retry_lock:
2656 	iocg_lock(iocg, ioc_locked, &flags);
2657 
2658 	/*
2659 	 * @iocg must stay activated for debt and waitq handling. Deactivation
2660 	 * is synchronized against both ioc->lock and waitq.lock and we won't
2661 	 * get deactivated as long as we're waiting or has debt, so we're good
2662 	 * if we're activated here. In the unlikely cases that we aren't, just
2663 	 * issue the IO.
2664 	 */
2665 	if (unlikely(list_empty(&iocg->active_list))) {
2666 		iocg_unlock(iocg, ioc_locked, &flags);
2667 		iocg_commit_bio(iocg, bio, abs_cost, cost);
2668 		return;
2669 	}
2670 
2671 	/*
2672 	 * We're over budget. If @bio has to be issued regardless, remember
2673 	 * the abs_cost instead of advancing vtime. iocg_kick_waitq() will pay
2674 	 * off the debt before waking more IOs.
2675 	 *
2676 	 * This way, the debt is continuously paid off each period with the
2677 	 * actual budget available to the cgroup. If we just wound vtime, we
2678 	 * would incorrectly use the current hw_inuse for the entire amount
2679 	 * which, for example, can lead to the cgroup staying blocked for a
2680 	 * long time even with substantially raised hw_inuse.
2681 	 *
2682 	 * An iocg with vdebt should stay online so that the timer can keep
2683 	 * deducting its vdebt and [de]activate use_delay mechanism
2684 	 * accordingly. We don't want to race against the timer trying to
2685 	 * clear them and leave @iocg inactive w/ dangling use_delay heavily
2686 	 * penalizing the cgroup and its descendants.
2687 	 */
2688 	if (use_debt) {
2689 		iocg_incur_debt(iocg, abs_cost, &now);
2690 		if (iocg_kick_delay(iocg, &now))
2691 			blkcg_schedule_throttle(rqos->disk,
2692 					(bio->bi_opf & REQ_SWAP) == REQ_SWAP);
2693 		iocg_unlock(iocg, ioc_locked, &flags);
2694 		return;
2695 	}
2696 
2697 	/* guarantee that iocgs w/ waiters have maximum inuse */
2698 	if (!iocg->abs_vdebt && iocg->inuse != iocg->active) {
2699 		if (!ioc_locked) {
2700 			iocg_unlock(iocg, false, &flags);
2701 			ioc_locked = true;
2702 			goto retry_lock;
2703 		}
2704 		propagate_weights(iocg, iocg->active, iocg->active, true,
2705 				  &now);
2706 	}
2707 
2708 	/*
2709 	 * Append self to the waitq and schedule the wakeup timer if we're
2710 	 * the first waiter.  The timer duration is calculated based on the
2711 	 * current vrate.  vtime and hweight changes can make it too short
2712 	 * or too long.  Each wait entry records the absolute cost it's
2713 	 * waiting for to allow re-evaluation using a custom wait entry.
2714 	 *
2715 	 * If too short, the timer simply reschedules itself.  If too long,
2716 	 * the period timer will notice and trigger wakeups.
2717 	 *
2718 	 * All waiters are on iocg->waitq and the wait states are
2719 	 * synchronized using waitq.lock.
2720 	 */
2721 	init_waitqueue_func_entry(&wait.wait, iocg_wake_fn);
2722 	wait.wait.private = current;
2723 	wait.bio = bio;
2724 	wait.abs_cost = abs_cost;
2725 	wait.committed = false;	/* will be set true by waker */
2726 
2727 	__add_wait_queue_entry_tail(&iocg->waitq, &wait.wait);
2728 	iocg_kick_waitq(iocg, ioc_locked, &now);
2729 
2730 	iocg_unlock(iocg, ioc_locked, &flags);
2731 
2732 	while (true) {
2733 		set_current_state(TASK_UNINTERRUPTIBLE);
2734 		if (wait.committed)
2735 			break;
2736 		io_schedule();
2737 	}
2738 
2739 	/* waker already committed us, proceed */
2740 	finish_wait(&iocg->waitq, &wait.wait);
2741 }
2742 
2743 static void ioc_rqos_merge(struct rq_qos *rqos, struct request *rq,
2744 			   struct bio *bio)
2745 {
2746 	struct ioc_gq *iocg = blkg_to_iocg(bio->bi_blkg);
2747 	struct ioc *ioc = rqos_to_ioc(rqos);
2748 	sector_t bio_end = bio_end_sector(bio);
2749 	struct ioc_now now;
2750 	u64 vtime, abs_cost, cost;
2751 	unsigned long flags;
2752 
2753 	/* bypass if disabled, still initializing, or for root cgroup */
2754 	if (!ioc->enabled || !iocg || !iocg->level)
2755 		return;
2756 
2757 	abs_cost = calc_vtime_cost(bio, iocg, true);
2758 	if (!abs_cost)
2759 		return;
2760 
2761 	ioc_now(ioc, &now);
2762 
2763 	vtime = atomic64_read(&iocg->vtime);
2764 	cost = adjust_inuse_and_calc_cost(iocg, vtime, abs_cost, &now);
2765 
2766 	/* update cursor if backmerging into the request at the cursor */
2767 	if (blk_rq_pos(rq) < bio_end &&
2768 	    blk_rq_pos(rq) + blk_rq_sectors(rq) == iocg->cursor)
2769 		iocg->cursor = bio_end;
2770 
2771 	/*
2772 	 * Charge if there's enough vtime budget and the existing request has
2773 	 * cost assigned.
