xref: /linux/block/blk-iocost.c (revision 3f0a50f345f78183f6e9b39c2f45ca5dcaa511ca)
1 /* SPDX-License-Identifier: GPL-2.0
2  *
3  * IO cost model based controller.
4  *
5  * Copyright (C) 2019 Tejun Heo <tj@kernel.org>
6  * Copyright (C) 2019 Andy Newell <newella@fb.com>
7  * Copyright (C) 2019 Facebook
8  *
9  * One challenge of controlling IO resources is the lack of trivially
10  * observable cost metric.  This is distinguished from CPU and memory where
11  * wallclock time and the number of bytes can serve as accurate enough
12  * approximations.
13  *
14  * Bandwidth and iops are the most commonly used metrics for IO devices but
15  * depending on the type and specifics of the device, different IO patterns
16  * easily lead to multiple orders of magnitude variations rendering them
17  * useless for the purpose of IO capacity distribution.  While on-device
18  * time, with a lot of clutches, could serve as a useful approximation for
19  * non-queued rotational devices, this is no longer viable with modern
20  * devices, even the rotational ones.
21  *
22  * While there is no cost metric we can trivially observe, it isn't a
23  * complete mystery.  For example, on a rotational device, seek cost
24  * dominates while a contiguous transfer contributes a smaller amount
25  * proportional to the size.  If we can characterize at least the relative
26  * costs of these different types of IOs, it should be possible to
27  * implement a reasonable work-conserving proportional IO resource
28  * distribution.
29  *
30  * 1. IO Cost Model
31  *
32  * IO cost model estimates the cost of an IO given its basic parameters and
33  * history (e.g. the end sector of the last IO).  The cost is measured in
34  * device time.  If a given IO is estimated to cost 10ms, the device should
35  * be able to process ~100 of those IOs in a second.
36  *
37  * Currently, there's only one builtin cost model - linear.  Each IO is
38  * classified as sequential or random and given a base cost accordingly.
39  * On top of that, a size cost proportional to the length of the IO is
40  * added.  While simple, this model captures the operational
41  * characteristics of a wide varienty of devices well enough.  Default
42  * parameters for several different classes of devices are provided and the
43  * parameters can be configured from userspace via
44  * /sys/fs/cgroup/io.cost.model.
45  *
46  * If needed, tools/cgroup/iocost_coef_gen.py can be used to generate
47  * device-specific coefficients.
48  *
49  * 2. Control Strategy
50  *
51  * The device virtual time (vtime) is used as the primary control metric.
52  * The control strategy is composed of the following three parts.
53  *
54  * 2-1. Vtime Distribution
55  *
56  * When a cgroup becomes active in terms of IOs, its hierarchical share is
57  * calculated.  Please consider the following hierarchy where the numbers
58  * inside parentheses denote the configured weights.
59  *
60  *           root
61  *         /       \
62  *      A (w:100)  B (w:300)
63  *      /       \
64  *  A0 (w:100)  A1 (w:100)
65  *
66  * If B is idle and only A0 and A1 are actively issuing IOs, as the two are
67  * of equal weight, each gets 50% share.  If then B starts issuing IOs, B
68  * gets 300/(100+300) or 75% share, and A0 and A1 equally splits the rest,
69  * 12.5% each.  The distribution mechanism only cares about these flattened
70  * shares.  They're called hweights (hierarchical weights) and always add
71  * upto 1 (WEIGHT_ONE).
72  *
73  * A given cgroup's vtime runs slower in inverse proportion to its hweight.
74  * For example, with 12.5% weight, A0's time runs 8 times slower (100/12.5)
75  * against the device vtime - an IO which takes 10ms on the underlying
76  * device is considered to take 80ms on A0.
77  *
78  * This constitutes the basis of IO capacity distribution.  Each cgroup's
79  * vtime is running at a rate determined by its hweight.  A cgroup tracks
80  * the vtime consumed by past IOs and can issue a new IO if doing so
81  * wouldn't outrun the current device vtime.  Otherwise, the IO is
82  * suspended until the vtime has progressed enough to cover it.
83  *
84  * 2-2. Vrate Adjustment
85  *
86  * It's unrealistic to expect the cost model to be perfect.  There are too
87  * many devices and even on the same device the overall performance
88  * fluctuates depending on numerous factors such as IO mixture and device
89  * internal garbage collection.  The controller needs to adapt dynamically.
90  *
91  * This is achieved by adjusting the overall IO rate according to how busy
92  * the device is.  If the device becomes overloaded, we're sending down too
93  * many IOs and should generally slow down.  If there are waiting issuers
94  * but the device isn't saturated, we're issuing too few and should
95  * generally speed up.
96  *
97  * To slow down, we lower the vrate - the rate at which the device vtime
98  * passes compared to the wall clock.  For example, if the vtime is running
99  * at the vrate of 75%, all cgroups added up would only be able to issue
100  * 750ms worth of IOs per second, and vice-versa for speeding up.
101  *
102  * Device business is determined using two criteria - rq wait and
103  * completion latencies.
104  *
105  * When a device gets saturated, the on-device and then the request queues
106  * fill up and a bio which is ready to be issued has to wait for a request
107  * to become available.  When this delay becomes noticeable, it's a clear
108  * indication that the device is saturated and we lower the vrate.  This
109  * saturation signal is fairly conservative as it only triggers when both
110  * hardware and software queues are filled up, and is used as the default
111  * busy signal.
