1 /* SPDX-License-Identifier: GPL-2.0 2 * 3 * IO cost model based controller. 4 * 5 * Copyright (C) 2019 Tejun Heo <tj@kernel.org> 6 * Copyright (C) 2019 Andy Newell <newella@fb.com> 7 * Copyright (C) 2019 Facebook 8 * 9 * One challenge of controlling IO resources is the lack of trivially 10 * observable cost metric. This is distinguished from CPU and memory where 11 * wallclock time and the number of bytes can serve as accurate enough 12 * approximations. 13 * 14 * Bandwidth and iops are the most commonly used metrics for IO devices but 15 * depending on the type and specifics of the device, different IO patterns 16 * easily lead to multiple orders of magnitude variations rendering them 17 * useless for the purpose of IO capacity distribution. While on-device 18 * time, with a lot of clutches, could serve as a useful approximation for 19 * non-queued rotational devices, this is no longer viable with modern 20 * devices, even the rotational ones. 21 * 22 * While there is no cost metric we can trivially observe, it isn't a 23 * complete mystery. For example, on a rotational device, seek cost 24 * dominates while a contiguous transfer contributes a smaller amount 25 * proportional to the size. If we can characterize at least the relative 26 * costs of these different types of IOs, it should be possible to 27 * implement a reasonable work-conserving proportional IO resource 28 * distribution. 29 * 30 * 1. IO Cost Model 31 * 32 * IO cost model estimates the cost of an IO given its basic parameters and 33 * history (e.g. the end sector of the last IO). The cost is measured in 34 * device time. If a given IO is estimated to cost 10ms, the device should 35 * be able to process ~100 of those IOs in a second. 36 * 37 * Currently, there's only one builtin cost model - linear. Each IO is 38 * classified as sequential or random and given a base cost accordingly. 39 * On top of that, a size cost proportional to the length of the IO is 40 * added. While simple, this model captures the operational 41 * characteristics of a wide varienty of devices well enough. Default 42 * parameters for several different classes of devices are provided and the 43 * parameters can be configured from userspace via 44 * /sys/fs/cgroup/io.cost.model. 45 * 46 * If needed, tools/cgroup/iocost_coef_gen.py can be used to generate 47 * device-specific coefficients. 48 * 49 * 2. Control Strategy 50 * 51 * The device virtual time (vtime) is used as the primary control metric. 52 * The control strategy is composed of the following three parts. 53 * 54 * 2-1. Vtime Distribution 55 * 56 * When a cgroup becomes active in terms of IOs, its hierarchical share is 57 * calculated. Please consider the following hierarchy where the numbers 58 * inside parentheses denote the configured weights. 59 * 60 * root 61 * / \ 62 * A (w:100) B (w:300) 63 * / \ 64 * A0 (w:100) A1 (w:100) 65 * 66 * If B is idle and only A0 and A1 are actively issuing IOs, as the two are 67 * of equal weight, each gets 50% share. If then B starts issuing IOs, B 68 * gets 300/(100+300) or 75% share, and A0 and A1 equally splits the rest, 69 * 12.5% each. The distribution mechanism only cares about these flattened 70 * shares. They're called hweights (hierarchical weights) and always add 71 * upto 1 (WEIGHT_ONE). 72 * 73 * A given cgroup's vtime runs slower in inverse proportion to its hweight. 74 * For example, with 12.5% weight, A0's time runs 8 times slower (100/12.5) 75 * against the device vtime - an IO which takes 10ms on the underlying 76 * device is considered to take 80ms on A0. 77 * 78 * This constitutes the basis of IO capacity distribution. Each cgroup's 79 * vtime is running at a rate determined by its hweight. A cgroup tracks 80 * the vtime consumed by past IOs and can issue a new IO if doing so 81 * wouldn't outrun the current device vtime. Otherwise, the IO is 82 * suspended until the vtime has progressed enough to cover it. 83 * 84 * 2-2. Vrate Adjustment 85 * 86 * It's unrealistic to expect the cost model to be perfect. There are too 87 * many devices and even on the same device the overall performance 88 * fluctuates depending on numerous factors such as IO mixture and device 89 * internal garbage collection. The controller needs to adapt dynamically. 90 * 91 * This is achieved by adjusting the overall IO rate according to how busy 92 * the device is. If the device becomes overloaded, we're sending down too 93 * many IOs and should generally slow down. If there are waiting issuers 94 * but the device isn't saturated, we're issuing too few and should 95 * generally speed up. 96 * 97 * To slow down, we lower the vrate - the rate at which the device vtime 98 * passes compared to the wall clock. For example, if the vtime is running 99 * at the vrate of 75%, all cgroups added up would only be able to issue 100 * 750ms worth of IOs per second, and vice-versa for speeding up. 101 * 102 * Device business is determined using two criteria - rq wait and 103 * completion latencies. 104 * 105 * When a device gets saturated, the on-device and then the request queues 106 * fill up and a bio which is ready to be issued has to wait for a request 107 * to become available. When this delay becomes noticeable, it's a clear 108 * indication that the device is saturated and we lower the vrate. This 109 * saturation signal is fairly conservative as it only triggers when both 110 * hardware and software queues are filled up, and is used as the default 111 * busy signal. 112 * 113 * As devices can have deep queues and be unfair in how the queued commands 114 * are executed, soley depending on rq wait may not result in satisfactory 115 * control quality. For a better control quality, completion latency QoS 116 * parameters can be configured so that the device is considered saturated 117 * if N'th percentile completion latency rises above the set point. 118 * 119 * The completion latency requirements are a function of both the 120 * underlying device characteristics and the desired IO latency quality of 121 * service. There is an inherent trade-off - the tighter the latency QoS, 122 * the higher the bandwidth lossage. Latency QoS is disabled by default 123 * and can be set through /sys/fs/cgroup/io.cost.qos. 124 * 125 * 2-3. Work Conservation 126 * 127 * Imagine two cgroups A and B with equal weights. A is issuing a small IO 128 * periodically while B is sending out enough parallel IOs to saturate the 129 * device on its own. Let's say A's usage amounts to 100ms worth of IO 130 * cost per second, i.e., 10% of the device capacity. The naive 131 * distribution of half and half would lead to 60% utilization of the 132 * device, a significant reduction in the total amount of work done 133 * compared to free-for-all competition. This is too high a cost to pay 134 * for IO control. 135 * 136 * To conserve the total amount of work done, we keep track of how much 137 * each active cgroup is actually using and yield part of its weight if 138 * there are other cgroups which can make use of it. In the above case, 139 * A's weight will be lowered so that it hovers above the actual usage and 140 * B would be able to use the rest. 141 * 142 * As we don't want to penalize a cgroup for donating its weight, the 143 * surplus weight adjustment factors in a margin and has an immediate 144 * snapback mechanism in case the cgroup needs more IO vtime for itself. 145 * 146 * Note that adjusting down surplus weights has the same effects as 147 * accelerating vtime for other cgroups and work conservation can also be 148 * implemented by adjusting vrate dynamically. However, squaring who can 149 * donate and should take back how much requires hweight propagations 150 * anyway making it easier to implement and understand as a separate 151 * mechanism. 152 * 153 * 3. Monitoring 154 * 155 * Instead of debugfs or other clumsy monitoring mechanisms, this 156 * controller uses a drgn based monitoring script - 157 * tools/cgroup/iocost_monitor.py. For details on drgn, please see 158 * https://github.com/osandov/drgn. The output looks like the following. 159 * 160 * sdb RUN per=300ms cur_per=234.218:v203.695 busy= +1 vrate= 62.12% 161 * active weight hweight% inflt% dbt delay usages% 162 * test/a * 50/ 50 33.33/ 33.33 27.65 2 0*041 033:033:033 163 * test/b * 100/ 100 66.67/ 66.67 17.56 0 0*000 066:079:077 164 * 165 * - per : Timer period 166 * - cur_per : Internal wall and device vtime clock 167 * - vrate : Device virtual time rate against wall clock 168 * - weight : Surplus-adjusted and configured weights 169 * - hweight : Surplus-adjusted and configured hierarchical weights 170 * - inflt : The percentage of in-flight IO cost at the end of last period 171 * - del_ms : Deferred issuer delay induction level and duration 172 * - usages : Usage history 173 */ 174 175 #include <linux/kernel.h> 176 #include <linux/module.h> 177 #include <linux/timer.h> 178 #include <linux/time64.h> 179 #include <linux/parser.h> 180 #include <linux/sched/signal.h> 181 #include <linux/blk-cgroup.h> 182 #include <asm/local.h> 183 #include <asm/local64.h> 184 #include "blk-rq-qos.h" 185 #include "blk-stat.h" 186 #include "blk-wbt.h" 187 188 #ifdef CONFIG_TRACEPOINTS 189 190 /* copied from TRACE_CGROUP_PATH, see cgroup-internal.h */ 191 #define TRACE_IOCG_PATH_LEN 1024 192 static DEFINE_SPINLOCK(trace_iocg_path_lock); 193 static char trace_iocg_path[TRACE_IOCG_PATH_LEN]; 194 195 #define TRACE_IOCG_PATH(type, iocg, ...) \ 196 do { \ 197 unsigned long flags; \ 198 if (trace_iocost_##type##_enabled()) { \ 199 spin_lock_irqsave(&trace_iocg_path_lock, flags); \ 200 cgroup_path(iocg_to_blkg(iocg)->blkcg->css.cgroup, \ 201 trace_iocg_path, TRACE_IOCG_PATH_LEN); \ 202 trace_iocost_##type(iocg, trace_iocg_path, \ 203 ##__VA_ARGS__); \ 204 spin_unlock_irqrestore(&trace_iocg_path_lock, flags); \ 205 } \ 206 } while (0) 207 208 #else /* CONFIG_TRACE_POINTS */ 209 #define TRACE_IOCG_PATH(type, iocg, ...) do { } while (0) 210 #endif /* CONFIG_TRACE_POINTS */ 211 212 enum { 213 MILLION = 1000000, 214 215 /* timer period is calculated from latency requirements, bound it */ 216 MIN_PERIOD = USEC_PER_MSEC, 217 MAX_PERIOD = USEC_PER_SEC, 218 219 /* 220 * iocg->vtime is targeted at 50% behind the device vtime, which 221 * serves as its IO credit buffer. Surplus weight adjustment is 222 * immediately canceled if the vtime margin runs below 10%. 223 */ 224 MARGIN_MIN_PCT = 10, 225 MARGIN_LOW_PCT = 20, 226 MARGIN_TARGET_PCT = 50, 227 228 INUSE_ADJ_STEP_PCT = 25, 229 230 /* Have some play in timer operations */ 231 TIMER_SLACK_PCT = 1, 232 233 /* 1/64k is granular enough and can easily be handled w/ u32 */ 234 WEIGHT_ONE = 1 << 16, 235 236 /* 237 * As vtime is used to calculate the cost of each IO, it needs to 238 * be fairly high precision. For example, it should be able to 239 * represent the cost of a single page worth of discard with 240 * suffificient accuracy. At the same time, it should be able to 241 * represent reasonably long enough durations to be useful and 242 * convenient during operation. 243 * 244 * 1s worth of vtime is 2^37. This gives us both sub-nanosecond 245 * granularity and days of wrap-around time even at extreme vrates. 246 */ 247 VTIME_PER_SEC_SHIFT = 37, 248 VTIME_PER_SEC = 1LLU << VTIME_PER_SEC_SHIFT, 249 VTIME_PER_USEC = VTIME_PER_SEC / USEC_PER_SEC, 250 VTIME_PER_NSEC = VTIME_PER_SEC / NSEC_PER_SEC, 251 252 /* bound vrate adjustments within two orders of magnitude */ 253 VRATE_MIN_PPM = 10000, /* 1% */ 254 VRATE_MAX_PPM = 100000000, /* 10000% */ 255 256 VRATE_MIN = VTIME_PER_USEC * VRATE_MIN_PPM / MILLION, 257 VRATE_CLAMP_ADJ_PCT = 4, 258 259 /* if IOs end up waiting for requests, issue less */ 260 RQ_WAIT_BUSY_PCT = 5, 261 262 /* unbusy hysterisis */ 263 UNBUSY_THR_PCT = 75, 264 265 /* 266 * The effect of delay is indirect and non-linear and a huge amount of 267 * future debt can accumulate abruptly while unthrottled. Linearly scale 268 * up delay as debt is going up and then let it decay exponentially. 269 * This gives us quick ramp ups while delay is accumulating and long 270 * tails which can help reducing the frequency of debt explosions on 271 * unthrottle. The parameters are experimentally determined. 272 * 273 * The delay mechanism provides adequate protection and behavior in many 274 * cases. However, this is far from ideal and falls shorts on both 275 * fronts. The debtors are often throttled too harshly costing a 276 * significant level of fairness and possibly total work while the 277 * protection against their impacts on the system can be choppy and 278 * unreliable. 279 * 280 * The shortcoming primarily stems from the fact that, unlike for page 281 * cache, the kernel doesn't have well-defined back-pressure propagation 282 * mechanism and policies for anonymous memory. Fully addressing this 283 * issue will likely require substantial improvements in the area. 284 */ 285 MIN_DELAY_THR_PCT = 500, 286 MAX_DELAY_THR_PCT = 25000, 287 MIN_DELAY = 250, 288 MAX_DELAY = 250 * USEC_PER_MSEC, 289 290 /* halve debts if avg usage over 100ms is under 50% */ 291 DFGV_USAGE_PCT = 50, 292 DFGV_PERIOD = 100 * USEC_PER_MSEC, 293 294 /* don't let cmds which take a very long time pin lagging for too long */ 295 MAX_LAGGING_PERIODS = 10, 296 297 /* switch iff the conditions are met for longer than this */ 298 AUTOP_CYCLE_NSEC = 10LLU * NSEC_PER_SEC, 299 300 /* 301 * Count IO size in 4k pages. The 12bit shift helps keeping 302 * size-proportional components of cost calculation in closer 303 * numbers of digits to per-IO cost components. 