2774 	 */
2775 	if (rq->bio && rq->bio->bi_iocost_cost &&
2776 	    time_before_eq64(atomic64_read(&iocg->vtime) + cost, now.vnow)) {
2777 		iocg_commit_bio(iocg, bio, abs_cost, cost);
2778 		return;
2779 	}
2780 
2781 	/*
2782 	 * Otherwise, account it as debt if @iocg is online, which it should
2783 	 * be for the vast majority of cases. See debt handling in
2784 	 * ioc_rqos_throttle() for details.
2785 	 */
2786 	spin_lock_irqsave(&ioc->lock, flags);
2787 	spin_lock(&iocg->waitq.lock);
2788 
2789 	if (likely(!list_empty(&iocg->active_list))) {
2790 		iocg_incur_debt(iocg, abs_cost, &now);
2791 		if (iocg_kick_delay(iocg, &now))
2792 			blkcg_schedule_throttle(rqos->disk,
2793 					(bio->bi_opf & REQ_SWAP) == REQ_SWAP);
2794 	} else {
2795 		iocg_commit_bio(iocg, bio, abs_cost, cost);
2796 	}
2797 
2798 	spin_unlock(&iocg->waitq.lock);
2799 	spin_unlock_irqrestore(&ioc->lock, flags);
2800 }
2801 
2802 static void ioc_rqos_done_bio(struct rq_qos *rqos, struct bio *bio)
2803 {
2804 	struct ioc_gq *iocg = blkg_to_iocg(bio->bi_blkg);
2805 
2806 	if (iocg && bio->bi_iocost_cost)
2807 		atomic64_add(bio->bi_iocost_cost, &iocg->done_vtime);
2808 }
2809 
2810 static void ioc_rqos_done(struct rq_qos *rqos, struct request *rq)
2811 {
2812 	struct ioc *ioc = rqos_to_ioc(rqos);
2813 	struct ioc_pcpu_stat *ccs;
2814 	u64 on_q_ns, rq_wait_ns, size_nsec;
2815 	int pidx, rw;
2816 
2817 	if (!ioc->enabled || !rq->alloc_time_ns || !rq->start_time_ns)
2818 		return;
2819 
2820 	switch (req_op(rq)) {
2821 	case REQ_OP_READ:
2822 		pidx = QOS_RLAT;
2823 		rw = READ;
2824 		break;
2825 	case REQ_OP_WRITE:
2826 		pidx = QOS_WLAT;
2827 		rw = WRITE;
2828 		break;
2829 	default:
2830 		return;
2831 	}
2832 
2833 	on_q_ns = blk_time_get_ns() - rq->alloc_time_ns;
2834 	rq_wait_ns = rq->start_time_ns - rq->alloc_time_ns;
2835 	size_nsec = div64_u64(calc_size_vtime_cost(rq, ioc), VTIME_PER_NSEC);
2836 
2837 	ccs = get_cpu_ptr(ioc->pcpu_stat);
2838 
2839 	if (on_q_ns <= size_nsec ||
2840 	    on_q_ns - size_nsec <= ioc->params.qos[pidx] * NSEC_PER_USEC)
2841 		local_inc(&ccs->missed[rw].nr_met);
2842 	else
2843 		local_inc(&ccs->missed[rw].nr_missed);
2844 
2845 	local64_add(rq_wait_ns, &ccs->rq_wait_ns);
2846 
2847 	put_cpu_ptr(ccs);
2848 }
2849 
2850 static void ioc_rqos_queue_depth_changed(struct rq_qos *rqos)
2851 {
2852 	struct ioc *ioc = rqos_to_ioc(rqos);
2853 
2854 	spin_lock_irq(&ioc->lock);
2855 	ioc_refresh_params(ioc, false);
2856 	spin_unlock_irq(&ioc->lock);
2857 }
2858 
2859 static void ioc_rqos_exit(struct rq_qos *rqos)
2860 {
2861 	struct ioc *ioc = rqos_to_ioc(rqos);
2862 
2863 	blkcg_deactivate_policy(rqos->disk, &blkcg_policy_iocost);
2864 
2865 	spin_lock_irq(&ioc->lock);
2866 	ioc->running = IOC_STOP;
2867 	spin_unlock_irq(&ioc->lock);
2868 
2869 	timer_shutdown_sync(&ioc->timer);
2870 	free_percpu(ioc->pcpu_stat);
2871 	kfree(ioc);
2872 }
2873 
2874 static const struct rq_qos_ops ioc_rqos_ops = {
2875 	.throttle = ioc_rqos_throttle,
2876 	.merge = ioc_rqos_merge,
2877 	.done_bio = ioc_rqos_done_bio,
2878 	.done = ioc_rqos_done,
2879 	.queue_depth_changed = ioc_rqos_queue_depth_changed,