112  *
113  * As devices can have deep queues and be unfair in how the queued commands
114  * are executed, soley depending on rq wait may not result in satisfactory
115  * control quality.  For a better control quality, completion latency QoS
116  * parameters can be configured so that the device is considered saturated
117  * if N'th percentile completion latency rises above the set point.
118  *
119  * The completion latency requirements are a function of both the
120  * underlying device characteristics and the desired IO latency quality of
121  * service.  There is an inherent trade-off - the tighter the latency QoS,
122  * the higher the bandwidth lossage.  Latency QoS is disabled by default
123  * and can be set through /sys/fs/cgroup/io.cost.qos.
124  *
125  * 2-3. Work Conservation
126  *
127  * Imagine two cgroups A and B with equal weights.  A is issuing a small IO
128  * periodically while B is sending out enough parallel IOs to saturate the
129  * device on its own.  Let's say A's usage amounts to 100ms worth of IO
130  * cost per second, i.e., 10% of the device capacity.  The naive
131  * distribution of half and half would lead to 60% utilization of the
132  * device, a significant reduction in the total amount of work done
133  * compared to free-for-all competition.  This is too high a cost to pay
134  * for IO control.
135  *
136  * To conserve the total amount of work done, we keep track of how much
137  * each active cgroup is actually using and yield part of its weight if
138  * there are other cgroups which can make use of it.  In the above case,
139  * A's weight will be lowered so that it hovers above the actual usage and
140  * B would be able to use the rest.
141  *
142  * As we don't want to penalize a cgroup for donating its weight, the
143  * surplus weight adjustment factors in a margin and has an immediate
144  * snapback mechanism in case the cgroup needs more IO vtime for itself.
145  *
146  * Note that adjusting down surplus weights has the same effects as
147  * accelerating vtime for other cgroups and work conservation can also be
148  * implemented by adjusting vrate dynamically.  However, squaring who can
149  * donate and should take back how much requires hweight propagations
150  * anyway making it easier to implement and understand as a separate
151  * mechanism.
152  *
153  * 3. Monitoring
154  *
155  * Instead of debugfs or other clumsy monitoring mechanisms, this
156  * controller uses a drgn based monitoring script -
157  * tools/cgroup/iocost_monitor.py.  For details on drgn, please see
158  * https://github.com/osandov/drgn.  The output looks like the following.
159  *
160  *  sdb RUN   per=300ms cur_per=234.218:v203.695 busy= +1 vrate= 62.12%
161  *                 active      weight      hweight% inflt% dbt  delay usages%
162  *  test/a              *    50/   50  33.33/ 33.33  27.65   2  0*041 033:033:033
163  *  test/b              *   100/  100  66.67/ 66.67  17.56   0  0*000 066:079:077
164  *
165  * - per	: Timer period
166  * - cur_per	: Internal wall and device vtime clock
167  * - vrate	: Device virtual time rate against wall clock
168  * - weight	: Surplus-adjusted and configured weights
169  * - hweight	: Surplus-adjusted and configured hierarchical weights
170  * - inflt	: The percentage of in-flight IO cost at the end of last period
171  * - del_ms	: Deferred issuer delay induction level and duration
172  * - usages	: Usage history
173  */
174 
175 #include <linux/kernel.h>
176 #include <linux/module.h>
177 #include <linux/timer.h>
178 #include <linux/time64.h>
179 #include <linux/parser.h>
180 #include <linux/sched/signal.h>
181 #include <asm/local.h>
182 #include <asm/local64.h>
183 #include "blk-rq-qos.h"
184 #include "blk-stat.h"
185 #include "blk-wbt.h"
186 #include "blk-cgroup.h"
187 
188 #ifdef CONFIG_TRACEPOINTS
189 
190 /* copied from TRACE_CGROUP_PATH, see cgroup-internal.h */
191 #define TRACE_IOCG_PATH_LEN 1024
192 static DEFINE_SPINLOCK(trace_iocg_path_lock);
193 static char trace_iocg_path[TRACE_IOCG_PATH_LEN];
194 
195 #define TRACE_IOCG_PATH(type, iocg, ...)					\
196 	do {									\
197 		unsigned long flags;						\
198 		if (trace_iocost_##type##_enabled()) {				\
199 			spin_lock_irqsave(&trace_iocg_path_lock, flags);	\
200 			cgroup_path(iocg_to_blkg(iocg)->blkcg->css.cgroup,	\
201 				    trace_iocg_path, TRACE_IOCG_PATH_LEN);	\
202 			trace_iocost_##type(iocg, trace_iocg_path,		\
203 					      ##__VA_ARGS__);			\
204 			spin_unlock_irqrestore(&trace_iocg_path_lock, flags);	\
205 		}								\
206 	} while (0)
207 
208 #else	/* CONFIG_TRACE_POINTS */
209 #define TRACE_IOCG_PATH(type, iocg, ...)	do { } while (0)
210 #endif	/* CONFIG_TRACE_POINTS */
211 
212 enum {
213 	MILLION			= 1000000,
214 
215 	/* timer period is calculated from latency requirements, bound it */
216 	MIN_PERIOD		= USEC_PER_MSEC,
217 	MAX_PERIOD		= USEC_PER_SEC,
218 
219 	/*
220 	 * iocg->vtime is targeted at 50% behind the device vtime, which
221 	 * serves as its IO credit buffer.  Surplus weight adjustment is
222 	 * immediately canceled if the vtime margin runs below 10%.