304 */ 305 IOC_PAGE_SHIFT = 12, 306 IOC_PAGE_SIZE = 1 << IOC_PAGE_SHIFT, 307 IOC_SECT_TO_PAGE_SHIFT = IOC_PAGE_SHIFT - SECTOR_SHIFT, 308 309 /* if apart further than 16M, consider randio for linear model */ 310 LCOEF_RANDIO_PAGES = 4096, 311 }; 312 313 enum ioc_running { 314 IOC_IDLE, 315 IOC_RUNNING, 316 IOC_STOP, 317 }; 318 319 /* io.cost.qos controls including per-dev enable of the whole controller */ 320 enum { 321 QOS_ENABLE, 322 QOS_CTRL, 323 NR_QOS_CTRL_PARAMS, 324 }; 325 326 /* io.cost.qos params */ 327 enum { 328 QOS_RPPM, 329 QOS_RLAT, 330 QOS_WPPM, 331 QOS_WLAT, 332 QOS_MIN, 333 QOS_MAX, 334 NR_QOS_PARAMS, 335 }; 336 337 /* io.cost.model controls */ 338 enum { 339 COST_CTRL, 340 COST_MODEL, 341 NR_COST_CTRL_PARAMS, 342 }; 343 344 /* builtin linear cost model coefficients */ 345 enum { 346 I_LCOEF_RBPS, 347 I_LCOEF_RSEQIOPS, 348 I_LCOEF_RRANDIOPS, 349 I_LCOEF_WBPS, 350 I_LCOEF_WSEQIOPS, 351 I_LCOEF_WRANDIOPS, 352 NR_I_LCOEFS, 353 }; 354 355 enum { 356 LCOEF_RPAGE, 357 LCOEF_RSEQIO, 358 LCOEF_RRANDIO, 359 LCOEF_WPAGE, 360 LCOEF_WSEQIO, 361 LCOEF_WRANDIO, 362 NR_LCOEFS, 363 }; 364 365 enum { 366 AUTOP_INVALID, 367 AUTOP_HDD, 368 AUTOP_SSD_QD1, 369 AUTOP_SSD_DFL, 370 AUTOP_SSD_FAST, 371 }; 372 373 struct ioc_params { 374 u32 qos[NR_QOS_PARAMS]; 375 u64 i_lcoefs[NR_I_LCOEFS]; 376 u64 lcoefs[NR_LCOEFS]; 377 u32 too_fast_vrate_pct; 378 u32 too_slow_vrate_pct; 379 }; 380 381 struct ioc_margins { 382 s64 min; 383 s64 low; 384 s64 target; 385 }; 386 387 struct ioc_missed { 388 local_t nr_met; 389 local_t nr_missed; 390 u32 last_met; 391 u32 last_missed; 392 }; 393 394 struct ioc_pcpu_stat { 395 struct ioc_missed missed[2]; 396 397 local64_t rq_wait_ns; 398 u64 last_rq_wait_ns; 399 }; 400 401 /* per device */ 402 struct ioc { 403 struct rq_qos rqos; 404 405 bool enabled; 406 407 struct ioc_params params; 408 struct ioc_margins margins; 409 u32 period_us; 410 u32 timer_slack_ns; 411 u64 vrate_min; 412 u64 vrate_max; 413 414 spinlock_t lock; 415 struct timer_list timer; 416 struct list_head active_iocgs; /* active cgroups */ 417 struct ioc_pcpu_stat __percpu *pcpu_stat; 418 419 enum ioc_running running; 420 atomic64_t vtime_rate; 421 u64 vtime_base_rate; 422 s64 vtime_err; 423 424 seqcount_spinlock_t period_seqcount; 425 u64 period_at; /* wallclock starttime */ 426 u64 period_at_vtime; /* vtime starttime */ 427 428 atomic64_t cur_period; /* inc'd each period */ 429 int busy_level; /* saturation history */ 430 431 bool weights_updated; 432 atomic_t hweight_gen; /* for lazy hweights */ 433 434 /* debt forgivness */ 435 u64 dfgv_period_at; 436 u64 dfgv_period_rem; 437 u64 dfgv_usage_us_sum; 438 439 u64 autop_too_fast_at; 440 u64 autop_too_slow_at; 441 int autop_idx; 442 bool user_qos_params:1; 443 bool user_cost_model:1; 444 }; 445 446 struct iocg_pcpu_stat { 447 local64_t abs_vusage; 448 }; 449 450 struct iocg_stat { 451 u64 usage_us; 452 u64 wait_us; 453 u64 indebt_us; 454 u64 indelay_us; 455 }; 456 457 /* per device-cgroup pair */ 458 struct ioc_gq { 459 struct blkg_policy_data pd; 460 struct ioc *ioc; 461 462 /* 463 * A iocg can get its weight from two sources - an explicit 464 * per-device-cgroup configuration or the default weight of the 465 * cgroup. `cfg_weight` is the explicit per-device-cgroup 466 * configuration. `weight` is the effective considering both 467 * sources. 468 * 469 * When an idle cgroup becomes active its `active` goes from 0 to 470 * `weight`. `inuse` is the surplus adjusted active weight. 471 * `active` and `inuse` are used to calculate `hweight_active` and 472 * `hweight_inuse`. 473 * 474 * `last_inuse` remembers `inuse` while an iocg is idle to persist 475 * surplus adjustments. 476 * 477 * `inuse` may be adjusted dynamically during period. `saved_*` are used 478 * to determine and track adjustments. 479 */ 480 u32 cfg_weight; 481 u32 weight; 482 u32 active; 483 u32 inuse; 484 485 u32 last_inuse; 486 s64 saved_margin; 487 488 sector_t cursor; /* to detect randio */ 489 490 /* 491 * `vtime` is this iocg's vtime cursor which progresses as IOs are 492 * issued. If lagging behind device vtime, the delta represents 493 * the currently available IO budget. If running ahead, the 494 * overage. 495 * 496 * `vtime_done` is the same but progressed on completion rather 497 * than issue. The delta behind `vtime` represents the cost of 498 * currently in-flight IOs. 499 */ 500 atomic64_t vtime; 501 atomic64_t done_vtime; 502 u64 abs_vdebt; 503 504 /* current delay in effect and when it started */ 505 u64 delay; 506 u64 delay_at; 507 508 /* 509 * The period this iocg was last active in. Used for deactivation 510 * and invalidating `vtime`. 511 */ 512 atomic64_t active_period; 513 struct list_head active_list; 514 515 /* see __propagate_weights() and current_hweight() for details */ 516 u64 child_active_sum; 517 u64 child_inuse_sum; 518 u64 child_adjusted_sum; 519 int hweight_gen; 520 u32 hweight_active; 521 u32 hweight_inuse; 522 u32 hweight_donating; 523 u32 hweight_after_donation; 524 525 struct list_head walk_list; 526 struct list_head surplus_list; 527 528 struct wait_queue_head waitq; 529 struct hrtimer waitq_timer; 530 531 /* timestamp at the latest activation */ 532 u64 activated_at; 533 534 /* statistics */ 535 struct iocg_pcpu_stat __percpu *pcpu_stat; 536 struct iocg_stat local_stat; 537 struct iocg_stat desc_stat; 538 struct iocg_stat last_stat; 539 u64 last_stat_abs_vusage; 540 u64 usage_delta_us; 541 u64 wait_since; 542 u64 indebt_since; 543 u64 indelay_since; 544 545 /* this iocg's depth in the hierarchy and ancestors including self */ 546 int level; 547 struct ioc_gq *ancestors[]; 548 }; 549 550 /* per cgroup */ 551 struct ioc_cgrp { 552 struct blkcg_policy_data cpd; 553 unsigned int dfl_weight; 554 }; 555 556 struct ioc_now { 557 u64 now_ns; 558 u64 now; 559 u64 vnow; 560 u64 vrate; 561 }; 562 563 struct iocg_wait { 564 struct wait_queue_entry wait; 565 struct bio *bio; 566 u64 abs_cost; 567 bool committed; 568 }; 569 570 struct iocg_wake_ctx { 571 struct ioc_gq *iocg; 572 u32 hw_inuse; 573 s64 vbudget; 574 }; 575 576 static const struct ioc_params autop[] = { 577 [AUTOP_HDD] = { 578 .qos = { 579 [QOS_RLAT] = 250000, /* 250ms */ 580 [QOS_WLAT] = 250000, 581 [QOS_MIN] = VRATE_MIN_PPM, 582 [QOS_MAX] = VRATE_MAX_PPM, 583 }, 584 .i_lcoefs = { 585 [I_LCOEF_RBPS] = 174019176, 586 [I_LCOEF_RSEQIOPS] = 41708, 587 [I_LCOEF_RRANDIOPS] = 370, 588 [I_LCOEF_WBPS] = 178075866, 589 [I_LCOEF_WSEQIOPS] = 42705, 590 [I_LCOEF_WRANDIOPS] = 378, 591 }, 592 }, 593 [AUTOP_SSD_QD1] = { 594 .qos = { 595 [QOS_RLAT] = 25000, /* 25ms */ 596 [QOS_WLAT] = 25000, 597 [QOS_MIN] = VRATE_MIN_PPM, 598 [QOS_MAX] = VRATE_MAX_PPM, 599 }, 600 .i_lcoefs = { 601 [I_LCOEF_RBPS] = 245855193, 602 [I_LCOEF_RSEQIOPS] = 61575, 603 [I_LCOEF_RRANDIOPS] = 6946, 604 [I_LCOEF_WBPS] = 141365009, 605 [I_LCOEF_WSEQIOPS] = 33716, 606 [I_LCOEF_WRANDIOPS] = 26796, 607 }, 608 }, 609 [AUTOP_SSD_DFL] = { 610 .qos = { 611 [QOS_RLAT] = 25000, /* 25ms */ 612 [QOS_WLAT] = 25000, 613 [QOS_MIN] = VRATE_MIN_PPM, 614 [QOS_MAX] = VRATE_MAX_PPM, 615 }, 616 .i_lcoefs = { 617 [I_LCOEF_RBPS] = 488636629, 618 [I_LCOEF_RSEQIOPS] = 8932, 619 [I_LCOEF_RRANDIOPS] = 8518, 620 [I_LCOEF_WBPS] = 427891549, 621 [I_LCOEF_WSEQIOPS] = 28755, 622 [I_LCOEF_WRANDIOPS] = 21940, 623 }, 624 .too_fast_vrate_pct = 500, 625 }, 626 [AUTOP_SSD_FAST] = { 627 .qos = { 628 [QOS_RLAT] = 5000, /* 5ms */ 629 [QOS_WLAT] = 5000, 630 [QOS_MIN] = VRATE_MIN_PPM, 631 [QOS_MAX] = VRATE_MAX_PPM, 632 }, 633 .i_lcoefs = { 634 [I_LCOEF_RBPS] = 3102524156LLU, 635 [I_LCOEF_RSEQIOPS] = 724816, 636 [I_LCOEF_RRANDIOPS] = 778122, 637 [I_LCOEF_WBPS] = 1742780862LLU, 638 [I_LCOEF_WSEQIOPS] = 425702, 639 [I_LCOEF_WRANDIOPS] = 443193, 640 }, 641 .too_slow_vrate_pct = 10, 642 }, 643 }; 644 645 /* 646 * vrate adjust percentages indexed by ioc->busy_level. We adjust up on 647 * vtime credit shortage and down on device saturation. 648 */ 649 static u32 vrate_adj_pct[] = 650 { 0, 0, 0, 0, 651 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 652 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 653 4, 4, 4, 4, 4, 4, 4, 4, 8, 8, 8, 8, 8, 8, 8, 8, 16 }; 654 655 static struct blkcg_policy blkcg_policy_iocost; 656 657 /* accessors and helpers */ 658 static struct ioc *rqos_to_ioc(struct rq_qos *rqos) 659 { 660 return container_of(rqos, struct ioc, rqos); 661 } 662 663 static struct ioc *q_to_ioc(struct request_queue *q) 664 { 665 return rqos_to_ioc(rq_qos_id(q, RQ_QOS_COST)); 666 } 667 668 static const char *q_name(struct request_queue *q) 669 { 670 if (blk_queue_registered(q)) 671 return kobject_name(q->kobj.parent); 672 else 673 return "<unknown>"; 674 } 675 676 static const char __maybe_unused *ioc_name(struct ioc *ioc) 677 { 678 return q_name(ioc->rqos.q); 679 } 680 681 static struct ioc_gq *pd_to_iocg(struct blkg_policy_data *pd) 682 { 683 return pd ? container_of(pd, struct ioc_gq, pd) : NULL; 684 } 685 686 static struct ioc_gq *blkg_to_iocg(struct blkcg_gq *blkg) 687 { 688 return pd_to_iocg(blkg_to_pd(blkg, &blkcg_policy_iocost)); 689 } 690 691 static struct blkcg_gq *iocg_to_blkg(struct ioc_gq *iocg) 692 { 693 return pd_to_blkg(&iocg->pd); 694 } 695 696 static struct ioc_cgrp *blkcg_to_iocc(struct blkcg *blkcg) 697 { 698 return container_of(blkcg_to_cpd(blkcg, &blkcg_policy_iocost), 699 struct ioc_cgrp, cpd); 700 } 701 702 /* 703 * Scale @abs_cost to the inverse of @hw_inuse. The lower the hierarchical 704 * weight, the more expensive each IO. Must round up. 705 */ 706 static u64 abs_cost_to_cost(u64 abs_cost, u32 hw_inuse) 707 { 708 return DIV64_U64_ROUND_UP(abs_cost * WEIGHT_ONE, hw_inuse); 709 } 710 711 /* 712 * The inverse of abs_cost_to_cost(). Must round up. 713 */ 714 static u64 cost_to_abs_cost(u64 cost, u32 hw_inuse) 715 { 716 return DIV64_U64_ROUND_UP(cost * hw_inuse, WEIGHT_ONE); 717 } 718 719 static void iocg_commit_bio(struct ioc_gq *iocg, struct bio *bio, 720 u64 abs_cost, u64 cost) 721 { 722 struct iocg_pcpu_stat *gcs; 723 724 bio->bi_iocost_cost = cost; 725 atomic64_add(cost, &iocg->vtime); 726 727 gcs = get_cpu_ptr(iocg->pcpu_stat); 728 local64_add(abs_cost, &gcs->abs_vusage); 729 put_cpu_ptr(gcs); 730 } 731 732 static void iocg_lock(struct ioc_gq *iocg, bool lock_ioc, unsigned long *flags) 733 { 734 if (lock_ioc) { 735 spin_lock_irqsave(&iocg->ioc->lock, *flags); 736 spin_lock(&iocg->waitq.lock); 737 } else { 738 spin_lock_irqsave(&iocg->waitq.lock, *flags); 739 } 740 } 741 742 static void iocg_unlock(struct ioc_gq *iocg, bool unlock_ioc, unsigned long *flags) 743 { 744 if (unlock_ioc) { 745 spin_unlock(&iocg->waitq.lock); 746 spin_unlock_irqrestore(&iocg->ioc->lock, *flags); 747 } else { 748 spin_unlock_irqrestore(&iocg->waitq.lock, *flags); 749 } 750 } 751 752 #define CREATE_TRACE_POINTS 753 #include <trace/events/iocost.h> 754 755 static void ioc_refresh_margins(struct ioc *ioc) 756 { 757 struct ioc_margins *margins = &ioc->margins; 758 u32 period_us = ioc->period_us; 759 u64 vrate = ioc->vtime_base_rate; 760 761 margins->min = (period_us * MARGIN_MIN_PCT / 100) * vrate; 762 margins->low = (period_us * MARGIN_LOW_PCT / 100) * vrate; 763 margins->target = (period_us * MARGIN_TARGET_PCT / 100) * vrate; 764 } 765 766 /* latency Qos params changed, update period_us and all the dependent params */ 767 static void ioc_refresh_period_us(struct ioc *ioc) 768 { 769 u32 ppm, lat, multi, period_us; 770 771 lockdep_assert_held(&ioc->lock); 772 773 /* pick the higher latency target */ 774 if (ioc->params.qos[QOS_RLAT] >= ioc->params.qos[QOS_WLAT]) { 775 ppm = ioc->params.qos[QOS_RPPM]; 776 lat = ioc->params.qos[QOS_RLAT]; 777 } else { 778 ppm = ioc->params.qos[QOS_WPPM]; 779 lat = ioc->params.qos[QOS_WLAT]; 780 } 781 782 /* 783 * We want the period to be long enough to contain a healthy number 784 * of IOs while short enough for granular control. Define it as a 785 * multiple of the latency target. Ideally, the multiplier should 786 * be scaled according to the percentile so that it would nominally 787 * contain a certain number of requests. Let's be simpler and 788 * scale it linearly so that it's 2x >= pct(90) and 10x at pct(50). 789 */ 790 if (ppm) 791 multi = max_t(u32, (MILLION - ppm) / 50000, 2); 792 else 793 multi = 2; 794 period_us = multi * lat; 795 period_us = clamp_t(u32, period_us, MIN_PERIOD, MAX_PERIOD); 796 797 /* calculate dependent params */ 798 ioc->period_us = period_us; 799 ioc->timer_slack_ns = div64_u64( 800 (u64)period_us * NSEC_PER_USEC * TIMER_SLACK_PCT, 801 100); 802 ioc_refresh_margins(ioc); 803 } 804 805 static int ioc_autop_idx(struct ioc *ioc) 806 { 807 int idx = ioc->autop_idx; 808 const struct ioc_params *p = &autop[idx]; 809 u32 vrate_pct; 810 u64 now_ns; 811 812 /* rotational? */ 813 if (!blk_queue_nonrot(ioc->rqos.q)) 814 return AUTOP_HDD; 815 816 /* handle SATA SSDs w/ broken NCQ */ 817 if (blk_queue_depth(ioc->rqos.q) == 1) 818 return AUTOP_SSD_QD1; 819 820 /* use one of the normal ssd sets */ 821 if (idx < AUTOP_SSD_DFL) 822 return AUTOP_SSD_DFL; 823 824 /* if user is overriding anything, maintain what was there */ 825 if (ioc->user_qos_params || ioc->user_cost_model) 826 return idx; 827 828 /* step up/down based on the vrate */ 829 vrate_pct = div64_u64(ioc->vtime_base_rate * 100, VTIME_PER_USEC); 830 now_ns = ktime_get_ns(); 831 832 if (p->too_fast_vrate_pct && p->too_fast_vrate_pct <= vrate_pct) { 833 if (!ioc->autop_too_fast_at) 834 ioc->autop_too_fast_at = now_ns; 835 if (now_ns - ioc->autop_too_fast_at >= AUTOP_CYCLE_NSEC) 836 return idx + 1; 837 } else { 838 ioc->autop_too_fast_at = 0; 839 } 840 841 if (p->too_slow_vrate_pct && p->too_slow_vrate_pct >= vrate_pct) { 842 if (!ioc->autop_too_slow_at) 843 ioc->autop_too_slow_at = now_ns; 844 if (now_ns - ioc->autop_too_slow_at >= AUTOP_CYCLE_NSEC) 845 return idx - 1; 846 } else { 847 ioc->autop_too_slow_at = 0; 848 } 849 850 return idx; 851 } 852 853 /* 854 * Take the followings as input 855 * 856 * @bps maximum sequential throughput 857 * @seqiops maximum sequential 4k iops 858 * @randiops maximum random 4k iops 859 * 860 * and calculate the linear model cost coefficients. 