2880 	.exit = ioc_rqos_exit,
2881 };
2882 
2883 static int blk_iocost_init(struct gendisk *disk)
2884 {
2885 	struct ioc *ioc;
2886 	int i, cpu, ret;
2887 
2888 	ioc = kzalloc(sizeof(*ioc), GFP_KERNEL);
2889 	if (!ioc)
2890 		return -ENOMEM;
2891 
2892 	ioc->pcpu_stat = alloc_percpu(struct ioc_pcpu_stat);
2893 	if (!ioc->pcpu_stat) {
2894 		kfree(ioc);
2895 		return -ENOMEM;
2896 	}
2897 
2898 	for_each_possible_cpu(cpu) {
2899 		struct ioc_pcpu_stat *ccs = per_cpu_ptr(ioc->pcpu_stat, cpu);
2900 
2901 		for (i = 0; i < ARRAY_SIZE(ccs->missed); i++) {
2902 			local_set(&ccs->missed[i].nr_met, 0);
2903 			local_set(&ccs->missed[i].nr_missed, 0);
2904 		}
2905 		local64_set(&ccs->rq_wait_ns, 0);
2906 	}
2907 
2908 	spin_lock_init(&ioc->lock);
2909 	timer_setup(&ioc->timer, ioc_timer_fn, 0);
2910 	INIT_LIST_HEAD(&ioc->active_iocgs);
2911 
2912 	ioc->running = IOC_IDLE;
2913 	ioc->vtime_base_rate = VTIME_PER_USEC;
2914 	atomic64_set(&ioc->vtime_rate, VTIME_PER_USEC);
2915 	seqcount_spinlock_init(&ioc->period_seqcount, &ioc->lock);
2916 	ioc->period_at = ktime_to_us(blk_time_get());
2917 	atomic64_set(&ioc->cur_period, 0);
2918 	atomic_set(&ioc->hweight_gen, 0);
2919 
2920 	spin_lock_irq(&ioc->lock);
2921 	ioc->autop_idx = AUTOP_INVALID;
2922 	ioc_refresh_params_disk(ioc, true, disk);
2923 	spin_unlock_irq(&ioc->lock);
2924 
2925 	/*
2926 	 * rqos must be added before activation to allow ioc_pd_init() to
2927 	 * lookup the ioc from q. This means that the rqos methods may get
2928 	 * called before policy activation completion, can't assume that the
2929 	 * target bio has an iocg associated and need to test for NULL iocg.
2930 	 */
2931 	ret = rq_qos_add(&ioc->rqos, disk, RQ_QOS_COST, &ioc_rqos_ops);
2932 	if (ret)
2933 		goto err_free_ioc;
2934 
2935 	ret = blkcg_activate_policy(disk, &blkcg_policy_iocost);
2936 	if (ret)
2937 		goto err_del_qos;
2938 	return 0;
2939 
2940 err_del_qos:
2941 	rq_qos_del(&ioc->rqos);
2942 err_free_ioc:
2943 	free_percpu(ioc->pcpu_stat);
2944 	kfree(ioc);
2945 	return ret;
2946 }
2947 
2948 static struct blkcg_policy_data *ioc_cpd_alloc(gfp_t gfp)
2949 {
2950 	struct ioc_cgrp *iocc;
2951 
2952 	iocc = kzalloc(sizeof(struct ioc_cgrp), gfp);
2953 	if (!iocc)
2954 		return NULL;
2955 
2956 	iocc->dfl_weight = CGROUP_WEIGHT_DFL * WEIGHT_ONE;
2957 	return &iocc->cpd;
2958 }
2959 
2960 static void ioc_cpd_free(struct blkcg_policy_data *cpd)
2961 {
2962 	kfree(container_of(cpd, struct ioc_cgrp, cpd));
2963 }
2964 
2965 static struct blkg_policy_data *ioc_pd_alloc(struct gendisk *disk,
2966 		struct blkcg *blkcg, gfp_t gfp)
2967 {
2968 	int levels = blkcg->css.cgroup->level + 1;
2969 	struct ioc_gq *iocg;
2970 
2971 	iocg = kzalloc_node(struct_size(iocg, ancestors, levels), gfp,
2972 			    disk->node_id);
2973 	if (!iocg)
2974 		return NULL;
2975 
2976 	iocg->pcpu_stat = alloc_percpu_gfp(struct iocg_pcpu_stat, gfp);
2977 	if (!iocg->pcpu_stat) {
2978 		kfree(iocg);
2979 		return NULL;
2980 	}
2981 
2982 	return &iocg->pd;
2983 }
2984 
2985 static void ioc_pd_init(struct blkg_policy_data *pd)
2986 {
2987 	struct ioc_gq *iocg = pd_to_iocg(pd);