223 	 */
224 	MARGIN_MIN_PCT		= 10,
225 	MARGIN_LOW_PCT		= 20,
226 	MARGIN_TARGET_PCT	= 50,
227 
228 	INUSE_ADJ_STEP_PCT	= 25,
229 
230 	/* Have some play in timer operations */
231 	TIMER_SLACK_PCT		= 1,
232 
233 	/* 1/64k is granular enough and can easily be handled w/ u32 */
234 	WEIGHT_ONE		= 1 << 16,
235 
236 	/*
237 	 * As vtime is used to calculate the cost of each IO, it needs to
238 	 * be fairly high precision.  For example, it should be able to
239 	 * represent the cost of a single page worth of discard with
240 	 * suffificient accuracy.  At the same time, it should be able to
241 	 * represent reasonably long enough durations to be useful and
242 	 * convenient during operation.
243 	 *
244 	 * 1s worth of vtime is 2^37.  This gives us both sub-nanosecond
245 	 * granularity and days of wrap-around time even at extreme vrates.
246 	 */
247 	VTIME_PER_SEC_SHIFT	= 37,
248 	VTIME_PER_SEC		= 1LLU << VTIME_PER_SEC_SHIFT,
249 	VTIME_PER_USEC		= VTIME_PER_SEC / USEC_PER_SEC,
250 	VTIME_PER_NSEC		= VTIME_PER_SEC / NSEC_PER_SEC,
251 
252 	/* bound vrate adjustments within two orders of magnitude */
253 	VRATE_MIN_PPM		= 10000,	/* 1% */
254 	VRATE_MAX_PPM		= 100000000,	/* 10000% */
255 
256 	VRATE_MIN		= VTIME_PER_USEC * VRATE_MIN_PPM / MILLION,
257 	VRATE_CLAMP_ADJ_PCT	= 4,
258 
259 	/* if IOs end up waiting for requests, issue less */
260 	RQ_WAIT_BUSY_PCT	= 5,
261 
262 	/* unbusy hysterisis */
263 	UNBUSY_THR_PCT		= 75,
264 
265 	/*
266 	 * The effect of delay is indirect and non-linear and a huge amount of
267 	 * future debt can accumulate abruptly while unthrottled. Linearly scale
268 	 * up delay as debt is going up and then let it decay exponentially.
269 	 * This gives us quick ramp ups while delay is accumulating and long
270 	 * tails which can help reducing the frequency of debt explosions on
271 	 * unthrottle. The parameters are experimentally determined.
272 	 *
273 	 * The delay mechanism provides adequate protection and behavior in many
274 	 * cases. However, this is far from ideal and falls shorts on both
275 	 * fronts. The debtors are often throttled too harshly costing a
276 	 * significant level of fairness and possibly total work while the
277 	 * protection against their impacts on the system can be choppy and
278 	 * unreliable.
279 	 *
280 	 * The shortcoming primarily stems from the fact that, unlike for page
281 	 * cache, the kernel doesn't have well-defined back-pressure propagation
282 	 * mechanism and policies for anonymous memory. Fully addressing this
283 	 * issue will likely require substantial improvements in the area.
284 	 */
285 	MIN_DELAY_THR_PCT	= 500,
286 	MAX_DELAY_THR_PCT	= 25000,
287 	MIN_DELAY		= 250,
288 	MAX_DELAY		= 250 * USEC_PER_MSEC,
289 
290 	/* halve debts if avg usage over 100ms is under 50% */
291 	DFGV_USAGE_PCT		= 50,
292 	DFGV_PERIOD		= 100 * USEC_PER_MSEC,
293 
294 	/* don't let cmds which take a very long time pin lagging for too long */
295 	MAX_LAGGING_PERIODS	= 10,
296 
297 	/* switch iff the conditions are met for longer than this */
298 	AUTOP_CYCLE_NSEC	= 10LLU * NSEC_PER_SEC,
299 
300 	/*
301 	 * Count IO size in 4k pages.  The 12bit shift helps keeping
302 	 * size-proportional components of cost calculation in closer
303 	 * numbers of digits to per-IO cost components.