861 * 862 * *@page per-page cost 1s / (@bps / 4096) 863 * *@seqio base cost of a seq IO max((1s / @seqiops) - *@page, 0) 864 * @randiops base cost of a rand IO max((1s / @randiops) - *@page, 0) 865 */ 866 static void calc_lcoefs(u64 bps, u64 seqiops, u64 randiops, 867 u64 *page, u64 *seqio, u64 *randio) 868 { 869 u64 v; 870 871 *page = *seqio = *randio = 0; 872 873 if (bps) 874 *page = DIV64_U64_ROUND_UP(VTIME_PER_SEC, 875 DIV_ROUND_UP_ULL(bps, IOC_PAGE_SIZE)); 876 877 if (seqiops) { 878 v = DIV64_U64_ROUND_UP(VTIME_PER_SEC, seqiops); 879 if (v > *page) 880 *seqio = v - *page; 881 } 882 883 if (randiops) { 884 v = DIV64_U64_ROUND_UP(VTIME_PER_SEC, randiops); 885 if (v > *page) 886 *randio = v - *page; 887 } 888 } 889 890 static void ioc_refresh_lcoefs(struct ioc *ioc) 891 { 892 u64 *u = ioc->params.i_lcoefs; 893 u64 *c = ioc->params.lcoefs; 894 895 calc_lcoefs(u[I_LCOEF_RBPS], u[I_LCOEF_RSEQIOPS], u[I_LCOEF_RRANDIOPS], 896 &c[LCOEF_RPAGE], &c[LCOEF_RSEQIO], &c[LCOEF_RRANDIO]); 897 calc_lcoefs(u[I_LCOEF_WBPS], u[I_LCOEF_WSEQIOPS], u[I_LCOEF_WRANDIOPS], 898 &c[LCOEF_WPAGE], &c[LCOEF_WSEQIO], &c[LCOEF_WRANDIO]); 899 } 900 901 static bool ioc_refresh_params(struct ioc *ioc, bool force) 902 { 903 const struct ioc_params *p; 904 int idx; 905 906 lockdep_assert_held(&ioc->lock); 907 908 idx = ioc_autop_idx(ioc); 909 p = &autop[idx]; 910 911 if (idx == ioc->autop_idx && !force) 912 return false; 913 914 if (idx != ioc->autop_idx) 915 atomic64_set(&ioc->vtime_rate, VTIME_PER_USEC); 916 917 ioc->autop_idx = idx; 918 ioc->autop_too_fast_at = 0; 919 ioc->autop_too_slow_at = 0; 920 921 if (!ioc->user_qos_params) 922 memcpy(ioc->params.qos, p->qos, sizeof(p->qos)); 923 if (!ioc->user_cost_model) 924 memcpy(ioc->params.i_lcoefs, p->i_lcoefs, sizeof(p->i_lcoefs)); 925 926 ioc_refresh_period_us(ioc); 927 ioc_refresh_lcoefs(ioc); 928 929 ioc->vrate_min = DIV64_U64_ROUND_UP((u64)ioc->params.qos[QOS_MIN] * 930 VTIME_PER_USEC, MILLION); 931 ioc->vrate_max = div64_u64((u64)ioc->params.qos[QOS_MAX] * 932 VTIME_PER_USEC, MILLION); 933 934 return true; 935 } 936 937 /* 938 * When an iocg accumulates too much vtime or gets deactivated, we throw away 939 * some vtime, which lowers the overall device utilization. As the exact amount 940 * which is being thrown away is known, we can compensate by accelerating the 941 * vrate accordingly so that the extra vtime generated in the current period 942 * matches what got lost. 943 */ 944 static void ioc_refresh_vrate(struct ioc *ioc, struct ioc_now *now) 945 { 946 s64 pleft = ioc->period_at + ioc->period_us - now->now; 947 s64 vperiod = ioc->period_us * ioc->vtime_base_rate; 948 s64 vcomp, vcomp_min, vcomp_max; 949 950 lockdep_assert_held(&ioc->lock); 951 952 /* we need some time left in this period */ 953 if (pleft <= 0) 954 goto done; 955 956 /* 957 * Calculate how much vrate should be adjusted to offset the error. 958 * Limit the amount of adjustment and deduct the adjusted amount from 959 * the error. 960 */ 961 vcomp = -div64_s64(ioc->vtime_err, pleft); 962 vcomp_min = -(ioc->vtime_base_rate >> 1); 963 vcomp_max = ioc->vtime_base_rate; 964 vcomp = clamp(vcomp, vcomp_min, vcomp_max); 965 966 ioc->vtime_err += vcomp * pleft; 967 968 atomic64_set(&ioc->vtime_rate, ioc->vtime_base_rate + vcomp); 969 done: 970 /* bound how much error can accumulate */ 971 ioc->vtime_err = clamp(ioc->vtime_err, -vperiod, vperiod); 972 } 973 974 static void ioc_adjust_base_vrate(struct ioc *ioc, u32 rq_wait_pct, 975 int nr_lagging, int nr_shortages, 976 int prev_busy_level, u32 *missed_ppm) 977 { 978 u64 vrate = ioc->vtime_base_rate; 979 u64 vrate_min = ioc->vrate_min, vrate_max = ioc->vrate_max; 980 981 if (!ioc->busy_level || (ioc->busy_level < 0 && nr_lagging)) { 982 if (ioc->busy_level != prev_busy_level || nr_lagging) 983 trace_iocost_ioc_vrate_adj(ioc, atomic64_read(&ioc->vtime_rate), 984 missed_ppm, rq_wait_pct, 985 nr_lagging, nr_shortages); 986 987 return; 988 } 989 990 /* 991 * If vrate is out of bounds, apply clamp gradually as the 992 * bounds can change abruptly. Otherwise, apply busy_level 993 * based adjustment. 994 */ 995 if (vrate < vrate_min) { 996 vrate = div64_u64(vrate * (100 + VRATE_CLAMP_ADJ_PCT), 100); 997 vrate = min(vrate, vrate_min); 998 } else if (vrate > vrate_max) { 999 vrate = div64_u64(vrate * (100 - VRATE_CLAMP_ADJ_PCT), 100); 1000 vrate = max(vrate, vrate_max); 1001 } else { 1002 int idx = min_t(int, abs(ioc->busy_level), 1003 ARRAY_SIZE(vrate_adj_pct) - 1); 1004 u32 adj_pct = vrate_adj_pct[idx]; 1005 1006 if (ioc->busy_level > 0) 1007 adj_pct = 100 - adj_pct; 1008 else 1009 adj_pct = 100 + adj_pct; 1010 1011 vrate = clamp(DIV64_U64_ROUND_UP(vrate * adj_pct, 100), 1012 vrate_min, vrate_max); 1013 } 1014 1015 trace_iocost_ioc_vrate_adj(ioc, vrate, missed_ppm, rq_wait_pct, 1016 nr_lagging, nr_shortages); 1017 1018 ioc->vtime_base_rate = vrate; 1019 ioc_refresh_margins(ioc); 1020 } 1021 1022 /* take a snapshot of the current [v]time and vrate */ 1023 static void ioc_now(struct ioc *ioc, struct ioc_now *now) 1024 { 1025 unsigned seq; 1026 1027 now->now_ns = ktime_get(); 1028 now->now = ktime_to_us(now->now_ns); 1029 now->vrate = atomic64_read(&ioc->vtime_rate); 1030 1031 /* 1032 * The current vtime is 1033 * 1034 * vtime at period start + (wallclock time since the start) * vrate 1035 * 1036 * As a consistent snapshot of `period_at_vtime` and `period_at` is 1037 * needed, they're seqcount protected. 1038 */ 1039 do { 1040 seq = read_seqcount_begin(&ioc->period_seqcount); 1041 now->vnow = ioc->period_at_vtime + 1042 (now->now - ioc->period_at) * now->vrate; 1043 } while (read_seqcount_retry(&ioc->period_seqcount, seq)); 1044 } 1045 1046 static void ioc_start_period(struct ioc *ioc, struct ioc_now *now) 1047 { 1048 WARN_ON_ONCE(ioc->running != IOC_RUNNING); 1049 1050 write_seqcount_begin(&ioc->period_seqcount); 1051 ioc->period_at = now->now; 1052 ioc->period_at_vtime = now->vnow; 1053 write_seqcount_end(&ioc->period_seqcount); 1054 1055 ioc->timer.expires = jiffies + usecs_to_jiffies(ioc->period_us); 1056 add_timer(&ioc->timer); 1057 } 1058 1059 /* 1060 * Update @iocg's `active` and `inuse` to @active and @inuse, update level 1061 * weight sums and propagate upwards accordingly. If @save, the current margin 1062 * is saved to be used as reference for later inuse in-period adjustments. 1063 */ 1064 static void __propagate_weights(struct ioc_gq *iocg, u32 active, u32 inuse, 1065 bool save, struct ioc_now *now) 1066 { 1067 struct ioc *ioc = iocg->ioc; 1068 int lvl; 1069 1070 lockdep_assert_held(&ioc->lock); 1071 1072 /* 1073 * For an active leaf node, its inuse shouldn't be zero or exceed 1074 * @active. An active internal node's inuse is solely determined by the 1075 * inuse to active ratio of its children regardless of @inuse. 1076 */ 1077 if (list_empty(&iocg->active_list) && iocg->child_active_sum) { 1078 inuse = DIV64_U64_ROUND_UP(active * iocg->child_inuse_sum, 1079 iocg->child_active_sum); 1080 } else { 1081 inuse = clamp_t(u32, inuse, 1, active); 1082 } 1083 1084 iocg->last_inuse = iocg->inuse; 1085 if (save) 1086 iocg->saved_margin = now->vnow - atomic64_read(&iocg->vtime); 1087 1088 if (active == iocg->active && inuse == iocg->inuse) 1089 return; 1090 1091 for (lvl = iocg->level - 1; lvl >= 0; lvl--) { 1092 struct ioc_gq *parent = iocg->ancestors[lvl]; 1093 struct ioc_gq *child = iocg->ancestors[lvl + 1]; 1094 u32 parent_active = 0, parent_inuse = 0; 1095 1096 /* update the level sums */ 1097 parent->child_active_sum += (s32)(active - child->active); 1098 parent->child_inuse_sum += (s32)(inuse - child->inuse); 1099 /* apply the updates */ 1100 child->active = active; 1101 child->inuse = inuse; 1102 1103 /* 1104 * The delta between inuse and active sums indicates that 1105 * much of weight is being given away. Parent's inuse 1106 * and active should reflect the ratio. 1107 */ 1108 if (parent->child_active_sum) { 1109 parent_active = parent->weight; 1110 parent_inuse = DIV64_U64_ROUND_UP( 1111 parent_active * parent->child_inuse_sum, 1112 parent->child_active_sum); 1113 } 1114 1115 /* do we need to keep walking up? */ 1116 if (parent_active == parent->active && 1117 parent_inuse == parent->inuse) 1118 break; 1119 1120 active = parent_active; 1121 inuse = parent_inuse; 1122 } 1123 1124 ioc->weights_updated = true; 1125 } 1126 1127 static void commit_weights(struct ioc *ioc) 1128 { 1129 lockdep_assert_held(&ioc->lock); 1130 1131 if (ioc->weights_updated) { 1132 /* paired with rmb in current_hweight(), see there */ 1133 smp_wmb(); 1134 atomic_inc(&ioc->hweight_gen); 1135 ioc->weights_updated = false; 1136 } 1137 } 1138 1139 static void propagate_weights(struct ioc_gq *iocg, u32 active, u32 inuse, 1140 bool save, struct ioc_now *now) 1141 { 1142 __propagate_weights(iocg, active, inuse, save, now); 1143 commit_weights(iocg->ioc); 1144 } 1145 1146 static void current_hweight(struct ioc_gq *iocg, u32 *hw_activep, u32 *hw_inusep) 1147 { 1148 struct ioc *ioc = iocg->ioc; 1149 int lvl; 1150 u32 hwa, hwi; 1151 int ioc_gen; 1152 1153 /* hot path - if uptodate, use cached */ 1154 ioc_gen = atomic_read(&ioc->hweight_gen); 1155 if (ioc_gen == iocg->hweight_gen) 1156 goto out; 1157 1158 /* 1159 * Paired with wmb in commit_weights(). If we saw the updated 1160 * hweight_gen, all the weight updates from __propagate_weights() are 1161 * visible too. 1162 * 1163 * We can race with weight updates during calculation and get it 1164 * wrong. However, hweight_gen would have changed and a future 1165 * reader will recalculate and we're guaranteed to discard the 1166 * wrong result soon. 1167 */ 1168 smp_rmb(); 1169 1170 hwa = hwi = WEIGHT_ONE; 1171 for (lvl = 0; lvl <= iocg->level - 1; lvl++) { 1172 struct ioc_gq *parent = iocg->ancestors[lvl]; 1173 struct ioc_gq *child = iocg->ancestors[lvl + 1]; 1174 u64 active_sum = READ_ONCE(parent->child_active_sum); 1175 u64 inuse_sum = READ_ONCE(parent->child_inuse_sum); 1176 u32 active = READ_ONCE(child->active); 1177 u32 inuse = READ_ONCE(child->inuse); 1178 1179 /* we can race with deactivations and either may read as zero */ 1180 if (!active_sum || !inuse_sum) 1181 continue; 1182 1183 active_sum = max_t(u64, active, active_sum); 1184 hwa = div64_u64((u64)hwa * active, active_sum); 1185 1186 inuse_sum = max_t(u64, inuse, inuse_sum); 1187 hwi = div64_u64((u64)hwi * inuse, inuse_sum); 1188 } 1189 1190 iocg->hweight_active = max_t(u32, hwa, 1); 1191 iocg->hweight_inuse = max_t(u32, hwi, 1); 1192 iocg->hweight_gen = ioc_gen; 1193 out: 1194 if (hw_activep) 1195 *hw_activep = iocg->hweight_active; 1196 if (hw_inusep) 1197 *hw_inusep = iocg->hweight_inuse; 1198 } 1199 1200 /* 1201 * Calculate the hweight_inuse @iocg would get with max @inuse assuming all the 1202 * other weights stay unchanged. 1203 */ 1204 static u32 current_hweight_max(struct ioc_gq *iocg) 1205 { 1206 u32 hwm = WEIGHT_ONE; 1207 u32 inuse = iocg->active; 1208 u64 child_inuse_sum; 1209 int lvl; 1210 1211 lockdep_assert_held(&iocg->ioc->lock); 1212 1213 for (lvl = iocg->level - 1; lvl >= 0; lvl--) { 1214 struct ioc_gq *parent = iocg->ancestors[lvl]; 1215 struct ioc_gq *child = iocg->ancestors[lvl + 1]; 1216 1217 child_inuse_sum = parent->child_inuse_sum + inuse - child->inuse; 1218 hwm = div64_u64((u64)hwm * inuse, child_inuse_sum); 1219 inuse = DIV64_U64_ROUND_UP(parent->active * child_inuse_sum, 1220 parent->child_active_sum); 1221 } 1222 1223 return max_t(u32, hwm, 1); 1224 } 1225 1226 static void weight_updated(struct ioc_gq *iocg, struct ioc_now *now) 1227 { 1228 struct ioc *ioc = iocg->ioc; 1229 struct blkcg_gq *blkg = iocg_to_blkg(iocg); 1230 struct ioc_cgrp *iocc = blkcg_to_iocc(blkg->blkcg); 1231 u32 weight; 1232 1233 lockdep_assert_held(&ioc->lock); 1234 1235 weight = iocg->cfg_weight ?: iocc->dfl_weight; 1236 if (weight != iocg->weight && iocg->active) 1237 propagate_weights(iocg, weight, iocg->inuse, true, now); 1238 iocg->weight = weight; 1239 } 1240 1241 static bool iocg_activate(struct ioc_gq *iocg, struct ioc_now *now) 1242 { 1243 struct ioc *ioc = iocg->ioc; 1244 u64 last_period, cur_period; 1245 u64 vtime, vtarget; 1246 int i; 1247 1248 /* 1249 * If seem to be already active, just update the stamp to tell the 1250 * timer that we're still active. We don't mind occassional races. 1251 */ 1252 if (!list_empty(&iocg->active_list)) { 1253 ioc_now(ioc, now); 1254 cur_period = atomic64_read(&ioc->cur_period); 1255 if (atomic64_read(&iocg->active_period) != cur_period) 1256 atomic64_set(&iocg->active_period, cur_period); 1257 return true; 1258 } 1259 1260 /* racy check on internal node IOs, treat as root level IOs */ 1261 if (iocg->child_active_sum) 1262 return false; 1263 1264 spin_lock_irq(&ioc->lock); 1265 1266 ioc_now(ioc, now); 1267 1268 /* update period */ 1269 cur_period = atomic64_read(&ioc->cur_period); 1270 last_period = atomic64_read(&iocg->active_period); 1271 atomic64_set(&iocg->active_period, cur_period); 1272 1273 /* already activated or breaking leaf-only constraint? */ 1274 if (!list_empty(&iocg->active_list)) 1275 goto succeed_unlock; 1276 for (i = iocg->level - 1; i > 0; i--) 1277 if (!list_empty(&iocg->ancestors[i]->active_list)) 1278 goto fail_unlock; 1279 1280 if (iocg->child_active_sum) 1281 goto fail_unlock; 1282 1283 /* 1284 * Always start with the target budget. On deactivation, we throw away 1285 * anything above it. 1286 */ 1287 vtarget = now->vnow - ioc->margins.target; 1288 vtime = atomic64_read(&iocg->vtime); 1289 1290 atomic64_add(vtarget - vtime, &iocg->vtime); 1291 atomic64_add(vtarget - vtime, &iocg->done_vtime); 1292 vtime = vtarget; 1293 1294 /* 1295 * Activate, propagate weight and start period timer if not 1296 * running. Reset hweight_gen to avoid accidental match from 1297 * wrapping. 