xref: /linux/block/blk-iocost.c (revision 87c9c16317882dd6dbbc07e349bc3223e14f3244)
1 /* SPDX-License-Identifier: GPL-2.0
2  *
3  * IO cost model based controller.
4  *
5  * Copyright (C) 2019 Tejun Heo <tj@kernel.org>
6  * Copyright (C) 2019 Andy Newell <newella@fb.com>
7  * Copyright (C) 2019 Facebook
8  *
9  * One challenge of controlling IO resources is the lack of trivially
10  * observable cost metric.  This is distinguished from CPU and memory where
11  * wallclock time and the number of bytes can serve as accurate enough
12  * approximations.
13  *
14  * Bandwidth and iops are the most commonly used metrics for IO devices but
15  * depending on the type and specifics of the device, different IO patterns
16  * easily lead to multiple orders of magnitude variations rendering them
17  * useless for the purpose of IO capacity distribution.  While on-device
18  * time, with a lot of clutches, could serve as a useful approximation for
19  * non-queued rotational devices, this is no longer viable with modern
20  * devices, even the rotational ones.
21  *
22  * While there is no cost metric we can trivially observe, it isn't a
23  * complete mystery.  For example, on a rotational device, seek cost
24  * dominates while a contiguous transfer contributes a smaller amount
25  * proportional to the size.  If we can characterize at least the relative
26  * costs of these different types of IOs, it should be possible to
27  * implement a reasonable work-conserving proportional IO resource
28  * distribution.
29  *
30  * 1. IO Cost Model
31  *
32  * IO cost model estimates the cost of an IO given its basic parameters and
33  * history (e.g. the end sector of the last IO).  The cost is measured in
34  * device time.  If a given IO is estimated to cost 10ms, the device should
35  * be able to process ~100 of those IOs in a second.
36  *
37  * Currently, there's only one builtin cost model - linear.  Each IO is
38  * classified as sequential or random and given a base cost accordingly.
39  * On top of that, a size cost proportional to the length of the IO is
40  * added.  While simple, this model captures the operational
41  * characteristics of a wide varienty of devices well enough.  Default
42  * parameters for several different classes of devices are provided and the
43  * parameters can be configured from userspace via
44  * /sys/fs/cgroup/io.cost.model.
45  *
46  * If needed, tools/cgroup/iocost_coef_gen.py can be used to generate
47  * device-specific coefficients.
48  *
49  * 2. Control Strategy
50  *
51  * The device virtual time (vtime) is used as the primary control metric.
52  * The control strategy is composed of the following three parts.
53  *
54  * 2-1. Vtime Distribution
55  *
56  * When a cgroup becomes active in terms of IOs, its hierarchical share is
57  * calculated.  Please consider the following hierarchy where the numbers
58  * inside parentheses denote the configured weights.
59  *
60  *           root
61  *         /       \
62  *      A (w:100)  B (w:300)
63  *      /       \
64  *  A0 (w:100)  A1 (w:100)
65  *
66  * If B is idle and only A0 and A1 are actively issuing IOs, as the two are
67  * of equal weight, each gets 50% share.  If then B starts issuing IOs, B
68  * gets 300/(100+300) or 75% share, and A0 and A1 equally splits the rest,
69  * 12.5% each.  The distribution mechanism only cares about these flattened
70  * shares.  They're called hweights (hierarchical weights) and always add
71  * upto 1 (WEIGHT_ONE).
72  *
73  * A given cgroup's vtime runs slower in inverse proportion to its hweight.
74  * For example, with 12.5% weight, A0's time runs 8 times slower (100/12.5)
75  * against the device vtime - an IO which takes 10ms on the underlying
76  * device is considered to take 80ms on A0.
77  *
78  * This constitutes the basis of IO capacity distribution.  Each cgroup's
79  * vtime is running at a rate determined by its hweight.  A cgroup tracks
80  * the vtime consumed by past IOs and can issue a new IO if doing so
81  * wouldn't outrun the current device vtime.  Otherwise, the IO is
82  * suspended until the vtime has progressed enough to cover it.
83  *
84  * 2-2. Vrate Adjustment
85  *
86  * It's unrealistic to expect the cost model to be perfect.  There are too
87  * many devices and even on the same device the overall performance
88  * fluctuates depending on numerous factors such as IO mixture and device
89  * internal garbage collection.  The controller needs to adapt dynamically.
90  *
91  * This is achieved by adjusting the overall IO rate according to how busy
92  * the device is.  If the device becomes overloaded, we're sending down too
93  * many IOs and should generally slow down.  If there are waiting issuers
94  * but the device isn't saturated, we're issuing too few and should
95  * generally speed up.
96  *
97  * To slow down, we lower the vrate - the rate at which the device vtime
98  * passes compared to the wall clock.  For example, if the vtime is running
99  * at the vrate of 75%, all cgroups added up would only be able to issue
100  * 750ms worth of IOs per second, and vice-versa for speeding up.
101  *
102  * Device business is determined using two criteria - rq wait and
103  * completion latencies.
104  *
105  * When a device gets saturated, the on-device and then the request queues
106  * fill up and a bio which is ready to be issued has to wait for a request
107  * to become available.  When this delay becomes noticeable, it's a clear
108  * indication that the device is saturated and we lower the vrate.  This
109  * saturation signal is fairly conservative as it only triggers when both
110  * hardware and software queues are filled up, and is used as the default
111  * busy signal.
112  *
113  * As devices can have deep queues and be unfair in how the queued commands
114  * are executed, soley depending on rq wait may not result in satisfactory
115  * control quality.  For a better control quality, completion latency QoS
116  * parameters can be configured so that the device is considered saturated
117  * if N'th percentile completion latency rises above the set point.
118  *
119  * The completion latency requirements are a function of both the
120  * underlying device characteristics and the desired IO latency quality of
121  * service.  There is an inherent trade-off - the tighter the latency QoS,
122  * the higher the bandwidth lossage.  Latency QoS is disabled by default
123  * and can be set through /sys/fs/cgroup/io.cost.qos.
124  *
125  * 2-3. Work Conservation
126  *
127  * Imagine two cgroups A and B with equal weights.  A is issuing a small IO
128  * periodically while B is sending out enough parallel IOs to saturate the
129  * device on its own.  Let's say A's usage amounts to 100ms worth of IO
130  * cost per second, i.e., 10% of the device capacity.  The naive
131  * distribution of half and half would lead to 60% utilization of the
132  * device, a significant reduction in the total amount of work done
133  * compared to free-for-all competition.  This is too high a cost to pay
134  * for IO control.
135  *
136  * To conserve the total amount of work done, we keep track of how much
137  * each active cgroup is actually using and yield part of its weight if
138  * there are other cgroups which can make use of it.  In the above case,
139  * A's weight will be lowered so that it hovers above the actual usage and
140  * B would be able to use the rest.
141  *
142  * As we don't want to penalize a cgroup for donating its weight, the
143  * surplus weight adjustment factors in a margin and has an immediate
144  * snapback mechanism in case the cgroup needs more IO vtime for itself.
145  *
146  * Note that adjusting down surplus weights has the same effects as
147  * accelerating vtime for other cgroups and work conservation can also be
148  * implemented by adjusting vrate dynamically.  However, squaring who can
149  * donate and should take back how much requires hweight propagations
150  * anyway making it easier to implement and understand as a separate
151  * mechanism.
152  *
153  * 3. Monitoring
154  *
155  * Instead of debugfs or other clumsy monitoring mechanisms, this
156  * controller uses a drgn based monitoring script -
157  * tools/cgroup/iocost_monitor.py.  For details on drgn, please see
158  * https://github.com/osandov/drgn.  The output looks like the following.
159  *
160  *  sdb RUN   per=300ms cur_per=234.218:v203.695 busy= +1 vrate= 62.12%
161  *                 active      weight      hweight% inflt% dbt  delay usages%
162  *  test/a              *    50/   50  33.33/ 33.33  27.65   2  0*041 033:033:033
163  *  test/b              *   100/  100  66.67/ 66.67  17.56   0  0*000 066:079:077
164  *
165  * - per	: Timer period
166  * - cur_per	: Internal wall and device vtime clock
167  * - vrate	: Device virtual time rate against wall clock
168  * - weight	: Surplus-adjusted and configured weights
169  * - hweight	: Surplus-adjusted and configured hierarchical weights
170  * - inflt	: The percentage of in-flight IO cost at the end of last period
171  * - del_ms	: Deferred issuer delay induction level and duration
172  * - usages	: Usage history
173  */
174 
175 #include <linux/kernel.h>
176 #include <linux/module.h>
177 #include <linux/timer.h>
178 #include <linux/time64.h>
179 #include <linux/parser.h>
180 #include <linux/sched/signal.h>
181 #include <linux/blk-cgroup.h>
182 #include <asm/local.h>
183 #include <asm/local64.h>
184 #include "blk-rq-qos.h"
185 #include "blk-stat.h"
186 #include "blk-wbt.h"
187 
188 #ifdef CONFIG_TRACEPOINTS
189 
190 /* copied from TRACE_CGROUP_PATH, see cgroup-internal.h */
191 #define TRACE_IOCG_PATH_LEN 1024
192 static DEFINE_SPINLOCK(trace_iocg_path_lock);
193 static char trace_iocg_path[TRACE_IOCG_PATH_LEN];
194 
195 #define TRACE_IOCG_PATH(type, iocg, ...)					\
196 	do {									\
197 		unsigned long flags;						\
198 		if (trace_iocost_##type##_enabled()) {				\
199 			spin_lock_irqsave(&trace_iocg_path_lock, flags);	\
200 			cgroup_path(iocg_to_blkg(iocg)->blkcg->css.cgroup,	\
201 				    trace_iocg_path, TRACE_IOCG_PATH_LEN);	\
202 			trace_iocost_##type(iocg, trace_iocg_path,		\
203 					      ##__VA_ARGS__);			\
204 			spin_unlock_irqrestore(&trace_iocg_path_lock, flags);	\
205 		}								\
206 	} while (0)
207 
208 #else	/* CONFIG_TRACE_POINTS */
209 #define TRACE_IOCG_PATH(type, iocg, ...)	do { } while (0)
210 #endif	/* CONFIG_TRACE_POINTS */
211 
212 enum {
213 	MILLION			= 1000000,
214 
215 	/* timer period is calculated from latency requirements, bound it */
216 	MIN_PERIOD		= USEC_PER_MSEC,
217 	MAX_PERIOD		= USEC_PER_SEC,
218 
219 	/*
220 	 * iocg->vtime is targeted at 50% behind the device vtime, which
221 	 * serves as its IO credit buffer.  Surplus weight adjustment is
222 	 * immediately canceled if the vtime margin runs below 10%.
223 	 */
224 	MARGIN_MIN_PCT		= 10,
225 	MARGIN_LOW_PCT		= 20,
226 	MARGIN_TARGET_PCT	= 50,
227 
228 	INUSE_ADJ_STEP_PCT	= 25,
229 
230 	/* Have some play in timer operations */
231 	TIMER_SLACK_PCT		= 1,
232 
233 	/* 1/64k is granular enough and can easily be handled w/ u32 */
234 	WEIGHT_ONE		= 1 << 16,
235 
236 	/*
237 	 * As vtime is used to calculate the cost of each IO, it needs to
238 	 * be fairly high precision.  For example, it should be able to
239 	 * represent the cost of a single page worth of discard with
240 	 * suffificient accuracy.  At the same time, it should be able to
241 	 * represent reasonably long enough durations to be useful and
242 	 * convenient during operation.
243 	 *
244 	 * 1s worth of vtime is 2^37.  This gives us both sub-nanosecond
245 	 * granularity and days of wrap-around time even at extreme vrates.
246 	 */
247 	VTIME_PER_SEC_SHIFT	= 37,
248 	VTIME_PER_SEC		= 1LLU << VTIME_PER_SEC_SHIFT,
249 	VTIME_PER_USEC		= VTIME_PER_SEC / USEC_PER_SEC,
250 	VTIME_PER_NSEC		= VTIME_PER_SEC / NSEC_PER_SEC,
251 
252 	/* bound vrate adjustments within two orders of magnitude */
253 	VRATE_MIN_PPM		= 10000,	/* 1% */
254 	VRATE_MAX_PPM		= 100000000,	/* 10000% */
255 
256 	VRATE_MIN		= VTIME_PER_USEC * VRATE_MIN_PPM / MILLION,
257 	VRATE_CLAMP_ADJ_PCT	= 4,
258 
259 	/* if IOs end up waiting for requests, issue less */
260 	RQ_WAIT_BUSY_PCT	= 5,
261 
262 	/* unbusy hysterisis */
263 	UNBUSY_THR_PCT		= 75,
264 
265 	/*
266 	 * The effect of delay is indirect and non-linear and a huge amount of
267 	 * future debt can accumulate abruptly while unthrottled. Linearly scale
268 	 * up delay as debt is going up and then let it decay exponentially.
269 	 * This gives us quick ramp ups while delay is accumulating and long
270 	 * tails which can help reducing the frequency of debt explosions on
271 	 * unthrottle. The parameters are experimentally determined.
272 	 *
273 	 * The delay mechanism provides adequate protection and behavior in many
274 	 * cases. However, this is far from ideal and falls shorts on both
275 	 * fronts. The debtors are often throttled too harshly costing a
276 	 * significant level of fairness and possibly total work while the
277 	 * protection against their impacts on the system can be choppy and
278 	 * unreliable.
279 	 *
280 	 * The shortcoming primarily stems from the fact that, unlike for page
281 	 * cache, the kernel doesn't have well-defined back-pressure propagation
282 	 * mechanism and policies for anonymous memory. Fully addressing this
283 	 * issue will likely require substantial improvements in the area.
284 	 */
285 	MIN_DELAY_THR_PCT	= 500,
286 	MAX_DELAY_THR_PCT	= 25000,
287 	MIN_DELAY		= 250,
288 	MAX_DELAY		= 250 * USEC_PER_MSEC,
289 
290 	/* halve debts if avg usage over 100ms is under 50% */
291 	DFGV_USAGE_PCT		= 50,
292 	DFGV_PERIOD		= 100 * USEC_PER_MSEC,
293 
294 	/* don't let cmds which take a very long time pin lagging for too long */
295 	MAX_LAGGING_PERIODS	= 10,
296 
297 	/* switch iff the conditions are met for longer than this */
298 	AUTOP_CYCLE_NSEC	= 10LLU * NSEC_PER_SEC,
299 
300 	/*
301 	 * Count IO size in 4k pages.  The 12bit shift helps keeping
302 	 * size-proportional components of cost calculation in closer
303 	 * numbers of digits to per-IO cost components.
304 	 */
305 	IOC_PAGE_SHIFT		= 12,
306 	IOC_PAGE_SIZE		= 1 << IOC_PAGE_SHIFT,
307 	IOC_SECT_TO_PAGE_SHIFT	= IOC_PAGE_SHIFT - SECTOR_SHIFT,
308 
309 	/* if apart further than 16M, consider randio for linear model */
310 	LCOEF_RANDIO_PAGES	= 4096,
311 };
312 
313 enum ioc_running {
314 	IOC_IDLE,
315 	IOC_RUNNING,
316 	IOC_STOP,
317 };
318 
319 /* io.cost.qos controls including per-dev enable of the whole controller */
320 enum {
321 	QOS_ENABLE,
322 	QOS_CTRL,
323 	NR_QOS_CTRL_PARAMS,
324 };
325 
326 /* io.cost.qos params */
327 enum {
328 	QOS_RPPM,
329 	QOS_RLAT,
330 	QOS_WPPM,
331 	QOS_WLAT,
332 	QOS_MIN,
333 	QOS_MAX,
334 	NR_QOS_PARAMS,
335 };
336 
337 /* io.cost.model controls */
338 enum {
339 	COST_CTRL,
340 	COST_MODEL,
341 	NR_COST_CTRL_PARAMS,
342 };
343 
344 /* builtin linear cost model coefficients */
345 enum {
346 	I_LCOEF_RBPS,
347 	I_LCOEF_RSEQIOPS,
348 	I_LCOEF_RRANDIOPS,
349 	I_LCOEF_WBPS,
350 	I_LCOEF_WSEQIOPS,
351 	I_LCOEF_WRANDIOPS,
352 	NR_I_LCOEFS,
353 };
354 
355 enum {
356 	LCOEF_RPAGE,
357 	LCOEF_RSEQIO,
358 	LCOEF_RRANDIO,
359 	LCOEF_WPAGE,
360 	LCOEF_WSEQIO,
361 	LCOEF_WRANDIO,
362 	NR_LCOEFS,
363 };
364 
365 enum {
366 	AUTOP_INVALID,
367 	AUTOP_HDD,
368 	AUTOP_SSD_QD1,
369 	AUTOP_SSD_DFL,
370 	AUTOP_SSD_FAST,
371 };
372 
373 struct ioc_params {
374 	u32				qos[NR_QOS_PARAMS];
375 	u64				i_lcoefs[NR_I_LCOEFS];
376 	u64				lcoefs[NR_LCOEFS];
377 	u32				too_fast_vrate_pct;
378 	u32				too_slow_vrate_pct;
379 };
380 
381 struct ioc_margins {
382 	s64				min;
383 	s64				low;
384 	s64				target;
385 };
386 
387 struct ioc_missed {
388 	local_t				nr_met;
389 	local_t				nr_missed;
390 	u32				last_met;
391 	u32				last_missed;
392 };
393 
394 struct ioc_pcpu_stat {
395 	struct ioc_missed		missed[2];
396 
397 	local64_t			rq_wait_ns;
398 	u64				last_rq_wait_ns;
399 };
400 
401 /* per device */
402 struct ioc {
403 	struct rq_qos			rqos;
404 
405 	bool				enabled;
406 
407 	struct ioc_params		params;
408 	struct ioc_margins		margins;
409 	u32				period_us;
410 	u32				timer_slack_ns;
411 	u64				vrate_min;
412 	u64				vrate_max;
413 
414 	spinlock_t			lock;
415 	struct timer_list		timer;
416 	struct list_head		active_iocgs;	/* active cgroups */
417 	struct ioc_pcpu_stat __percpu	*pcpu_stat;
418 
419 	enum ioc_running		running;
420 	atomic64_t			vtime_rate;
421 	u64				vtime_base_rate;
422 	s64				vtime_err;
423 
424 	seqcount_spinlock_t		period_seqcount;
425 	u64				period_at;	/* wallclock starttime */
426 	u64				period_at_vtime; /* vtime starttime */
427 
428 	atomic64_t			cur_period;	/* inc'd each period */
429 	int				busy_level;	/* saturation history */
430 
431 	bool				weights_updated;
432 	atomic_t			hweight_gen;	/* for lazy hweights */
433 
434 	/* debt forgivness */
435 	u64				dfgv_period_at;
436 	u64				dfgv_period_rem;
437 	u64				dfgv_usage_us_sum;
438 
439 	u64				autop_too_fast_at;
440 	u64				autop_too_slow_at;
441 	int				autop_idx;
442 	bool				user_qos_params:1;
443 	bool				user_cost_model:1;
444 };
445 
446 struct iocg_pcpu_stat {
447 	local64_t			abs_vusage;
448 };
449 
450 struct iocg_stat {
451 	u64				usage_us;
452 	u64				wait_us;
453 	u64				indebt_us;
454 	u64				indelay_us;
455 };
456 
457 /* per device-cgroup pair */
458 struct ioc_gq {
459 	struct blkg_policy_data		pd;
460 	struct ioc			*ioc;
461 
462 	/*
463 	 * A iocg can get its weight from two sources - an explicit
464 	 * per-device-cgroup configuration or the default weight of the
465 	 * cgroup.  `cfg_weight` is the explicit per-device-cgroup
466 	 * configuration.  `weight` is the effective considering both
467 	 * sources.