304 	 */
305 	IOC_PAGE_SHIFT		= 12,
306 	IOC_PAGE_SIZE		= 1 << IOC_PAGE_SHIFT,
307 	IOC_SECT_TO_PAGE_SHIFT	= IOC_PAGE_SHIFT - SECTOR_SHIFT,
308 
309 	/* if apart further than 16M, consider randio for linear model */
310 	LCOEF_RANDIO_PAGES	= 4096,
311 };
312 
313 enum ioc_running {
314 	IOC_IDLE,
315 	IOC_RUNNING,
316 	IOC_STOP,
317 };
318 
319 /* io.cost.qos controls including per-dev enable of the whole controller */
320 enum {
321 	QOS_ENABLE,
322 	QOS_CTRL,
323 	NR_QOS_CTRL_PARAMS,
324 };
325 
326 /* io.cost.qos params */
327 enum {
328 	QOS_RPPM,
329 	QOS_RLAT,
330 	QOS_WPPM,
331 	QOS_WLAT,
332 	QOS_MIN,
333 	QOS_MAX,
334 	NR_QOS_PARAMS,
335 };
336 
337 /* io.cost.model controls */
338 enum {
339 	COST_CTRL,
340 	COST_MODEL,
341 	NR_COST_CTRL_PARAMS,
342 };
343 
344 /* builtin linear cost model coefficients */
345 enum {
346 	I_LCOEF_RBPS,
347 	I_LCOEF_RSEQIOPS,
348 	I_LCOEF_RRANDIOPS,
349 	I_LCOEF_WBPS,
350 	I_LCOEF_WSEQIOPS,
351 	I_LCOEF_WRANDIOPS,
352 	NR_I_LCOEFS,
353 };
354 
355 enum {
356 	LCOEF_RPAGE,
357 	LCOEF_RSEQIO,
358 	LCOEF_RRANDIO,
359 	LCOEF_WPAGE,
360 	LCOEF_WSEQIO,
361 	LCOEF_WRANDIO,
362 	NR_LCOEFS,
363 };
364 
365 enum {
366 	AUTOP_INVALID,
367 	AUTOP_HDD,
368 	AUTOP_SSD_QD1,
369 	AUTOP_SSD_DFL,
370 	AUTOP_SSD_FAST,
371 };
372 
373 struct ioc_params {
374 	u32				qos[NR_QOS_PARAMS];
375 	u64				i_lcoefs[NR_I_LCOEFS];
376 	u64				lcoefs[NR_LCOEFS];
377 	u32				too_fast_vrate_pct;
378 	u32				too_slow_vrate_pct;
379 };
380 
381 struct ioc_margins {
382 	s64				min;
383 	s64				low;
384 	s64				target;
385 };
386 
387 struct ioc_missed {
388 	local_t				nr_met;
389 	local_t				nr_missed;
390 	u32				last_met;
391 	u32				last_missed;
392 };
393 
394 struct ioc_pcpu_stat {
395 	struct ioc_missed		missed[2];
396 
397 	local64_t			rq_wait_ns;
398 	u64				last_rq_wait_ns;
399 };
400 
401 /* per device */
402 struct ioc {
403 	struct rq_qos			rqos;
404 
405 	bool				enabled;
406 
407 	struct ioc_params		params;
408 	struct ioc_margins		margins;
409 	u32				period_us;
410 	u32				timer_slack_ns;
411 	u64				vrate_min;
412 	u64				vrate_max;
413 
414 	spinlock_t			lock;
415 	struct timer_list		timer;
416 	struct list_head		active_iocgs;	/* active cgroups */
417 	struct ioc_pcpu_stat __percpu	*pcpu_stat;
418 
419 	enum ioc_running		running;
420 	atomic64_t			vtime_rate;
421 	u64				vtime_base_rate;
422 	s64				vtime_err;
423 
424 	seqcount_spinlock_t		period_seqcount;
425 	u64				period_at;	/* wallclock starttime */
426 	u64				period_at_vtime; /* vtime starttime */
427 
428 	atomic64_t			cur_period;	/* inc'd each period */
429 	int				busy_level;	/* saturation history */
430 
431 	bool				weights_updated;
432 	atomic_t			hweight_gen;	/* for lazy hweights */
433 
434 	/* debt forgivness */
435 	u64				dfgv_period_at;
436 	u64				dfgv_period_rem;
437 	u64				dfgv_usage_us_sum;
438 
439 	u64				autop_too_fast_at;
440 	u64				autop_too_slow_at;
441 	int				autop_idx;
442 	bool				user_qos_params:1;
443 	bool				user_cost_model:1;
444 };
445 
446 struct iocg_pcpu_stat {
447 	local64_t			abs_vusage;
448 };
449 
450 struct iocg_stat {
451 	u64				usage_us;
452 	u64				wait_us;
453 	u64				indebt_us;
454 	u64				indelay_us;
455 };
456 
457 /* per device-cgroup pair */
458 struct ioc_gq {
459 	struct blkg_policy_data		pd;
460 	struct ioc			*ioc;
461 
462 	/*
463 	 * A iocg can get its weight from two sources - an explicit
464 	 * per-device-cgroup configuration or the default weight of the
465 	 * cgroup.  `cfg_weight` is the explicit per-device-cgroup
466 	 * configuration.  `weight` is the effective considering both
467 	 * sources.
468 	 *
469 	 * When an idle cgroup becomes active its `active` goes from 0 to
470 	 * `weight`.  `inuse` is the surplus adjusted active weight.
471 	 * `active` and `inuse` are used to calculate `hweight_active` and
472 	 * `hweight_inuse`.
473 	 *
474 	 * `last_inuse` remembers `inuse` while an iocg is idle to persist
475 	 * surplus adjustments.
476 	 *
477 	 * `inuse` may be adjusted dynamically during period. `saved_*` are used
478 	 * to determine and track adjustments.