1298 */ 1299 iocg->hweight_gen = atomic_read(&ioc->hweight_gen) - 1; 1300 list_add(&iocg->active_list, &ioc->active_iocgs); 1301 1302 propagate_weights(iocg, iocg->weight, 1303 iocg->last_inuse ?: iocg->weight, true, now); 1304 1305 TRACE_IOCG_PATH(iocg_activate, iocg, now, 1306 last_period, cur_period, vtime); 1307 1308 iocg->activated_at = now->now; 1309 1310 if (ioc->running == IOC_IDLE) { 1311 ioc->running = IOC_RUNNING; 1312 ioc->dfgv_period_at = now->now; 1313 ioc->dfgv_period_rem = 0; 1314 ioc_start_period(ioc, now); 1315 } 1316 1317 succeed_unlock: 1318 spin_unlock_irq(&ioc->lock); 1319 return true; 1320 1321 fail_unlock: 1322 spin_unlock_irq(&ioc->lock); 1323 return false; 1324 } 1325 1326 static bool iocg_kick_delay(struct ioc_gq *iocg, struct ioc_now *now) 1327 { 1328 struct ioc *ioc = iocg->ioc; 1329 struct blkcg_gq *blkg = iocg_to_blkg(iocg); 1330 u64 tdelta, delay, new_delay; 1331 s64 vover, vover_pct; 1332 u32 hwa; 1333 1334 lockdep_assert_held(&iocg->waitq.lock); 1335 1336 /* calculate the current delay in effect - 1/2 every second */ 1337 tdelta = now->now - iocg->delay_at; 1338 if (iocg->delay) 1339 delay = iocg->delay >> div64_u64(tdelta, USEC_PER_SEC); 1340 else 1341 delay = 0; 1342 1343 /* calculate the new delay from the debt amount */ 1344 current_hweight(iocg, &hwa, NULL); 1345 vover = atomic64_read(&iocg->vtime) + 1346 abs_cost_to_cost(iocg->abs_vdebt, hwa) - now->vnow; 1347 vover_pct = div64_s64(100 * vover, 1348 ioc->period_us * ioc->vtime_base_rate); 1349 1350 if (vover_pct <= MIN_DELAY_THR_PCT) 1351 new_delay = 0; 1352 else if (vover_pct >= MAX_DELAY_THR_PCT) 1353 new_delay = MAX_DELAY; 1354 else 1355 new_delay = MIN_DELAY + 1356 div_u64((MAX_DELAY - MIN_DELAY) * 1357 (vover_pct - MIN_DELAY_THR_PCT), 1358 MAX_DELAY_THR_PCT - MIN_DELAY_THR_PCT); 1359 1360 /* pick the higher one and apply */ 1361 if (new_delay > delay) { 1362 iocg->delay = new_delay; 1363 iocg->delay_at = now->now; 1364 delay = new_delay; 1365 } 1366 1367 if (delay >= MIN_DELAY) { 1368 if (!iocg->indelay_since) 1369 iocg->indelay_since = now->now; 1370 blkcg_set_delay(blkg, delay * NSEC_PER_USEC); 1371 return true; 1372 } else { 1373 if (iocg->indelay_since) { 1374 iocg->local_stat.indelay_us += now->now - iocg->indelay_since; 1375 iocg->indelay_since = 0; 1376 } 1377 iocg->delay = 0; 1378 blkcg_clear_delay(blkg); 1379 return false; 1380 } 1381 } 1382 1383 static void iocg_incur_debt(struct ioc_gq *iocg, u64 abs_cost, 1384 struct ioc_now *now) 1385 { 1386 struct iocg_pcpu_stat *gcs; 1387 1388 lockdep_assert_held(&iocg->ioc->lock); 1389 lockdep_assert_held(&iocg->waitq.lock); 1390 WARN_ON_ONCE(list_empty(&iocg->active_list)); 1391 1392 /* 1393 * Once in debt, debt handling owns inuse. @iocg stays at the minimum 1394 * inuse donating all of it share to others until its debt is paid off. 1395 */ 1396 if (!iocg->abs_vdebt && abs_cost) { 1397 iocg->indebt_since = now->now; 1398 propagate_weights(iocg, iocg->active, 0, false, now); 1399 } 1400 1401 iocg->abs_vdebt += abs_cost; 1402 1403 gcs = get_cpu_ptr(iocg->pcpu_stat); 1404 local64_add(abs_cost, &gcs->abs_vusage); 1405 put_cpu_ptr(gcs); 1406 } 1407 1408 static void iocg_pay_debt(struct ioc_gq *iocg, u64 abs_vpay, 1409 struct ioc_now *now) 1410 { 1411 lockdep_assert_held(&iocg->ioc->lock); 1412 lockdep_assert_held(&iocg->waitq.lock); 1413 1414 /* make sure that nobody messed with @iocg */ 1415 WARN_ON_ONCE(list_empty(&iocg->active_list)); 1416 WARN_ON_ONCE(iocg->inuse > 1); 1417 1418 iocg->abs_vdebt -= min(abs_vpay, iocg->abs_vdebt); 1419 1420 /* if debt is paid in full, restore inuse */ 1421 if (!iocg->abs_vdebt) { 1422 iocg->local_stat.indebt_us += now->now - iocg->indebt_since; 1423 iocg->indebt_since = 0; 1424 1425 propagate_weights(iocg, iocg->active, iocg->last_inuse, 1426 false, now); 1427 } 1428 } 1429 1430 static int iocg_wake_fn(struct wait_queue_entry *wq_entry, unsigned mode, 1431 int flags, void *key) 1432 { 1433 struct iocg_wait *wait = container_of(wq_entry, struct iocg_wait, wait); 1434 struct iocg_wake_ctx *ctx = (struct iocg_wake_ctx *)key; 1435 u64 cost = abs_cost_to_cost(wait->abs_cost, ctx->hw_inuse); 1436 1437 ctx->vbudget -= cost; 1438 1439 if (ctx->vbudget < 0) 1440 return -1; 1441 1442 iocg_commit_bio(ctx->iocg, wait->bio, wait->abs_cost, cost); 1443 1444 /* 1445 * autoremove_wake_function() removes the wait entry only when it 1446 * actually changed the task state. We want the wait always 1447 * removed. Remove explicitly and use default_wake_function(). 1448 */ 1449 list_del_init(&wq_entry->entry); 1450 wait->committed = true; 1451 1452 default_wake_function(wq_entry, mode, flags, key); 1453 return 0; 1454 } 1455 1456 /* 1457 * Calculate the accumulated budget, pay debt if @pay_debt and wake up waiters 1458 * accordingly. When @pay_debt is %true, the caller must be holding ioc->lock in 1459 * addition to iocg->waitq.lock. 1460 */ 1461 static void iocg_kick_waitq(struct ioc_gq *iocg, bool pay_debt, 1462 struct ioc_now *now) 1463 { 1464 struct ioc *ioc = iocg->ioc; 1465 struct iocg_wake_ctx ctx = { .iocg = iocg }; 1466 u64 vshortage, expires, oexpires; 1467 s64 vbudget; 1468 u32 hwa; 1469 1470 lockdep_assert_held(&iocg->waitq.lock); 1471 1472 current_hweight(iocg, &hwa, NULL); 1473 vbudget = now->vnow - atomic64_read(&iocg->vtime); 1474 1475 /* pay off debt */ 1476 if (pay_debt && iocg->abs_vdebt && vbudget > 0) { 1477 u64 abs_vbudget = cost_to_abs_cost(vbudget, hwa); 1478 u64 abs_vpay = min_t(u64, abs_vbudget, iocg->abs_vdebt); 1479 u64 vpay = abs_cost_to_cost(abs_vpay, hwa); 1480 1481 lockdep_assert_held(&ioc->lock); 1482 1483 atomic64_add(vpay, &iocg->vtime); 1484 atomic64_add(vpay, &iocg->done_vtime); 1485 iocg_pay_debt(iocg, abs_vpay, now); 1486 vbudget -= vpay; 1487 } 1488 1489 if (iocg->abs_vdebt || iocg->delay) 1490 iocg_kick_delay(iocg, now); 1491 1492 /* 1493 * Debt can still be outstanding if we haven't paid all yet or the 1494 * caller raced and called without @pay_debt. Shouldn't wake up waiters 1495 * under debt. Make sure @vbudget reflects the outstanding amount and is 1496 * not positive. 1497 */ 1498 if (iocg->abs_vdebt) { 1499 s64 vdebt = abs_cost_to_cost(iocg->abs_vdebt, hwa); 1500 vbudget = min_t(s64, 0, vbudget - vdebt); 1501 } 1502 1503 /* 1504 * Wake up the ones which are due and see how much vtime we'll need for 1505 * the next one. As paying off debt restores hw_inuse, it must be read 1506 * after the above debt payment. 1507 */ 1508 ctx.vbudget = vbudget; 1509 current_hweight(iocg, NULL, &ctx.hw_inuse); 1510 1511 __wake_up_locked_key(&iocg->waitq, TASK_NORMAL, &ctx); 1512 1513 if (!waitqueue_active(&iocg->waitq)) { 1514 if (iocg->wait_since) { 1515 iocg->local_stat.wait_us += now->now - iocg->wait_since; 1516 iocg->wait_since = 0; 1517 } 1518 return; 1519 } 1520 1521 if (!iocg->wait_since) 1522 iocg->wait_since = now->now; 1523 1524 if (WARN_ON_ONCE(ctx.vbudget >= 0)) 1525 return; 1526 1527 /* determine next wakeup, add a timer margin to guarantee chunking */ 1528 vshortage = -ctx.vbudget; 1529 expires = now->now_ns + 1530 DIV64_U64_ROUND_UP(vshortage, ioc->vtime_base_rate) * 1531 NSEC_PER_USEC; 1532 expires += ioc->timer_slack_ns; 1533 1534 /* if already active and close enough, don't bother */ 1535 oexpires = ktime_to_ns(hrtimer_get_softexpires(&iocg->waitq_timer)); 1536 if (hrtimer_is_queued(&iocg->waitq_timer) && 1537 abs(oexpires - expires) <= ioc->timer_slack_ns) 1538 return; 1539 1540 hrtimer_start_range_ns(&iocg->waitq_timer, ns_to_ktime(expires), 1541 ioc->timer_slack_ns, HRTIMER_MODE_ABS); 1542 } 1543 1544 static enum hrtimer_restart iocg_waitq_timer_fn(struct hrtimer *timer) 1545 { 1546 struct ioc_gq *iocg = container_of(timer, struct ioc_gq, waitq_timer); 1547 bool pay_debt = READ_ONCE(iocg->abs_vdebt); 1548 struct ioc_now now; 1549 unsigned long flags; 1550 1551 ioc_now(iocg->ioc, &now); 1552 1553 iocg_lock(iocg, pay_debt, &flags); 1554 iocg_kick_waitq(iocg, pay_debt, &now); 1555 iocg_unlock(iocg, pay_debt, &flags); 1556 1557 return HRTIMER_NORESTART; 1558 } 1559 1560 static void ioc_lat_stat(struct ioc *ioc, u32 *missed_ppm_ar, u32 *rq_wait_pct_p) 1561 { 1562 u32 nr_met[2] = { }; 1563 u32 nr_missed[2] = { }; 1564 u64 rq_wait_ns = 0; 1565 int cpu, rw; 1566 1567 for_each_online_cpu(cpu) { 1568 struct ioc_pcpu_stat *stat = per_cpu_ptr(ioc->pcpu_stat, cpu); 1569 u64 this_rq_wait_ns; 1570 1571 for (rw = READ; rw <= WRITE; rw++) { 1572 u32 this_met = local_read(&stat->missed[rw].nr_met); 1573 u32 this_missed = local_read(&stat->missed[rw].nr_missed); 1574 1575 nr_met[rw] += this_met - stat->missed[rw].last_met; 1576 nr_missed[rw] += this_missed - stat->missed[rw].last_missed; 1577 stat->missed[rw].last_met = this_met; 1578 stat->missed[rw].last_missed = this_missed; 1579 } 1580 1581 this_rq_wait_ns = local64_read(&stat->rq_wait_ns); 1582 rq_wait_ns += this_rq_wait_ns - stat->last_rq_wait_ns; 1583 stat->last_rq_wait_ns = this_rq_wait_ns; 1584 } 1585 1586 for (rw = READ; rw <= WRITE; rw++) { 1587 if (nr_met[rw] + nr_missed[rw]) 1588 missed_ppm_ar[rw] = 1589 DIV64_U64_ROUND_UP((u64)nr_missed[rw] * MILLION, 1590 nr_met[rw] + nr_missed[rw]); 1591 else 1592 missed_ppm_ar[rw] = 0; 1593 } 1594 1595 *rq_wait_pct_p = div64_u64(rq_wait_ns * 100, 1596 ioc->period_us * NSEC_PER_USEC); 1597 } 1598 1599 /* was iocg idle this period? */ 1600 static bool iocg_is_idle(struct ioc_gq *iocg) 1601 { 1602 struct ioc *ioc = iocg->ioc; 1603 1604 /* did something get issued this period? */ 1605 if (atomic64_read(&iocg->active_period) == 1606 atomic64_read(&ioc->cur_period)) 1607 return false; 1608 1609 /* is something in flight? */ 1610 if (atomic64_read(&iocg->done_vtime) != atomic64_read(&iocg->vtime)) 1611 return false; 1612 1613 return true; 1614 } 1615 1616 /* 1617 * Call this function on the target leaf @iocg's to build pre-order traversal 1618 * list of all the ancestors in @inner_walk. The inner nodes are linked through 1619 * ->walk_list and the caller is responsible for dissolving the list after use. 1620 */ 1621 static void iocg_build_inner_walk(struct ioc_gq *iocg, 1622 struct list_head *inner_walk) 1623 { 1624 int lvl; 1625 1626 WARN_ON_ONCE(!list_empty(&iocg->walk_list)); 1627 1628 /* find the first ancestor which hasn't been visited yet */ 1629 for (lvl = iocg->level - 1; lvl >= 0; lvl--) { 1630 if (!list_empty(&iocg->ancestors[lvl]->walk_list)) 1631 break; 1632 } 1633 1634 /* walk down and visit the inner nodes to get pre-order traversal */ 1635 while (++lvl <= iocg->level - 1) { 1636 struct ioc_gq *inner = iocg->ancestors[lvl]; 1637 1638 /* record traversal order */ 1639 list_add_tail(&inner->walk_list, inner_walk); 1640 } 1641 } 1642 1643 /* collect per-cpu counters and propagate the deltas to the parent */ 1644 static void iocg_flush_stat_one(struct ioc_gq *iocg, struct ioc_now *now) 1645 { 1646 struct ioc *ioc = iocg->ioc; 1647 struct iocg_stat new_stat; 1648 u64 abs_vusage = 0; 1649 u64 vusage_delta; 1650 int cpu; 1651 1652 lockdep_assert_held(&iocg->ioc->lock); 1653 1654 /* collect per-cpu counters */ 1655 for_each_possible_cpu(cpu) { 1656 abs_vusage += local64_read( 1657 per_cpu_ptr(&iocg->pcpu_stat->abs_vusage, cpu)); 1658 } 1659 vusage_delta = abs_vusage - iocg->last_stat_abs_vusage; 1660 iocg->last_stat_abs_vusage = abs_vusage; 1661 1662 iocg->usage_delta_us = div64_u64(vusage_delta, ioc->vtime_base_rate); 1663 iocg->local_stat.usage_us += iocg->usage_delta_us; 1664 1665 /* propagate upwards */ 1666 new_stat.usage_us = 1667 iocg->local_stat.usage_us + iocg->desc_stat.usage_us; 1668 new_stat.wait_us = 1669 iocg->local_stat.wait_us + iocg->desc_stat.wait_us; 1670 new_stat.indebt_us = 1671 iocg->local_stat.indebt_us + iocg->desc_stat.indebt_us; 1672 new_stat.indelay_us = 1673 iocg->local_stat.indelay_us + iocg->desc_stat.indelay_us; 1674 1675 /* propagate the deltas to the parent */ 1676 if (iocg->level > 0) { 1677 struct iocg_stat *parent_stat = 1678 &iocg->ancestors[iocg->level - 1]->desc_stat; 1679 1680 parent_stat->usage_us += 1681 new_stat.usage_us - iocg->last_stat.usage_us; 1682 parent_stat->wait_us += 1683 new_stat.wait_us - iocg->last_stat.wait_us; 1684 parent_stat->indebt_us += 1685 new_stat.indebt_us - iocg->last_stat.indebt_us; 1686 parent_stat->indelay_us += 1687 new_stat.indelay_us - iocg->last_stat.indelay_us; 1688 } 1689 1690 iocg->last_stat = new_stat; 1691 } 1692 1693 /* get stat counters ready for reading on all active iocgs */ 1694 static void iocg_flush_stat(struct list_head *target_iocgs, struct ioc_now *now) 1695 { 1696 LIST_HEAD(inner_walk); 1697 struct ioc_gq *iocg, *tiocg; 1698 1699 /* flush leaves and build inner node walk list */ 1700 list_for_each_entry(iocg, target_iocgs, active_list) { 1701 iocg_flush_stat_one(iocg, now); 1702 iocg_build_inner_walk(iocg, &inner_walk); 1703 } 1704 1705 /* keep flushing upwards by walking the inner list backwards */ 1706 list_for_each_entry_safe_reverse(iocg, tiocg, &inner_walk, walk_list) { 1707 iocg_flush_stat_one(iocg, now); 1708 list_del_init(&iocg->walk_list); 1709 } 1710 } 1711 1712 /* 1713 * Determine what @iocg's hweight_inuse should be after donating unused 1714 * capacity. @hwm is the upper bound and used to signal no donation. This 1715 * function also throws away @iocg's excess budget. 