468 	 *
469 	 * When an idle cgroup becomes active its `active` goes from 0 to
470 	 * `weight`.  `inuse` is the surplus adjusted active weight.
471 	 * `active` and `inuse` are used to calculate `hweight_active` and
472 	 * `hweight_inuse`.
473 	 *
474 	 * `last_inuse` remembers `inuse` while an iocg is idle to persist
475 	 * surplus adjustments.
476 	 *
477 	 * `inuse` may be adjusted dynamically during period. `saved_*` are used
478 	 * to determine and track adjustments.
479 	 */
480 	u32				cfg_weight;
481 	u32				weight;
482 	u32				active;
483 	u32				inuse;
484 
485 	u32				last_inuse;
486 	s64				saved_margin;
487 
488 	sector_t			cursor;		/* to detect randio */
489 
490 	/*
491 	 * `vtime` is this iocg's vtime cursor which progresses as IOs are
492 	 * issued.  If lagging behind device vtime, the delta represents
493 	 * the currently available IO budget.  If running ahead, the
494 	 * overage.
495 	 *
496 	 * `vtime_done` is the same but progressed on completion rather
497 	 * than issue.  The delta behind `vtime` represents the cost of
498 	 * currently in-flight IOs.
499 	 */
500 	atomic64_t			vtime;
501 	atomic64_t			done_vtime;
502 	u64				abs_vdebt;
503 
504 	/* current delay in effect and when it started */
505 	u64				delay;
506 	u64				delay_at;
507 
508 	/*
509 	 * The period this iocg was last active in.  Used for deactivation
510 	 * and invalidating `vtime`.
511 	 */
512 	atomic64_t			active_period;
513 	struct list_head		active_list;
514 
515 	/* see __propagate_weights() and current_hweight() for details */
516 	u64				child_active_sum;
517 	u64				child_inuse_sum;
518 	u64				child_adjusted_sum;
519 	int				hweight_gen;
520 	u32				hweight_active;
521 	u32				hweight_inuse;
522 	u32				hweight_donating;
523 	u32				hweight_after_donation;
524 
525 	struct list_head		walk_list;
526 	struct list_head		surplus_list;
527 
528 	struct wait_queue_head		waitq;
529 	struct hrtimer			waitq_timer;
530 
531 	/* timestamp at the latest activation */
532 	u64				activated_at;
533 
534 	/* statistics */
535 	struct iocg_pcpu_stat __percpu	*pcpu_stat;
536 	struct iocg_stat		local_stat;
537 	struct iocg_stat		desc_stat;
538 	struct iocg_stat		last_stat;
539 	u64				last_stat_abs_vusage;
540 	u64				usage_delta_us;
541 	u64				wait_since;
542 	u64				indebt_since;
543 	u64				indelay_since;
544 
545 	/* this iocg's depth in the hierarchy and ancestors including self */
546 	int				level;
547 	struct ioc_gq			*ancestors[];
548 };
549 
550 /* per cgroup */
551 struct ioc_cgrp {
552 	struct blkcg_policy_data	cpd;
553 	unsigned int			dfl_weight;
554 };
555 
556 struct ioc_now {
557 	u64				now_ns;
558 	u64				now;
559 	u64				vnow;
560 	u64				vrate;
561 };
562 
563 struct iocg_wait {
564 	struct wait_queue_entry		wait;
565 	struct bio			*bio;
566 	u64				abs_cost;
567 	bool				committed;
568 };
569 
570 struct iocg_wake_ctx {
571 	struct ioc_gq			*iocg;
572 	u32				hw_inuse;
573 	s64				vbudget;
574 };
575 
576 static const struct ioc_params autop[] = {
577 	[AUTOP_HDD] = {
578 		.qos				= {
579 			[QOS_RLAT]		=        250000, /* 250ms */
580 			[QOS_WLAT]		=        250000,
581 			[QOS_MIN]		= VRATE_MIN_PPM,
582 			[QOS_MAX]		= VRATE_MAX_PPM,
583 		},
584 		.i_lcoefs			= {
585 			[I_LCOEF_RBPS]		=     174019176,
586 			[I_LCOEF_RSEQIOPS]	=         41708,
587 			[I_LCOEF_RRANDIOPS]	=           370,
588 			[I_LCOEF_WBPS]		=     178075866,
589 			[I_LCOEF_WSEQIOPS]	=         42705,
590 			[I_LCOEF_WRANDIOPS]	=           378,
591 		},
592 	},
593 	[AUTOP_SSD_QD1] = {
594 		.qos				= {
595 			[QOS_RLAT]		=         25000, /* 25ms */
596 			[QOS_WLAT]		=         25000,
597 			[QOS_MIN]		= VRATE_MIN_PPM,
598 			[QOS_MAX]		= VRATE_MAX_PPM,
599 		},
600 		.i_lcoefs			= {
601 			[I_LCOEF_RBPS]		=     245855193,
602 			[I_LCOEF_RSEQIOPS]	=         61575,
603 			[I_LCOEF_RRANDIOPS]	=          6946,
604 			[I_LCOEF_WBPS]		=     141365009,
605 			[I_LCOEF_WSEQIOPS]	=         33716,
606 			[I_LCOEF_WRANDIOPS]	=         26796,
607 		},
608 	},
609 	[AUTOP_SSD_DFL] = {
610 		.qos				= {
611 			[QOS_RLAT]		=         25000, /* 25ms */
612 			[QOS_WLAT]		=         25000,
613 			[QOS_MIN]		= VRATE_MIN_PPM,
614 			[QOS_MAX]		= VRATE_MAX_PPM,
615 		},
616 		.i_lcoefs			= {
617 			[I_LCOEF_RBPS]		=     488636629,
618 			[I_LCOEF_RSEQIOPS]	=          8932,
619 			[I_LCOEF_RRANDIOPS]	=          8518,
620 			[I_LCOEF_WBPS]		=     427891549,
621 			[I_LCOEF_WSEQIOPS]	=         28755,
622 			[I_LCOEF_WRANDIOPS]	=         21940,
623 		},
624 		.too_fast_vrate_pct		=           500,
625 	},
626 	[AUTOP_SSD_FAST] = {
627 		.qos				= {
628 			[QOS_RLAT]		=          5000, /* 5ms */
629 			[QOS_WLAT]		=          5000,
630 			[QOS_MIN]		= VRATE_MIN_PPM,
631 			[QOS_MAX]		= VRATE_MAX_PPM,
632 		},
633 		.i_lcoefs			= {
634 			[I_LCOEF_RBPS]		=    3102524156LLU,
635 			[I_LCOEF_RSEQIOPS]	=        724816,
636 			[I_LCOEF_RRANDIOPS]	=        778122,
637 			[I_LCOEF_WBPS]		=    1742780862LLU,
638 			[I_LCOEF_WSEQIOPS]	=        425702,
639 			[I_LCOEF_WRANDIOPS]	=	 443193,
640 		},
641 		.too_slow_vrate_pct		=            10,
642 	},
643 };
644 
645 /*
646  * vrate adjust percentages indexed by ioc->busy_level.  We adjust up on
647  * vtime credit shortage and down on device saturation.
648  */
649 static u32 vrate_adj_pct[] =
650 	{ 0, 0, 0, 0,
651 	  1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
652 	  2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
653 	  4, 4, 4, 4, 4, 4, 4, 4, 8, 8, 8, 8, 8, 8, 8, 8, 16 };
654 
655 static struct blkcg_policy blkcg_policy_iocost;
656 
657 /* accessors and helpers */
658 static struct ioc *rqos_to_ioc(struct rq_qos *rqos)
659 {
660 	return container_of(rqos, struct ioc, rqos);
661 }
662 
663 static struct ioc *q_to_ioc(struct request_queue *q)
664 {
665 	return rqos_to_ioc(rq_qos_id(q, RQ_QOS_COST));
666 }
667 
668 static const char *q_name(struct request_queue *q)
669 {
670 	if (blk_queue_registered(q))
671 		return kobject_name(q->kobj.parent);
672 	else
673 		return "<unknown>";
674 }
675 
676 static const char __maybe_unused *ioc_name(struct ioc *ioc)
677 {
678 	return q_name(ioc->rqos.q);
679 }
680 
681 static struct ioc_gq *pd_to_iocg(struct blkg_policy_data *pd)
682 {
683 	return pd ? container_of(pd, struct ioc_gq, pd) : NULL;
684 }
685 
686 static struct ioc_gq *blkg_to_iocg(struct blkcg_gq *blkg)
687 {
688 	return pd_to_iocg(blkg_to_pd(blkg, &blkcg_policy_iocost));
689 }
690 
691 static struct blkcg_gq *iocg_to_blkg(struct ioc_gq *iocg)
692 {
693 	return pd_to_blkg(&iocg->pd);
694 }
695 
696 static struct ioc_cgrp *blkcg_to_iocc(struct blkcg *blkcg)
697 {
698 	return container_of(blkcg_to_cpd(blkcg, &blkcg_policy_iocost),
699 			    struct ioc_cgrp, cpd);
700 }
701 
702 /*
703  * Scale @abs_cost to the inverse of @hw_inuse.  The lower the hierarchical
704  * weight, the more expensive each IO.  Must round up.
705  */
706 static u64 abs_cost_to_cost(u64 abs_cost, u32 hw_inuse)
707 {
708 	return DIV64_U64_ROUND_UP(abs_cost * WEIGHT_ONE, hw_inuse);
709 }
710 
711 /*
712  * The inverse of abs_cost_to_cost().  Must round up.
713  */
714 static u64 cost_to_abs_cost(u64 cost, u32 hw_inuse)
715 {
716 	return DIV64_U64_ROUND_UP(cost * hw_inuse, WEIGHT_ONE);
717 }
718 
719 static void iocg_commit_bio(struct ioc_gq *iocg, struct bio *bio,
720 			    u64 abs_cost, u64 cost)
721 {
722 	struct iocg_pcpu_stat *gcs;
723 
724 	bio->bi_iocost_cost = cost;
725 	atomic64_add(cost, &iocg->vtime);
726 
727 	gcs = get_cpu_ptr(iocg->pcpu_stat);
728 	local64_add(abs_cost, &gcs->abs_vusage);
729 	put_cpu_ptr(gcs);
730 }
731 
732 static void iocg_lock(struct ioc_gq *iocg, bool lock_ioc, unsigned long *flags)
733 {
734 	if (lock_ioc) {
735 		spin_lock_irqsave(&iocg->ioc->lock, *flags);
736 		spin_lock(&iocg->waitq.lock);
737 	} else {
738 		spin_lock_irqsave(&iocg->waitq.lock, *flags);
739 	}
740 }
741 
742 static void iocg_unlock(struct ioc_gq *iocg, bool unlock_ioc, unsigned long *flags)
743 {
744 	if (unlock_ioc) {
745 		spin_unlock(&iocg->waitq.lock);
746 		spin_unlock_irqrestore(&iocg->ioc->lock, *flags);
747 	} else {
748 		spin_unlock_irqrestore(&iocg->waitq.lock, *flags);
749 	}
750 }
751 
752 #define CREATE_TRACE_POINTS
753 #include <trace/events/iocost.h>
754 
755 static void ioc_refresh_margins(struct ioc *ioc)
756 {
757 	struct ioc_margins *margins = &ioc->margins;
758 	u32 period_us = ioc->period_us;
759 	u64 vrate = ioc->vtime_base_rate;
760 
761 	margins->min = (period_us * MARGIN_MIN_PCT / 100) * vrate;
762 	margins->low = (period_us * MARGIN_LOW_PCT / 100) * vrate;
763 	margins->target = (period_us * MARGIN_TARGET_PCT / 100) * vrate;
764 }
765 
766 /* latency Qos params changed, update period_us and all the dependent params */
767 static void ioc_refresh_period_us(struct ioc *ioc)
768 {
769 	u32 ppm, lat, multi, period_us;
770 
771 	lockdep_assert_held(&ioc->lock);
772 
773 	/* pick the higher latency target */
774 	if (ioc->params.qos[QOS_RLAT] >= ioc->params.qos[QOS_WLAT]) {
775 		ppm = ioc->params.qos[QOS_RPPM];
776 		lat = ioc->params.qos[QOS_RLAT];
777 	} else {
778 		ppm = ioc->params.qos[QOS_WPPM];
779 		lat = ioc->params.qos[QOS_WLAT];
780 	}
781 
782 	/*
783 	 * We want the period to be long enough to contain a healthy number
784 	 * of IOs while short enough for granular control.  Define it as a
785 	 * multiple of the latency target.  Ideally, the multiplier should
786 	 * be scaled according to the percentile so that it would nominally
787 	 * contain a certain number of requests.  Let's be simpler and
788 	 * scale it linearly so that it's 2x >= pct(90) and 10x at pct(50).
789 	 */
790 	if (ppm)
791 		multi = max_t(u32, (MILLION - ppm) / 50000, 2);
792 	else
793 		multi = 2;
794 	period_us = multi * lat;
795 	period_us = clamp_t(u32, period_us, MIN_PERIOD, MAX_PERIOD);
796 
797 	/* calculate dependent params */
798 	ioc->period_us = period_us;
799 	ioc->timer_slack_ns = div64_u64(
800 		(u64)period_us * NSEC_PER_USEC * TIMER_SLACK_PCT,
801 		100);
802 	ioc_refresh_margins(ioc);
803 }
804 
805 static int ioc_autop_idx(struct ioc *ioc)
806 {
807 	int idx = ioc->autop_idx;
808 	const struct ioc_params *p = &autop[idx];
809 	u32 vrate_pct;
810 	u64 now_ns;
811 
812 	/* rotational? */
813 	if (!blk_queue_nonrot(ioc->rqos.q))
814 		return AUTOP_HDD;
815 
816 	/* handle SATA SSDs w/ broken NCQ */
817 	if (blk_queue_depth(ioc->rqos.q) == 1)
818 		return AUTOP_SSD_QD1;
819 
820 	/* use one of the normal ssd sets */
821 	if (idx < AUTOP_SSD_DFL)
822 		return AUTOP_SSD_DFL;
823 
824 	/* if user is overriding anything, maintain what was there */
825 	if (ioc->user_qos_params || ioc->user_cost_model)
826 		return idx;
827 
828 	/* step up/down based on the vrate */
829 	vrate_pct = div64_u64(ioc->vtime_base_rate * 100, VTIME_PER_USEC);
830 	now_ns = ktime_get_ns();
831 
832 	if (p->too_fast_vrate_pct && p->too_fast_vrate_pct <= vrate_pct) {
833 		if (!ioc->autop_too_fast_at)
834 			ioc->autop_too_fast_at = now_ns;
835 		if (now_ns - ioc->autop_too_fast_at >= AUTOP_CYCLE_NSEC)
836 			return idx + 1;
837 	} else {
838 		ioc->autop_too_fast_at = 0;
839 	}
840 
841 	if (p->too_slow_vrate_pct && p->too_slow_vrate_pct >= vrate_pct) {
842 		if (!ioc->autop_too_slow_at)
843 			ioc->autop_too_slow_at = now_ns;
844 		if (now_ns - ioc->autop_too_slow_at >= AUTOP_CYCLE_NSEC)
845 			return idx - 1;
846 	} else {
847 		ioc->autop_too_slow_at = 0;
848 	}
849 
850 	return idx;
851 }
852 
853 /*
854  * Take the followings as input
855  *
856  *  @bps	maximum sequential throughput
857  *  @seqiops	maximum sequential 4k iops
858  *  @randiops	maximum random 4k iops
859  *
860  * and calculate the linear model cost coefficients.
861  *
862  *  *@page	per-page cost		1s / (@bps / 4096)
863  *  *@seqio	base cost of a seq IO	max((1s / @seqiops) - *@page, 0)
864  *  @randiops	base cost of a rand IO	max((1s / @randiops) - *@page, 0)
865  */
866 static void calc_lcoefs(u64 bps, u64 seqiops, u64 randiops,
867 			u64 *page, u64 *seqio, u64 *randio)
868 {
869 	u64 v;
870 
871 	*page = *seqio = *randio = 0;
872 
873 	if (bps)
874 		*page = DIV64_U64_ROUND_UP(VTIME_PER_SEC,
875 					   DIV_ROUND_UP_ULL(bps, IOC_PAGE_SIZE));
876 
877 	if (seqiops) {
878 		v = DIV64_U64_ROUND_UP(VTIME_PER_SEC, seqiops);
879 		if (v > *page)
880 			*seqio = v - *page;
881 	}
882 
883 	if (randiops) {
884 		v = DIV64_U64_ROUND_UP(VTIME_PER_SEC, randiops);
885 		if (v > *page)
886 			*randio = v - *page;
887 	}
888 }
889 
890 static void ioc_refresh_lcoefs(struct ioc *ioc)
891 {
892 	u64 *u = ioc->params.i_lcoefs;
893 	u64 *c = ioc->params.lcoefs;
894 
895 	calc_lcoefs(u[I_LCOEF_RBPS], u[I_LCOEF_RSEQIOPS], u[I_LCOEF_RRANDIOPS],
896 		    &c[LCOEF_RPAGE], &c[LCOEF_RSEQIO], &c[LCOEF_RRANDIO]);
897 	calc_lcoefs(u[I_LCOEF_WBPS], u[I_LCOEF_WSEQIOPS], u[I_LCOEF_WRANDIOPS],
898 		    &c[LCOEF_WPAGE], &c[LCOEF_WSEQIO], &c[LCOEF_WRANDIO]);
899 }
900 
901 static bool ioc_refresh_params(struct ioc *ioc, bool force)
902 {
903 	const struct ioc_params *p;
904 	int idx;
905 
906 	lockdep_assert_held(&ioc->lock);
907 
908 	idx = ioc_autop_idx(ioc);
909 	p = &autop[idx];
910 
911 	if (idx == ioc->autop_idx && !force)
912 		return false;
913 
914 	if (idx != ioc->autop_idx)
915 		atomic64_set(&ioc->vtime_rate, VTIME_PER_USEC);
916 
917 	ioc->autop_idx = idx;
918 	ioc->autop_too_fast_at = 0;
919 	ioc->autop_too_slow_at = 0;
920 
921 	if (!ioc->user_qos_params)
922 		memcpy(ioc->params.qos, p->qos, sizeof(p->qos));
923 	if (!ioc->user_cost_model)
924 		memcpy(ioc->params.i_lcoefs, p->i_lcoefs, sizeof(p->i_lcoefs));
925 
926 	ioc_refresh_period_us(ioc);
927 	ioc_refresh_lcoefs(ioc);
928 
929 	ioc->vrate_min = DIV64_U64_ROUND_UP((u64)ioc->params.qos[QOS_MIN] *
930 					    VTIME_PER_USEC, MILLION);
931 	ioc->vrate_max = div64_u64((u64)ioc->params.qos[QOS_MAX] *
932 				   VTIME_PER_USEC, MILLION);
933 
934 	return true;
935 }
936 
937 /*
938  * When an iocg accumulates too much vtime or gets deactivated, we throw away
939  * some vtime, which lowers the overall device utilization. As the exact amount
940  * which is being thrown away is known, we can compensate by accelerating the
941  * vrate accordingly so that the extra vtime generated in the current period
942  * matches what got lost.