479 	 */
480 	u32				cfg_weight;
481 	u32				weight;
482 	u32				active;
483 	u32				inuse;
484 
485 	u32				last_inuse;
486 	s64				saved_margin;
487 
488 	sector_t			cursor;		/* to detect randio */
489 
490 	/*
491 	 * `vtime` is this iocg's vtime cursor which progresses as IOs are
492 	 * issued.  If lagging behind device vtime, the delta represents
493 	 * the currently available IO budget.  If running ahead, the
494 	 * overage.
495 	 *
496 	 * `vtime_done` is the same but progressed on completion rather
497 	 * than issue.  The delta behind `vtime` represents the cost of
498 	 * currently in-flight IOs.
499 	 */
500 	atomic64_t			vtime;
501 	atomic64_t			done_vtime;
502 	u64				abs_vdebt;
503 
504 	/* current delay in effect and when it started */
505 	u64				delay;
506 	u64				delay_at;
507 
508 	/*
509 	 * The period this iocg was last active in.  Used for deactivation
510 	 * and invalidating `vtime`.
511 	 */
512 	atomic64_t			active_period;
513 	struct list_head		active_list;
514 
515 	/* see __propagate_weights() and current_hweight() for details */
516 	u64				child_active_sum;
517 	u64				child_inuse_sum;
518 	u64				child_adjusted_sum;
519 	int				hweight_gen;
520 	u32				hweight_active;
521 	u32				hweight_inuse;
522 	u32				hweight_donating;
523 	u32				hweight_after_donation;
524 
525 	struct list_head		walk_list;
526 	struct list_head		surplus_list;
527 
528 	struct wait_queue_head		waitq;
529 	struct hrtimer			waitq_timer;
530 
531 	/* timestamp at the latest activation */
532 	u64				activated_at;
533 
534 	/* statistics */
535 	struct iocg_pcpu_stat __percpu	*pcpu_stat;
536 	struct iocg_stat		local_stat;
537 	struct iocg_stat		desc_stat;
538 	struct iocg_stat		last_stat;
539 	u64				last_stat_abs_vusage;
540 	u64				usage_delta_us;
541 	u64				wait_since;
542 	u64				indebt_since;
543 	u64				indelay_since;
544 
545 	/* this iocg's depth in the hierarchy and ancestors including self */
546 	int				level;
547 	struct ioc_gq			*ancestors[];
548 };
549 
550 /* per cgroup */
551 struct ioc_cgrp {
552 	struct blkcg_policy_data	cpd;
553 	unsigned int			dfl_weight;
554 };
555 
556 struct ioc_now {
557 	u64				now_ns;
558 	u64				now;
559 	u64				vnow;
560 	u64				vrate;
561 };
562 
563 struct iocg_wait {
564 	struct wait_queue_entry		wait;
565 	struct bio			*bio;
566 	u64				abs_cost;
567 	bool				committed;
568 };
569 
570 struct iocg_wake_ctx {
571 	struct ioc_gq			*iocg;
572 	u32				hw_inuse;
573 	s64				vbudget;
574 };
575 
576 static const struct ioc_params autop[] = {
577 	[AUTOP_HDD] = {
578 		.qos				= {
579 			[QOS_RLAT]		=        250000, /* 250ms */
580 			[QOS_WLAT]		=        250000,
581 			[QOS_MIN]		= VRATE_MIN_PPM,
582 			[QOS_MAX]		= VRATE_MAX_PPM,
583 		},
584 		.i_lcoefs			= {
585 			[I_LCOEF_RBPS]		=     174019176,
586 			[I_LCOEF_RSEQIOPS]	=         41708,
587 			[I_LCOEF_RRANDIOPS]	=           370,
588 			[I_LCOEF_WBPS]		=     178075866,
589 			[I_LCOEF_WSEQIOPS]	=         42705,
590 			[I_LCOEF_WRANDIOPS]	=           378,
591 		},
592 	},
593 	[AUTOP_SSD_QD1] = {
594 		.qos				= {
595 			[QOS_RLAT]		=         25000, /* 25ms */
596 			[QOS_WLAT]		=         25000,
597 			[QOS_MIN]		= VRATE_MIN_PPM,
598 			[QOS_MAX]		= VRATE_MAX_PPM,
599 		},
600 		.i_lcoefs			= {
601 			[I_LCOEF_RBPS]		=     245855193,
602 			[I_LCOEF_RSEQIOPS]	=         61575,
603 			[I_LCOEF_RRANDIOPS]	=          6946,
604 			[I_LCOEF_WBPS]		=     141365009,
605 			[I_LCOEF_WSEQIOPS]	=         33716,
606 			[I_LCOEF_WRANDIOPS]	=         26796,
607 		},
608 	},
609 	[AUTOP_SSD_DFL] = {
610 		.qos				= {
611 			[QOS_RLAT]		=         25000, /* 25ms */
612 			[QOS_WLAT]		=         25000,
613 			[QOS_MIN]		= VRATE_MIN_PPM,
614 			[QOS_MAX]		= VRATE_MAX_PPM,
615 		},
616 		.i_lcoefs			= {
617 			[I_LCOEF_RBPS]		=     488636629,
618 			[I_LCOEF_RSEQIOPS]	=          8932,
619 			[I_LCOEF_RRANDIOPS]	=          8518,
620 			[I_LCOEF_WBPS]		=     427891549,
621 			[I_LCOEF_WSEQIOPS]	=         28755,
622 			[I_LCOEF_WRANDIOPS]	=         21940,
623 		},
624 		.too_fast_vrate_pct		=           500,
625 	},
626 	[AUTOP_SSD_FAST] = {
627 		.qos				= {
628 			[QOS_RLAT]		=          5000, /* 5ms */
629 			[QOS_WLAT]		=          5000,
630 			[QOS_MIN]		= VRATE_MIN_PPM,
631 			[QOS_MAX]		= VRATE_MAX_PPM,
632 		},
633 		.i_lcoefs			= {
634 			[I_LCOEF_RBPS]		=    3102524156LLU,
635 			[I_LCOEF_RSEQIOPS]	=        724816,
636 			[I_LCOEF_RRANDIOPS]	=        778122,
637 			[I_LCOEF_WBPS]		=    1742780862LLU,
638 			[I_LCOEF_WSEQIOPS]	=        425702,
639 			[I_LCOEF_WRANDIOPS]	=	 443193,
640 		},
641 		.too_slow_vrate_pct		=            10,
642 	},
643 };
644 
645 /*
646  * vrate adjust percentages indexed by ioc->busy_level.  We adjust up on
647  * vtime credit shortage and down on device saturation.