1716 */ 1717 static u32 hweight_after_donation(struct ioc_gq *iocg, u32 old_hwi, u32 hwm, 1718 u32 usage, struct ioc_now *now) 1719 { 1720 struct ioc *ioc = iocg->ioc; 1721 u64 vtime = atomic64_read(&iocg->vtime); 1722 s64 excess, delta, target, new_hwi; 1723 1724 /* debt handling owns inuse for debtors */ 1725 if (iocg->abs_vdebt) 1726 return 1; 1727 1728 /* see whether minimum margin requirement is met */ 1729 if (waitqueue_active(&iocg->waitq) || 1730 time_after64(vtime, now->vnow - ioc->margins.min)) 1731 return hwm; 1732 1733 /* throw away excess above target */ 1734 excess = now->vnow - vtime - ioc->margins.target; 1735 if (excess > 0) { 1736 atomic64_add(excess, &iocg->vtime); 1737 atomic64_add(excess, &iocg->done_vtime); 1738 vtime += excess; 1739 ioc->vtime_err -= div64_u64(excess * old_hwi, WEIGHT_ONE); 1740 } 1741 1742 /* 1743 * Let's say the distance between iocg's and device's vtimes as a 1744 * fraction of period duration is delta. Assuming that the iocg will 1745 * consume the usage determined above, we want to determine new_hwi so 1746 * that delta equals MARGIN_TARGET at the end of the next period. 1747 * 1748 * We need to execute usage worth of IOs while spending the sum of the 1749 * new budget (1 - MARGIN_TARGET) and the leftover from the last period 1750 * (delta): 1751 * 1752 * usage = (1 - MARGIN_TARGET + delta) * new_hwi 1753 * 1754 * Therefore, the new_hwi is: 1755 * 1756 * new_hwi = usage / (1 - MARGIN_TARGET + delta) 1757 */ 1758 delta = div64_s64(WEIGHT_ONE * (now->vnow - vtime), 1759 now->vnow - ioc->period_at_vtime); 1760 target = WEIGHT_ONE * MARGIN_TARGET_PCT / 100; 1761 new_hwi = div64_s64(WEIGHT_ONE * usage, WEIGHT_ONE - target + delta); 1762 1763 return clamp_t(s64, new_hwi, 1, hwm); 1764 } 1765 1766 /* 1767 * For work-conservation, an iocg which isn't using all of its share should 1768 * donate the leftover to other iocgs. There are two ways to achieve this - 1. 1769 * bumping up vrate accordingly 2. lowering the donating iocg's inuse weight. 1770 * 1771 * #1 is mathematically simpler but has the drawback of requiring synchronous 1772 * global hweight_inuse updates when idle iocg's get activated or inuse weights 1773 * change due to donation snapbacks as it has the possibility of grossly 1774 * overshooting what's allowed by the model and vrate. 1775 * 1776 * #2 is inherently safe with local operations. The donating iocg can easily 1777 * snap back to higher weights when needed without worrying about impacts on 1778 * other nodes as the impacts will be inherently correct. This also makes idle 1779 * iocg activations safe. The only effect activations have is decreasing 1780 * hweight_inuse of others, the right solution to which is for those iocgs to 1781 * snap back to higher weights. 1782 * 1783 * So, we go with #2. The challenge is calculating how each donating iocg's 1784 * inuse should be adjusted to achieve the target donation amounts. This is done 1785 * using Andy's method described in the following pdf. 1786 * 1787 * https://drive.google.com/file/d/1PsJwxPFtjUnwOY1QJ5AeICCcsL7BM3bo 1788 * 1789 * Given the weights and target after-donation hweight_inuse values, Andy's 1790 * method determines how the proportional distribution should look like at each 1791 * sibling level to maintain the relative relationship between all non-donating 1792 * pairs. To roughly summarize, it divides the tree into donating and 1793 * non-donating parts, calculates global donation rate which is used to 1794 * determine the target hweight_inuse for each node, and then derives per-level 1795 * proportions. 1796 * 1797 * The following pdf shows that global distribution calculated this way can be 1798 * achieved by scaling inuse weights of donating leaves and propagating the 1799 * adjustments upwards proportionally. 1800 * 1801 * https://drive.google.com/file/d/1vONz1-fzVO7oY5DXXsLjSxEtYYQbOvsE 1802 * 1803 * Combining the above two, we can determine how each leaf iocg's inuse should 1804 * be adjusted to achieve the target donation. 1805 * 1806 * https://drive.google.com/file/d/1WcrltBOSPN0qXVdBgnKm4mdp9FhuEFQN 1807 * 1808 * The inline comments use symbols from the last pdf. 1809 * 1810 * b is the sum of the absolute budgets in the subtree. 1 for the root node. 1811 * f is the sum of the absolute budgets of non-donating nodes in the subtree. 1812 * t is the sum of the absolute budgets of donating nodes in the subtree. 1813 * w is the weight of the node. w = w_f + w_t 1814 * w_f is the non-donating portion of w. w_f = w * f / b 1815 * w_b is the donating portion of w. w_t = w * t / b 1816 * s is the sum of all sibling weights. s = Sum(w) for siblings 1817 * s_f and s_t are the non-donating and donating portions of s. 1818 * 1819 * Subscript p denotes the parent's counterpart and ' the adjusted value - e.g. 1820 * w_pt is the donating portion of the parent's weight and w'_pt the same value 1821 * after adjustments. Subscript r denotes the root node's values. 1822 */ 1823 static void transfer_surpluses(struct list_head *surpluses, struct ioc_now *now) 1824 { 1825 LIST_HEAD(over_hwa); 1826 LIST_HEAD(inner_walk); 1827 struct ioc_gq *iocg, *tiocg, *root_iocg; 1828 u32 after_sum, over_sum, over_target, gamma; 1829 1830 /* 1831 * It's pretty unlikely but possible for the total sum of 1832 * hweight_after_donation's to be higher than WEIGHT_ONE, which will 1833 * confuse the following calculations. If such condition is detected, 1834 * scale down everyone over its full share equally to keep the sum below 1835 * WEIGHT_ONE. 1836 */ 1837 after_sum = 0; 1838 over_sum = 0; 1839 list_for_each_entry(iocg, surpluses, surplus_list) { 1840 u32 hwa; 1841 1842 current_hweight(iocg, &hwa, NULL); 1843 after_sum += iocg->hweight_after_donation; 1844 1845 if (iocg->hweight_after_donation > hwa) { 1846 over_sum += iocg->hweight_after_donation; 1847 list_add(&iocg->walk_list, &over_hwa); 1848 } 1849 } 1850 1851 if (after_sum >= WEIGHT_ONE) { 1852 /* 1853 * The delta should be deducted from the over_sum, calculate 1854 * target over_sum value. 1855 */ 1856 u32 over_delta = after_sum - (WEIGHT_ONE - 1); 1857 WARN_ON_ONCE(over_sum <= over_delta); 1858 over_target = over_sum - over_delta; 1859 } else { 1860 over_target = 0; 1861 } 1862 1863 list_for_each_entry_safe(iocg, tiocg, &over_hwa, walk_list) { 1864 if (over_target) 1865 iocg->hweight_after_donation = 1866 div_u64((u64)iocg->hweight_after_donation * 1867 over_target, over_sum); 1868 list_del_init(&iocg->walk_list); 1869 } 1870 1871 /* 1872 * Build pre-order inner node walk list and prepare for donation 1873 * adjustment calculations. 1874 */ 1875 list_for_each_entry(iocg, surpluses, surplus_list) { 1876 iocg_build_inner_walk(iocg, &inner_walk); 1877 } 1878 1879 root_iocg = list_first_entry(&inner_walk, struct ioc_gq, walk_list); 1880 WARN_ON_ONCE(root_iocg->level > 0); 1881 1882 list_for_each_entry(iocg, &inner_walk, walk_list) { 1883 iocg->child_adjusted_sum = 0; 1884 iocg->hweight_donating = 0; 1885 iocg->hweight_after_donation = 0; 1886 } 1887 1888 /* 1889 * Propagate the donating budget (b_t) and after donation budget (b'_t) 1890 * up the hierarchy. 1891 */ 1892 list_for_each_entry(iocg, surpluses, surplus_list) { 1893 struct ioc_gq *parent = iocg->ancestors[iocg->level - 1]; 1894 1895 parent->hweight_donating += iocg->hweight_donating; 1896 parent->hweight_after_donation += iocg->hweight_after_donation; 1897 } 1898 1899 list_for_each_entry_reverse(iocg, &inner_walk, walk_list) { 1900 if (iocg->level > 0) { 1901 struct ioc_gq *parent = iocg->ancestors[iocg->level - 1]; 1902 1903 parent->hweight_donating += iocg->hweight_donating; 1904 parent->hweight_after_donation += iocg->hweight_after_donation; 1905 } 1906 } 1907 1908 /* 1909 * Calculate inner hwa's (b) and make sure the donation values are 1910 * within the accepted ranges as we're doing low res calculations with 1911 * roundups. 1912 */ 1913 list_for_each_entry(iocg, &inner_walk, walk_list) { 1914 if (iocg->level) { 1915 struct ioc_gq *parent = iocg->ancestors[iocg->level - 1]; 1916 1917 iocg->hweight_active = DIV64_U64_ROUND_UP( 1918 (u64)parent->hweight_active * iocg->active, 1919 parent->child_active_sum); 1920 1921 } 1922 1923 iocg->hweight_donating = min(iocg->hweight_donating, 1924 iocg->hweight_active); 1925 iocg->hweight_after_donation = min(iocg->hweight_after_donation, 1926 iocg->hweight_donating - 1); 1927 if (WARN_ON_ONCE(iocg->hweight_active <= 1 || 1928 iocg->hweight_donating <= 1 || 1929 iocg->hweight_after_donation == 0)) { 1930 pr_warn("iocg: invalid donation weights in "); 1931 pr_cont_cgroup_path(iocg_to_blkg(iocg)->blkcg->css.cgroup); 1932 pr_cont(": active=%u donating=%u after=%u\n", 1933 iocg->hweight_active, iocg->hweight_donating, 1934 iocg->hweight_after_donation); 1935 } 1936 } 1937 1938 /* 1939 * Calculate the global donation rate (gamma) - the rate to adjust 1940 * non-donating budgets by. 1941 * 1942 * No need to use 64bit multiplication here as the first operand is 1943 * guaranteed to be smaller than WEIGHT_ONE (1<<16). 1944 * 1945 * We know that there are beneficiary nodes and the sum of the donating 1946 * hweights can't be whole; however, due to the round-ups during hweight 1947 * calculations, root_iocg->hweight_donating might still end up equal to 1948 * or greater than whole. Limit the range when calculating the divider. 1949 * 1950 * gamma = (1 - t_r') / (1 - t_r) 1951 */ 1952 gamma = DIV_ROUND_UP( 1953 (WEIGHT_ONE - root_iocg->hweight_after_donation) * WEIGHT_ONE, 1954 WEIGHT_ONE - min_t(u32, root_iocg->hweight_donating, WEIGHT_ONE - 1)); 1955 1956 /* 1957 * Calculate adjusted hwi, child_adjusted_sum and inuse for the inner 1958 * nodes. 1959 */ 1960 list_for_each_entry(iocg, &inner_walk, walk_list) { 1961 struct ioc_gq *parent; 1962 u32 inuse, wpt, wptp; 1963 u64 st, sf; 1964 1965 if (iocg->level == 0) { 1966 /* adjusted weight sum for 1st level: s' = s * b_pf / b'_pf */ 1967 iocg->child_adjusted_sum = DIV64_U64_ROUND_UP( 1968 iocg->child_active_sum * (WEIGHT_ONE - iocg->hweight_donating), 1969 WEIGHT_ONE - iocg->hweight_after_donation); 1970 continue; 1971 } 1972 1973 parent = iocg->ancestors[iocg->level - 1]; 1974 1975 /* b' = gamma * b_f + b_t' */ 1976 iocg->hweight_inuse = DIV64_U64_ROUND_UP( 1977 (u64)gamma * (iocg->hweight_active - iocg->hweight_donating), 1978 WEIGHT_ONE) + iocg->hweight_after_donation; 1979 1980 /* w' = s' * b' / b'_p */ 1981 inuse = DIV64_U64_ROUND_UP( 1982 (u64)parent->child_adjusted_sum * iocg->hweight_inuse, 1983 parent->hweight_inuse); 1984 1985 /* adjusted weight sum for children: s' = s_f + s_t * w'_pt / w_pt */ 1986 st = DIV64_U64_ROUND_UP( 1987 iocg->child_active_sum * iocg->hweight_donating, 1988 iocg->hweight_active); 1989 sf = iocg->child_active_sum - st; 1990 wpt = DIV64_U64_ROUND_UP( 1991 (u64)iocg->active * iocg->hweight_donating, 1992 iocg->hweight_active); 1993 wptp = DIV64_U64_ROUND_UP( 1994 (u64)inuse * iocg->hweight_after_donation, 1995 iocg->hweight_inuse); 1996 1997 iocg->child_adjusted_sum = sf + DIV64_U64_ROUND_UP(st * wptp, wpt); 1998 } 1999 2000 /* 2001 * All inner nodes now have ->hweight_inuse and ->child_adjusted_sum and 2002 * we can finally determine leaf adjustments. 2003 */ 2004 list_for_each_entry(iocg, surpluses, surplus_list) { 2005 struct ioc_gq *parent = iocg->ancestors[iocg->level - 1]; 2006 u32 inuse; 2007 2008 /* 2009 * In-debt iocgs participated in the donation calculation with 2010 * the minimum target hweight_inuse. Configuring inuse 2011 * accordingly would work fine but debt handling expects 2012 * @iocg->inuse stay at the minimum and we don't wanna 2013 * interfere. 2014 */ 2015 if (iocg->abs_vdebt) { 2016 WARN_ON_ONCE(iocg->inuse > 1); 2017 continue; 2018 } 2019 2020 /* w' = s' * b' / b'_p, note that b' == b'_t for donating leaves */ 2021 inuse = DIV64_U64_ROUND_UP( 2022 parent->child_adjusted_sum * iocg->hweight_after_donation, 2023 parent->hweight_inuse); 2024 2025 TRACE_IOCG_PATH(inuse_transfer, iocg, now, 2026 iocg->inuse, inuse, 2027 iocg->hweight_inuse, 2028 iocg->hweight_after_donation); 2029 2030 __propagate_weights(iocg, iocg->active, inuse, true, now); 2031 } 2032 2033 /* walk list should be dissolved after use */ 2034 list_for_each_entry_safe(iocg, tiocg, &inner_walk, walk_list) 2035 list_del_init(&iocg->walk_list); 2036 } 2037 2038 /* 2039 * A low weight iocg can amass a large amount of debt, for example, when 2040 * anonymous memory gets reclaimed aggressively. If the system has a lot of 2041 * memory paired with a slow IO device, the debt can span multiple seconds or 2042 * more. If there are no other subsequent IO issuers, the in-debt iocg may end 2043 * up blocked paying its debt while the IO device is idle. 2044 * 2045 * The following protects against such cases. If the device has been 2046 * sufficiently idle for a while, the debts are halved and delays are 2047 * recalculated. 2048 */ 2049 static void ioc_forgive_debts(struct ioc *ioc, u64 usage_us_sum, int nr_debtors, 2050 struct ioc_now *now) 2051 { 2052 struct ioc_gq *iocg; 2053 u64 dur, usage_pct, nr_cycles; 2054 2055 /* if no debtor, reset the cycle */ 2056 if (!nr_debtors) { 2057 ioc->dfgv_period_at = now->now; 2058 ioc->dfgv_period_rem = 0; 2059 ioc->dfgv_usage_us_sum = 0; 2060 return; 2061 } 2062 2063 /* 2064 * Debtors can pass through a lot of writes choking the device and we 2065 * don't want to be forgiving debts while the device is struggling from 2066 * write bursts. If we're missing latency targets, consider the device 2067 * fully utilized. 