943  */
944 static void ioc_refresh_vrate(struct ioc *ioc, struct ioc_now *now)
945 {
946 	s64 pleft = ioc->period_at + ioc->period_us - now->now;
947 	s64 vperiod = ioc->period_us * ioc->vtime_base_rate;
948 	s64 vcomp, vcomp_min, vcomp_max;
949 
950 	lockdep_assert_held(&ioc->lock);
951 
952 	/* we need some time left in this period */
953 	if (pleft <= 0)
954 		goto done;
955 
956 	/*
957 	 * Calculate how much vrate should be adjusted to offset the error.
958 	 * Limit the amount of adjustment and deduct the adjusted amount from
959 	 * the error.
960 	 */
961 	vcomp = -div64_s64(ioc->vtime_err, pleft);
962 	vcomp_min = -(ioc->vtime_base_rate >> 1);
963 	vcomp_max = ioc->vtime_base_rate;
964 	vcomp = clamp(vcomp, vcomp_min, vcomp_max);
965 
966 	ioc->vtime_err += vcomp * pleft;
967 
968 	atomic64_set(&ioc->vtime_rate, ioc->vtime_base_rate + vcomp);
969 done:
970 	/* bound how much error can accumulate */
971 	ioc->vtime_err = clamp(ioc->vtime_err, -vperiod, vperiod);
972 }
973 
974 static void ioc_adjust_base_vrate(struct ioc *ioc, u32 rq_wait_pct,
975 				  int nr_lagging, int nr_shortages,
976 				  int prev_busy_level, u32 *missed_ppm)
977 {
978 	u64 vrate = ioc->vtime_base_rate;
979 	u64 vrate_min = ioc->vrate_min, vrate_max = ioc->vrate_max;
980 
981 	if (!ioc->busy_level || (ioc->busy_level < 0 && nr_lagging)) {
982 		if (ioc->busy_level != prev_busy_level || nr_lagging)
983 			trace_iocost_ioc_vrate_adj(ioc, atomic64_read(&ioc->vtime_rate),
984 						   missed_ppm, rq_wait_pct,
985 						   nr_lagging, nr_shortages);
986 
987 		return;
988 	}
989 
990 	/*
991 	 * If vrate is out of bounds, apply clamp gradually as the
992 	 * bounds can change abruptly.  Otherwise, apply busy_level
993 	 * based adjustment.
994 	 */
995 	if (vrate < vrate_min) {
996 		vrate = div64_u64(vrate * (100 + VRATE_CLAMP_ADJ_PCT), 100);
997 		vrate = min(vrate, vrate_min);
998 	} else if (vrate > vrate_max) {
999 		vrate = div64_u64(vrate * (100 - VRATE_CLAMP_ADJ_PCT), 100);
1000 		vrate = max(vrate, vrate_max);
1001 	} else {
1002 		int idx = min_t(int, abs(ioc->busy_level),
1003 				ARRAY_SIZE(vrate_adj_pct) - 1);
1004 		u32 adj_pct = vrate_adj_pct[idx];
1005 
1006 		if (ioc->busy_level > 0)
1007 			adj_pct = 100 - adj_pct;
1008 		else
1009 			adj_pct = 100 + adj_pct;
1010 
1011 		vrate = clamp(DIV64_U64_ROUND_UP(vrate * adj_pct, 100),
1012 			      vrate_min, vrate_max);
1013 	}
1014 
1015 	trace_iocost_ioc_vrate_adj(ioc, vrate, missed_ppm, rq_wait_pct,
1016 				   nr_lagging, nr_shortages);
1017 
1018 	ioc->vtime_base_rate = vrate;
1019 	ioc_refresh_margins(ioc);
1020 }
1021 
1022 /* take a snapshot of the current [v]time and vrate */
1023 static void ioc_now(struct ioc *ioc, struct ioc_now *now)
1024 {
1025 	unsigned seq;
1026 
1027 	now->now_ns = ktime_get();
1028 	now->now = ktime_to_us(now->now_ns);
1029 	now->vrate = atomic64_read(&ioc->vtime_rate);
1030 
1031 	/*
1032 	 * The current vtime is
1033 	 *
1034 	 *   vtime at period start + (wallclock time since the start) * vrate
1035 	 *
1036 	 * As a consistent snapshot of `period_at_vtime` and `period_at` is
1037 	 * needed, they're seqcount protected.
1038 	 */
1039 	do {
1040 		seq = read_seqcount_begin(&ioc->period_seqcount);
1041 		now->vnow = ioc->period_at_vtime +
1042 			(now->now - ioc->period_at) * now->vrate;
1043 	} while (read_seqcount_retry(&ioc->period_seqcount, seq));
1044 }
1045 
1046 static void ioc_start_period(struct ioc *ioc, struct ioc_now *now)
1047 {
1048 	WARN_ON_ONCE(ioc->running != IOC_RUNNING);
1049 
1050 	write_seqcount_begin(&ioc->period_seqcount);
1051 	ioc->period_at = now->now;
1052 	ioc->period_at_vtime = now->vnow;
1053 	write_seqcount_end(&ioc->period_seqcount);
1054 
1055 	ioc->timer.expires = jiffies + usecs_to_jiffies(ioc->period_us);
1056 	add_timer(&ioc->timer);
1057 }
1058 
1059 /*
1060  * Update @iocg's `active` and `inuse` to @active and @inuse, update level
1061  * weight sums and propagate upwards accordingly. If @save, the current margin
1062  * is saved to be used as reference for later inuse in-period adjustments.
1063  */
1064 static void __propagate_weights(struct ioc_gq *iocg, u32 active, u32 inuse,
1065 				bool save, struct ioc_now *now)
1066 {
1067 	struct ioc *ioc = iocg->ioc;
1068 	int lvl;
1069 
1070 	lockdep_assert_held(&ioc->lock);
1071 
1072 	/*
1073 	 * For an active leaf node, its inuse shouldn't be zero or exceed
1074 	 * @active. An active internal node's inuse is solely determined by the
1075 	 * inuse to active ratio of its children regardless of @inuse.
1076 	 */
1077 	if (list_empty(&iocg->active_list) && iocg->child_active_sum) {
1078 		inuse = DIV64_U64_ROUND_UP(active * iocg->child_inuse_sum,
1079 					   iocg->child_active_sum);
1080 	} else {
1081 		inuse = clamp_t(u32, inuse, 1, active);
1082 	}
1083 
1084 	iocg->last_inuse = iocg->inuse;
1085 	if (save)
1086 		iocg->saved_margin = now->vnow - atomic64_read(&iocg->vtime);
1087 
1088 	if (active == iocg->active && inuse == iocg->inuse)
1089 		return;
1090 
1091 	for (lvl = iocg->level - 1; lvl >= 0; lvl--) {
1092 		struct ioc_gq *parent = iocg->ancestors[lvl];
1093 		struct ioc_gq *child = iocg->ancestors[lvl + 1];
1094 		u32 parent_active = 0, parent_inuse = 0;
1095 
1096 		/* update the level sums */
1097 		parent->child_active_sum += (s32)(active - child->active);
1098 		parent->child_inuse_sum += (s32)(inuse - child->inuse);
1099 		/* apply the updates */
1100 		child->active = active;
1101 		child->inuse = inuse;
1102 
1103 		/*
1104 		 * The delta between inuse and active sums indicates that
1105 		 * much of weight is being given away.  Parent's inuse
1106 		 * and active should reflect the ratio.
1107 		 */
1108 		if (parent->child_active_sum) {
1109 			parent_active = parent->weight;
1110 			parent_inuse = DIV64_U64_ROUND_UP(
1111 				parent_active * parent->child_inuse_sum,
1112 				parent->child_active_sum);
1113 		}
1114 
1115 		/* do we need to keep walking up? */
1116 		if (parent_active == parent->active &&
1117 		    parent_inuse == parent->inuse)
1118 			break;
1119 
1120 		active = parent_active;
1121 		inuse = parent_inuse;
1122 	}
1123 
1124 	ioc->weights_updated = true;
1125 }
1126 
1127 static void commit_weights(struct ioc *ioc)
1128 {
1129 	lockdep_assert_held(&ioc->lock);
1130 
1131 	if (ioc->weights_updated) {
1132 		/* paired with rmb in current_hweight(), see there */
1133 		smp_wmb();
1134 		atomic_inc(&ioc->hweight_gen);
1135 		ioc->weights_updated = false;
1136 	}
1137 }
1138 
1139 static void propagate_weights(struct ioc_gq *iocg, u32 active, u32 inuse,
1140 			      bool save, struct ioc_now *now)
1141 {
1142 	__propagate_weights(iocg, active, inuse, save, now);
1143 	commit_weights(iocg->ioc);
1144 }
1145 
1146 static void current_hweight(struct ioc_gq *iocg, u32 *hw_activep, u32 *hw_inusep)
1147 {
1148 	struct ioc *ioc = iocg->ioc;
1149 	int lvl;
1150 	u32 hwa, hwi;
1151 	int ioc_gen;
1152 
1153 	/* hot path - if uptodate, use cached */
1154 	ioc_gen = atomic_read(&ioc->hweight_gen);
1155 	if (ioc_gen == iocg->hweight_gen)
1156 		goto out;
1157 
1158 	/*
1159 	 * Paired with wmb in commit_weights(). If we saw the updated
1160 	 * hweight_gen, all the weight updates from __propagate_weights() are
1161 	 * visible too.
1162 	 *
1163 	 * We can race with weight updates during calculation and get it
1164 	 * wrong.  However, hweight_gen would have changed and a future
1165 	 * reader will recalculate and we're guaranteed to discard the
1166 	 * wrong result soon.
1167 	 */
1168 	smp_rmb();
1169 
1170 	hwa = hwi = WEIGHT_ONE;
1171 	for (lvl = 0; lvl <= iocg->level - 1; lvl++) {
1172 		struct ioc_gq *parent = iocg->ancestors[lvl];
1173 		struct ioc_gq *child = iocg->ancestors[lvl + 1];
1174 		u64 active_sum = READ_ONCE(parent->child_active_sum);
1175 		u64 inuse_sum = READ_ONCE(parent->child_inuse_sum);
1176 		u32 active = READ_ONCE(child->active);
1177 		u32 inuse = READ_ONCE(child->inuse);
1178 
1179 		/* we can race with deactivations and either may read as zero */
1180 		if (!active_sum || !inuse_sum)
1181 			continue;
1182 
1183 		active_sum = max_t(u64, active, active_sum);
1184 		hwa = div64_u64((u64)hwa * active, active_sum);
1185 
1186 		inuse_sum = max_t(u64, inuse, inuse_sum);
1187 		hwi = div64_u64((u64)hwi * inuse, inuse_sum);
1188 	}
1189 
1190 	iocg->hweight_active = max_t(u32, hwa, 1);
1191 	iocg->hweight_inuse = max_t(u32, hwi, 1);
1192 	iocg->hweight_gen = ioc_gen;
1193 out:
1194 	if (hw_activep)
1195 		*hw_activep = iocg->hweight_active;
1196 	if (hw_inusep)
1197 		*hw_inusep = iocg->hweight_inuse;
1198 }
1199 
1200 /*
1201  * Calculate the hweight_inuse @iocg would get with max @inuse assuming all the
1202  * other weights stay unchanged.
1203  */
1204 static u32 current_hweight_max(struct ioc_gq *iocg)
1205 {
1206 	u32 hwm = WEIGHT_ONE;
1207 	u32 inuse = iocg->active;
1208 	u64 child_inuse_sum;
1209 	int lvl;
1210 
1211 	lockdep_assert_held(&iocg->ioc->lock);
1212 
1213 	for (lvl = iocg->level - 1; lvl >= 0; lvl--) {
1214 		struct ioc_gq *parent = iocg->ancestors[lvl];
1215 		struct ioc_gq *child = iocg->ancestors[lvl + 1];
1216 
1217 		child_inuse_sum = parent->child_inuse_sum + inuse - child->inuse;
1218 		hwm = div64_u64((u64)hwm * inuse, child_inuse_sum);
1219 		inuse = DIV64_U64_ROUND_UP(parent->active * child_inuse_sum,
1220 					   parent->child_active_sum);
1221 	}
1222 
1223 	return max_t(u32, hwm, 1);
1224 }
1225 
1226 static void weight_updated(struct ioc_gq *iocg, struct ioc_now *now)
1227 {
1228 	struct ioc *ioc = iocg->ioc;
1229 	struct blkcg_gq *blkg = iocg_to_blkg(iocg);
1230 	struct ioc_cgrp *iocc = blkcg_to_iocc(blkg->blkcg);
1231 	u32 weight;
1232 
1233 	lockdep_assert_held(&ioc->lock);
1234 
1235 	weight = iocg->cfg_weight ?: iocc->dfl_weight;
1236 	if (weight != iocg->weight && iocg->active)
1237 		propagate_weights(iocg, weight, iocg->inuse, true, now);
1238 	iocg->weight = weight;
1239 }
1240 
1241 static bool iocg_activate(struct ioc_gq *iocg, struct ioc_now *now)
1242 {
1243 	struct ioc *ioc = iocg->ioc;
1244 	u64 last_period, cur_period;
1245 	u64 vtime, vtarget;
1246 	int i;
1247 
1248 	/*
1249 	 * If seem to be already active, just update the stamp to tell the
1250 	 * timer that we're still active.  We don't mind occassional races.
1251 	 */
1252 	if (!list_empty(&iocg->active_list)) {
1253 		ioc_now(ioc, now);
1254 		cur_period = atomic64_read(&ioc->cur_period);
1255 		if (atomic64_read(&iocg->active_period) != cur_period)
1256 			atomic64_set(&iocg->active_period, cur_period);
1257 		return true;
1258 	}
1259 
1260 	/* racy check on internal node IOs, treat as root level IOs */
1261 	if (iocg->child_active_sum)
1262 		return false;
1263 
1264 	spin_lock_irq(&ioc->lock);
1265 
1266 	ioc_now(ioc, now);
1267 
1268 	/* update period */
1269 	cur_period = atomic64_read(&ioc->cur_period);
1270 	last_period = atomic64_read(&iocg->active_period);
1271 	atomic64_set(&iocg->active_period, cur_period);
1272 
1273 	/* already activated or breaking leaf-only constraint? */
1274 	if (!list_empty(&iocg->active_list))
1275 		goto succeed_unlock;
1276 	for (i = iocg->level - 1; i > 0; i--)
1277 		if (!list_empty(&iocg->ancestors[i]->active_list))
1278 			goto fail_unlock;
1279 
1280 	if (iocg->child_active_sum)
1281 		goto fail_unlock;
1282 
1283 	/*
1284 	 * Always start with the target budget. On deactivation, we throw away
1285 	 * anything above it.
1286 	 */
1287 	vtarget = now->vnow - ioc->margins.target;
1288 	vtime = atomic64_read(&iocg->vtime);
1289 
1290 	atomic64_add(vtarget - vtime, &iocg->vtime);
1291 	atomic64_add(vtarget - vtime, &iocg->done_vtime);
1292 	vtime = vtarget;
1293 
1294 	/*
1295 	 * Activate, propagate weight and start period timer if not
1296 	 * running.  Reset hweight_gen to avoid accidental match from
1297 	 * wrapping.