2988 	struct blkcg_gq *blkg = pd_to_blkg(&iocg->pd);
2989 	struct ioc *ioc = q_to_ioc(blkg->q);
2990 	struct ioc_now now;
2991 	struct blkcg_gq *tblkg;
2992 	unsigned long flags;
2993 
2994 	ioc_now(ioc, &now);
2995 
2996 	iocg->ioc = ioc;
2997 	atomic64_set(&iocg->vtime, now.vnow);
2998 	atomic64_set(&iocg->done_vtime, now.vnow);
2999 	atomic64_set(&iocg->active_period, atomic64_read(&ioc->cur_period));
3000 	INIT_LIST_HEAD(&iocg->active_list);
3001 	INIT_LIST_HEAD(&iocg->walk_list);
3002 	INIT_LIST_HEAD(&iocg->surplus_list);
3003 	iocg->hweight_active = WEIGHT_ONE;
3004 	iocg->hweight_inuse = WEIGHT_ONE;
3005 
3006 	init_waitqueue_head(&iocg->waitq);
3007 	hrtimer_init(&iocg->waitq_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
3008 	iocg->waitq_timer.function = iocg_waitq_timer_fn;
3009 
3010 	iocg->level = blkg->blkcg->css.cgroup->level;
3011 
3012 	for (tblkg = blkg; tblkg; tblkg = tblkg->parent) {
3013 		struct ioc_gq *tiocg = blkg_to_iocg(tblkg);
3014 		iocg->ancestors[tiocg->level] = tiocg;
3015 	}
3016 
3017 	spin_lock_irqsave(&ioc->lock, flags);
3018 	weight_updated(iocg, &now);
3019 	spin_unlock_irqrestore(&ioc->lock, flags);
3020 }
3021 
3022 static void ioc_pd_free(struct blkg_policy_data *pd)
3023 {
3024 	struct ioc_gq *iocg = pd_to_iocg(pd);
3025 	struct ioc *ioc = iocg->ioc;
3026 	unsigned long flags;
3027 
3028 	if (ioc) {
3029 		spin_lock_irqsave(&ioc->lock, flags);
3030 
3031 		if (!list_empty(&iocg->active_list)) {
3032 			struct ioc_now now;
3033 
3034 			ioc_now(ioc, &now);
3035 			propagate_weights(iocg, 0, 0, false, &now);
3036 			list_del_init(&iocg->active_list);
3037 		}
3038 
3039 		WARN_ON_ONCE(!list_empty(&iocg->walk_list));
3040 		WARN_ON_ONCE(!list_empty(&iocg->surplus_list));
3041 
3042 		spin_unlock_irqrestore(&ioc->lock, flags);
3043 
3044 		hrtimer_cancel(&iocg->waitq_timer);
3045 	}
3046 	free_percpu(iocg->pcpu_stat);
3047 	kfree(iocg);
3048 }
3049 
3050 static void ioc_pd_stat(struct blkg_policy_data *pd, struct seq_file *s)
3051 {
3052 	struct ioc_gq *iocg = pd_to_iocg(pd);
3053 	struct ioc *ioc = iocg->ioc;
3054 
3055 	if (!ioc->enabled)
3056 		return;
3057 
3058 	if (iocg->level == 0) {
3059 		unsigned vp10k = DIV64_U64_ROUND_CLOSEST(
3060 			ioc->vtime_base_rate * 10000,
3061 			VTIME_PER_USEC);
3062 		seq_printf(s, " cost.vrate=%u.%02u", vp10k / 100, vp10k % 100);
3063 	}
3064 
3065 	seq_printf(s, " cost.usage=%llu", iocg->last_stat.usage_us);
3066 
3067 	if (blkcg_debug_stats)
3068 		seq_printf(s, " cost.wait=%llu cost.indebt=%llu cost.indelay=%llu",
3069 			iocg->last_stat.wait_us,
3070 			iocg->last_stat.indebt_us,
3071 			iocg->last_stat.indelay_us);
3072 }
3073 
3074 static u64 ioc_weight_prfill(struct seq_file *sf, struct blkg_policy_data *pd,
3075 			     int off)
3076 {
3077 	const char *dname = blkg_dev_name(pd->blkg);
3078 	struct ioc_gq *iocg = pd_to_iocg(pd);
3079 
3080 	if (dname && iocg->cfg_weight)
3081 		seq_printf(sf, "%s %u\n", dname, iocg->cfg_weight / WEIGHT_ONE);
3082 	return 0;
3083 }
3084 
3085 
3086 static int ioc_weight_show(struct seq_file *sf, void *v)
3087 {
3088 	struct blkcg *blkcg = css_to_blkcg(seq_css(sf));