2068 */ 2069 if (ioc->busy_level > 0) 2070 usage_us_sum = max_t(u64, usage_us_sum, ioc->period_us); 2071 2072 ioc->dfgv_usage_us_sum += usage_us_sum; 2073 if (time_before64(now->now, ioc->dfgv_period_at + DFGV_PERIOD)) 2074 return; 2075 2076 /* 2077 * At least DFGV_PERIOD has passed since the last period. Calculate the 2078 * average usage and reset the period counters. 2079 */ 2080 dur = now->now - ioc->dfgv_period_at; 2081 usage_pct = div64_u64(100 * ioc->dfgv_usage_us_sum, dur); 2082 2083 ioc->dfgv_period_at = now->now; 2084 ioc->dfgv_usage_us_sum = 0; 2085 2086 /* if was too busy, reset everything */ 2087 if (usage_pct > DFGV_USAGE_PCT) { 2088 ioc->dfgv_period_rem = 0; 2089 return; 2090 } 2091 2092 /* 2093 * Usage is lower than threshold. Let's forgive some debts. Debt 2094 * forgiveness runs off of the usual ioc timer but its period usually 2095 * doesn't match ioc's. Compensate the difference by performing the 2096 * reduction as many times as would fit in the duration since the last 2097 * run and carrying over the left-over duration in @ioc->dfgv_period_rem 2098 * - if ioc period is 75% of DFGV_PERIOD, one out of three consecutive 2099 * reductions is doubled. 2100 */ 2101 nr_cycles = dur + ioc->dfgv_period_rem; 2102 ioc->dfgv_period_rem = do_div(nr_cycles, DFGV_PERIOD); 2103 2104 list_for_each_entry(iocg, &ioc->active_iocgs, active_list) { 2105 u64 __maybe_unused old_debt, __maybe_unused old_delay; 2106 2107 if (!iocg->abs_vdebt && !iocg->delay) 2108 continue; 2109 2110 spin_lock(&iocg->waitq.lock); 2111 2112 old_debt = iocg->abs_vdebt; 2113 old_delay = iocg->delay; 2114 2115 if (iocg->abs_vdebt) 2116 iocg->abs_vdebt = iocg->abs_vdebt >> nr_cycles ?: 1; 2117 if (iocg->delay) 2118 iocg->delay = iocg->delay >> nr_cycles ?: 1; 2119 2120 iocg_kick_waitq(iocg, true, now); 2121 2122 TRACE_IOCG_PATH(iocg_forgive_debt, iocg, now, usage_pct, 2123 old_debt, iocg->abs_vdebt, 2124 old_delay, iocg->delay); 2125 2126 spin_unlock(&iocg->waitq.lock); 2127 } 2128 } 2129 2130 /* 2131 * Check the active iocgs' state to avoid oversleeping and deactive 2132 * idle iocgs. 2133 * 2134 * Since waiters determine the sleep durations based on the vrate 2135 * they saw at the time of sleep, if vrate has increased, some 2136 * waiters could be sleeping for too long. Wake up tardy waiters 2137 * which should have woken up in the last period and expire idle 2138 * iocgs. 2139 */ 2140 static int ioc_check_iocgs(struct ioc *ioc, struct ioc_now *now) 2141 { 2142 int nr_debtors = 0; 2143 struct ioc_gq *iocg, *tiocg; 2144 2145 list_for_each_entry_safe(iocg, tiocg, &ioc->active_iocgs, active_list) { 2146 if (!waitqueue_active(&iocg->waitq) && !iocg->abs_vdebt && 2147 !iocg->delay && !iocg_is_idle(iocg)) 2148 continue; 2149 2150 spin_lock(&iocg->waitq.lock); 2151 2152 /* flush wait and indebt stat deltas */ 2153 if (iocg->wait_since) { 2154 iocg->local_stat.wait_us += now->now - iocg->wait_since; 2155 iocg->wait_since = now->now; 2156 } 2157 if (iocg->indebt_since) { 2158 iocg->local_stat.indebt_us += 2159 now->now - iocg->indebt_since; 2160 iocg->indebt_since = now->now; 2161 } 2162 if (iocg->indelay_since) { 2163 iocg->local_stat.indelay_us += 2164 now->now - iocg->indelay_since; 2165 iocg->indelay_since = now->now; 2166 } 2167 2168 if (waitqueue_active(&iocg->waitq) || iocg->abs_vdebt || 2169 iocg->delay) { 2170 /* might be oversleeping vtime / hweight changes, kick */ 2171 iocg_kick_waitq(iocg, true, now); 2172 if (iocg->abs_vdebt || iocg->delay) 2173 nr_debtors++; 2174 } else if (iocg_is_idle(iocg)) { 2175 /* no waiter and idle, deactivate */ 2176 u64 vtime = atomic64_read(&iocg->vtime); 2177 s64 excess; 2178 2179 /* 2180 * @iocg has been inactive for a full duration and will 2181 * have a high budget. Account anything above target as 2182 * error and throw away. On reactivation, it'll start 2183 * with the target budget. 2184 */ 2185 excess = now->vnow - vtime - ioc->margins.target; 2186 if (excess > 0) { 2187 u32 old_hwi; 2188 2189 current_hweight(iocg, NULL, &old_hwi); 2190 ioc->vtime_err -= div64_u64(excess * old_hwi, 2191 WEIGHT_ONE); 2192 } 2193 2194 TRACE_IOCG_PATH(iocg_idle, iocg, now, 2195 atomic64_read(&iocg->active_period), 2196 atomic64_read(&ioc->cur_period), vtime); 2197 __propagate_weights(iocg, 0, 0, false, now); 2198 list_del_init(&iocg->active_list); 2199 } 2200 2201 spin_unlock(&iocg->waitq.lock); 2202 } 2203 2204 commit_weights(ioc); 2205 return nr_debtors; 2206 } 2207 2208 static void ioc_timer_fn(struct timer_list *timer) 2209 { 2210 struct ioc *ioc = container_of(timer, struct ioc, timer); 2211 struct ioc_gq *iocg, *tiocg; 2212 struct ioc_now now; 2213 LIST_HEAD(surpluses); 2214 int nr_debtors, nr_shortages = 0, nr_lagging = 0; 2215 u64 usage_us_sum = 0; 2216 u32 ppm_rthr = MILLION - ioc->params.qos[QOS_RPPM]; 2217 u32 ppm_wthr = MILLION - ioc->params.qos[QOS_WPPM]; 2218 u32 missed_ppm[2], rq_wait_pct; 2219 u64 period_vtime; 2220 int prev_busy_level; 2221 2222 /* how were the latencies during the period? */ 2223 ioc_lat_stat(ioc, missed_ppm, &rq_wait_pct); 2224 2225 /* take care of active iocgs */ 2226 spin_lock_irq(&ioc->lock); 2227 2228 ioc_now(ioc, &now); 2229 2230 period_vtime = now.vnow - ioc->period_at_vtime; 2231 if (WARN_ON_ONCE(!period_vtime)) { 2232 spin_unlock_irq(&ioc->lock); 2233 return; 2234 } 2235 2236 nr_debtors = ioc_check_iocgs(ioc, &now); 2237 2238 /* 2239 * Wait and indebt stat are flushed above and the donation calculation 2240 * below needs updated usage stat. Let's bring stat up-to-date. 2241 */ 2242 iocg_flush_stat(&ioc->active_iocgs, &now); 2243 2244 /* calc usage and see whether some weights need to be moved around */ 2245 list_for_each_entry(iocg, &ioc->active_iocgs, active_list) { 2246 u64 vdone, vtime, usage_us; 2247 u32 hw_active, hw_inuse; 2248 2249 /* 2250 * Collect unused and wind vtime closer to vnow to prevent 2251 * iocgs from accumulating a large amount of budget. 2252 */ 2253 vdone = atomic64_read(&iocg->done_vtime); 2254 vtime = atomic64_read(&iocg->vtime); 2255 current_hweight(iocg, &hw_active, &hw_inuse); 2256 2257 /* 2258 * Latency QoS detection doesn't account for IOs which are 2259 * in-flight for longer than a period. Detect them by 2260 * comparing vdone against period start. If lagging behind 2261 * IOs from past periods, don't increase vrate. 2262 */ 2263 if ((ppm_rthr != MILLION || ppm_wthr != MILLION) && 2264 !atomic_read(&iocg_to_blkg(iocg)->use_delay) && 2265 time_after64(vtime, vdone) && 2266 time_after64(vtime, now.vnow - 2267 MAX_LAGGING_PERIODS * period_vtime) && 2268 time_before64(vdone, now.vnow - period_vtime)) 2269 nr_lagging++; 2270 2271 /* 2272 * Determine absolute usage factoring in in-flight IOs to avoid 2273 * high-latency completions appearing as idle. 2274 */ 2275 usage_us = iocg->usage_delta_us; 2276 usage_us_sum += usage_us; 2277 2278 /* see whether there's surplus vtime */ 2279 WARN_ON_ONCE(!list_empty(&iocg->surplus_list)); 2280 if (hw_inuse < hw_active || 2281 (!waitqueue_active(&iocg->waitq) && 2282 time_before64(vtime, now.vnow - ioc->margins.low))) { 2283 u32 hwa, old_hwi, hwm, new_hwi, usage; 2284 u64 usage_dur; 2285 2286 if (vdone != vtime) { 2287 u64 inflight_us = DIV64_U64_ROUND_UP( 2288 cost_to_abs_cost(vtime - vdone, hw_inuse), 2289 ioc->vtime_base_rate); 2290 2291 usage_us = max(usage_us, inflight_us); 2292 } 2293 2294 /* convert to hweight based usage ratio */ 2295 if (time_after64(iocg->activated_at, ioc->period_at)) 2296 usage_dur = max_t(u64, now.now - iocg->activated_at, 1); 2297 else 2298 usage_dur = max_t(u64, now.now - ioc->period_at, 1); 2299 2300 usage = clamp_t(u32, 2301 DIV64_U64_ROUND_UP(usage_us * WEIGHT_ONE, 2302 usage_dur), 2303 1, WEIGHT_ONE); 2304 2305 /* 2306 * Already donating or accumulated enough to start. 2307 * Determine the donation amount. 2308 */ 2309 current_hweight(iocg, &hwa, &old_hwi); 2310 hwm = current_hweight_max(iocg); 2311 new_hwi = hweight_after_donation(iocg, old_hwi, hwm, 2312 usage, &now); 2313 if (new_hwi < hwm) { 2314 iocg->hweight_donating = hwa; 2315 iocg->hweight_after_donation = new_hwi; 2316 list_add(&iocg->surplus_list, &surpluses); 2317 } else { 2318 TRACE_IOCG_PATH(inuse_shortage, iocg, &now, 2319 iocg->inuse, iocg->active, 2320 iocg->hweight_inuse, new_hwi); 2321 2322 __propagate_weights(iocg, iocg->active, 2323 iocg->active, true, &now); 2324 nr_shortages++; 2325 } 2326 } else { 2327 /* genuinely short on vtime */ 2328 nr_shortages++; 2329 } 2330 } 2331 2332 if (!list_empty(&surpluses) && nr_shortages) 2333 transfer_surpluses(&surpluses, &now); 2334 2335 commit_weights(ioc); 2336 2337 /* surplus list should be dissolved after use */ 2338 list_for_each_entry_safe(iocg, tiocg, &surpluses, surplus_list) 2339 list_del_init(&iocg->surplus_list); 2340 2341 /* 2342 * If q is getting clogged or we're missing too much, we're issuing 2343 * too much IO and should lower vtime rate. If we're not missing 2344 * and experiencing shortages but not surpluses, we're too stingy 2345 * and should increase vtime rate. 2346 */ 2347 prev_busy_level = ioc->busy_level; 2348 if (rq_wait_pct > RQ_WAIT_BUSY_PCT || 2349 missed_ppm[READ] > ppm_rthr || 2350 missed_ppm[WRITE] > ppm_wthr) { 2351 /* clearly missing QoS targets, slow down vrate */ 2352 ioc->busy_level = max(ioc->busy_level, 0); 2353 ioc->busy_level++; 2354 } else if (rq_wait_pct <= RQ_WAIT_BUSY_PCT * UNBUSY_THR_PCT / 100 && 2355 missed_ppm[READ] <= ppm_rthr * UNBUSY_THR_PCT / 100 && 2356 missed_ppm[WRITE] <= ppm_wthr * UNBUSY_THR_PCT / 100) { 2357 /* QoS targets are being met with >25% margin */ 2358 if (nr_shortages) { 2359 /* 2360 * We're throttling while the device has spare 2361 * capacity. If vrate was being slowed down, stop. 2362 */ 2363 ioc->busy_level = min(ioc->busy_level, 0); 2364 2365 /* 2366 * If there are IOs spanning multiple periods, wait 2367 * them out before pushing the device harder. 2368 */ 2369 if (!nr_lagging) 2370 ioc->busy_level--; 2371 } else { 2372 /* 2373 * Nobody is being throttled and the users aren't 2374 * issuing enough IOs to saturate the device. We 2375 * simply don't know how close the device is to 2376 * saturation. Coast. 2377 */ 2378 ioc->busy_level = 0; 2379 } 2380 } else { 2381 /* inside the hysterisis margin, we're good */ 2382 ioc->busy_level = 0; 2383 } 2384 2385 ioc->busy_level = clamp(ioc->busy_level, -1000, 1000); 2386 2387 ioc_adjust_base_vrate(ioc, rq_wait_pct, nr_lagging, nr_shortages, 2388 prev_busy_level, missed_ppm); 2389 2390 ioc_refresh_params(ioc, false); 2391 2392 ioc_forgive_debts(ioc, usage_us_sum, nr_debtors, &now); 2393 2394 /* 2395 * This period is done. Move onto the next one. If nothing's 2396 * going on with the device, stop the timer. 2397 */ 2398 atomic64_inc(&ioc->cur_period); 2399 2400 if (ioc->running != IOC_STOP) { 2401 if (!list_empty(&ioc->active_iocgs)) { 2402 ioc_start_period(ioc, &now); 2403 } else { 2404 ioc->busy_level = 0; 2405 ioc->vtime_err = 0; 2406 ioc->running = IOC_IDLE; 2407 } 2408 2409 ioc_refresh_vrate(ioc, &now); 2410 } 2411 2412 spin_unlock_irq(&ioc->lock); 2413 } 2414 2415 static u64 adjust_inuse_and_calc_cost(struct ioc_gq *iocg, u64 vtime, 2416 u64 abs_cost, struct ioc_now *now) 2417 { 2418 struct ioc *ioc = iocg->ioc; 2419 struct ioc_margins *margins = &ioc->margins; 2420 u32 __maybe_unused old_inuse = iocg->inuse, __maybe_unused old_hwi; 2421 u32 hwi, adj_step; 2422 s64 margin; 2423 u64 cost, new_inuse; 2424 2425 current_hweight(iocg, NULL, &hwi); 2426 old_hwi = hwi; 2427 cost = abs_cost_to_cost(abs_cost, hwi); 2428 margin = now->vnow - vtime - cost; 2429 2430 /* debt handling owns inuse for debtors */ 2431 if (iocg->abs_vdebt) 2432 return cost; 2433 2434 /* 2435 * We only increase inuse during period and do so if the margin has 2436 * deteriorated since the previous adjustment. 2437 */ 2438 if (margin >= iocg->saved_margin || margin >= margins->low || 2439 iocg->inuse == iocg->active) 2440 return cost; 2441 2442 spin_lock_irq(&ioc->lock); 2443 2444 /* we own inuse only when @iocg is in the normal active state */ 2445 if (iocg->abs_vdebt || list_empty(&iocg->active_list)) { 2446 spin_unlock_irq(&ioc->lock); 2447 return cost; 2448 } 2449 2450 /* 2451 * Bump up inuse till @abs_cost fits in the existing budget. 