1298 	 */
1299 	iocg->hweight_gen = atomic_read(&ioc->hweight_gen) - 1;
1300 	list_add(&iocg->active_list, &ioc->active_iocgs);
1301 
1302 	propagate_weights(iocg, iocg->weight,
1303 			  iocg->last_inuse ?: iocg->weight, true, now);
1304 
1305 	TRACE_IOCG_PATH(iocg_activate, iocg, now,
1306 			last_period, cur_period, vtime);
1307 
1308 	iocg->activated_at = now->now;
1309 
1310 	if (ioc->running == IOC_IDLE) {
1311 		ioc->running = IOC_RUNNING;
1312 		ioc->dfgv_period_at = now->now;
1313 		ioc->dfgv_period_rem = 0;
1314 		ioc_start_period(ioc, now);
1315 	}
1316 
1317 succeed_unlock:
1318 	spin_unlock_irq(&ioc->lock);
1319 	return true;
1320 
1321 fail_unlock:
1322 	spin_unlock_irq(&ioc->lock);
1323 	return false;
1324 }
1325 
1326 static bool iocg_kick_delay(struct ioc_gq *iocg, struct ioc_now *now)
1327 {
1328 	struct ioc *ioc = iocg->ioc;
1329 	struct blkcg_gq *blkg = iocg_to_blkg(iocg);
1330 	u64 tdelta, delay, new_delay;
1331 	s64 vover, vover_pct;
1332 	u32 hwa;
1333 
1334 	lockdep_assert_held(&iocg->waitq.lock);
1335 
1336 	/* calculate the current delay in effect - 1/2 every second */
1337 	tdelta = now->now - iocg->delay_at;
1338 	if (iocg->delay)
1339 		delay = iocg->delay >> div64_u64(tdelta, USEC_PER_SEC);
1340 	else
1341 		delay = 0;
1342 
1343 	/* calculate the new delay from the debt amount */
1344 	current_hweight(iocg, &hwa, NULL);
1345 	vover = atomic64_read(&iocg->vtime) +
1346 		abs_cost_to_cost(iocg->abs_vdebt, hwa) - now->vnow;
1347 	vover_pct = div64_s64(100 * vover,
1348 			      ioc->period_us * ioc->vtime_base_rate);
1349 
1350 	if (vover_pct <= MIN_DELAY_THR_PCT)
1351 		new_delay = 0;
1352 	else if (vover_pct >= MAX_DELAY_THR_PCT)
1353 		new_delay = MAX_DELAY;
1354 	else
1355 		new_delay = MIN_DELAY +
1356 			div_u64((MAX_DELAY - MIN_DELAY) *
1357 				(vover_pct - MIN_DELAY_THR_PCT),
1358 				MAX_DELAY_THR_PCT - MIN_DELAY_THR_PCT);
1359 
1360 	/* pick the higher one and apply */
1361 	if (new_delay > delay) {
1362 		iocg->delay = new_delay;
1363 		iocg->delay_at = now->now;
1364 		delay = new_delay;
1365 	}
1366 
1367 	if (delay >= MIN_DELAY) {
1368 		if (!iocg->indelay_since)
1369 			iocg->indelay_since = now->now;
1370 		blkcg_set_delay(blkg, delay * NSEC_PER_USEC);
1371 		return true;
1372 	} else {
1373 		if (iocg->indelay_since) {
1374 			iocg->local_stat.indelay_us += now->now - iocg->indelay_since;
1375 			iocg->indelay_since = 0;
1376 		}
1377 		iocg->delay = 0;
1378 		blkcg_clear_delay(blkg);
1379 		return false;
1380 	}
1381 }
1382 
1383 static void iocg_incur_debt(struct ioc_gq *iocg, u64 abs_cost,
1384 			    struct ioc_now *now)
1385 {
1386 	struct iocg_pcpu_stat *gcs;
1387 
1388 	lockdep_assert_held(&iocg->ioc->lock);
1389 	lockdep_assert_held(&iocg->waitq.lock);
1390 	WARN_ON_ONCE(list_empty(&iocg->active_list));
1391 
1392 	/*
1393 	 * Once in debt, debt handling owns inuse. @iocg stays at the minimum
1394 	 * inuse donating all of it share to others until its debt is paid off.
1395 	 */
1396 	if (!iocg->abs_vdebt && abs_cost) {
1397 		iocg->indebt_since = now->now;
1398 		propagate_weights(iocg, iocg->active, 0, false, now);
1399 	}
1400 
1401 	iocg->abs_vdebt += abs_cost;
1402 
1403 	gcs = get_cpu_ptr(iocg->pcpu_stat);
1404 	local64_add(abs_cost, &gcs->abs_vusage);
1405 	put_cpu_ptr(gcs);
1406 }
1407 
1408 static void iocg_pay_debt(struct ioc_gq *iocg, u64 abs_vpay,
1409 			  struct ioc_now *now)
1410 {
1411 	lockdep_assert_held(&iocg->ioc->lock);
1412 	lockdep_assert_held(&iocg->waitq.lock);
1413 
1414 	/* make sure that nobody messed with @iocg */
1415 	WARN_ON_ONCE(list_empty(&iocg->active_list));
1416 	WARN_ON_ONCE(iocg->inuse > 1);
1417 
1418 	iocg->abs_vdebt -= min(abs_vpay, iocg->abs_vdebt);
1419 
1420 	/* if debt is paid in full, restore inuse */
1421 	if (!iocg->abs_vdebt) {
1422 		iocg->local_stat.indebt_us += now->now - iocg->indebt_since;
1423 		iocg->indebt_since = 0;
1424 
1425 		propagate_weights(iocg, iocg->active, iocg->last_inuse,
1426 				  false, now);
1427 	}
1428 }
1429 
1430 static int iocg_wake_fn(struct wait_queue_entry *wq_entry, unsigned mode,
1431 			int flags, void *key)
1432 {
1433 	struct iocg_wait *wait = container_of(wq_entry, struct iocg_wait, wait);
1434 	struct iocg_wake_ctx *ctx = (struct iocg_wake_ctx *)key;
1435 	u64 cost = abs_cost_to_cost(wait->abs_cost, ctx->hw_inuse);
1436 
1437 	ctx->vbudget -= cost;
1438 
1439 	if (ctx->vbudget < 0)
1440 		return -1;
1441 
1442 	iocg_commit_bio(ctx->iocg, wait->bio, wait->abs_cost, cost);
1443 
1444 	/*
1445 	 * autoremove_wake_function() removes the wait entry only when it
1446 	 * actually changed the task state.  We want the wait always
1447 	 * removed.  Remove explicitly and use default_wake_function().
1448 	 */
1449 	list_del_init(&wq_entry->entry);
1450 	wait->committed = true;
1451 
1452 	default_wake_function(wq_entry, mode, flags, key);
1453 	return 0;
1454 }
1455 
1456 /*
1457  * Calculate the accumulated budget, pay debt if @pay_debt and wake up waiters
1458  * accordingly. When @pay_debt is %true, the caller must be holding ioc->lock in
1459  * addition to iocg->waitq.lock.
1460  */
1461 static void iocg_kick_waitq(struct ioc_gq *iocg, bool pay_debt,
1462 			    struct ioc_now *now)
1463 {
1464 	struct ioc *ioc = iocg->ioc;
1465 	struct iocg_wake_ctx ctx = { .iocg = iocg };
1466 	u64 vshortage, expires, oexpires;
1467 	s64 vbudget;
1468 	u32 hwa;
1469 
1470 	lockdep_assert_held(&iocg->waitq.lock);
1471 
1472 	current_hweight(iocg, &hwa, NULL);
1473 	vbudget = now->vnow - atomic64_read(&iocg->vtime);
1474 
1475 	/* pay off debt */
1476 	if (pay_debt && iocg->abs_vdebt && vbudget > 0) {
1477 		u64 abs_vbudget = cost_to_abs_cost(vbudget, hwa);
1478 		u64 abs_vpay = min_t(u64, abs_vbudget, iocg->abs_vdebt);
1479 		u64 vpay = abs_cost_to_cost(abs_vpay, hwa);
1480 
1481 		lockdep_assert_held(&ioc->lock);
1482 
1483 		atomic64_add(vpay, &iocg->vtime);
1484 		atomic64_add(vpay, &iocg->done_vtime);
1485 		iocg_pay_debt(iocg, abs_vpay, now);
1486 		vbudget -= vpay;
1487 	}
1488 
1489 	if (iocg->abs_vdebt || iocg->delay)
1490 		iocg_kick_delay(iocg, now);
1491 
1492 	/*
1493 	 * Debt can still be outstanding if we haven't paid all yet or the
1494 	 * caller raced and called without @pay_debt. Shouldn't wake up waiters
1495 	 * under debt. Make sure @vbudget reflects the outstanding amount and is
1496 	 * not positive.
1497 	 */
1498 	if (iocg->abs_vdebt) {
1499 		s64 vdebt = abs_cost_to_cost(iocg->abs_vdebt, hwa);
1500 		vbudget = min_t(s64, 0, vbudget - vdebt);
1501 	}
1502 
1503 	/*
1504 	 * Wake up the ones which are due and see how much vtime we'll need for
1505 	 * the next one. As paying off debt restores hw_inuse, it must be read
1506 	 * after the above debt payment.
1507 	 */
1508 	ctx.vbudget = vbudget;
1509 	current_hweight(iocg, NULL, &ctx.hw_inuse);
1510 
1511 	__wake_up_locked_key(&iocg->waitq, TASK_NORMAL, &ctx);
1512 
1513 	if (!waitqueue_active(&iocg->waitq)) {
1514 		if (iocg->wait_since) {
1515 			iocg->local_stat.wait_us += now->now - iocg->wait_since;
1516 			iocg->wait_since = 0;
1517 		}
1518 		return;
1519 	}
1520 
1521 	if (!iocg->wait_since)
1522 		iocg->wait_since = now->now;
1523 
1524 	if (WARN_ON_ONCE(ctx.vbudget >= 0))
1525 		return;
1526 
1527 	/* determine next wakeup, add a timer margin to guarantee chunking */
1528 	vshortage = -ctx.vbudget;
1529 	expires = now->now_ns +
1530 		DIV64_U64_ROUND_UP(vshortage, ioc->vtime_base_rate) *
1531 		NSEC_PER_USEC;
1532 	expires += ioc->timer_slack_ns;
1533 
1534 	/* if already active and close enough, don't bother */
1535 	oexpires = ktime_to_ns(hrtimer_get_softexpires(&iocg->waitq_timer));
1536 	if (hrtimer_is_queued(&iocg->waitq_timer) &&
1537 	    abs(oexpires - expires) <= ioc->timer_slack_ns)
1538 		return;
1539 
1540 	hrtimer_start_range_ns(&iocg->waitq_timer, ns_to_ktime(expires),
1541 			       ioc->timer_slack_ns, HRTIMER_MODE_ABS);
1542 }
1543 
1544 static enum hrtimer_restart iocg_waitq_timer_fn(struct hrtimer *timer)
1545 {
1546 	struct ioc_gq *iocg = container_of(timer, struct ioc_gq, waitq_timer);
1547 	bool pay_debt = READ_ONCE(iocg->abs_vdebt);
1548 	struct ioc_now now;
1549 	unsigned long flags;
1550 
1551 	ioc_now(iocg->ioc, &now);
1552 
1553 	iocg_lock(iocg, pay_debt, &flags);
1554 	iocg_kick_waitq(iocg, pay_debt, &now);
1555 	iocg_unlock(iocg, pay_debt, &flags);
1556 
1557 	return HRTIMER_NORESTART;
1558 }
1559 
1560 static void ioc_lat_stat(struct ioc *ioc, u32 *missed_ppm_ar, u32 *rq_wait_pct_p)
1561 {
1562 	u32 nr_met[2] = { };
1563 	u32 nr_missed[2] = { };
1564 	u64 rq_wait_ns = 0;
1565 	int cpu, rw;
1566 
1567 	for_each_online_cpu(cpu) {
1568 		struct ioc_pcpu_stat *stat = per_cpu_ptr(ioc->pcpu_stat, cpu);
1569 		u64 this_rq_wait_ns;
1570 
1571 		for (rw = READ; rw <= WRITE; rw++) {
1572 			u32 this_met = local_read(&stat->missed[rw].nr_met);
1573 			u32 this_missed = local_read(&stat->missed[rw].nr_missed);
1574 
1575 			nr_met[rw] += this_met - stat->missed[rw].last_met;
1576 			nr_missed[rw] += this_missed - stat->missed[rw].last_missed;
1577 			stat->missed[rw].last_met = this_met;
1578 			stat->missed[rw].last_missed = this_missed;
1579 		}
1580 
1581 		this_rq_wait_ns = local64_read(&stat->rq_wait_ns);
1582 		rq_wait_ns += this_rq_wait_ns - stat->last_rq_wait_ns;
1583 		stat->last_rq_wait_ns = this_rq_wait_ns;
1584 	}
1585 
1586 	for (rw = READ; rw <= WRITE; rw++) {
1587 		if (nr_met[rw] + nr_missed[rw])
1588 			missed_ppm_ar[rw] =
1589 				DIV64_U64_ROUND_UP((u64)nr_missed[rw] * MILLION,
1590 						   nr_met[rw] + nr_missed[rw]);
1591 		else
1592 			missed_ppm_ar[rw] = 0;
1593 	}
1594 
1595 	*rq_wait_pct_p = div64_u64(rq_wait_ns * 100,
1596 				   ioc->period_us * NSEC_PER_USEC);
1597 }
1598 
1599 /* was iocg idle this period? */
1600 static bool iocg_is_idle(struct ioc_gq *iocg)
1601 {
1602 	struct ioc *ioc = iocg->ioc;
1603 
1604 	/* did something get issued this period? */
1605 	if (atomic64_read(&iocg->active_period) ==
1606 	    atomic64_read(&ioc->cur_period))
1607 		return false;
1608 
1609 	/* is something in flight? */
1610 	if (atomic64_read(&iocg->done_vtime) != atomic64_read(&iocg->vtime))
1611 		return false;
1612 
1613 	return true;
1614 }
1615 
1616 /*
1617  * Call this function on the target leaf @iocg's to build pre-order traversal
1618  * list of all the ancestors in @inner_walk. The inner nodes are linked through
1619  * ->walk_list and the caller is responsible for dissolving the list after use.
1620  */
1621 static void iocg_build_inner_walk(struct ioc_gq *iocg,
1622 				  struct list_head *inner_walk)
1623 {
1624 	int lvl;
1625 
1626 	WARN_ON_ONCE(!list_empty(&iocg->walk_list));
1627 
1628 	/* find the first ancestor which hasn't been visited yet */
1629 	for (lvl = iocg->level - 1; lvl >= 0; lvl--) {
1630 		if (!list_empty(&iocg->ancestors[lvl]->walk_list))
1631 			break;
1632 	}
1633 
1634 	/* walk down and visit the inner nodes to get pre-order traversal */
1635 	while (++lvl <= iocg->level - 1) {
1636 		struct ioc_gq *inner = iocg->ancestors[lvl];
1637 
1638 		/* record traversal order */
1639 		list_add_tail(&inner->walk_list, inner_walk);
1640 	}
1641 }
1642 
1643 /* collect per-cpu counters and propagate the deltas to the parent */
1644 static void iocg_flush_stat_one(struct ioc_gq *iocg, struct ioc_now *now)
1645 {
1646 	struct ioc *ioc = iocg->ioc;
1647 	struct iocg_stat new_stat;
1648 	u64 abs_vusage = 0;
1649 	u64 vusage_delta;
1650 	int cpu;
1651 
1652 	lockdep_assert_held(&iocg->ioc->lock);
1653 
1654 	/* collect per-cpu counters */
1655 	for_each_possible_cpu(cpu) {
1656 		abs_vusage += local64_read(
1657 				per_cpu_ptr(&iocg->pcpu_stat->abs_vusage, cpu));
1658 	}
1659 	vusage_delta = abs_vusage - iocg->last_stat_abs_vusage;
1660 	iocg->last_stat_abs_vusage = abs_vusage;
1661 
1662 	iocg->usage_delta_us = div64_u64(vusage_delta, ioc->vtime_base_rate);
1663 	iocg->local_stat.usage_us += iocg->usage_delta_us;
1664 
1665 	/* propagate upwards */
1666 	new_stat.usage_us =
1667 		iocg->local_stat.usage_us + iocg->desc_stat.usage_us;
1668 	new_stat.wait_us =
1669 		iocg->local_stat.wait_us + iocg->desc_stat.wait_us;
1670 	new_stat.indebt_us =
1671 		iocg->local_stat.indebt_us + iocg->desc_stat.indebt_us;
1672 	new_stat.indelay_us =
1673 		iocg->local_stat.indelay_us + iocg->desc_stat.indelay_us;
1674 
1675 	/* propagate the deltas to the parent */
1676 	if (iocg->level > 0) {
1677 		struct iocg_stat *parent_stat =
1678 			&iocg->ancestors[iocg->level - 1]->desc_stat;
1679 
1680 		parent_stat->usage_us +=
1681 			new_stat.usage_us - iocg->last_stat.usage_us;
1682 		parent_stat->wait_us +=
1683 			new_stat.wait_us - iocg->last_stat.wait_us;
1684 		parent_stat->indebt_us +=
1685 			new_stat.indebt_us - iocg->last_stat.indebt_us;
1686 		parent_stat->indelay_us +=
1687 			new_stat.indelay_us - iocg->last_stat.indelay_us;
1688 	}
1689 
1690 	iocg->last_stat = new_stat;
1691 }
1692 
1693 /* get stat counters ready for reading on all active iocgs */
1694 static void iocg_flush_stat(struct list_head *target_iocgs, struct ioc_now *now)
1695 {
1696 	LIST_HEAD(inner_walk);
1697 	struct ioc_gq *iocg, *tiocg;
1698 
1699 	/* flush leaves and build inner node walk list */
1700 	list_for_each_entry(iocg, target_iocgs, active_list) {
1701 		iocg_flush_stat_one(iocg, now);
1702 		iocg_build_inner_walk(iocg, &inner_walk);
1703 	}
1704 
1705 	/* keep flushing upwards by walking the inner list backwards */
1706 	list_for_each_entry_safe_reverse(iocg, tiocg, &inner_walk, walk_list) {
1707 		iocg_flush_stat_one(iocg, now);
1708 		list_del_init(&iocg->walk_list);
1709 	}
1710 }
1711 
1712 /*
1713  * Determine what @iocg's hweight_inuse should be after donating unused
1714  * capacity. @hwm is the upper bound and used to signal no donation. This
1715  * function also throws away @iocg's excess budget.
1716  */
1717 static u32 hweight_after_donation(struct ioc_gq *iocg, u32 old_hwi, u32 hwm,
1718 				  u32 usage, struct ioc_now *now)
1719 {
1720 	struct ioc *ioc = iocg->ioc;
1721 	u64 vtime = atomic64_read(&iocg->vtime);
1722 	s64 excess, delta, target, new_hwi;
1723 
1724 	/* debt handling owns inuse for debtors */
1725 	if (iocg->abs_vdebt)
1726 		return 1;
1727 
1728 	/* see whether minimum margin requirement is met */
1729 	if (waitqueue_active(&iocg->waitq) ||
1730 	    time_after64(vtime, now->vnow - ioc->margins.min))
1731 		return hwm;
1732 
1733 	/* throw away excess above target */
1734 	excess = now->vnow - vtime - ioc->margins.target;
1735 	if (excess > 0) {
1736 		atomic64_add(excess, &iocg->vtime);
1737 		atomic64_add(excess, &iocg->done_vtime);
1738 		vtime += excess;
1739 		ioc->vtime_err -= div64_u64(excess * old_hwi, WEIGHT_ONE);
1740 	}
1741 
1742 	/*
1743 	 * Let's say the distance between iocg's and device's vtimes as a
1744 	 * fraction of period duration is delta. Assuming that the iocg will
1745 	 * consume the usage determined above, we want to determine new_hwi so
1746 	 * that delta equals MARGIN_TARGET at the end of the next period.