3089 	struct ioc_cgrp *iocc = blkcg_to_iocc(blkcg);
3090 
3091 	seq_printf(sf, "default %u\n", iocc->dfl_weight / WEIGHT_ONE);
3092 	blkcg_print_blkgs(sf, blkcg, ioc_weight_prfill,
3093 			  &blkcg_policy_iocost, seq_cft(sf)->private, false);
3094 	return 0;
3095 }
3096 
3097 static ssize_t ioc_weight_write(struct kernfs_open_file *of, char *buf,
3098 				size_t nbytes, loff_t off)
3099 {
3100 	struct blkcg *blkcg = css_to_blkcg(of_css(of));
3101 	struct ioc_cgrp *iocc = blkcg_to_iocc(blkcg);
3102 	struct blkg_conf_ctx ctx;
3103 	struct ioc_now now;
3104 	struct ioc_gq *iocg;
3105 	u32 v;
3106 	int ret;
3107 
3108 	if (!strchr(buf, ':')) {
3109 		struct blkcg_gq *blkg;
3110 
3111 		if (!sscanf(buf, "default %u", &v) && !sscanf(buf, "%u", &v))
3112 			return -EINVAL;
3113 
3114 		if (v < CGROUP_WEIGHT_MIN || v > CGROUP_WEIGHT_MAX)
3115 			return -EINVAL;
3116 
3117 		spin_lock_irq(&blkcg->lock);
3118 		iocc->dfl_weight = v * WEIGHT_ONE;
3119 		hlist_for_each_entry(blkg, &blkcg->blkg_list, blkcg_node) {
3120 			struct ioc_gq *iocg = blkg_to_iocg(blkg);
3121 
3122 			if (iocg) {
3123 				spin_lock(&iocg->ioc->lock);
3124 				ioc_now(iocg->ioc, &now);
3125 				weight_updated(iocg, &now);
3126 				spin_unlock(&iocg->ioc->lock);
3127 			}
3128 		}
3129 		spin_unlock_irq(&blkcg->lock);
3130 
3131 		return nbytes;
3132 	}
3133 
3134 	blkg_conf_init(&ctx, buf);
3135 
3136 	ret = blkg_conf_prep(blkcg, &blkcg_policy_iocost, &ctx);
3137 	if (ret)
3138 		goto err;
3139 
3140 	iocg = blkg_to_iocg(ctx.blkg);
3141 
3142 	if (!strncmp(ctx.body, "default", 7)) {
3143 		v = 0;
3144 	} else {
3145 		if (!sscanf(ctx.body, "%u", &v))
3146 			goto einval;
3147 		if (v < CGROUP_WEIGHT_MIN || v > CGROUP_WEIGHT_MAX)
3148 			goto einval;
3149 	}
3150 
3151 	spin_lock(&iocg->ioc->lock);
3152 	iocg->cfg_weight = v * WEIGHT_ONE;
3153 	ioc_now(iocg->ioc, &now);
3154 	weight_updated(iocg, &now);
3155 	spin_unlock(&iocg->ioc->lock);
3156 
3157 	blkg_conf_exit(&ctx);
3158 	return nbytes;
3159 
3160 einval:
3161 	ret = -EINVAL;
3162 err:
3163 	blkg_conf_exit(&ctx);
3164 	return ret;
3165 }
3166 
3167 static u64 ioc_qos_prfill(struct seq_file *sf, struct blkg_policy_data *pd,
3168 			  int off)
3169 {
3170 	const char *dname = blkg_dev_name(pd->blkg);
3171 	struct ioc *ioc = pd_to_iocg(pd)->ioc;
3172 
3173 	if (!dname)
3174 		return 0;
3175 
3176 	spin_lock(&ioc->lock);
3177 	seq_printf(sf, "%s enable=%d ctrl=%s rpct=%u.%02u rlat=%u wpct=%u.%02u wlat=%u min=%u.%02u max=%u.%02u\n",
3178 		   dname, ioc->enabled, ioc->user_qos_params ? "user" : "auto",
3179 		   ioc->params.qos[QOS_RPPM] / 10000,
3180 		   ioc->params.qos[QOS_RPPM] % 10000 / 100,
3181 		   ioc->params.qos[QOS_RLAT],
3182 		   ioc->params.qos[QOS_WPPM] / 10000,
3183 		   ioc->params.qos[QOS_WPPM] % 10000 / 100,
3184 		   ioc->params.qos[QOS_WLAT],
3185 		   ioc->params.qos[QOS_MIN] / 10000,
3186 		   ioc->params.qos[QOS_MIN] % 10000 / 100,
3187 		   ioc->params.qos[QOS_MAX] / 10000,
3188 		   ioc->params.qos[QOS_MAX] % 10000 / 100);
3189 	spin_unlock(&ioc->lock);
3190 	return 0;
3191 }
3192 
3193 static int ioc_qos_show(struct seq_file *sf, void *v)