648  */
649 static u32 vrate_adj_pct[] =
650 	{ 0, 0, 0, 0,
651 	  1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
652 	  2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
653 	  4, 4, 4, 4, 4, 4, 4, 4, 8, 8, 8, 8, 8, 8, 8, 8, 16 };
654 
655 static struct blkcg_policy blkcg_policy_iocost;
656 
657 /* accessors and helpers */
658 static struct ioc *rqos_to_ioc(struct rq_qos *rqos)
659 {
660 	return container_of(rqos, struct ioc, rqos);
661 }
662 
663 static struct ioc *q_to_ioc(struct request_queue *q)
664 {
665 	return rqos_to_ioc(rq_qos_id(q, RQ_QOS_COST));
666 }
667 
668 static const char *q_name(struct request_queue *q)
669 {
670 	if (blk_queue_registered(q))
671 		return kobject_name(q->kobj.parent);
672 	else
673 		return "<unknown>";
674 }
675 
676 static const char __maybe_unused *ioc_name(struct ioc *ioc)
677 {
678 	return q_name(ioc->rqos.q);
679 }
680 
681 static struct ioc_gq *pd_to_iocg(struct blkg_policy_data *pd)
682 {
683 	return pd ? container_of(pd, struct ioc_gq, pd) : NULL;
684 }
685 
686 static struct ioc_gq *blkg_to_iocg(struct blkcg_gq *blkg)
687 {
688 	return pd_to_iocg(blkg_to_pd(blkg, &blkcg_policy_iocost));
689 }
690 
691 static struct blkcg_gq *iocg_to_blkg(struct ioc_gq *iocg)
692 {
693 	return pd_to_blkg(&iocg->pd);
694 }
695 
696 static struct ioc_cgrp *blkcg_to_iocc(struct blkcg *blkcg)
697 {
698 	return container_of(blkcg_to_cpd(blkcg, &blkcg_policy_iocost),
699 			    struct ioc_cgrp, cpd);
700 }
701 
702 /*
703  * Scale @abs_cost to the inverse of @hw_inuse.  The lower the hierarchical
704  * weight, the more expensive each IO.  Must round up.
705  */
706 static u64 abs_cost_to_cost(u64 abs_cost, u32 hw_inuse)
707 {
708 	return DIV64_U64_ROUND_UP(abs_cost * WEIGHT_ONE, hw_inuse);
709 }
710 
711 /*
712  * The inverse of abs_cost_to_cost().  Must round up.
713  */
714 static u64 cost_to_abs_cost(u64 cost, u32 hw_inuse)
715 {
716 	return DIV64_U64_ROUND_UP(cost * hw_inuse, WEIGHT_ONE);
717 }
718 
719 static void iocg_commit_bio(struct ioc_gq *iocg, struct bio *bio,
720 			    u64 abs_cost, u64 cost)
721 {
722 	struct iocg_pcpu_stat *gcs;
723 
724 	bio->bi_iocost_cost = cost;
725 	atomic64_add(cost, &iocg->vtime);
726 
727 	gcs = get_cpu_ptr(iocg->pcpu_stat);
728 	local64_add(abs_cost, &gcs->abs_vusage);
729 	put_cpu_ptr(gcs);
730 }
731 
732 static void iocg_lock(struct ioc_gq *iocg, bool lock_ioc, unsigned long *flags)
733 {
734 	if (lock_ioc) {
735 		spin_lock_irqsave(&iocg->ioc->lock, *flags);
736 		spin_lock(&iocg->waitq.lock);
737 	} else {
738 		spin_lock_irqsave(&iocg->waitq.lock, *flags);
739 	}
740 }
741 
742 static void iocg_unlock(struct ioc_gq *iocg, bool unlock_ioc, unsigned long *flags)
743 {
744 	if (unlock_ioc) {
745 		spin_unlock(&iocg->waitq.lock);
746 		spin_unlock_irqrestore(&iocg->ioc->lock, *flags);
747 	} else {
748 		spin_unlock_irqrestore(&iocg->waitq.lock, *flags);
749 	}
750 }
751 
752 #define CREATE_TRACE_POINTS
753 #include <trace/events/iocost.h>
754 
755 static void ioc_refresh_margins(struct ioc *ioc)
756 {
757 	struct ioc_margins *margins = &ioc->margins;
758 	u32 period_us = ioc->period_us;
759 	u64 vrate = ioc->vtime_base_rate;
760 
761 	margins->min = (period_us * MARGIN_MIN_PCT / 100) * vrate;