1747 	 *
1748 	 * We need to execute usage worth of IOs while spending the sum of the
1749 	 * new budget (1 - MARGIN_TARGET) and the leftover from the last period
1750 	 * (delta):
1751 	 *
1752 	 *   usage = (1 - MARGIN_TARGET + delta) * new_hwi
1753 	 *
1754 	 * Therefore, the new_hwi is:
1755 	 *
1756 	 *   new_hwi = usage / (1 - MARGIN_TARGET + delta)
1757 	 */
1758 	delta = div64_s64(WEIGHT_ONE * (now->vnow - vtime),
1759 			  now->vnow - ioc->period_at_vtime);
1760 	target = WEIGHT_ONE * MARGIN_TARGET_PCT / 100;
1761 	new_hwi = div64_s64(WEIGHT_ONE * usage, WEIGHT_ONE - target + delta);
1762 
1763 	return clamp_t(s64, new_hwi, 1, hwm);
1764 }
1765 
1766 /*
1767  * For work-conservation, an iocg which isn't using all of its share should
1768  * donate the leftover to other iocgs. There are two ways to achieve this - 1.
1769  * bumping up vrate accordingly 2. lowering the donating iocg's inuse weight.
1770  *
1771  * #1 is mathematically simpler but has the drawback of requiring synchronous
1772  * global hweight_inuse updates when idle iocg's get activated or inuse weights
1773  * change due to donation snapbacks as it has the possibility of grossly
1774  * overshooting what's allowed by the model and vrate.
1775  *
1776  * #2 is inherently safe with local operations. The donating iocg can easily
1777  * snap back to higher weights when needed without worrying about impacts on
1778  * other nodes as the impacts will be inherently correct. This also makes idle
1779  * iocg activations safe. The only effect activations have is decreasing
1780  * hweight_inuse of others, the right solution to which is for those iocgs to
1781  * snap back to higher weights.
1782  *
1783  * So, we go with #2. The challenge is calculating how each donating iocg's
1784  * inuse should be adjusted to achieve the target donation amounts. This is done
1785  * using Andy's method described in the following pdf.
1786  *
1787  *   https://drive.google.com/file/d/1PsJwxPFtjUnwOY1QJ5AeICCcsL7BM3bo
1788  *
1789  * Given the weights and target after-donation hweight_inuse values, Andy's
1790  * method determines how the proportional distribution should look like at each
1791  * sibling level to maintain the relative relationship between all non-donating
1792  * pairs. To roughly summarize, it divides the tree into donating and
1793  * non-donating parts, calculates global donation rate which is used to
1794  * determine the target hweight_inuse for each node, and then derives per-level
1795  * proportions.
1796  *
1797  * The following pdf shows that global distribution calculated this way can be
1798  * achieved by scaling inuse weights of donating leaves and propagating the
1799  * adjustments upwards proportionally.
1800  *
1801  *   https://drive.google.com/file/d/1vONz1-fzVO7oY5DXXsLjSxEtYYQbOvsE
1802  *
1803  * Combining the above two, we can determine how each leaf iocg's inuse should
1804  * be adjusted to achieve the target donation.
1805  *
1806  *   https://drive.google.com/file/d/1WcrltBOSPN0qXVdBgnKm4mdp9FhuEFQN
1807  *
1808  * The inline comments use symbols from the last pdf.
1809  *
1810  *   b is the sum of the absolute budgets in the subtree. 1 for the root node.
1811  *   f is the sum of the absolute budgets of non-donating nodes in the subtree.
1812  *   t is the sum of the absolute budgets of donating nodes in the subtree.
1813  *   w is the weight of the node. w = w_f + w_t
1814  *   w_f is the non-donating portion of w. w_f = w * f / b
1815  *   w_b is the donating portion of w. w_t = w * t / b
1816  *   s is the sum of all sibling weights. s = Sum(w) for siblings
1817  *   s_f and s_t are the non-donating and donating portions of s.
1818  *
1819  * Subscript p denotes the parent's counterpart and ' the adjusted value - e.g.
1820  * w_pt is the donating portion of the parent's weight and w'_pt the same value
1821  * after adjustments. Subscript r denotes the root node's values.
1822  */
1823 static void transfer_surpluses(struct list_head *surpluses, struct ioc_now *now)
1824 {
1825 	LIST_HEAD(over_hwa);
1826 	LIST_HEAD(inner_walk);
1827 	struct ioc_gq *iocg, *tiocg, *root_iocg;
1828 	u32 after_sum, over_sum, over_target, gamma;
1829 
1830 	/*
1831 	 * It's pretty unlikely but possible for the total sum of
1832 	 * hweight_after_donation's to be higher than WEIGHT_ONE, which will
1833 	 * confuse the following calculations. If such condition is detected,
1834 	 * scale down everyone over its full share equally to keep the sum below
1835 	 * WEIGHT_ONE.
1836 	 */
1837 	after_sum = 0;
1838 	over_sum = 0;
1839 	list_for_each_entry(iocg, surpluses, surplus_list) {
1840 		u32 hwa;
1841 
1842 		current_hweight(iocg, &hwa, NULL);
1843 		after_sum += iocg->hweight_after_donation;
1844 
1845 		if (iocg->hweight_after_donation > hwa) {
1846 			over_sum += iocg->hweight_after_donation;
1847 			list_add(&iocg->walk_list, &over_hwa);
1848 		}
1849 	}
1850 
1851 	if (after_sum >= WEIGHT_ONE) {
1852 		/*
1853 		 * The delta should be deducted from the over_sum, calculate
1854 		 * target over_sum value.
1855 		 */
1856 		u32 over_delta = after_sum - (WEIGHT_ONE - 1);
1857 		WARN_ON_ONCE(over_sum <= over_delta);
1858 		over_target = over_sum - over_delta;
1859 	} else {
1860 		over_target = 0;
1861 	}
1862 
1863 	list_for_each_entry_safe(iocg, tiocg, &over_hwa, walk_list) {
1864 		if (over_target)
1865 			iocg->hweight_after_donation =
1866 				div_u64((u64)iocg->hweight_after_donation *
1867 					over_target, over_sum);
1868 		list_del_init(&iocg->walk_list);
1869 	}
1870 
1871 	/*
1872 	 * Build pre-order inner node walk list and prepare for donation
1873 	 * adjustment calculations.
1874 	 */
1875 	list_for_each_entry(iocg, surpluses, surplus_list) {
1876 		iocg_build_inner_walk(iocg, &inner_walk);
1877 	}
1878 
1879 	root_iocg = list_first_entry(&inner_walk, struct ioc_gq, walk_list);
1880 	WARN_ON_ONCE(root_iocg->level > 0);
1881 
1882 	list_for_each_entry(iocg, &inner_walk, walk_list) {
1883 		iocg->child_adjusted_sum = 0;
1884 		iocg->hweight_donating = 0;
1885 		iocg->hweight_after_donation = 0;
1886 	}
1887 
1888 	/*
1889 	 * Propagate the donating budget (b_t) and after donation budget (b'_t)
1890 	 * up the hierarchy.
1891 	 */
1892 	list_for_each_entry(iocg, surpluses, surplus_list) {
1893 		struct ioc_gq *parent = iocg->ancestors[iocg->level - 1];
1894 
1895 		parent->hweight_donating += iocg->hweight_donating;
1896 		parent->hweight_after_donation += iocg->hweight_after_donation;
1897 	}
1898 
1899 	list_for_each_entry_reverse(iocg, &inner_walk, walk_list) {
1900 		if (iocg->level > 0) {
1901 			struct ioc_gq *parent = iocg->ancestors[iocg->level - 1];
1902 
1903 			parent->hweight_donating += iocg->hweight_donating;
1904 			parent->hweight_after_donation += iocg->hweight_after_donation;
1905 		}
1906 	}
1907 
1908 	/*
1909 	 * Calculate inner hwa's (b) and make sure the donation values are
1910 	 * within the accepted ranges as we're doing low res calculations with
1911 	 * roundups.
1912 	 */
1913 	list_for_each_entry(iocg, &inner_walk, walk_list) {
1914 		if (iocg->level) {
1915 			struct ioc_gq *parent = iocg->ancestors[iocg->level - 1];
1916 
1917 			iocg->hweight_active = DIV64_U64_ROUND_UP(
1918 				(u64)parent->hweight_active * iocg->active,
1919 				parent->child_active_sum);
1920 
1921 		}
1922 
1923 		iocg->hweight_donating = min(iocg->hweight_donating,
1924 					     iocg->hweight_active);
1925 		iocg->hweight_after_donation = min(iocg->hweight_after_donation,
1926 						   iocg->hweight_donating - 1);
1927 		if (WARN_ON_ONCE(iocg->hweight_active <= 1 ||
1928 				 iocg->hweight_donating <= 1 ||
1929 				 iocg->hweight_after_donation == 0)) {
1930 			pr_warn("iocg: invalid donation weights in ");
1931 			pr_cont_cgroup_path(iocg_to_blkg(iocg)->blkcg->css.cgroup);
1932 			pr_cont(": active=%u donating=%u after=%u\n",
1933 				iocg->hweight_active, iocg->hweight_donating,
1934 				iocg->hweight_after_donation);
1935 		}
1936 	}
1937 
1938 	/*
1939 	 * Calculate the global donation rate (gamma) - the rate to adjust
1940 	 * non-donating budgets by.
1941 	 *
1942 	 * No need to use 64bit multiplication here as the first operand is
1943 	 * guaranteed to be smaller than WEIGHT_ONE (1<<16).
1944 	 *
1945 	 * We know that there are beneficiary nodes and the sum of the donating
1946 	 * hweights can't be whole; however, due to the round-ups during hweight
1947 	 * calculations, root_iocg->hweight_donating might still end up equal to
1948 	 * or greater than whole. Limit the range when calculating the divider.
1949 	 *
1950 	 * gamma = (1 - t_r') / (1 - t_r)
1951 	 */
1952 	gamma = DIV_ROUND_UP(
1953 		(WEIGHT_ONE - root_iocg->hweight_after_donation) * WEIGHT_ONE,
1954 		WEIGHT_ONE - min_t(u32, root_iocg->hweight_donating, WEIGHT_ONE - 1));
1955 
1956 	/*
1957 	 * Calculate adjusted hwi, child_adjusted_sum and inuse for the inner
1958 	 * nodes.
1959 	 */
1960 	list_for_each_entry(iocg, &inner_walk, walk_list) {
1961 		struct ioc_gq *parent;
1962 		u32 inuse, wpt, wptp;
1963 		u64 st, sf;
1964 
1965 		if (iocg->level == 0) {
1966 			/* adjusted weight sum for 1st level: s' = s * b_pf / b'_pf */
1967 			iocg->child_adjusted_sum = DIV64_U64_ROUND_UP(
1968 				iocg->child_active_sum * (WEIGHT_ONE - iocg->hweight_donating),
1969 				WEIGHT_ONE - iocg->hweight_after_donation);
1970 			continue;
1971 		}
1972 
1973 		parent = iocg->ancestors[iocg->level - 1];
1974 
1975 		/* b' = gamma * b_f + b_t' */
1976 		iocg->hweight_inuse = DIV64_U64_ROUND_UP(
1977 			(u64)gamma * (iocg->hweight_active - iocg->hweight_donating),
1978 			WEIGHT_ONE) + iocg->hweight_after_donation;
1979 
1980 		/* w' = s' * b' / b'_p */
1981 		inuse = DIV64_U64_ROUND_UP(
1982 			(u64)parent->child_adjusted_sum * iocg->hweight_inuse,
1983 			parent->hweight_inuse);
1984 
1985 		/* adjusted weight sum for children: s' = s_f + s_t * w'_pt / w_pt */
1986 		st = DIV64_U64_ROUND_UP(
1987 			iocg->child_active_sum * iocg->hweight_donating,
1988 			iocg->hweight_active);
1989 		sf = iocg->child_active_sum - st;
1990 		wpt = DIV64_U64_ROUND_UP(
1991 			(u64)iocg->active * iocg->hweight_donating,
1992 			iocg->hweight_active);
1993 		wptp = DIV64_U64_ROUND_UP(
1994 			(u64)inuse * iocg->hweight_after_donation,
1995 			iocg->hweight_inuse);
1996 
1997 		iocg->child_adjusted_sum = sf + DIV64_U64_ROUND_UP(st * wptp, wpt);
1998 	}
1999 
2000 	/*
2001 	 * All inner nodes now have ->hweight_inuse and ->child_adjusted_sum and
2002 	 * we can finally determine leaf adjustments.
2003 	 */
2004 	list_for_each_entry(iocg, surpluses, surplus_list) {
2005 		struct ioc_gq *parent = iocg->ancestors[iocg->level - 1];
2006 		u32 inuse;
2007 
2008 		/*
2009 		 * In-debt iocgs participated in the donation calculation with
2010 		 * the minimum target hweight_inuse. Configuring inuse
2011 		 * accordingly would work fine but debt handling expects
2012 		 * @iocg->inuse stay at the minimum and we don't wanna
2013 		 * interfere.
2014 		 */
2015 		if (iocg->abs_vdebt) {
2016 			WARN_ON_ONCE(iocg->inuse > 1);
2017 			continue;
2018 		}
2019 
2020 		/* w' = s' * b' / b'_p, note that b' == b'_t for donating leaves */
2021 		inuse = DIV64_U64_ROUND_UP(
2022 			parent->child_adjusted_sum * iocg->hweight_after_donation,
2023 			parent->hweight_inuse);
2024 
2025 		TRACE_IOCG_PATH(inuse_transfer, iocg, now,
2026 				iocg->inuse, inuse,
2027 				iocg->hweight_inuse,
2028 				iocg->hweight_after_donation);
2029 
2030 		__propagate_weights(iocg, iocg->active, inuse, true, now);
2031 	}
2032 
2033 	/* walk list should be dissolved after use */
2034 	list_for_each_entry_safe(iocg, tiocg, &inner_walk, walk_list)
2035 		list_del_init(&iocg->walk_list);
2036 }
2037 
2038 /*
2039  * A low weight iocg can amass a large amount of debt, for example, when
2040  * anonymous memory gets reclaimed aggressively. If the system has a lot of
2041  * memory paired with a slow IO device, the debt can span multiple seconds or
2042  * more. If there are no other subsequent IO issuers, the in-debt iocg may end
2043  * up blocked paying its debt while the IO device is idle.
2044  *
2045  * The following protects against such cases. If the device has been
2046  * sufficiently idle for a while, the debts are halved and delays are
2047  * recalculated.
2048  */
2049 static void ioc_forgive_debts(struct ioc *ioc, u64 usage_us_sum, int nr_debtors,
2050 			      struct ioc_now *now)
2051 {
2052 	struct ioc_gq *iocg;
2053 	u64 dur, usage_pct, nr_cycles;
2054 
2055 	/* if no debtor, reset the cycle */
2056 	if (!nr_debtors) {
2057 		ioc->dfgv_period_at = now->now;
2058 		ioc->dfgv_period_rem = 0;
2059 		ioc->dfgv_usage_us_sum = 0;
2060 		return;
2061 	}
2062 
2063 	/*
2064 	 * Debtors can pass through a lot of writes choking the device and we
2065 	 * don't want to be forgiving debts while the device is struggling from
2066 	 * write bursts. If we're missing latency targets, consider the device
2067 	 * fully utilized.
2068 	 */
2069 	if (ioc->busy_level > 0)
2070 		usage_us_sum = max_t(u64, usage_us_sum, ioc->period_us);
2071 
2072 	ioc->dfgv_usage_us_sum += usage_us_sum;
2073 	if (time_before64(now->now, ioc->dfgv_period_at + DFGV_PERIOD))
2074 		return;
2075 
2076 	/*
2077 	 * At least DFGV_PERIOD has passed since the last period. Calculate the
2078 	 * average usage and reset the period counters.
2079 	 */
2080 	dur = now->now - ioc->dfgv_period_at;
2081 	usage_pct = div64_u64(100 * ioc->dfgv_usage_us_sum, dur);
2082 
2083 	ioc->dfgv_period_at = now->now;
2084 	ioc->dfgv_usage_us_sum = 0;
2085 
2086 	/* if was too busy, reset everything */
2087 	if (usage_pct > DFGV_USAGE_PCT) {
2088 		ioc->dfgv_period_rem = 0;
2089 		return;
2090 	}
2091 
2092 	/*
2093 	 * Usage is lower than threshold. Let's forgive some debts. Debt
2094 	 * forgiveness runs off of the usual ioc timer but its period usually
2095 	 * doesn't match ioc's. Compensate the difference by performing the
2096 	 * reduction as many times as would fit in the duration since the last
2097 	 * run and carrying over the left-over duration in @ioc->dfgv_period_rem
2098 	 * - if ioc period is 75% of DFGV_PERIOD, one out of three consecutive
2099 	 * reductions is doubled.
2100 	 */
2101 	nr_cycles = dur + ioc->dfgv_period_rem;
2102 	ioc->dfgv_period_rem = do_div(nr_cycles, DFGV_PERIOD);
2103 
2104 	list_for_each_entry(iocg, &ioc->active_iocgs, active_list) {
2105 		u64 __maybe_unused old_debt, __maybe_unused old_delay;
2106 
2107 		if (!iocg->abs_vdebt && !iocg->delay)
2108 			continue;
2109 
2110 		spin_lock(&iocg->waitq.lock);
2111 
2112 		old_debt = iocg->abs_vdebt;
2113 		old_delay = iocg->delay;
2114 
2115 		if (iocg->abs_vdebt)
2116 			iocg->abs_vdebt = iocg->abs_vdebt >> nr_cycles ?: 1;
2117 		if (iocg->delay)
2118 			iocg->delay = iocg->delay >> nr_cycles ?: 1;
2119 
2120 		iocg_kick_waitq(iocg, true, now);
2121 
2122 		TRACE_IOCG_PATH(iocg_forgive_debt, iocg, now, usage_pct,
2123 				old_debt, iocg->abs_vdebt,
2124 				old_delay, iocg->delay);
2125 
2126 		spin_unlock(&iocg->waitq.lock);
2127 	}
2128 }
2129 
2130 /*
2131  * Check the active iocgs' state to avoid oversleeping and deactive
2132  * idle iocgs.
2133  *
2134  * Since waiters determine the sleep durations based on the vrate
2135  * they saw at the time of sleep, if vrate has increased, some
2136  * waiters could be sleeping for too long. Wake up tardy waiters
2137  * which should have woken up in the last period and expire idle
2138  * iocgs.