3194 {
3195 	struct blkcg *blkcg = css_to_blkcg(seq_css(sf));
3196 
3197 	blkcg_print_blkgs(sf, blkcg, ioc_qos_prfill,
3198 			  &blkcg_policy_iocost, seq_cft(sf)->private, false);
3199 	return 0;
3200 }
3201 
3202 static const match_table_t qos_ctrl_tokens = {
3203 	{ QOS_ENABLE,		"enable=%u"	},
3204 	{ QOS_CTRL,		"ctrl=%s"	},
3205 	{ NR_QOS_CTRL_PARAMS,	NULL		},
3206 };
3207 
3208 static const match_table_t qos_tokens = {
3209 	{ QOS_RPPM,		"rpct=%s"	},
3210 	{ QOS_RLAT,		"rlat=%u"	},
3211 	{ QOS_WPPM,		"wpct=%s"	},
3212 	{ QOS_WLAT,		"wlat=%u"	},
3213 	{ QOS_MIN,		"min=%s"	},
3214 	{ QOS_MAX,		"max=%s"	},
3215 	{ NR_QOS_PARAMS,	NULL		},
3216 };
3217 
3218 static ssize_t ioc_qos_write(struct kernfs_open_file *of, char *input,
3219 			     size_t nbytes, loff_t off)
3220 {
3221 	struct blkg_conf_ctx ctx;
3222 	struct gendisk *disk;
3223 	struct ioc *ioc;
3224 	u32 qos[NR_QOS_PARAMS];
3225 	bool enable, user;
3226 	char *body, *p;
3227 	int ret;
3228 
3229 	blkg_conf_init(&ctx, input);
3230 
3231 	ret = blkg_conf_open_bdev(&ctx);
3232 	if (ret)
3233 		goto err;
3234 
3235 	body = ctx.body;
3236 	disk = ctx.bdev->bd_disk;
3237 	if (!queue_is_mq(disk->queue)) {
3238 		ret = -EOPNOTSUPP;
3239 		goto err;
3240 	}
3241 
3242 	ioc = q_to_ioc(disk->queue);
3243 	if (!ioc) {
3244 		ret = blk_iocost_init(disk);
3245 		if (ret)
3246 			goto err;
3247 		ioc = q_to_ioc(disk->queue);
3248 	}
3249 
3250 	blk_mq_freeze_queue(disk->queue);
3251 	blk_mq_quiesce_queue(disk->queue);
3252 
3253 	spin_lock_irq(&ioc->lock);
3254 	memcpy(qos, ioc->params.qos, sizeof(qos));
3255 	enable = ioc->enabled;
3256 	user = ioc->user_qos_params;
3257 
3258 	while ((p = strsep(&body, " \t\n"))) {
3259 		substring_t args[MAX_OPT_ARGS];
3260 		char buf[32];
3261 		int tok;
3262 		s64 v;
3263 
3264 		if (!*p)
3265 			continue;
3266 
3267 		switch (match_token(p, qos_ctrl_tokens, args)) {
3268 		case QOS_ENABLE:
3269 			if (match_u64(&args[0], &v))
3270 				goto einval;
3271 			enable = v;
3272 			continue;
3273 		case QOS_CTRL:
3274 			match_strlcpy(buf, &args[0], sizeof(buf));
3275 			if (!strcmp(buf, "auto"))
3276 				user = false;
3277 			else if (!strcmp(buf, "user"))
3278 				user = true;
3279 			else
3280 				goto einval;
3281 			continue;
3282 		}
3283 
3284 		tok = match_token(p, qos_tokens, args);
3285 		switch (tok) {
3286 		case QOS_RPPM:
3287 		case QOS_WPPM:
3288 			if (match_strlcpy(buf, &args[0], sizeof(buf)) >=
3289 			    sizeof(buf))
3290 				goto einval;
3291 			if (cgroup_parse_float(buf, 2, &v))
3292 				goto einval;
3293 			if (v < 0 || v > 10000)
3294 				goto einval;
3295 			qos[tok] = v * 100;
3296 			break;
3297 		case QOS_RLAT:
3298 		case QOS_WLAT:
3299 			if (match_u64(&args[0], &v))
3300 				goto einval;
3301 			qos[tok] = v;
3302 			break;
3303 		case QOS_MIN:
3304 		case QOS_MAX:
3305 			if (match_strlcpy(buf, &args[0], sizeof(buf)) >=
3306 			    sizeof(buf))
3307 				goto einval;
3308 			if (cgroup_parse_float(buf, 2, &v))
3309 				goto einval;
3310 			if (v < 0)
3311 				goto einval;
3312 			qos[tok] = clamp_t(s64, v * 100,
3313 					   VRATE_MIN_PPM, VRATE_MAX_PPM);
3314 			break;