762 	margins->low = (period_us * MARGIN_LOW_PCT / 100) * vrate;
763 	margins->target = (period_us * MARGIN_TARGET_PCT / 100) * vrate;
764 }
765 
766 /* latency Qos params changed, update period_us and all the dependent params */
767 static void ioc_refresh_period_us(struct ioc *ioc)
768 {
769 	u32 ppm, lat, multi, period_us;
770 
771 	lockdep_assert_held(&ioc->lock);
772 
773 	/* pick the higher latency target */
774 	if (ioc->params.qos[QOS_RLAT] >= ioc->params.qos[QOS_WLAT]) {
775 		ppm = ioc->params.qos[QOS_RPPM];
776 		lat = ioc->params.qos[QOS_RLAT];
777 	} else {
778 		ppm = ioc->params.qos[QOS_WPPM];
779 		lat = ioc->params.qos[QOS_WLAT];
780 	}
781 
782 	/*
783 	 * We want the period to be long enough to contain a healthy number
784 	 * of IOs while short enough for granular control.  Define it as a
785 	 * multiple of the latency target.  Ideally, the multiplier should
786 	 * be scaled according to the percentile so that it would nominally
787 	 * contain a certain number of requests.  Let's be simpler and
788 	 * scale it linearly so that it's 2x >= pct(90) and 10x at pct(50).
789 	 */
790 	if (ppm)
791 		multi = max_t(u32, (MILLION - ppm) / 50000, 2);
792 	else
793 		multi = 2;
794 	period_us = multi * lat;
795 	period_us = clamp_t(u32, period_us, MIN_PERIOD, MAX_PERIOD);
796 
797 	/* calculate dependent params */
798 	ioc->period_us = period_us;
799 	ioc->timer_slack_ns = div64_u64(
800 		(u64)period_us * NSEC_PER_USEC * TIMER_SLACK_PCT,
801 		100);
802 	ioc_refresh_margins(ioc);
803 }
804 
805 static int ioc_autop_idx(struct ioc *ioc)
806 {
807 	int idx = ioc->autop_idx;
808 	const struct ioc_params *p = &autop[idx];
809 	u32 vrate_pct;
810 	u64 now_ns;
811 
812 	/* rotational? */
813 	if (!blk_queue_nonrot(ioc->rqos.q))
814 		return AUTOP_HDD;
815 
816 	/* handle SATA SSDs w/ broken NCQ */
817 	if (blk_queue_depth(ioc->rqos.q) == 1)
818 		return AUTOP_SSD_QD1;
819 
820 	/* use one of the normal ssd sets */
821 	if (idx < AUTOP_SSD_DFL)
822 		return AUTOP_SSD_DFL;
823 
824 	/* if user is overriding anything, maintain what was there */
825 	if (ioc->user_qos_params || ioc->user_cost_model)
826 		return idx;
827 
828 	/* step up/down based on the vrate */
829 	vrate_pct = div64_u64(ioc->vtime_base_rate * 100, VTIME_PER_USEC);
830 	now_ns = ktime_get_ns();
831 
832 	if (p->too_fast_vrate_pct && p->too_fast_vrate_pct <= vrate_pct) {
833 		if (!ioc->autop_too_fast_at)
834 			ioc->autop_too_fast_at = now_ns;
835 		if (now_ns - ioc->autop_too_fast_at >= AUTOP_CYCLE_NSEC)
836 			return idx + 1;
837 	} else {
838 		ioc->autop_too_fast_at = 0;
839 	}
840 
841 	if (p->too_slow_vrate_pct && p->too_slow_vrate_pct >= vrate_pct) {
842 		if (!ioc->autop_too_slow_at)
843 			ioc->autop_too_slow_at = now_ns;
844 		if (now_ns - ioc->autop_too_slow_at >= AUTOP_CYCLE_NSEC)
845 			return idx - 1;
846 	} else {
847 		ioc->autop_too_slow_at = 0;
848 	}
849 
850 	return idx;
851 }
852 
853 /*
854  * Take the followings as input
855  *
856  *  @bps	maximum sequential throughput
857  *  @seqiops	maximum sequential 4k iops
858  *  @randiops	maximum random 4k iops
859  *
860  * and calculate the linear model cost coefficients.