2139  */
2140 static int ioc_check_iocgs(struct ioc *ioc, struct ioc_now *now)
2141 {
2142 	int nr_debtors = 0;
2143 	struct ioc_gq *iocg, *tiocg;
2144 
2145 	list_for_each_entry_safe(iocg, tiocg, &ioc->active_iocgs, active_list) {
2146 		if (!waitqueue_active(&iocg->waitq) && !iocg->abs_vdebt &&
2147 		    !iocg->delay && !iocg_is_idle(iocg))
2148 			continue;
2149 
2150 		spin_lock(&iocg->waitq.lock);
2151 
2152 		/* flush wait and indebt stat deltas */
2153 		if (iocg->wait_since) {
2154 			iocg->local_stat.wait_us += now->now - iocg->wait_since;
2155 			iocg->wait_since = now->now;
2156 		}
2157 		if (iocg->indebt_since) {
2158 			iocg->local_stat.indebt_us +=
2159 				now->now - iocg->indebt_since;
2160 			iocg->indebt_since = now->now;
2161 		}
2162 		if (iocg->indelay_since) {
2163 			iocg->local_stat.indelay_us +=
2164 				now->now - iocg->indelay_since;
2165 			iocg->indelay_since = now->now;
2166 		}
2167 
2168 		if (waitqueue_active(&iocg->waitq) || iocg->abs_vdebt ||
2169 		    iocg->delay) {
2170 			/* might be oversleeping vtime / hweight changes, kick */
2171 			iocg_kick_waitq(iocg, true, now);
2172 			if (iocg->abs_vdebt || iocg->delay)
2173 				nr_debtors++;
2174 		} else if (iocg_is_idle(iocg)) {
2175 			/* no waiter and idle, deactivate */
2176 			u64 vtime = atomic64_read(&iocg->vtime);
2177 			s64 excess;
2178 
2179 			/*
2180 			 * @iocg has been inactive for a full duration and will
2181 			 * have a high budget. Account anything above target as
2182 			 * error and throw away. On reactivation, it'll start
2183 			 * with the target budget.
2184 			 */
2185 			excess = now->vnow - vtime - ioc->margins.target;
2186 			if (excess > 0) {
2187 				u32 old_hwi;
2188 
2189 				current_hweight(iocg, NULL, &old_hwi);
2190 				ioc->vtime_err -= div64_u64(excess * old_hwi,
2191 							    WEIGHT_ONE);
2192 			}
2193 
2194 			TRACE_IOCG_PATH(iocg_idle, iocg, now,
2195 					atomic64_read(&iocg->active_period),
2196 					atomic64_read(&ioc->cur_period), vtime);
2197 			__propagate_weights(iocg, 0, 0, false, now);
2198 			list_del_init(&iocg->active_list);
2199 		}
2200 
2201 		spin_unlock(&iocg->waitq.lock);
2202 	}
2203 
2204 	commit_weights(ioc);
2205 	return nr_debtors;
2206 }
2207 
2208 static void ioc_timer_fn(struct timer_list *timer)
2209 {
2210 	struct ioc *ioc = container_of(timer, struct ioc, timer);
2211 	struct ioc_gq *iocg, *tiocg;
2212 	struct ioc_now now;
2213 	LIST_HEAD(surpluses);
2214 	int nr_debtors, nr_shortages = 0, nr_lagging = 0;
2215 	u64 usage_us_sum = 0;
2216 	u32 ppm_rthr = MILLION - ioc->params.qos[QOS_RPPM];
2217 	u32 ppm_wthr = MILLION - ioc->params.qos[QOS_WPPM];
2218 	u32 missed_ppm[2], rq_wait_pct;
2219 	u64 period_vtime;
2220 	int prev_busy_level;
2221 
2222 	/* how were the latencies during the period? */
2223 	ioc_lat_stat(ioc, missed_ppm, &rq_wait_pct);
2224 
2225 	/* take care of active iocgs */
2226 	spin_lock_irq(&ioc->lock);
2227 
2228 	ioc_now(ioc, &now);
2229 
2230 	period_vtime = now.vnow - ioc->period_at_vtime;
2231 	if (WARN_ON_ONCE(!period_vtime)) {
2232 		spin_unlock_irq(&ioc->lock);
2233 		return;
2234 	}
2235 
2236 	nr_debtors = ioc_check_iocgs(ioc, &now);
2237 
2238 	/*
2239 	 * Wait and indebt stat are flushed above and the donation calculation
2240 	 * below needs updated usage stat. Let's bring stat up-to-date.
2241 	 */
2242 	iocg_flush_stat(&ioc->active_iocgs, &now);
2243 
2244 	/* calc usage and see whether some weights need to be moved around */
2245 	list_for_each_entry(iocg, &ioc->active_iocgs, active_list) {
2246 		u64 vdone, vtime, usage_us;
2247 		u32 hw_active, hw_inuse;
2248 
2249 		/*
2250 		 * Collect unused and wind vtime closer to vnow to prevent
2251 		 * iocgs from accumulating a large amount of budget.
2252 		 */
2253 		vdone = atomic64_read(&iocg->done_vtime);
2254 		vtime = atomic64_read(&iocg->vtime);
2255 		current_hweight(iocg, &hw_active, &hw_inuse);
2256 
2257 		/*
2258 		 * Latency QoS detection doesn't account for IOs which are
2259 		 * in-flight for longer than a period.  Detect them by
2260 		 * comparing vdone against period start.  If lagging behind
2261 		 * IOs from past periods, don't increase vrate.
2262 		 */
2263 		if ((ppm_rthr != MILLION || ppm_wthr != MILLION) &&
2264 		    !atomic_read(&iocg_to_blkg(iocg)->use_delay) &&
2265 		    time_after64(vtime, vdone) &&
2266 		    time_after64(vtime, now.vnow -
2267 				 MAX_LAGGING_PERIODS * period_vtime) &&
2268 		    time_before64(vdone, now.vnow - period_vtime))
2269 			nr_lagging++;
2270 
2271 		/*
2272 		 * Determine absolute usage factoring in in-flight IOs to avoid
2273 		 * high-latency completions appearing as idle.
2274 		 */
2275 		usage_us = iocg->usage_delta_us;
2276 		usage_us_sum += usage_us;
2277 
2278 		/* see whether there's surplus vtime */
2279 		WARN_ON_ONCE(!list_empty(&iocg->surplus_list));
2280 		if (hw_inuse < hw_active ||
2281 		    (!waitqueue_active(&iocg->waitq) &&
2282 		     time_before64(vtime, now.vnow - ioc->margins.low))) {
2283 			u32 hwa, old_hwi, hwm, new_hwi, usage;
2284 			u64 usage_dur;
2285 
2286 			if (vdone != vtime) {
2287 				u64 inflight_us = DIV64_U64_ROUND_UP(
2288 					cost_to_abs_cost(vtime - vdone, hw_inuse),
2289 					ioc->vtime_base_rate);
2290 
2291 				usage_us = max(usage_us, inflight_us);
2292 			}
2293 
2294 			/* convert to hweight based usage ratio */
2295 			if (time_after64(iocg->activated_at, ioc->period_at))
2296 				usage_dur = max_t(u64, now.now - iocg->activated_at, 1);
2297 			else
2298 				usage_dur = max_t(u64, now.now - ioc->period_at, 1);
2299 
2300 			usage = clamp_t(u32,
2301 				DIV64_U64_ROUND_UP(usage_us * WEIGHT_ONE,
2302 						   usage_dur),
2303 				1, WEIGHT_ONE);
2304 
2305 			/*
2306 			 * Already donating or accumulated enough to start.
2307 			 * Determine the donation amount.
2308 			 */
2309 			current_hweight(iocg, &hwa, &old_hwi);
2310 			hwm = current_hweight_max(iocg);
2311 			new_hwi = hweight_after_donation(iocg, old_hwi, hwm,
2312 							 usage, &now);
2313 			if (new_hwi < hwm) {
2314 				iocg->hweight_donating = hwa;
2315 				iocg->hweight_after_donation = new_hwi;
2316 				list_add(&iocg->surplus_list, &surpluses);
2317 			} else {
2318 				TRACE_IOCG_PATH(inuse_shortage, iocg, &now,
2319 						iocg->inuse, iocg->active,
2320 						iocg->hweight_inuse, new_hwi);
2321 
2322 				__propagate_weights(iocg, iocg->active,
2323 						    iocg->active, true, &now);
2324 				nr_shortages++;
2325 			}
2326 		} else {
2327 			/* genuinely short on vtime */
2328 			nr_shortages++;
2329 		}
2330 	}
2331 
2332 	if (!list_empty(&surpluses) && nr_shortages)
2333 		transfer_surpluses(&surpluses, &now);
2334 
2335 	commit_weights(ioc);
2336 
2337 	/* surplus list should be dissolved after use */
2338 	list_for_each_entry_safe(iocg, tiocg, &surpluses, surplus_list)
2339 		list_del_init(&iocg->surplus_list);
2340 
2341 	/*
2342 	 * If q is getting clogged or we're missing too much, we're issuing
2343 	 * too much IO and should lower vtime rate.  If we're not missing
2344 	 * and experiencing shortages but not surpluses, we're too stingy
2345 	 * and should increase vtime rate.
2346 	 */
2347 	prev_busy_level = ioc->busy_level;
2348 	if (rq_wait_pct > RQ_WAIT_BUSY_PCT ||
2349 	    missed_ppm[READ] > ppm_rthr ||
2350 	    missed_ppm[WRITE] > ppm_wthr) {
2351 		/* clearly missing QoS targets, slow down vrate */
2352 		ioc->busy_level = max(ioc->busy_level, 0);
2353 		ioc->busy_level++;
2354 	} else if (rq_wait_pct <= RQ_WAIT_BUSY_PCT * UNBUSY_THR_PCT / 100 &&
2355 		   missed_ppm[READ] <= ppm_rthr * UNBUSY_THR_PCT / 100 &&
2356 		   missed_ppm[WRITE] <= ppm_wthr * UNBUSY_THR_PCT / 100) {
2357 		/* QoS targets are being met with >25% margin */
2358 		if (nr_shortages) {
2359 			/*
2360 			 * We're throttling while the device has spare
2361 			 * capacity.  If vrate was being slowed down, stop.
2362 			 */
2363 			ioc->busy_level = min(ioc->busy_level, 0);
2364 
2365 			/*
2366 			 * If there are IOs spanning multiple periods, wait
2367 			 * them out before pushing the device harder.
2368 			 */
2369 			if (!nr_lagging)
2370 				ioc->busy_level--;
2371 		} else {
2372 			/*
2373 			 * Nobody is being throttled and the users aren't
2374 			 * issuing enough IOs to saturate the device.  We
2375 			 * simply don't know how close the device is to
2376 			 * saturation.  Coast.
2377 			 */
2378 			ioc->busy_level = 0;
2379 		}
2380 	} else {
2381 		/* inside the hysterisis margin, we're good */
2382 		ioc->busy_level = 0;
2383 	}
2384 
2385 	ioc->busy_level = clamp(ioc->busy_level, -1000, 1000);
2386 
2387 	ioc_adjust_base_vrate(ioc, rq_wait_pct, nr_lagging, nr_shortages,
2388 			      prev_busy_level, missed_ppm);
2389 
2390 	ioc_refresh_params(ioc, false);
2391 
2392 	ioc_forgive_debts(ioc, usage_us_sum, nr_debtors, &now);
2393 
2394 	/*
2395 	 * This period is done.  Move onto the next one.  If nothing's
2396 	 * going on with the device, stop the timer.
2397 	 */
2398 	atomic64_inc(&ioc->cur_period);
2399 
2400 	if (ioc->running != IOC_STOP) {
2401 		if (!list_empty(&ioc->active_iocgs)) {
2402 			ioc_start_period(ioc, &now);
2403 		} else {
2404 			ioc->busy_level = 0;
2405 			ioc->vtime_err = 0;
2406 			ioc->running = IOC_IDLE;
2407 		}
2408 
2409 		ioc_refresh_vrate(ioc, &now);
2410 	}
2411 
2412 	spin_unlock_irq(&ioc->lock);
2413 }
2414 
2415 static u64 adjust_inuse_and_calc_cost(struct ioc_gq *iocg, u64 vtime,
2416 				      u64 abs_cost, struct ioc_now *now)
2417 {
2418 	struct ioc *ioc = iocg->ioc;
2419 	struct ioc_margins *margins = &ioc->margins;
2420 	u32 __maybe_unused old_inuse = iocg->inuse, __maybe_unused old_hwi;
2421 	u32 hwi, adj_step;
2422 	s64 margin;
2423 	u64 cost, new_inuse;
2424 
2425 	current_hweight(iocg, NULL, &hwi);
2426 	old_hwi = hwi;
2427 	cost = abs_cost_to_cost(abs_cost, hwi);
2428 	margin = now->vnow - vtime - cost;
2429 
2430 	/* debt handling owns inuse for debtors */
2431 	if (iocg->abs_vdebt)
2432 		return cost;
2433 
2434 	/*
2435 	 * We only increase inuse during period and do so if the margin has
2436 	 * deteriorated since the previous adjustment.
2437 	 */
2438 	if (margin >= iocg->saved_margin || margin >= margins->low ||
2439 	    iocg->inuse == iocg->active)
2440 		return cost;
2441 
2442 	spin_lock_irq(&ioc->lock);
2443 
2444 	/* we own inuse only when @iocg is in the normal active state */
2445 	if (iocg->abs_vdebt || list_empty(&iocg->active_list)) {
2446 		spin_unlock_irq(&ioc->lock);
2447 		return cost;
2448 	}
2449 
2450 	/*
2451 	 * Bump up inuse till @abs_cost fits in the existing budget.
2452 	 * adj_step must be determined after acquiring ioc->lock - we might
2453 	 * have raced and lost to another thread for activation and could
2454 	 * be reading 0 iocg->active before ioc->lock which will lead to
2455 	 * infinite loop.
2456 	 */
2457 	new_inuse = iocg->inuse;
2458 	adj_step = DIV_ROUND_UP(iocg->active * INUSE_ADJ_STEP_PCT, 100);
2459 	do {
2460 		new_inuse = new_inuse + adj_step;
2461 		propagate_weights(iocg, iocg->active, new_inuse, true, now);
2462 		current_hweight(iocg, NULL, &hwi);
2463 		cost = abs_cost_to_cost(abs_cost, hwi);
2464 	} while (time_after64(vtime + cost, now->vnow) &&
2465 		 iocg->inuse != iocg->active);
2466 
2467 	spin_unlock_irq(&ioc->lock);
2468 
2469 	TRACE_IOCG_PATH(inuse_adjust, iocg, now,
2470 			old_inuse, iocg->inuse, old_hwi, hwi);
2471 
2472 	return cost;
2473 }
2474 
2475 static void calc_vtime_cost_builtin(struct bio *bio, struct ioc_gq *iocg,
2476 				    bool is_merge, u64 *costp)
2477 {
2478 	struct ioc *ioc = iocg->ioc;
2479 	u64 coef_seqio, coef_randio, coef_page;
2480 	u64 pages = max_t(u64, bio_sectors(bio) >> IOC_SECT_TO_PAGE_SHIFT, 1);
2481 	u64 seek_pages = 0;
2482 	u64 cost = 0;
2483 
2484 	switch (bio_op(bio)) {
2485 	case REQ_OP_READ:
2486 		coef_seqio	= ioc->params.lcoefs[LCOEF_RSEQIO];
2487 		coef_randio	= ioc->params.lcoefs[LCOEF_RRANDIO];
2488 		coef_page	= ioc->params.lcoefs[LCOEF_RPAGE];
2489 		break;
2490 	case REQ_OP_WRITE:
2491 		coef_seqio	= ioc->params.lcoefs[LCOEF_WSEQIO];
2492 		coef_randio	= ioc->params.lcoefs[LCOEF_WRANDIO];
2493 		coef_page	= ioc->params.lcoefs[LCOEF_WPAGE];
2494 		break;
2495 	default:
2496 		goto out;
2497 	}
2498 
2499 	if (iocg->cursor) {
2500 		seek_pages = abs(bio->bi_iter.bi_sector - iocg->cursor);
2501 		seek_pages >>= IOC_SECT_TO_PAGE_SHIFT;
2502 	}
2503 
2504 	if (!is_merge) {
2505 		if (seek_pages > LCOEF_RANDIO_PAGES) {
2506 			cost += coef_randio;
2507 		} else {
2508 			cost += coef_seqio;
2509 		}
2510 	}
2511 	cost += pages * coef_page;
2512 out:
2513 	*costp = cost;
2514 }
2515 
2516 static u64 calc_vtime_cost(struct bio *bio, struct ioc_gq *iocg, bool is_merge)
2517 {
2518 	u64 cost;
2519 
2520 	calc_vtime_cost_builtin(bio, iocg, is_merge, &cost);
2521 	return cost;
2522 }
2523 
2524 static void calc_size_vtime_cost_builtin(struct request *rq, struct ioc *ioc,
2525 					 u64 *costp)
2526 {
2527 	unsigned int pages = blk_rq_stats_sectors(rq) >> IOC_SECT_TO_PAGE_SHIFT;
2528 
2529 	switch (req_op(rq)) {
2530 	case REQ_OP_READ:
2531 		*costp = pages * ioc->params.lcoefs[LCOEF_RPAGE];
2532 		break;
2533 	case REQ_OP_WRITE:
2534 		*costp = pages * ioc->params.lcoefs[LCOEF_WPAGE];
2535 		break;
2536 	default:
2537 		*costp = 0;
2538 	}
2539 }
2540 
2541 static u64 calc_size_vtime_cost(struct request *rq, struct ioc *ioc)
2542 {
2543 	u64 cost;
2544 
2545 	calc_size_vtime_cost_builtin(rq, ioc, &cost);
2546 	return cost;
2547 }
2548 
2549 static void ioc_rqos_throttle(struct rq_qos *rqos, struct bio *bio)
2550 {
2551 	struct blkcg_gq *blkg = bio->bi_blkg;
2552 	struct ioc *ioc = rqos_to_ioc(rqos);
2553 	struct ioc_gq *iocg = blkg_to_iocg(blkg);
2554 	struct ioc_now now;
2555 	struct iocg_wait wait;
2556 	u64 abs_cost, cost, vtime;
2557 	bool use_debt, ioc_locked;
2558 	unsigned long flags;
2559 
2560 	/* bypass IOs if disabled, still initializing, or for root cgroup */
2561 	if (!ioc->enabled || !iocg || !iocg->level)
2562 		return;
2563 
2564 	/* calculate the absolute vtime cost */
2565 	abs_cost = calc_vtime_cost(bio, iocg, false);
2566 	if (!abs_cost)
2567 		return;
2568 
2569 	if (!iocg_activate(iocg, &now))
2570 		return;
2571 
2572 	iocg->cursor = bio_end_sector(bio);
2573 	vtime = atomic64_read(&iocg->vtime);
2574 	cost = adjust_inuse_and_calc_cost(iocg, vtime, abs_cost, &now);
2575 
2576 	/*
2577 	 * If no one's waiting and within budget, issue right away.  The
2578 	 * tests are racy but the races aren't systemic - we only miss once
2579 	 * in a while which is fine.