2452 * adj_step must be determined after acquiring ioc->lock - we might 2453 * have raced and lost to another thread for activation and could 2454 * be reading 0 iocg->active before ioc->lock which will lead to 2455 * infinite loop. 2456 */ 2457 new_inuse = iocg->inuse; 2458 adj_step = DIV_ROUND_UP(iocg->active * INUSE_ADJ_STEP_PCT, 100); 2459 do { 2460 new_inuse = new_inuse + adj_step; 2461 propagate_weights(iocg, iocg->active, new_inuse, true, now); 2462 current_hweight(iocg, NULL, &hwi); 2463 cost = abs_cost_to_cost(abs_cost, hwi); 2464 } while (time_after64(vtime + cost, now->vnow) && 2465 iocg->inuse != iocg->active); 2466 2467 spin_unlock_irq(&ioc->lock); 2468 2469 TRACE_IOCG_PATH(inuse_adjust, iocg, now, 2470 old_inuse, iocg->inuse, old_hwi, hwi); 2471 2472 return cost; 2473 } 2474 2475 static void calc_vtime_cost_builtin(struct bio *bio, struct ioc_gq *iocg, 2476 bool is_merge, u64 *costp) 2477 { 2478 struct ioc *ioc = iocg->ioc; 2479 u64 coef_seqio, coef_randio, coef_page; 2480 u64 pages = max_t(u64, bio_sectors(bio) >> IOC_SECT_TO_PAGE_SHIFT, 1); 2481 u64 seek_pages = 0; 2482 u64 cost = 0; 2483 2484 switch (bio_op(bio)) { 2485 case REQ_OP_READ: 2486 coef_seqio = ioc->params.lcoefs[LCOEF_RSEQIO]; 2487 coef_randio = ioc->params.lcoefs[LCOEF_RRANDIO]; 2488 coef_page = ioc->params.lcoefs[LCOEF_RPAGE]; 2489 break; 2490 case REQ_OP_WRITE: 2491 coef_seqio = ioc->params.lcoefs[LCOEF_WSEQIO]; 2492 coef_randio = ioc->params.lcoefs[LCOEF_WRANDIO]; 2493 coef_page = ioc->params.lcoefs[LCOEF_WPAGE]; 2494 break; 2495 default: 2496 goto out; 2497 } 2498 2499 if (iocg->cursor) { 2500 seek_pages = abs(bio->bi_iter.bi_sector - iocg->cursor); 2501 seek_pages >>= IOC_SECT_TO_PAGE_SHIFT; 2502 } 2503 2504 if (!is_merge) { 2505 if (seek_pages > LCOEF_RANDIO_PAGES) { 2506 cost += coef_randio; 2507 } else { 2508 cost += coef_seqio; 2509 } 2510 } 2511 cost += pages * coef_page; 2512 out: 2513 *costp = cost; 2514 } 2515 2516 static u64 calc_vtime_cost(struct bio *bio, struct ioc_gq *iocg, bool is_merge) 2517 { 2518 u64 cost; 2519 2520 calc_vtime_cost_builtin(bio, iocg, is_merge, &cost); 2521 return cost; 2522 } 2523 2524 static void calc_size_vtime_cost_builtin(struct request *rq, struct ioc *ioc, 2525 u64 *costp) 2526 { 2527 unsigned int pages = blk_rq_stats_sectors(rq) >> IOC_SECT_TO_PAGE_SHIFT; 2528 2529 switch (req_op(rq)) { 2530 case REQ_OP_READ: 2531 *costp = pages * ioc->params.lcoefs[LCOEF_RPAGE]; 2532 break; 2533 case REQ_OP_WRITE: 2534 *costp = pages * ioc->params.lcoefs[LCOEF_WPAGE]; 2535 break; 2536 default: 2537 *costp = 0; 2538 } 2539 } 2540 2541 static u64 calc_size_vtime_cost(struct request *rq, struct ioc *ioc) 2542 { 2543 u64 cost; 2544 2545 calc_size_vtime_cost_builtin(rq, ioc, &cost); 2546 return cost; 2547 } 2548 2549 static void ioc_rqos_throttle(struct rq_qos *rqos, struct bio *bio) 2550 { 2551 struct blkcg_gq *blkg = bio->bi_blkg; 2552 struct ioc *ioc = rqos_to_ioc(rqos); 2553 struct ioc_gq *iocg = blkg_to_iocg(blkg); 2554 struct ioc_now now; 2555 struct iocg_wait wait; 2556 u64 abs_cost, cost, vtime; 2557 bool use_debt, ioc_locked; 2558 unsigned long flags; 2559 2560 /* bypass IOs if disabled, still initializing, or for root cgroup */ 2561 if (!ioc->enabled || !iocg || !iocg->level) 2562 return; 2563 2564 /* calculate the absolute vtime cost */ 2565 abs_cost = calc_vtime_cost(bio, iocg, false); 2566 if (!abs_cost) 2567 return; 2568 2569 if (!iocg_activate(iocg, &now)) 2570 return; 2571 2572 iocg->cursor = bio_end_sector(bio); 2573 vtime = atomic64_read(&iocg->vtime); 2574 cost = adjust_inuse_and_calc_cost(iocg, vtime, abs_cost, &now); 2575 2576 /* 2577 * If no one's waiting and within budget, issue right away. The 2578 * tests are racy but the races aren't systemic - we only miss once 2579 * in a while which is fine. 2580 */ 2581 if (!waitqueue_active(&iocg->waitq) && !iocg->abs_vdebt && 2582 time_before_eq64(vtime + cost, now.vnow)) { 2583 iocg_commit_bio(iocg, bio, abs_cost, cost); 2584 return; 2585 } 2586 2587 /* 2588 * We're over budget. This can be handled in two ways. IOs which may 2589 * cause priority inversions are punted to @ioc->aux_iocg and charged as 2590 * debt. Otherwise, the issuer is blocked on @iocg->waitq. Debt handling 2591 * requires @ioc->lock, waitq handling @iocg->waitq.lock. Determine 2592 * whether debt handling is needed and acquire locks accordingly. 2593 */ 2594 use_debt = bio_issue_as_root_blkg(bio) || fatal_signal_pending(current); 2595 ioc_locked = use_debt || READ_ONCE(iocg->abs_vdebt); 2596 retry_lock: 2597 iocg_lock(iocg, ioc_locked, &flags); 2598 2599 /* 2600 * @iocg must stay activated for debt and waitq handling. Deactivation 2601 * is synchronized against both ioc->lock and waitq.lock and we won't 2602 * get deactivated as long as we're waiting or has debt, so we're good 2603 * if we're activated here. In the unlikely cases that we aren't, just 2604 * issue the IO. 2605 */ 2606 if (unlikely(list_empty(&iocg->active_list))) { 2607 iocg_unlock(iocg, ioc_locked, &flags); 2608 iocg_commit_bio(iocg, bio, abs_cost, cost); 2609 return; 2610 } 2611 2612 /* 2613 * We're over budget. If @bio has to be issued regardless, remember 2614 * the abs_cost instead of advancing vtime. iocg_kick_waitq() will pay 2615 * off the debt before waking more IOs. 2616 * 2617 * This way, the debt is continuously paid off each period with the 2618 * actual budget available to the cgroup. If we just wound vtime, we 2619 * would incorrectly use the current hw_inuse for the entire amount 2620 * which, for example, can lead to the cgroup staying blocked for a 2621 * long time even with substantially raised hw_inuse. 2622 * 2623 * An iocg with vdebt should stay online so that the timer can keep 2624 * deducting its vdebt and [de]activate use_delay mechanism 2625 * accordingly. We don't want to race against the timer trying to 2626 * clear them and leave @iocg inactive w/ dangling use_delay heavily 2627 * penalizing the cgroup and its descendants. 2628 */ 2629 if (use_debt) { 2630 iocg_incur_debt(iocg, abs_cost, &now); 2631 if (iocg_kick_delay(iocg, &now)) 2632 blkcg_schedule_throttle(rqos->q, 2633 (bio->bi_opf & REQ_SWAP) == REQ_SWAP); 2634 iocg_unlock(iocg, ioc_locked, &flags); 2635 return; 2636 } 2637 2638 /* guarantee that iocgs w/ waiters have maximum inuse */ 2639 if (!iocg->abs_vdebt && iocg->inuse != iocg->active) { 2640 if (!ioc_locked) { 2641 iocg_unlock(iocg, false, &flags); 2642 ioc_locked = true; 2643 goto retry_lock; 2644 } 2645 propagate_weights(iocg, iocg->active, iocg->active, true, 2646 &now); 2647 } 2648 2649 /* 2650 * Append self to the waitq and schedule the wakeup timer if we're 2651 * the first waiter. The timer duration is calculated based on the 2652 * current vrate. vtime and hweight changes can make it too short 2653 * or too long. Each wait entry records the absolute cost it's 2654 * waiting for to allow re-evaluation using a custom wait entry. 2655 * 2656 * If too short, the timer simply reschedules itself. If too long, 2657 * the period timer will notice and trigger wakeups. 2658 * 2659 * All waiters are on iocg->waitq and the wait states are 2660 * synchronized using waitq.lock. 2661 */ 2662 init_waitqueue_func_entry(&wait.wait, iocg_wake_fn); 2663 wait.wait.private = current; 2664 wait.bio = bio; 2665 wait.abs_cost = abs_cost; 2666 wait.committed = false; /* will be set true by waker */ 2667 2668 __add_wait_queue_entry_tail(&iocg->waitq, &wait.wait); 2669 iocg_kick_waitq(iocg, ioc_locked, &now); 2670 2671 iocg_unlock(iocg, ioc_locked, &flags); 2672 2673 while (true) { 2674 set_current_state(TASK_UNINTERRUPTIBLE); 2675 if (wait.committed) 2676 break; 2677 io_schedule(); 2678 } 2679 2680 /* waker already committed us, proceed */ 2681 finish_wait(&iocg->waitq, &wait.wait); 2682 } 2683 2684 static void ioc_rqos_merge(struct rq_qos *rqos, struct request *rq, 2685 struct bio *bio) 2686 { 2687 struct ioc_gq *iocg = blkg_to_iocg(bio->bi_blkg); 2688 struct ioc *ioc = rqos_to_ioc(rqos); 2689 sector_t bio_end = bio_end_sector(bio); 2690 struct ioc_now now; 2691 u64 vtime, abs_cost, cost; 2692 unsigned long flags; 2693 2694 /* bypass if disabled, still initializing, or for root cgroup */ 2695 if (!ioc->enabled || !iocg || !iocg->level) 2696 return; 2697 2698 abs_cost = calc_vtime_cost(bio, iocg, true); 2699 if (!abs_cost) 2700 return; 2701 2702 ioc_now(ioc, &now); 2703 2704 vtime = atomic64_read(&iocg->vtime); 2705 cost = adjust_inuse_and_calc_cost(iocg, vtime, abs_cost, &now); 2706 2707 /* update cursor if backmerging into the request at the cursor */ 2708 if (blk_rq_pos(rq) < bio_end && 2709 blk_rq_pos(rq) + blk_rq_sectors(rq) == iocg->cursor) 2710 iocg->cursor = bio_end; 2711 2712 /* 2713 * Charge if there's enough vtime budget and the existing request has 2714 * cost assigned. 2715 */ 2716 if (rq->bio && rq->bio->bi_iocost_cost && 2717 time_before_eq64(atomic64_read(&iocg->vtime) + cost, now.vnow)) { 2718 iocg_commit_bio(iocg, bio, abs_cost, cost); 2719 return; 2720 } 2721 2722 /* 2723 * Otherwise, account it as debt if @iocg is online, which it should 2724 * be for the vast majority of cases. See debt handling in 2725 * ioc_rqos_throttle() for details. 2726 */ 2727 spin_lock_irqsave(&ioc->lock, flags); 2728 spin_lock(&iocg->waitq.lock); 2729 2730 if (likely(!list_empty(&iocg->active_list))) { 2731 iocg_incur_debt(iocg, abs_cost, &now); 2732 if (iocg_kick_delay(iocg, &now)) 2733 blkcg_schedule_throttle(rqos->q, 2734 (bio->bi_opf & REQ_SWAP) == REQ_SWAP); 2735 } else { 2736 iocg_commit_bio(iocg, bio, abs_cost, cost); 2737 } 2738 2739 spin_unlock(&iocg->waitq.lock); 2740 spin_unlock_irqrestore(&ioc->lock, flags); 2741 } 2742 2743 static void ioc_rqos_done_bio(struct rq_qos *rqos, struct bio *bio) 2744 { 2745 struct ioc_gq *iocg = blkg_to_iocg(bio->bi_blkg); 2746 2747 if (iocg && bio->bi_iocost_cost) 2748 atomic64_add(bio->bi_iocost_cost, &iocg->done_vtime); 2749 } 2750 2751 static void ioc_rqos_done(struct rq_qos *rqos, struct request *rq) 2752 { 2753 struct ioc *ioc = rqos_to_ioc(rqos); 2754 struct ioc_pcpu_stat *ccs; 2755 u64 on_q_ns, rq_wait_ns, size_nsec; 2756 int pidx, rw; 2757 2758 if (!ioc->enabled || !rq->alloc_time_ns || !rq->start_time_ns) 2759 return; 2760 2761 switch (req_op(rq) & REQ_OP_MASK) { 2762 case REQ_OP_READ: 2763 pidx = QOS_RLAT; 2764 rw = READ; 2765 break; 2766 case REQ_OP_WRITE: 2767 pidx = QOS_WLAT; 2768 rw = WRITE; 2769 break; 2770 default: 2771 return; 2772 } 2773 2774 on_q_ns = ktime_get_ns() - rq->alloc_time_ns; 2775 rq_wait_ns = rq->start_time_ns - rq->alloc_time_ns; 2776 size_nsec = div64_u64(calc_size_vtime_cost(rq, ioc), VTIME_PER_NSEC); 2777 2778 ccs = get_cpu_ptr(ioc->pcpu_stat); 2779 2780 if (on_q_ns <= size_nsec || 2781 on_q_ns - size_nsec <= ioc->params.qos[pidx] * NSEC_PER_USEC) 2782 local_inc(&ccs->missed[rw].nr_met); 2783 else 2784 local_inc(&ccs->missed[rw].nr_missed); 2785 2786 local64_add(rq_wait_ns, &ccs->rq_wait_ns); 2787 2788 put_cpu_ptr(ccs); 2789 } 2790 2791 static void ioc_rqos_queue_depth_changed(struct rq_qos *rqos) 2792 { 2793 struct ioc *ioc = rqos_to_ioc(rqos); 2794 2795 spin_lock_irq(&ioc->lock); 2796 ioc_refresh_params(ioc, false); 2797 spin_unlock_irq(&ioc->lock); 2798 } 2799 2800 static void ioc_rqos_exit(struct rq_qos *rqos) 2801 { 2802 struct ioc *ioc = rqos_to_ioc(rqos); 2803 2804 blkcg_deactivate_policy(rqos->q, &blkcg_policy_iocost); 2805 2806 spin_lock_irq(&ioc->lock); 2807 ioc->running = IOC_STOP; 2808 spin_unlock_irq(&ioc->lock); 2809 2810 del_timer_sync(&ioc->timer); 2811 free_percpu(ioc->pcpu_stat); 2812 kfree(ioc); 2813 } 2814 2815 static struct rq_qos_ops ioc_rqos_ops = { 2816 .throttle = ioc_rqos_throttle, 2817 .merge = ioc_rqos_merge, 2818 .done_bio = ioc_rqos_done_bio, 2819 .done = ioc_rqos_done, 2820 .queue_depth_changed = ioc_rqos_queue_depth_changed, 2821 .exit = ioc_rqos_exit, 2822 }; 2823 2824 static int blk_iocost_init(struct request_queue *q) 2825 { 2826 struct ioc *ioc; 2827 struct rq_qos *rqos; 2828 int i, cpu, ret; 2829 2830 ioc = kzalloc(sizeof(*ioc), GFP_KERNEL); 2831 if (!ioc) 2832 return -ENOMEM; 2833 2834 ioc->pcpu_stat = alloc_percpu(struct ioc_pcpu_stat); 2835 if (!ioc->pcpu_stat) { 2836 kfree(ioc); 2837 return -ENOMEM; 2838 } 2839 2840 for_each_possible_cpu(cpu) { 2841 struct ioc_pcpu_stat *ccs = per_cpu_ptr(ioc->pcpu_stat, cpu); 2842 2843 for (i = 0; i < ARRAY_SIZE(ccs->missed); i++) { 2844 local_set(&ccs->missed[i].nr_met, 0); 2845 local_set(&ccs->missed[i].nr_missed, 0); 2846 } 2847 local64_set(&ccs->rq_wait_ns, 0); 2848 } 2849 2850 rqos = &ioc->rqos; 2851 rqos->id = RQ_QOS_COST; 2852 rqos->ops = &ioc_rqos_ops; 2853 rqos->q = q; 2854 2855 spin_lock_init(&ioc->lock); 2856 timer_setup(&ioc->timer, ioc_timer_fn, 0); 2857 INIT_LIST_HEAD(&ioc->active_iocgs); 2858 2859 ioc->running = IOC_IDLE; 2860 ioc->vtime_base_rate = VTIME_PER_USEC; 2861 atomic64_set(&ioc->vtime_rate, VTIME_PER_USEC); 2862 seqcount_spinlock_init(&ioc->period_seqcount, &ioc->lock); 2863 ioc->period_at = ktime_to_us(ktime_get()); 2864 atomic64_set(&ioc->cur_period, 0); 2865 atomic_set(&ioc->hweight_gen, 0); 2866 2867 spin_lock_irq(&ioc->lock); 2868 ioc->autop_idx = AUTOP_INVALID; 2869 ioc_refresh_params(ioc, true); 2870 spin_unlock_irq(&ioc->lock); 2871 2872 /* 2873 * rqos must be added before activation to allow iocg_pd_init() to 2874 * lookup the ioc from q. This means that the rqos methods may get 2875 * called before policy activation completion, can't assume that the 2876 * target bio has an iocg associated and need to test for NULL iocg. 2877 */ 2878 rq_qos_add(q, rqos); 2879 ret = blkcg_activate_policy(q, &blkcg_policy_iocost); 2880 if (ret) { 2881 rq_qos_del(q, rqos); 2882 free_percpu(ioc->pcpu_stat); 2883 kfree(ioc); 2884 return ret; 2885 } 2886 return 0; 2887 } 2888 2889 static struct blkcg_policy_data *ioc_cpd_alloc(gfp_t gfp) 2890 { 2891 struct ioc_cgrp *iocc; 2892 2893 iocc = kzalloc(sizeof(struct ioc_cgrp), gfp); 2894 if (!iocc) 2895 return NULL; 2896 2897 iocc->dfl_weight = CGROUP_WEIGHT_DFL * WEIGHT_ONE; 2898 return &iocc->cpd; 2899 } 2900 2901 static void ioc_cpd_free(struct blkcg_policy_data *cpd) 2902 { 2903 kfree(container_of(cpd, struct ioc_cgrp, cpd)); 2904 } 2905 2906 static struct blkg_policy_data *ioc_pd_alloc(gfp_t gfp, struct request_queue *q, 2907 struct blkcg *blkcg) 2908 { 2909 int levels = blkcg->css.cgroup->level + 1; 2910 struct ioc_gq *iocg; 2911 2912 iocg = kzalloc_node(struct_size(iocg, ancestors, levels), gfp, q->node); 2913 if (!iocg) 2914 return NULL; 2915 2916 iocg->pcpu_stat = alloc_percpu_gfp(struct iocg_pcpu_stat, gfp); 2917 if (!iocg->pcpu_stat) { 2918 kfree(iocg); 2919 return NULL; 2920 } 2921 2922 return &iocg->pd; 2923 } 2924 2925 static void ioc_pd_init(struct blkg_policy_data *pd) 2926 { 2927 struct ioc_gq *iocg = pd_to_iocg(pd); 2928 struct blkcg_gq *blkg = pd_to_blkg(&iocg->pd); 2929 struct ioc *ioc = q_to_ioc(blkg->q); 2930 struct ioc_now now; 2931 struct blkcg_gq *tblkg; 2932 unsigned long flags; 2933 2934 ioc_now(ioc, &now); 2935 2936 iocg->ioc = ioc; 2937 atomic64_set(&iocg->vtime, now.vnow); 2938 atomic64_set(&iocg->done_vtime, now.vnow); 2939 atomic64_set(&iocg->active_period, atomic64_read(&ioc->cur_period)); 2940 INIT_LIST_HEAD(&iocg->active_list); 2941 INIT_LIST_HEAD(&iocg->walk_list); 2942 INIT_LIST_HEAD(&iocg->surplus_list); 2943 iocg->hweight_active = WEIGHT_ONE; 2944 iocg->hweight_inuse = WEIGHT_ONE; 2945 2946 init_waitqueue_head(&iocg->waitq); 2947 hrtimer_init(&iocg->waitq_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS); 2948 iocg->waitq_timer.function = iocg_waitq_timer_fn; 2949 2950 iocg->level = blkg->blkcg->css.cgroup->level; 2951 2952 for (tblkg = blkg; tblkg; tblkg = tblkg->parent) { 2953 struct ioc_gq *tiocg = blkg_to_iocg(tblkg); 2954 iocg->ancestors[tiocg->level] = tiocg; 2955 } 2956 2957 spin_lock_irqsave(&ioc->lock, flags); 2958 weight_updated(iocg, &now); 2959 spin_unlock_irqrestore(&ioc->lock, flags); 2960 } 2961 2962 static void ioc_pd_free(struct blkg_policy_data *pd) 2963 { 2964 struct ioc_gq *iocg = pd_to_iocg(pd); 2965 struct ioc *ioc = iocg->ioc; 2966 unsigned long flags; 2967 2968 if (ioc) { 2969 spin_lock_irqsave(&ioc->lock, flags); 2970 2971 if (!list_empty(&iocg->active_list)) { 2972 struct ioc_now now; 2973 2974 ioc_now(ioc, &now); 2975 propagate_weights(iocg, 0, 0, false, &now); 2976 list_del_init(&iocg->active_list); 2977 } 2978 2979 WARN_ON_ONCE(!list_empty(&iocg->walk_list)); 2980 WARN_ON_ONCE(!list_empty(&iocg->surplus_list)); 2981 2982 spin_unlock_irqrestore(&ioc->lock, flags); 2983 2984 hrtimer_cancel(&iocg->waitq_timer); 2985 } 2986 free_percpu(iocg->pcpu_stat); 2987 kfree(iocg); 2988 } 2989 2990 static size_t ioc_pd_stat(struct blkg_policy_data *pd, char *buf, size_t size) 2991 { 2992 struct ioc_gq *iocg = pd_to_iocg(pd); 2993 struct ioc *ioc = iocg->ioc; 2994 size_t pos = 0; 2995 2996 if (!ioc->enabled) 2997 return 0; 2998 2999 if (iocg->level == 0) { 3000 unsigned vp10k = DIV64_U64_ROUND_CLOSEST( 3001 ioc->vtime_base_rate * 10000, 3002 VTIME_PER_USEC); 3003 pos += scnprintf(buf + pos, size - pos, " cost.vrate=%u.