3315 		default:
3316 			goto einval;
3317 		}
3318 		user = true;
3319 	}
3320 
3321 	if (qos[QOS_MIN] > qos[QOS_MAX])
3322 		goto einval;
3323 
3324 	if (enable && !ioc->enabled) {
3325 		blk_stat_enable_accounting(disk->queue);
3326 		blk_queue_flag_set(QUEUE_FLAG_RQ_ALLOC_TIME, disk->queue);
3327 		ioc->enabled = true;
3328 	} else if (!enable && ioc->enabled) {
3329 		blk_stat_disable_accounting(disk->queue);
3330 		blk_queue_flag_clear(QUEUE_FLAG_RQ_ALLOC_TIME, disk->queue);
3331 		ioc->enabled = false;
3332 	}
3333 
3334 	if (user) {
3335 		memcpy(ioc->params.qos, qos, sizeof(qos));
3336 		ioc->user_qos_params = true;
3337 	} else {
3338 		ioc->user_qos_params = false;
3339 	}
3340 
3341 	ioc_refresh_params(ioc, true);
3342 	spin_unlock_irq(&ioc->lock);
3343 
3344 	if (enable)
3345 		wbt_disable_default(disk);
3346 	else
3347 		wbt_enable_default(disk);
3348 
3349 	blk_mq_unquiesce_queue(disk->queue);
3350 	blk_mq_unfreeze_queue(disk->queue);
3351 
3352 	blkg_conf_exit(&ctx);
3353 	return nbytes;
3354 einval:
3355 	spin_unlock_irq(&ioc->lock);
3356 
3357 	blk_mq_unquiesce_queue(disk->queue);
3358 	blk_mq_unfreeze_queue(disk->queue);
3359 
3360 	ret = -EINVAL;
3361 err:
3362 	blkg_conf_exit(&ctx);
3363 	return ret;
3364 }
3365 
3366 static u64 ioc_cost_model_prfill(struct seq_file *sf,
3367 				 struct blkg_policy_data *pd, int off)
3368 {
3369 	const char *dname = blkg_dev_name(pd->blkg);
3370 	struct ioc *ioc = pd_to_iocg(pd)->ioc;
3371 	u64 *u = ioc->params.i_lcoefs;
3372 
3373 	if (!dname)
3374 		return 0;
3375 
3376 	spin_lock(&ioc->lock);
3377 	seq_printf(sf, "%s ctrl=%s model=linear "
3378 		   "rbps=%llu rseqiops=%llu rrandiops=%llu "
3379 		   "wbps=%llu wseqiops=%llu wrandiops=%llu\n",
3380 		   dname, ioc->user_cost_model ? "user" : "auto",
3381 		   u[I_LCOEF_RBPS], u[I_LCOEF_RSEQIOPS], u[I_LCOEF_RRANDIOPS],
3382 		   u[I_LCOEF_WBPS], u[I_LCOEF_WSEQIOPS], u[I_LCOEF_WRANDIOPS]);
3383 	spin_unlock(&ioc->lock);
3384 	return 0;
3385 }
3386 
3387 static int ioc_cost_model_show(struct seq_file *sf, void *v)
3388 {
3389 	struct blkcg *blkcg = css_to_blkcg(seq_css(sf));
3390 
3391 	blkcg_print_blkgs(sf, blkcg, ioc_cost_model_prfill,
3392 			  &blkcg_policy_iocost, seq_cft(sf)->private, false);
3393 	return 0;
3394 }
3395 
3396 static const match_table_t cost_ctrl_tokens = {
3397 	{ COST_CTRL,		"ctrl=%s"	},
3398 	{ COST_MODEL,		"model=%s"	},
3399 	{ NR_COST_CTRL_PARAMS,	NULL		},
3400 };
3401 
3402 static const match_table_t i_lcoef_tokens = {
3403 	{ I_LCOEF_RBPS,		"rbps=%u"	},
3404 	{ I_LCOEF_RSEQIOPS,	"rseqiops=%u"	},
3405 	{ I_LCOEF_RRANDIOPS,	"rrandiops=%u"	},
3406 	{ I_LCOEF_WBPS,		"wbps=%u"	},
3407 	{ I_LCOEF_WSEQIOPS,	"wseqiops=%u"	},
3408 	{ I_LCOEF_WRANDIOPS,	"wrandiops=%u"	},
3409 	{ NR_I_LCOEFS,		NULL		},
3410 };
3411 
3412 static ssize_t ioc_cost_model_write(struct kernfs_open_file *of, char *input,
3413 				    size_t nbytes, loff_t off)
3414 {
3415 	struct blkg_conf_ctx ctx;
3416 	struct request_queue *q;
3417 	struct ioc *ioc;
3418 	u64 u[NR_I_LCOEFS];
3419 	bool user;
3420 	char *body, *p;
3421 	int ret;
3422 
3423 	blkg_conf_init(&ctx, input);
3424 