2580 	 */
2581 	if (!waitqueue_active(&iocg->waitq) && !iocg->abs_vdebt &&
2582 	    time_before_eq64(vtime + cost, now.vnow)) {
2583 		iocg_commit_bio(iocg, bio, abs_cost, cost);
2584 		return;
2585 	}
2586 
2587 	/*
2588 	 * We're over budget. This can be handled in two ways. IOs which may
2589 	 * cause priority inversions are punted to @ioc->aux_iocg and charged as
2590 	 * debt. Otherwise, the issuer is blocked on @iocg->waitq. Debt handling
2591 	 * requires @ioc->lock, waitq handling @iocg->waitq.lock. Determine
2592 	 * whether debt handling is needed and acquire locks accordingly.
2593 	 */
2594 	use_debt = bio_issue_as_root_blkg(bio) || fatal_signal_pending(current);
2595 	ioc_locked = use_debt || READ_ONCE(iocg->abs_vdebt);
2596 retry_lock:
2597 	iocg_lock(iocg, ioc_locked, &flags);
2598 
2599 	/*
2600 	 * @iocg must stay activated for debt and waitq handling. Deactivation
2601 	 * is synchronized against both ioc->lock and waitq.lock and we won't
2602 	 * get deactivated as long as we're waiting or has debt, so we're good
2603 	 * if we're activated here. In the unlikely cases that we aren't, just
2604 	 * issue the IO.
2605 	 */
2606 	if (unlikely(list_empty(&iocg->active_list))) {
2607 		iocg_unlock(iocg, ioc_locked, &flags);
2608 		iocg_commit_bio(iocg, bio, abs_cost, cost);
2609 		return;
2610 	}
2611 
2612 	/*
2613 	 * We're over budget. If @bio has to be issued regardless, remember
2614 	 * the abs_cost instead of advancing vtime. iocg_kick_waitq() will pay
2615 	 * off the debt before waking more IOs.
2616 	 *
2617 	 * This way, the debt is continuously paid off each period with the
2618 	 * actual budget available to the cgroup. If we just wound vtime, we
2619 	 * would incorrectly use the current hw_inuse for the entire amount
2620 	 * which, for example, can lead to the cgroup staying blocked for a
2621 	 * long time even with substantially raised hw_inuse.
2622 	 *
2623 	 * An iocg with vdebt should stay online so that the timer can keep
2624 	 * deducting its vdebt and [de]activate use_delay mechanism
2625 	 * accordingly. We don't want to race against the timer trying to
2626 	 * clear them and leave @iocg inactive w/ dangling use_delay heavily
2627 	 * penalizing the cgroup and its descendants.
2628 	 */
2629 	if (use_debt) {
2630 		iocg_incur_debt(iocg, abs_cost, &now);
2631 		if (iocg_kick_delay(iocg, &now))
2632 			blkcg_schedule_throttle(rqos->q,
2633 					(bio->bi_opf & REQ_SWAP) == REQ_SWAP);
2634 		iocg_unlock(iocg, ioc_locked, &flags);
2635 		return;
2636 	}
2637 
2638 	/* guarantee that iocgs w/ waiters have maximum inuse */
2639 	if (!iocg->abs_vdebt && iocg->inuse != iocg->active) {
2640 		if (!ioc_locked) {
2641 			iocg_unlock(iocg, false, &flags);
2642 			ioc_locked = true;
2643 			goto retry_lock;
2644 		}
2645 		propagate_weights(iocg, iocg->active, iocg->active, true,
2646 				  &now);
2647 	}
2648 
2649 	/*
2650 	 * Append self to the waitq and schedule the wakeup timer if we're
2651 	 * the first waiter.  The timer duration is calculated based on the
2652 	 * current vrate.  vtime and hweight changes can make it too short
2653 	 * or too long.  Each wait entry records the absolute cost it's
2654 	 * waiting for to allow re-evaluation using a custom wait entry.
2655 	 *
2656 	 * If too short, the timer simply reschedules itself.  If too long,
2657 	 * the period timer will notice and trigger wakeups.
2658 	 *
2659 	 * All waiters are on iocg->waitq and the wait states are
2660 	 * synchronized using waitq.lock.
2661 	 */
2662 	init_waitqueue_func_entry(&wait.wait, iocg_wake_fn);
2663 	wait.wait.private = current;
2664 	wait.bio = bio;
2665 	wait.abs_cost = abs_cost;
2666 	wait.committed = false;	/* will be set true by waker */
2667 
2668 	__add_wait_queue_entry_tail(&iocg->waitq, &wait.wait);
2669 	iocg_kick_waitq(iocg, ioc_locked, &now);
2670 
2671 	iocg_unlock(iocg, ioc_locked, &flags);
2672 
2673 	while (true) {
2674 		set_current_state(TASK_UNINTERRUPTIBLE);
2675 		if (wait.committed)
2676 			break;
2677 		io_schedule();
2678 	}
2679 
2680 	/* waker already committed us, proceed */
2681 	finish_wait(&iocg->waitq, &wait.wait);
2682 }
2683 
2684 static void ioc_rqos_merge(struct rq_qos *rqos, struct request *rq,
2685 			   struct bio *bio)
2686 {
2687 	struct ioc_gq *iocg = blkg_to_iocg(bio->bi_blkg);
2688 	struct ioc *ioc = rqos_to_ioc(rqos);
2689 	sector_t bio_end = bio_end_sector(bio);
2690 	struct ioc_now now;
2691 	u64 vtime, abs_cost, cost;
2692 	unsigned long flags;
2693 
2694 	/* bypass if disabled, still initializing, or for root cgroup */
2695 	if (!ioc->enabled || !iocg || !iocg->level)
2696 		return;
2697 
2698 	abs_cost = calc_vtime_cost(bio, iocg, true);
2699 	if (!abs_cost)
2700 		return;
2701 
2702 	ioc_now(ioc, &now);
2703 
2704 	vtime = atomic64_read(&iocg->vtime);
2705 	cost = adjust_inuse_and_calc_cost(iocg, vtime, abs_cost, &now);
2706 
2707 	/* update cursor if backmerging into the request at the cursor */
2708 	if (blk_rq_pos(rq) < bio_end &&
2709 	    blk_rq_pos(rq) + blk_rq_sectors(rq) == iocg->cursor)
2710 		iocg->cursor = bio_end;
2711 
2712 	/*
2713 	 * Charge if there's enough vtime budget and the existing request has
2714 	 * cost assigned.
2715 	 */
2716 	if (rq->bio && rq->bio->bi_iocost_cost &&
2717 	    time_before_eq64(atomic64_read(&iocg->vtime) + cost, now.vnow)) {
2718 		iocg_commit_bio(iocg, bio, abs_cost, cost);
2719 		return;
2720 	}
2721 
2722 	/*
2723 	 * Otherwise, account it as debt if @iocg is online, which it should
2724 	 * be for the vast majority of cases. See debt handling in
2725 	 * ioc_rqos_throttle() for details.
2726 	 */
2727 	spin_lock_irqsave(&ioc->lock, flags);
2728 	spin_lock(&iocg->waitq.lock);
2729 
2730 	if (likely(!list_empty(&iocg->active_list))) {
2731 		iocg_incur_debt(iocg, abs_cost, &now);
2732 		if (iocg_kick_delay(iocg, &now))
2733 			blkcg_schedule_throttle(rqos->q,
2734 					(bio->bi_opf & REQ_SWAP) == REQ_SWAP);
2735 	} else {
2736 		iocg_commit_bio(iocg, bio, abs_cost, cost);
2737 	}
2738 
2739 	spin_unlock(&iocg->waitq.lock);
2740 	spin_unlock_irqrestore(&ioc->lock, flags);
2741 }
2742 
2743 static void ioc_rqos_done_bio(struct rq_qos *rqos, struct bio *bio)
2744 {
2745 	struct ioc_gq *iocg = blkg_to_iocg(bio->bi_blkg);
2746 
2747 	if (iocg && bio->bi_iocost_cost)
2748 		atomic64_add(bio->bi_iocost_cost, &iocg->done_vtime);
2749 }
2750 
2751 static void ioc_rqos_done(struct rq_qos *rqos, struct request *rq)
2752 {
2753 	struct ioc *ioc = rqos_to_ioc(rqos);
2754 	struct ioc_pcpu_stat *ccs;
2755 	u64 on_q_ns, rq_wait_ns, size_nsec;
2756 	int pidx, rw;
2757 
2758 	if (!ioc->enabled || !rq->alloc_time_ns || !rq->start_time_ns)
2759 		return;
2760 
2761 	switch (req_op(rq) & REQ_OP_MASK) {
2762 	case REQ_OP_READ:
2763 		pidx = QOS_RLAT;
2764 		rw = READ;
2765 		break;
2766 	case REQ_OP_WRITE:
2767 		pidx = QOS_WLAT;
2768 		rw = WRITE;
2769 		break;
2770 	default:
2771 		return;
2772 	}
2773 
2774 	on_q_ns = ktime_get_ns() - rq->alloc_time_ns;
2775 	rq_wait_ns = rq->start_time_ns - rq->alloc_time_ns;
2776 	size_nsec = div64_u64(calc_size_vtime_cost(rq, ioc), VTIME_PER_NSEC);
2777 
2778 	ccs = get_cpu_ptr(ioc->pcpu_stat);
2779 
2780 	if (on_q_ns <= size_nsec ||
2781 	    on_q_ns - size_nsec <= ioc->params.qos[pidx] * NSEC_PER_USEC)
2782 		local_inc(&ccs->missed[rw].nr_met);
2783 	else
2784 		local_inc(&ccs->missed[rw].nr_missed);
2785 
2786 	local64_add(rq_wait_ns, &ccs->rq_wait_ns);
2787 
2788 	put_cpu_ptr(ccs);
2789 }
2790 
2791 static void ioc_rqos_queue_depth_changed(struct rq_qos *rqos)
2792 {
2793 	struct ioc *ioc = rqos_to_ioc(rqos);
2794 
2795 	spin_lock_irq(&ioc->lock);
2796 	ioc_refresh_params(ioc, false);
2797 	spin_unlock_irq(&ioc->lock);
2798 }
2799 
2800 static void ioc_rqos_exit(struct rq_qos *rqos)
2801 {
2802 	struct ioc *ioc = rqos_to_ioc(rqos);
2803 
2804 	blkcg_deactivate_policy(rqos->q, &blkcg_policy_iocost);
2805 
2806 	spin_lock_irq(&ioc->lock);
2807 	ioc->running = IOC_STOP;
2808 	spin_unlock_irq(&ioc->lock);
2809 
2810 	del_timer_sync(&ioc->timer);
2811 	free_percpu(ioc->pcpu_stat);
2812 	kfree(ioc);
2813 }
2814 
2815 static struct rq_qos_ops ioc_rqos_ops = {
2816 	.throttle = ioc_rqos_throttle,
2817 	.merge = ioc_rqos_merge,
2818 	.done_bio = ioc_rqos_done_bio,
2819 	.done = ioc_rqos_done,
2820 	.queue_depth_changed = ioc_rqos_queue_depth_changed,
2821 	.exit = ioc_rqos_exit,
2822 };
2823 
2824 static int blk_iocost_init(struct request_queue *q)
2825 {
2826 	struct ioc *ioc;
2827 	struct rq_qos *rqos;
2828 	int i, cpu, ret;
2829 
2830 	ioc = kzalloc(sizeof(*ioc), GFP_KERNEL);
2831 	if (!ioc)
2832 		return -ENOMEM;
2833 
2834 	ioc->pcpu_stat = alloc_percpu(struct ioc_pcpu_stat);
2835 	if (!ioc->pcpu_stat) {
2836 		kfree(ioc);
2837 		return -ENOMEM;
2838 	}
2839 
2840 	for_each_possible_cpu(cpu) {
2841 		struct ioc_pcpu_stat *ccs = per_cpu_ptr(ioc->pcpu_stat, cpu);
2842 
2843 		for (i = 0; i < ARRAY_SIZE(ccs->missed); i++) {
2844 			local_set(&ccs->missed[i].nr_met, 0);
2845 			local_set(&ccs->missed[i].nr_missed, 0);
2846 		}
2847 		local64_set(&ccs->rq_wait_ns, 0);
2848 	}
2849 
2850 	rqos = &ioc->rqos;
2851 	rqos->id = RQ_QOS_COST;
2852 	rqos->ops = &ioc_rqos_ops;
2853 	rqos->q = q;
2854 
2855 	spin_lock_init(&ioc->lock);
2856 	timer_setup(&ioc->timer, ioc_timer_fn, 0);
2857 	INIT_LIST_HEAD(&ioc->active_iocgs);
2858 
2859 	ioc->running = IOC_IDLE;
2860 	ioc->vtime_base_rate = VTIME_PER_USEC;
2861 	atomic64_set(&ioc->vtime_rate, VTIME_PER_USEC);
2862 	seqcount_spinlock_init(&ioc->period_seqcount, &ioc->lock);
2863 	ioc->period_at = ktime_to_us(ktime_get());
2864 	atomic64_set(&ioc->cur_period, 0);
2865 	atomic_set(&ioc->hweight_gen, 0);
2866 
2867 	spin_lock_irq(&ioc->lock);
2868 	ioc->autop_idx = AUTOP_INVALID;
2869 	ioc_refresh_params(ioc, true);
2870 	spin_unlock_irq(&ioc->lock);
2871 
2872 	/*
2873 	 * rqos must be added before activation to allow iocg_pd_init() to
2874 	 * lookup the ioc from q. This means that the rqos methods may get
2875 	 * called before policy activation completion, can't assume that the
2876 	 * target bio has an iocg associated and need to test for NULL iocg.