%02u", 3004 vp10k / 100, vp10k % 100); 3005 } 3006 3007 pos += scnprintf(buf + pos, size - pos, " cost.usage=%llu", 3008 iocg->last_stat.usage_us); 3009 3010 if (blkcg_debug_stats) 3011 pos += scnprintf(buf + pos, size - pos, 3012 " cost.wait=%llu cost.indebt=%llu cost.indelay=%llu", 3013 iocg->last_stat.wait_us, 3014 iocg->last_stat.indebt_us, 3015 iocg->last_stat.indelay_us); 3016 3017 return pos; 3018 } 3019 3020 static u64 ioc_weight_prfill(struct seq_file *sf, struct blkg_policy_data *pd, 3021 int off) 3022 { 3023 const char *dname = blkg_dev_name(pd->blkg); 3024 struct ioc_gq *iocg = pd_to_iocg(pd); 3025 3026 if (dname && iocg->cfg_weight) 3027 seq_printf(sf, "%s %u\n", dname, iocg->cfg_weight / WEIGHT_ONE); 3028 return 0; 3029 } 3030 3031 3032 static int ioc_weight_show(struct seq_file *sf, void *v) 3033 { 3034 struct blkcg *blkcg = css_to_blkcg(seq_css(sf)); 3035 struct ioc_cgrp *iocc = blkcg_to_iocc(blkcg); 3036 3037 seq_printf(sf, "default %u\n", iocc->dfl_weight / WEIGHT_ONE); 3038 blkcg_print_blkgs(sf, blkcg, ioc_weight_prfill, 3039 &blkcg_policy_iocost, seq_cft(sf)->private, false); 3040 return 0; 3041 } 3042 3043 static ssize_t ioc_weight_write(struct kernfs_open_file *of, char *buf, 3044 size_t nbytes, loff_t off) 3045 { 3046 struct blkcg *blkcg = css_to_blkcg(of_css(of)); 3047 struct ioc_cgrp *iocc = blkcg_to_iocc(blkcg); 3048 struct blkg_conf_ctx ctx; 3049 struct ioc_now now; 3050 struct ioc_gq *iocg; 3051 u32 v; 3052 int ret; 3053 3054 if (!strchr(buf, ':')) { 3055 struct blkcg_gq *blkg; 3056 3057 if (!sscanf(buf, "default %u", &v) && !sscanf(buf, "%u", &v)) 3058 return -EINVAL; 3059 3060 if (v < CGROUP_WEIGHT_MIN || v > CGROUP_WEIGHT_MAX) 3061 return -EINVAL; 3062 3063 spin_lock(&blkcg->lock); 3064 iocc->dfl_weight = v * WEIGHT_ONE; 3065 hlist_for_each_entry(blkg, &blkcg->blkg_list, blkcg_node) { 3066 struct ioc_gq *iocg = blkg_to_iocg(blkg); 3067 3068 if (iocg) { 3069 spin_lock_irq(&iocg->ioc->lock); 3070 ioc_now(iocg->ioc, &now); 3071 weight_updated(iocg, &now); 3072 spin_unlock_irq(&iocg->ioc->lock); 3073 } 3074 } 3075 spin_unlock(&blkcg->lock); 3076 3077 return nbytes; 3078 } 3079 3080 ret = blkg_conf_prep(blkcg, &blkcg_policy_iocost, buf, &ctx); 3081 if (ret) 3082 return ret; 3083 3084 iocg = blkg_to_iocg(ctx.blkg); 3085 3086 if (!strncmp(ctx.body, "default", 7)) { 3087 v = 0; 3088 } else { 3089 if (!sscanf(ctx.body, "%u", &v)) 3090 goto einval; 3091 if (v < CGROUP_WEIGHT_MIN || v > CGROUP_WEIGHT_MAX) 3092 goto einval; 3093 } 3094 3095 spin_lock(&iocg->ioc->lock); 3096 iocg->cfg_weight = v * WEIGHT_ONE; 3097 ioc_now(iocg->ioc, &now); 3098 weight_updated(iocg, &now); 3099 spin_unlock(&iocg->ioc->lock); 3100 3101 blkg_conf_finish(&ctx); 3102 return nbytes; 3103 3104 einval: 3105 blkg_conf_finish(&ctx); 3106 return -EINVAL; 3107 } 3108 3109 static u64 ioc_qos_prfill(struct seq_file *sf, struct blkg_policy_data *pd, 3110 int off) 3111 { 3112 const char *dname = blkg_dev_name(pd->blkg); 3113 struct ioc *ioc = pd_to_iocg(pd)->ioc; 3114 3115 if (!dname) 3116 return 0; 3117 3118 seq_printf(sf, "%s enable=%d ctrl=%s rpct=%u.%02u rlat=%u wpct=%u.%02u wlat=%u min=%u.%02u max=%u.%02u\n", 3119 dname, ioc->enabled, ioc->user_qos_params ? "user" : "auto", 3120 ioc->params.qos[QOS_RPPM] / 10000, 3121 ioc->params.qos[QOS_RPPM] % 10000 / 100, 3122 ioc->params.qos[QOS_RLAT], 3123 ioc->params.qos[QOS_WPPM] / 10000, 3124 ioc->params.qos[QOS_WPPM] % 10000 / 100, 3125 ioc->params.qos[QOS_WLAT], 3126 ioc->params.qos[QOS_MIN] / 10000, 3127 ioc->params.qos[QOS_MIN] % 10000 / 100, 3128 ioc->params.qos[QOS_MAX] / 10000, 3129 ioc->params.qos[QOS_MAX] % 10000 / 100); 3130 return 0; 3131 } 3132 3133 static int ioc_qos_show(struct seq_file *sf, void *v) 3134 { 3135 struct blkcg *blkcg = css_to_blkcg(seq_css(sf)); 3136 3137 blkcg_print_blkgs(sf, blkcg, ioc_qos_prfill, 3138 &blkcg_policy_iocost, seq_cft(sf)->private, false); 3139 return 0; 3140 } 3141 3142 static const match_table_t qos_ctrl_tokens = { 3143 { QOS_ENABLE, "enable=%u" }, 3144 { QOS_CTRL, "ctrl=%s" }, 3145 { NR_QOS_CTRL_PARAMS, NULL }, 3146 }; 3147 3148 static const match_table_t qos_tokens = { 3149 { QOS_RPPM, "rpct=%s" }, 3150 { QOS_RLAT, "rlat=%u" }, 3151 { QOS_WPPM, "wpct=%s" }, 3152 { QOS_WLAT, "wlat=%u" }, 3153 { QOS_MIN, "min=%s" }, 3154 { QOS_MAX, "max=%s" }, 3155 { NR_QOS_PARAMS, NULL }, 3156 }; 3157 3158 static ssize_t ioc_qos_write(struct kernfs_open_file *of, char *input, 3159 size_t nbytes, loff_t off) 3160 { 3161 struct block_device *bdev; 3162 struct ioc *ioc; 3163 u32 qos[NR_QOS_PARAMS]; 3164 bool enable, user; 3165 char *p; 3166 int ret; 3167 3168 bdev = blkcg_conf_open_bdev(&input); 3169 if (IS_ERR(bdev)) 3170 return PTR_ERR(bdev); 3171 3172 ioc = q_to_ioc(bdev->bd_disk->queue); 3173 if (!ioc) { 3174 ret = blk_iocost_init(bdev->bd_disk->queue); 3175 if (ret) 3176 goto err; 3177 ioc = q_to_ioc(bdev->bd_disk->queue); 3178 } 3179 3180 spin_lock_irq(&ioc->lock); 3181 memcpy(qos, ioc->params.qos, sizeof(qos)); 3182 enable = ioc->enabled; 3183 user = ioc->user_qos_params; 3184 spin_unlock_irq(&ioc->lock); 3185 3186 while ((p = strsep(&input, " \t\n"))) { 3187 substring_t args[MAX_OPT_ARGS]; 3188 char buf[32]; 3189 int tok; 3190 s64 v; 3191 3192 if (!*p) 3193 continue; 3194 3195 switch (match_token(p, qos_ctrl_tokens, args)) { 3196 case QOS_ENABLE: 3197 match_u64(&args[0], &v); 3198 enable = v; 3199 continue; 3200 case QOS_CTRL: 3201 match_strlcpy(buf, &args[0], sizeof(buf)); 3202 if (!strcmp(buf, "auto")) 3203 user = false; 3204 else if (!strcmp(buf, "user")) 3205 user = true; 3206 else 3207 goto einval; 3208 continue; 3209 } 3210 3211 tok = match_token(p, qos_tokens, args); 3212 switch (tok) { 3213 case QOS_RPPM: 3214 case QOS_WPPM: 3215 if (match_strlcpy(buf, &args[0], sizeof(buf)) >= 3216 sizeof(buf)) 3217 goto einval; 3218 if (cgroup_parse_float(buf, 2, &v)) 3219 goto einval; 3220 if (v < 0 || v > 10000) 3221 goto einval; 3222 qos[tok] = v * 100; 3223 break; 3224 case QOS_RLAT: 3225 case QOS_WLAT: 3226 if (match_u64(&args[0], &v)) 3227 goto einval; 3228 qos[tok] = v; 3229 break; 3230 case QOS_MIN: 3231 case QOS_MAX: 3232 if (match_strlcpy(buf, &args[0], sizeof(buf)) >= 3233 sizeof(buf)) 3234 goto einval; 3235 if (cgroup_parse_float(buf, 2, &v)) 3236 goto einval; 3237 if (v < 0) 3238 goto einval; 3239 qos[tok] = clamp_t(s64, v * 100, 3240 VRATE_MIN_PPM, VRATE_MAX_PPM); 3241 break; 3242 default: 3243 goto einval; 3244 } 3245 user = true; 3246 } 3247 3248 if (qos[QOS_MIN] > qos[QOS_MAX]) 3249 goto einval; 3250 3251 spin_lock_irq(&ioc->lock); 3252 3253 if (enable) { 3254 blk_stat_enable_accounting(ioc->rqos.q); 3255 blk_queue_flag_set(QUEUE_FLAG_RQ_ALLOC_TIME, ioc->rqos.q); 3256 ioc->enabled = true; 3257 } else { 3258 blk_queue_flag_clear(QUEUE_FLAG_RQ_ALLOC_TIME, ioc->rqos.q); 3259 ioc->enabled = false; 3260 } 3261 3262 if (user) { 3263 memcpy(ioc->params.qos, qos, sizeof(qos)); 3264 ioc->user_qos_params = true; 3265 } else { 3266 ioc->user_qos_params = false; 3267 } 3268 3269 ioc_refresh_params(ioc, true); 3270 spin_unlock_irq(&ioc->lock); 3271 3272 blkdev_put_no_open(bdev); 3273 return nbytes; 3274 einval: 3275 ret = -EINVAL; 3276 err: 3277 blkdev_put_no_open(bdev); 3278 return ret; 3279 } 3280 3281 static u64 ioc_cost_model_prfill(struct seq_file *sf, 3282 struct blkg_policy_data *pd, int off) 3283 { 3284 const char *dname = blkg_dev_name(pd->blkg); 3285 struct ioc *ioc = pd_to_iocg(pd)->ioc; 3286 u64 *u = ioc->params.i_lcoefs; 3287 3288 if (!dname) 3289 return 0; 3290 3291 seq_printf(sf, "%s ctrl=%s model=linear " 3292 "rbps=%llu rseqiops=%llu rrandiops=%llu " 3293 "wbps=%llu wseqiops=%llu wrandiops=%llu\n", 3294 dname, ioc->user_cost_model ? "user" : "auto", 3295 u[I_LCOEF_RBPS], u[I_LCOEF_RSEQIOPS], u[I_LCOEF_RRANDIOPS], 3296 u[I_LCOEF_WBPS], u[I_LCOEF_WSEQIOPS], u[I_LCOEF_WRANDIOPS]); 3297 return 0; 3298 } 3299 3300 static int ioc_cost_model_show(struct seq_file *sf, void *v) 3301 { 3302 struct blkcg *blkcg = css_to_blkcg(seq_css(sf)); 3303 3304 blkcg_print_blkgs(sf, blkcg, ioc_cost_model_prfill, 3305 &blkcg_policy_iocost, seq_cft(sf)->private, false); 3306 return 0; 3307 } 3308 3309 static const match_table_t cost_ctrl_tokens = { 3310 { COST_CTRL, "ctrl=%s" }, 3311 { COST_MODEL, "model=%s" }, 3312 { NR_COST_CTRL_PARAMS, NULL }, 3313 }; 3314 3315 static const match_table_t i_lcoef_tokens = { 3316 { I_LCOEF_RBPS, "rbps=%u" }, 3317 { I_LCOEF_RSEQIOPS, "rseqiops=%u" }, 3318 { I_LCOEF_RRANDIOPS, "rrandiops=%u" }, 3319 { I_LCOEF_WBPS, "wbps=%u" }, 3320 { I_LCOEF_WSEQIOPS, "wseqiops=%u" }, 3321 { I_LCOEF_WRANDIOPS, "wrandiops=%u" }, 3322 { NR_I_LCOEFS, NULL }, 3323 }; 3324 3325 static ssize_t ioc_cost_model_write(struct kernfs_open_file *of, char *input, 3326 size_t nbytes, loff_t off) 3327 { 3328 struct block_device *bdev; 3329 struct ioc *ioc; 3330 u64 u[NR_I_LCOEFS]; 3331 bool user; 3332 char *p; 3333 int ret; 3334 3335 bdev = blkcg_conf_open_bdev(&input); 3336 if (IS_ERR(bdev)) 3337 return PTR_ERR(bdev); 3338 3339 ioc = q_to_ioc(bdev->bd_disk->queue); 3340 if (!ioc) { 3341 ret = blk_iocost_init(bdev->bd_disk->queue); 3342 if (ret) 3343 goto err; 3344 ioc = q_to_ioc(bdev->bd_disk->queue); 3345 } 3346 3347 spin_lock_irq(&ioc->lock); 3348 memcpy(u, ioc->params.i_lcoefs, sizeof(u)); 3349 user = ioc->user_cost_model; 3350 spin_unlock_irq(&ioc->lock); 3351 3352 while ((p = strsep(&input, " \t\n"))) { 3353 substring_t args[MAX_OPT_ARGS]; 3354 char buf[32]; 3355 int tok; 3356 u64 v; 3357 3358 if (!*p) 3359 continue; 3360 3361 switch (match_token(p, cost_ctrl_tokens, args)) { 3362 case COST_CTRL: 3363 match_strlcpy(buf, &args[0], sizeof(buf)); 3364 if (!strcmp(buf, "auto")) 3365 user = false; 3366 else if (!strcmp(buf, "user")) 3367 user = true; 3368 else 3369 goto einval; 3370 continue; 3371 case COST_MODEL: 3372 match_strlcpy(buf, &args[0], sizeof(buf)); 3373 if (strcmp(buf, "linear")) 3374 goto einval; 3375 continue; 3376 } 3377 3378 tok = match_token(p, i_lcoef_tokens, args); 3379 if (tok == NR_I_LCOEFS) 3380 goto einval; 3381 if (match_u64(&args[0], &v)) 3382 goto einval; 3383 u[tok] = v; 3384 user = true; 3385 } 3386 3387 spin_lock_irq(&ioc->lock); 3388 if (user) { 3389 memcpy(ioc->params.i_lcoefs, u, sizeof(u)); 3390 ioc->user_cost_model = true; 3391 } else { 3392 ioc->user_cost_model = false; 3393 } 3394 ioc_refresh_params(ioc, true); 3395 spin_unlock_irq(&ioc->lock); 3396 3397 blkdev_put_no_open(bdev); 3398 return nbytes; 3399 3400 einval: 3401 ret = -EINVAL; 3402 err: 3403 blkdev_put_no_open(bdev); 3404 return ret; 3405 } 3406 3407 static struct cftype ioc_files[] = { 3408 { 3409 .name = "weight", 3410 .flags = CFTYPE_NOT_ON_ROOT, 3411 .seq_show = ioc_weight_show, 3412 .write = ioc_weight_write, 3413 }, 3414 { 3415 .name = "cost.qos", 3416 .flags = CFTYPE_ONLY_ON_ROOT, 3417 .seq_show = ioc_qos_show, 3418 .write = ioc_qos_write, 3419 }, 3420 { 3421 .name = "cost.model", 3422 .flags = CFTYPE_ONLY_ON_ROOT, 3423 .seq_show = ioc_cost_model_show, 3424 .write = ioc_cost_model_write, 3425 }, 3426 {} 3427 }; 3428 3429 static struct blkcg_policy blkcg_policy_iocost = { 3430 .dfl_cftypes = ioc_files, 3431 .cpd_alloc_fn = ioc_cpd_alloc, 3432 .cpd_free_fn = ioc_cpd_free, 3433 .pd_alloc_fn = ioc_pd_alloc, 3434 .pd_init_fn = ioc_pd_init, 3435 .pd_free_fn = ioc_pd_free, 3436 .pd_stat_fn = ioc_pd_stat, 3437 }; 3438 3439 static int __init ioc_init(void) 3440 { 3441 return blkcg_policy_register(&blkcg_policy_iocost); 3442 } 3443 3444 static void __exit ioc_exit(void) 3445 { 3446 blkcg_policy_unregister(&blkcg_policy_iocost); 3447 } 3448 3449 module_init(ioc_init); 3450 module_exit(ioc_exit); 3451