3425 	ret = blkg_conf_open_bdev(&ctx);
3426 	if (ret)
3427 		goto err;
3428 
3429 	body = ctx.body;
3430 	q = bdev_get_queue(ctx.bdev);
3431 	if (!queue_is_mq(q)) {
3432 		ret = -EOPNOTSUPP;
3433 		goto err;
3434 	}
3435 
3436 	ioc = q_to_ioc(q);
3437 	if (!ioc) {
3438 		ret = blk_iocost_init(ctx.bdev->bd_disk);
3439 		if (ret)
3440 			goto err;
3441 		ioc = q_to_ioc(q);
3442 	}
3443 
3444 	blk_mq_freeze_queue(q);
3445 	blk_mq_quiesce_queue(q);
3446 
3447 	spin_lock_irq(&ioc->lock);
3448 	memcpy(u, ioc->params.i_lcoefs, sizeof(u));
3449 	user = ioc->user_cost_model;
3450 
3451 	while ((p = strsep(&body, " \t\n"))) {
3452 		substring_t args[MAX_OPT_ARGS];
3453 		char buf[32];
3454 		int tok;
3455 		u64 v;
3456 
3457 		if (!*p)
3458 			continue;
3459 
3460 		switch (match_token(p, cost_ctrl_tokens, args)) {
3461 		case COST_CTRL:
3462 			match_strlcpy(buf, &args[0], sizeof(buf));
3463 			if (!strcmp(buf, "auto"))
3464 				user = false;
3465 			else if (!strcmp(buf, "user"))
3466 				user = true;
3467 			else
3468 				goto einval;
3469 			continue;
3470 		case COST_MODEL:
3471 			match_strlcpy(buf, &args[0], sizeof(buf));
3472 			if (strcmp(buf, "linear"))
3473 				goto einval;
3474 			continue;
3475 		}
3476 
3477 		tok = match_token(p, i_lcoef_tokens, args);
3478 		if (tok == NR_I_LCOEFS)
3479 			goto einval;
3480 		if (match_u64(&args[0], &v))
3481 			goto einval;
3482 		u[tok] = v;
3483 		user = true;
3484 	}
3485 
3486 	if (user) {
3487 		memcpy(ioc->params.i_lcoefs, u, sizeof(u));
3488 		ioc->user_cost_model = true;
3489 	} else {
3490 		ioc->user_cost_model = false;
3491 	}
3492 	ioc_refresh_params(ioc, true);
3493 	spin_unlock_irq(&ioc->lock);
3494 
3495 	blk_mq_unquiesce_queue(q);
3496 	blk_mq_unfreeze_queue(q);
3497 
3498 	blkg_conf_exit(&ctx);
3499 	return nbytes;
3500 
3501 einval:
3502 	spin_unlock_irq(&ioc->lock);
3503 
3504 	blk_mq_unquiesce_queue(q);
3505 	blk_mq_unfreeze_queue(q);
3506 
3507 	ret = -EINVAL;
3508 err:
3509 	blkg_conf_exit(&ctx);
3510 	return ret;
3511 }
3512 
3513 static struct cftype ioc_files[] = {
3514 	{
3515 		.name = "weight",
3516 		.flags = CFTYPE_NOT_ON_ROOT,
3517 		.seq_show = ioc_weight_show,
3518 		.write = ioc_weight_write,
3519 	},
3520 	{
3521 		.name = "cost.qos",
3522 		.flags = CFTYPE_ONLY_ON_ROOT,
3523 		.seq_show = ioc_qos_show,
3524 		.write = ioc_qos_write,
3525 	},
3526 	{
3527 		.name = "cost.model",
3528 		.flags = CFTYPE_ONLY_ON_ROOT,
3529 		.seq_show = ioc_cost_model_show,
3530 		.write = ioc_cost_model_write,
3531 	},
3532 	{}
3533 };
3534 
3535 static struct blkcg_policy blkcg_policy_iocost = {
3536 	.dfl_cftypes	= ioc_files,
3537 	.cpd_alloc_fn	= ioc_cpd_alloc,
3538 	.cpd_free_fn	= ioc_cpd_free,
3539 	.pd_alloc_fn	= ioc_pd_alloc,
3540 	.pd_init_fn	= ioc_pd_init,
3541 	.pd_free_fn	= ioc_pd_free,
3542 	.pd_stat_fn	= ioc_pd_stat,
3543 };
3544 
3545 static int __init ioc_init(void)
3546 {
3547 	return blkcg_policy_register(&blkcg_policy_iocost);
3548 }
3549 
3550 static void __exit ioc_exit(void)
3551 {
3552 	blkcg_policy_unregister(&blkcg_policy_iocost);
3553 }
3554 
3555 module_init(ioc_init);
3556 module_exit(ioc_exit);
3557