2877 	 */
2878 	rq_qos_add(q, rqos);
2879 	ret = blkcg_activate_policy(q, &blkcg_policy_iocost);
2880 	if (ret) {
2881 		rq_qos_del(q, rqos);
2882 		free_percpu(ioc->pcpu_stat);
2883 		kfree(ioc);
2884 		return ret;
2885 	}
2886 	return 0;
2887 }
2888 
2889 static struct blkcg_policy_data *ioc_cpd_alloc(gfp_t gfp)
2890 {
2891 	struct ioc_cgrp *iocc;
2892 
2893 	iocc = kzalloc(sizeof(struct ioc_cgrp), gfp);
2894 	if (!iocc)
2895 		return NULL;
2896 
2897 	iocc->dfl_weight = CGROUP_WEIGHT_DFL * WEIGHT_ONE;
2898 	return &iocc->cpd;
2899 }
2900 
2901 static void ioc_cpd_free(struct blkcg_policy_data *cpd)
2902 {
2903 	kfree(container_of(cpd, struct ioc_cgrp, cpd));
2904 }
2905 
2906 static struct blkg_policy_data *ioc_pd_alloc(gfp_t gfp, struct request_queue *q,
2907 					     struct blkcg *blkcg)
2908 {
2909 	int levels = blkcg->css.cgroup->level + 1;
2910 	struct ioc_gq *iocg;
2911 
2912 	iocg = kzalloc_node(struct_size(iocg, ancestors, levels), gfp, q->node);
2913 	if (!iocg)
2914 		return NULL;
2915 
2916 	iocg->pcpu_stat = alloc_percpu_gfp(struct iocg_pcpu_stat, gfp);
2917 	if (!iocg->pcpu_stat) {
2918 		kfree(iocg);
2919 		return NULL;
2920 	}
2921 
2922 	return &iocg->pd;
2923 }
2924 
2925 static void ioc_pd_init(struct blkg_policy_data *pd)
2926 {
2927 	struct ioc_gq *iocg = pd_to_iocg(pd);
2928 	struct blkcg_gq *blkg = pd_to_blkg(&iocg->pd);
2929 	struct ioc *ioc = q_to_ioc(blkg->q);
2930 	struct ioc_now now;
2931 	struct blkcg_gq *tblkg;
2932 	unsigned long flags;
2933 
2934 	ioc_now(ioc, &now);
2935 
2936 	iocg->ioc = ioc;
2937 	atomic64_set(&iocg->vtime, now.vnow);
2938 	atomic64_set(&iocg->done_vtime, now.vnow);
2939 	atomic64_set(&iocg->active_period, atomic64_read(&ioc->cur_period));
2940 	INIT_LIST_HEAD(&iocg->active_list);
2941 	INIT_LIST_HEAD(&iocg->walk_list);
2942 	INIT_LIST_HEAD(&iocg->surplus_list);
2943 	iocg->hweight_active = WEIGHT_ONE;
2944 	iocg->hweight_inuse = WEIGHT_ONE;
2945 
2946 	init_waitqueue_head(&iocg->waitq);
2947 	hrtimer_init(&iocg->waitq_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
2948 	iocg->waitq_timer.function = iocg_waitq_timer_fn;
2949 
2950 	iocg->level = blkg->blkcg->css.cgroup->level;
2951 
2952 	for (tblkg = blkg; tblkg; tblkg = tblkg->parent) {
2953 		struct ioc_gq *tiocg = blkg_to_iocg(tblkg);
2954 		iocg->ancestors[tiocg->level] = tiocg;
2955 	}
2956 
2957 	spin_lock_irqsave(&ioc->lock, flags);
2958 	weight_updated(iocg, &now);
2959 	spin_unlock_irqrestore(&ioc->lock, flags);
2960 }
2961 
2962 static void ioc_pd_free(struct blkg_policy_data *pd)
2963 {
2964 	struct ioc_gq *iocg = pd_to_iocg(pd);
2965 	struct ioc *ioc = iocg->ioc;
2966 	unsigned long flags;
2967 
2968 	if (ioc) {
2969 		spin_lock_irqsave(&ioc->lock, flags);
2970 
2971 		if (!list_empty(&iocg->active_list)) {
2972 			struct ioc_now now;
2973 
2974 			ioc_now(ioc, &now);
2975 			propagate_weights(iocg, 0, 0, false, &now);
2976 			list_del_init(&iocg->active_list);
2977 		}
2978 
2979 		WARN_ON_ONCE(!list_empty(&iocg->walk_list));
2980 		WARN_ON_ONCE(!list_empty(&iocg->surplus_list));
2981 
2982 		spin_unlock_irqrestore(&ioc->lock, flags);
2983 
2984 		hrtimer_cancel(&iocg->waitq_timer);
2985 	}
2986 	free_percpu(iocg->pcpu_stat);
2987 	kfree(iocg);
2988 }
2989 
2990 static size_t ioc_pd_stat(struct blkg_policy_data *pd, char *buf, size_t size)
2991 {
2992 	struct ioc_gq *iocg = pd_to_iocg(pd);
2993 	struct ioc *ioc = iocg->ioc;
2994 	size_t pos = 0;
2995 
2996 	if (!ioc->enabled)
2997 		return 0;
2998 
2999 	if (iocg->level == 0) {
3000 		unsigned vp10k = DIV64_U64_ROUND_CLOSEST(
3001 			ioc->vtime_base_rate * 10000,
3002 			VTIME_PER_USEC);
3003 		pos += scnprintf(buf + pos, size - pos, " cost.vrate=%u.%02u",
3004 				  vp10k / 100, vp10k % 100);
3005 	}
3006 
3007 	pos += scnprintf(buf + pos, size - pos, " cost.usage=%llu",
3008 			 iocg->last_stat.usage_us);
3009 
3010 	if (blkcg_debug_stats)
3011 		pos += scnprintf(buf + pos, size - pos,
3012 				 " cost.wait=%llu cost.indebt=%llu cost.indelay=%llu",
3013 				 iocg->last_stat.wait_us,
3014 				 iocg->last_stat.indebt_us,
3015 				 iocg->last_stat.indelay_us);
3016 
3017 	return pos;
3018 }
3019 
3020 static u64 ioc_weight_prfill(struct seq_file *sf, struct blkg_policy_data *pd,
3021 			     int off)
3022 {
3023 	const char *dname = blkg_dev_name(pd->blkg);
3024 	struct ioc_gq *iocg = pd_to_iocg(pd);
3025 
3026 	if (dname && iocg->cfg_weight)
3027 		seq_printf(sf, "%s %u\n", dname, iocg->cfg_weight / WEIGHT_ONE);
3028 	return 0;
3029 }
3030 
3031 
3032 static int ioc_weight_show(struct seq_file *sf, void *v)
3033 {
3034 	struct blkcg *blkcg = css_to_blkcg(seq_css(sf));
3035 	struct ioc_cgrp *iocc = blkcg_to_iocc(blkcg);
3036 
3037 	seq_printf(sf, "default %u\n", iocc->dfl_weight / WEIGHT_ONE);
3038 	blkcg_print_blkgs(sf, blkcg, ioc_weight_prfill,
3039 			  &blkcg_policy_iocost, seq_cft(sf)->private, false);
3040 	return 0;
3041 }
3042 
3043 static ssize_t ioc_weight_write(struct kernfs_open_file *of, char *buf,
3044 				size_t nbytes, loff_t off)
3045 {
3046 	struct blkcg *blkcg = css_to_blkcg(of_css(of));
3047 	struct ioc_cgrp *iocc = blkcg_to_iocc(blkcg);
3048 	struct blkg_conf_ctx ctx;
3049 	struct ioc_now now;
3050 	struct ioc_gq *iocg;
3051 	u32 v;
3052 	int ret;
3053 
3054 	if (!strchr(buf, ':')) {
3055 		struct blkcg_gq *blkg;
3056 
3057 		if (!sscanf(buf, "default %u", &v) && !sscanf(buf, "%u", &v))
3058 			return -EINVAL;
3059 
3060 		if (v < CGROUP_WEIGHT_MIN || v > CGROUP_WEIGHT_MAX)
3061 			return -EINVAL;
3062 
3063 		spin_lock(&blkcg->lock);
3064 		iocc->dfl_weight = v * WEIGHT_ONE;
3065 		hlist_for_each_entry(blkg, &blkcg->blkg_list, blkcg_node) {
3066 			struct ioc_gq *iocg = blkg_to_iocg(blkg);
3067 
3068 			if (iocg) {
3069 				spin_lock_irq(&iocg->ioc->lock);
3070 				ioc_now(iocg->ioc, &now);
3071 				weight_updated(iocg, &now);
3072 				spin_unlock_irq(&iocg->ioc->lock);
3073 			}
3074 		}
3075 		spin_unlock(&blkcg->lock);
3076 
3077 		return nbytes;
3078 	}
3079 
3080 	ret = blkg_conf_prep(blkcg, &blkcg_policy_iocost, buf, &ctx);
3081 	if (ret)
3082 		return ret;
3083 
3084 	iocg = blkg_to_iocg(ctx.blkg);
3085 
3086 	if (!strncmp(ctx.body, "default", 7)) {
3087 		v = 0;
3088 	} else {
3089 		if (!sscanf(ctx.body, "%u", &v))
3090 			goto einval;
3091 		if (v < CGROUP_WEIGHT_MIN || v > CGROUP_WEIGHT_MAX)
3092 			goto einval;
3093 	}
3094 
3095 	spin_lock(&iocg->ioc->lock);
3096 	iocg->cfg_weight = v * WEIGHT_ONE;
3097 	ioc_now(iocg->ioc, &now);
3098 	weight_updated(iocg, &now);
3099 	spin_unlock(&iocg->ioc->lock);
3100 
3101 	blkg_conf_finish(&ctx);
3102 	return nbytes;
3103 
3104 einval:
3105 	blkg_conf_finish(&ctx);
3106 	return -EINVAL;
3107 }
3108 
3109 static u64 ioc_qos_prfill(struct seq_file *sf, struct blkg_policy_data *pd,
3110 			  int off)
3111 {
3112 	const char *dname = blkg_dev_name(pd->blkg);
3113 	struct ioc *ioc = pd_to_iocg(pd)->ioc;
3114 
3115 	if (!dname)
3116 		return 0;
3117 
3118 	seq_printf(sf, "%s enable=%d ctrl=%s rpct=%u.%02u rlat=%u wpct=%u.%02u wlat=%u min=%u.%02u max=%u.%02u\n",
3119 		   dname, ioc->enabled, ioc->user_qos_params ? "user" : "auto",
3120 		   ioc->params.qos[QOS_RPPM] / 10000,
3121 		   ioc->params.qos[QOS_RPPM] % 10000 / 100,
3122 		   ioc->params.qos[QOS_RLAT],
3123 		   ioc->params.qos[QOS_WPPM] / 10000,
3124 		   ioc->params.qos[QOS_WPPM] % 10000 / 100,
3125 		   ioc->params.qos[QOS_WLAT],
3126 		   ioc->params.qos[QOS_MIN] / 10000,
3127 		   ioc->params.qos[QOS_MIN] % 10000 / 100,
3128 		   ioc->params.qos[QOS_MAX] / 10000,
3129 		   ioc->params.qos[QOS_MAX] % 10000 / 100);
3130 	return 0;
3131 }
3132 
3133 static int ioc_qos_show(struct seq_file *sf, void *v)
3134 {
3135 	struct blkcg *blkcg = css_to_blkcg(seq_css(sf));
3136 
3137 	blkcg_print_blkgs(sf, blkcg, ioc_qos_prfill,
3138 			  &blkcg_policy_iocost, seq_cft(sf)->private, false);
3139 	return 0;
3140 }
3141 
3142 static const match_table_t qos_ctrl_tokens = {
3143 	{ QOS_ENABLE,		"enable=%u"	},
3144 	{ QOS_CTRL,		"ctrl=%s"	},
3145 	{ NR_QOS_CTRL_PARAMS,	NULL		},
3146 };
3147 
3148 static const match_table_t qos_tokens = {
3149 	{ QOS_RPPM,		"rpct=%s"	},
3150 	{ QOS_RLAT,		"rlat=%u"	},
3151 	{ QOS_WPPM,		"wpct=%s"	},
3152 	{ QOS_WLAT,		"wlat=%u"	},
3153 	{ QOS_MIN,		"min=%s"	},
3154 	{ QOS_MAX,		"max=%s"	},
3155 	{ NR_QOS_PARAMS,	NULL		},
3156 };
3157 
3158 static ssize_t ioc_qos_write(struct kernfs_open_file *of, char *input,
3159 			     size_t nbytes, loff_t off)
3160 {
3161 	struct block_device *bdev;
3162 	struct ioc *ioc;
3163 	u32 qos[NR_QOS_PARAMS];
3164 	bool enable, user;
3165 	char *p;
3166 	int ret;
3167 
3168 	bdev = blkcg_conf_open_bdev(&input);
3169 	if (IS_ERR(bdev))
3170 		return PTR_ERR(bdev);
3171 
3172 	ioc = q_to_ioc(bdev->bd_disk->queue);
3173 	if (!ioc) {
3174 		ret = blk_iocost_init(bdev->bd_disk->queue);
3175 		if (ret)
3176 			goto err;
3177 		ioc = q_to_ioc(bdev->bd_disk->queue);
3178 	}
3179 
3180 	spin_lock_irq(&ioc->lock);
3181 	memcpy(qos, ioc->params.qos, sizeof(qos));
3182 	enable = ioc->enabled;
3183 	user = ioc->user_qos_params;
3184 	spin_unlock_irq(&ioc->lock);
3185 
3186 	while ((p = strsep(&input, " \t\n"))) {
3187 		substring_t args[MAX_OPT_ARGS];
3188 		char buf[32];
3189 		int tok;
3190 		s64 v;
3191 
3192 		if (!*p)
3193 			continue;
3194 
3195 		switch (match_token(p, qos_ctrl_tokens, args)) {
3196 		case QOS_ENABLE:
3197 			match_u64(&args[0], &v);
3198 			enable = v;
3199 			continue;
3200 		case QOS_CTRL:
3201 			match_strlcpy(buf, &args[0], sizeof(buf));
3202 			if (!strcmp(buf, "auto"))
3203 				user = false;
3204 			else if (!strcmp(buf, "user"))
3205 				user = true;
3206 			else
3207 				goto einval;
3208 			continue;
3209 		}
3210 
3211 		tok = match_token(p, qos_tokens, args);
3212 		switch (tok) {
3213 		case QOS_RPPM:
3214 		case QOS_WPPM:
3215 			if (match_strlcpy(buf, &args[0], sizeof(buf)) >=
3216 			    sizeof(buf))
3217 				goto einval;
3218 			if (cgroup_parse_float(buf, 2, &v))
3219 				goto einval;
3220 			if (v < 0 || v > 10000)
3221 				goto einval;
3222 			qos[tok] = v * 100;
3223 			break;
3224 		case QOS_RLAT:
3225 		case QOS_WLAT:
3226 			if (match_u64(&args[0], &v))
3227 				goto einval;
3228 			qos[tok] = v;
3229 			break;
3230 		case QOS_MIN:
3231 		case QOS_MAX:
3232 			if (match_strlcpy(buf, &args[0], sizeof(buf)) >=
3233 			    sizeof(buf))
3234 				goto einval;
3235 			if (cgroup_parse_float(buf, 2, &v))
3236 				goto einval;
3237 			if (v < 0)
3238 				goto einval;
3239 			qos[tok] = clamp_t(s64, v * 100,
3240 					   VRATE_MIN_PPM, VRATE_MAX_PPM);
3241 			break;
3242 		default:
3243 			goto einval;
3244 		}
3245 		user = true;
3246 	}
3247 
3248 	if (qos[QOS_MIN] > qos[QOS_MAX])
3249 		goto einval;
3250 
3251 	spin_lock_irq(&ioc->lock);
3252 
3253 	if (enable) {
3254 		blk_stat_enable_accounting(ioc->rqos.q);
3255 		blk_queue_flag_set(QUEUE_FLAG_RQ_ALLOC_TIME, ioc->rqos.q);
3256 		ioc->enabled = true;
3257 	} else {
3258 		blk_queue_flag_clear(QUEUE_FLAG_RQ_ALLOC_TIME, ioc->rqos.q);
3259 		ioc->enabled = false;
3260 	}
3261 
3262 	if (user) {
3263 		memcpy(ioc->params.qos, qos, sizeof(qos));
3264 		ioc->user_qos_params = true;
3265 	} else {
3266 		ioc->user_qos_params = false;
3267 	}
3268 
3269 	ioc_refresh_params(ioc, true);
3270 	spin_unlock_irq(&ioc->lock);
3271 
3272 	blkdev_put_no_open(bdev);
3273 	return nbytes;
3274 einval:
3275 	ret = -EINVAL;
3276 err:
3277 	blkdev_put_no_open(bdev);
3278 	return ret;
3279 }
3280 
3281 static u64 ioc_cost_model_prfill(struct seq_file *sf,
3282 				 struct blkg_policy_data *pd, int off)
3283 {
3284 	const char *dname = blkg_dev_name(pd->blkg);
3285 	struct ioc *ioc = pd_to_iocg(pd)->ioc;
3286 	u64 *u = ioc->params.i_lcoefs;
3287 
3288 	if (!dname)
3289 		return 0;
3290 
3291 	seq_printf(sf, "%s ctrl=%s model=linear "
3292 		   "rbps=%llu rseqiops=%llu rrandiops=%llu "
3293 		   "wbps=%llu wseqiops=%llu wrandiops=%llu\n",
3294 		   dname, ioc->user_cost_model ? "user" : "auto",
3295 		   u[I_LCOEF_RBPS], u[I_LCOEF_RSEQIOPS], u[I_LCOEF_RRANDIOPS],
3296 		   u[I_LCOEF_WBPS], u[I_LCOEF_WSEQIOPS], u[I_LCOEF_WRANDIOPS]);
3297 	return 0;
3298 }
3299 
3300 static int ioc_cost_model_show(struct seq_file *sf, void *v)
3301 {
3302 	struct blkcg *blkcg = css_to_blkcg(seq_css(sf));
3303 
3304 	blkcg_print_blkgs(sf, blkcg, ioc_cost_model_prfill,
3305 			  &blkcg_policy_iocost, seq_cft(sf)->private, false);
3306 	return 0;
3307 }
3308 
3309 static const match_table_t cost_ctrl_tokens = {
3310 	{ COST_CTRL,		"ctrl=%s"	},
3311 	{ COST_MODEL,		"model=%s"	},
3312 	{ NR_COST_CTRL_PARAMS,	NULL		},
3313 };
3314 
3315 static const match_table_t i_lcoef_tokens = {
3316 	{ I_LCOEF_RBPS,		"rbps=%u"	},
3317 	{ I_LCOEF_RSEQIOPS,	"rseqiops=%u"	},
3318 	{ I_LCOEF_RRANDIOPS,	"rrandiops=%u"	},
3319 	{ I_LCOEF_WBPS,		"wbps=%u"	},
3320 	{ I_LCOEF_WSEQIOPS,	"wseqiops=%u"	},
3321 	{ I_LCOEF_WRANDIOPS,	"wrandiops=%u"	},
3322 	{ NR_I_LCOEFS,		NULL		},
3323 };
3324 
3325 static ssize_t ioc_cost_model_write(struct kernfs_open_file *of, char *input,
3326 				    size_t nbytes, loff_t off)
3327 {
3328 	struct block_device *bdev;
3329 	struct ioc *ioc;
3330 	u64 u[NR_I_LCOEFS];
3331 	bool user;
3332 	char *p;
3333 	int ret;
3334 
3335 	bdev = blkcg_conf_open_bdev(&input);
3336 	if (IS_ERR(bdev))
3337 		return PTR_ERR(bdev);
3338 
3339 	ioc = q_to_ioc(bdev->bd_disk->queue);
3340 	if (!ioc) {
3341 		ret = blk_iocost_init(bdev->bd_disk->queue);
3342 		if (ret)
3343 			goto err;
3344 		ioc = q_to_ioc(bdev->bd_disk->queue);
3345 	}
3346 
3347 	spin_lock_irq(&ioc->lock);
3348 	memcpy(u, ioc->params.i_lcoefs, sizeof(u));
3349 	user = ioc->user_cost_model;
3350 	spin_unlock_irq(&ioc->lock);
3351 
3352 	while ((p = strsep(&input, " \t\n"))) {
3353 		substring_t args[MAX_OPT_ARGS];
3354 		char buf[32];
3355 		int tok;
3356 		u64 v;
3357 
3358 		if (!*p)
3359 			continue;
3360 
3361 		switch (match_token(p, cost_ctrl_tokens, args)) {
3362 		case COST_CTRL:
3363 			match_strlcpy(buf, &args[0], sizeof(buf));
3364 			if (!strcmp(buf, "auto"))
3365 				user = false;
3366 			else if (!strcmp(buf, "user"))
3367 				user = true;
3368 			else
3369 				goto einval;
3370 			continue;
3371 		case COST_MODEL:
3372 			match_strlcpy(buf, &args[0], sizeof(buf));
3373 			if (strcmp(buf, "linear"))
3374 				goto einval;
3375 			continue;
3376 		}
3377 
3378 		tok = match_token(p, i_lcoef_tokens, args);
3379 		if (tok == NR_I_LCOEFS)
3380 			goto einval;
3381 		if (match_u64(&args[0], &v))
3382 			goto einval;
3383 		u[tok] = v;
3384 		user = true;
3385 	}
3386 
3387 	spin_lock_irq(&ioc->lock);
3388 	if (user) {
3389 		memcpy(ioc->params.i_lcoefs, u, sizeof(u));
3390 		ioc->user_cost_model = true;
3391 	} else {
3392 		ioc->user_cost_model = false;
3393 	}
3394 	ioc_refresh_params(ioc, true);
3395 	spin_unlock_irq(&ioc->lock);
3396 
3397 	blkdev_put_no_open(bdev);
3398 	return nbytes;
3399 
3400 einval:
3401 	ret = -EINVAL;
3402 err:
3403 	blkdev_put_no_open(bdev);
3404 	return ret;
3405 }
3406 
3407 static struct cftype ioc_files[] = {
3408 	{
3409 		.name = "weight",
3410 		.flags = CFTYPE_NOT_ON_ROOT,
3411 		.seq_show = ioc_weight_show,
3412 		.write = ioc_weight_write,
3413 	},
3414 	{
3415 		.name = "cost.qos",
3416 		.flags = CFTYPE_ONLY_ON_ROOT,
3417 		.seq_show = ioc_qos_show,
3418 		.write = ioc_qos_write,
3419 	},
3420 	{
3421 		.name = "cost.model",
3422 		.flags = CFTYPE_ONLY_ON_ROOT,
3423 		.seq_show = ioc_cost_model_show,
3424 		.write = ioc_cost_model_write,
3425 	},
3426 	{}
3427 };
3428 
3429 static struct blkcg_policy blkcg_policy_iocost = {
3430 	.dfl_cftypes	= ioc_files,
3431 	.cpd_alloc_fn	= ioc_cpd_alloc,
3432 	.cpd_free_fn	= ioc_cpd_free,
3433 	.pd_alloc_fn	= ioc_pd_alloc,
3434 	.pd_init_fn	= ioc_pd_init,
3435 	.pd_free_fn	= ioc_pd_free,
3436 	.pd_stat_fn	= ioc_pd_stat,
3437 };
3438 
3439 static int __init ioc_init(void)
3440 {
3441 	return blkcg_policy_register(&blkcg_policy_iocost);
3442 }
3443 
3444 static void __exit ioc_exit(void)
3445 {
3446 	blkcg_policy_unregister(&blkcg_policy_iocost);
3447 }
3448 
3449 module_init(ioc_init);
3450 module_exit(ioc_exit);
3451