861  *
862  *  *@page	per-page cost		1s / (@bps / 4096)
863  *  *@seqio	base cost of a seq IO	max((1s / @seqiops) - *@page, 0)
864  *  @randiops	base cost of a rand IO	max((1s / @randiops) - *@page, 0)
865  */
866 static void calc_lcoefs(u64 bps, u64 seqiops, u64 randiops,
867 			u64 *page, u64 *seqio, u64 *randio)
868 {
869 	u64 v;
870 
871 	*page = *seqio = *randio = 0;
872 
873 	if (bps)
874 		*page = DIV64_U64_ROUND_UP(VTIME_PER_SEC,
875 					   DIV_ROUND_UP_ULL(bps, IOC_PAGE_SIZE));
876 
877 	if (seqiops) {
878 		v = DIV64_U64_ROUND_UP(VTIME_PER_SEC, seqiops);
879 		if (v > *page)
880 			*seqio = v - *page;
881 	}
882 
883 	if (randiops) {
884 		v = DIV64_U64_ROUND_UP(VTIME_PER_SEC, randiops);
885 		if (v > *page)
886 			*randio = v - *page;
887 	}
888 }
889 
890 static void ioc_refresh_lcoefs(struct ioc *ioc)
891 {
892 	u64 *u = ioc->params.i_lcoefs;
893 	u64 *c = ioc->params.lcoefs;
894 
895 	calc_lcoefs(u[I_LCOEF_RBPS], u[I_LCOEF_RSEQIOPS], u[I_LCOEF_RRANDIOPS],
896 		    &c[LCOEF_RPAGE], &c[LCOEF_RSEQIO], &c[LCOEF_RRANDIO]);
897 	calc_lcoefs(u[I_LCOEF_WBPS], u[I_LCOEF_WSEQIOPS], u[I_LCOEF_WRANDIOPS],
898 		    &c[LCOEF_WPAGE], &c[LCOEF_WSEQIO], &c[LCOEF_WRANDIO]);
899 }
900 
901 static bool ioc_refresh_params(struct ioc *ioc, bool force)
902 {
903 	const struct ioc_params *p;
904 	int idx;
905 
906 	lockdep_assert_held(&ioc->lock);
907 
908 	idx = ioc_autop_idx(ioc);
909 	p = &autop[idx];
910 
911 	if (idx == ioc->autop_idx && !force)
912 		return false;
913 
914 	if (idx != ioc->autop_idx)
915 		atomic64_set(&ioc->vtime_rate, VTIME_PER_USEC);
916 
917 	ioc->autop_idx = idx;
918 	ioc->autop_too_fast_at = 0;
919 	ioc->autop_too_slow_at = 0;
920 
921 	if (!ioc->user_qos_params)
922 		memcpy(ioc->params.qos, p->qos, sizeof(p->qos));
923 	if (!ioc->user_cost_model)
924 		memcpy(ioc->params.i_lcoefs, p->i_lcoefs, sizeof(p->i_lcoefs));
925 
926 	ioc_refresh_period_us(ioc);
927 	ioc_refresh_lcoefs(ioc);
928 
929 	ioc->vrate_min = DIV64_U64_ROUND_UP((u64)ioc->params.qos[QOS_MIN] *
930 					    VTIME_PER_USEC, MILLION);
931 	ioc->vrate_max = div64_u64((u64)ioc->params.qos[QOS_MAX] *
932 				   VTIME_PER_USEC, MILLION);
933 
934 	return true;
935 }
936 
937 /*
938  * When an iocg accumulates too much vtime or gets deactivated, we throw away
939  * some vtime, which lowers the overall device utilization. As the exact amount
940  * which is being thrown away is known, we can compensate by accelerating the
941  * vrate accordingly so that the extra vtime generated in the current period
942  * matches what got lost.
943  */
944 static void ioc_refresh_vrate(struct ioc *ioc, struct ioc_now *now)
945 {
946 	s64 pleft = ioc->period_at + ioc->period_us - now->now;
947 	s64 vperiod = ioc->period_us * ioc->vtime_base_rate;
948 	s64 vcomp, vcomp_min, vcomp_max;
949 
950 	lockdep_assert_held(&ioc->lock);
951 
952 	/* we need some time left in this period */
953 	if (pleft <= 0)
954 		goto done;
955 
956 	/*
957 	 * Calculate how much vrate should be adjusted to offset the error.
958 	 * Limit the amount of adjustment and deduct the adjusted amount from
959 	 * the error.
960 	 */
961 	vcomp = -div64_s64(ioc->vtime_err, pleft);
962 	vcomp_min = -(ioc->vtime_base_rate >> 1);
963 	vcomp_max = ioc->vtime_base_rate;
964 	vcomp = clamp(vcomp, vcomp_min, vcomp_max);
965 
966 	ioc->vtime_err += vcomp * pleft;
967 
968 	atomic64_set(&ioc->vtime_rate, ioc->vtime_base_rate + vcomp);
969 done:
970 	/* bound how much error can accumulate */
971 	ioc->vtime_err = clamp(ioc->vtime_err, -vperiod, vperiod);
972 }
973 
974 static void ioc_adjust_base_vrate(struct ioc *ioc, u32 rq_wait_pct,
975 				  int nr_lagging, int nr_shortages,
976 				  int prev_busy_level, u32 *missed_ppm)
977 {
978 	u64 vrate = ioc->vtime_base_rate;
979 	u64 vrate_min = ioc->vrate_min, vrate_max = ioc->vrate_max;
980 
981 	if (!ioc->busy_level || (ioc->busy_level < 0 && nr_lagging)) {
982 		if (ioc->busy_level != prev_busy_level || nr_lagging)
983 			trace_iocost_ioc_vrate_adj(ioc, atomic64_read(&ioc->vtime_rate),
984 						   missed_ppm, rq_wait_pct,
985 						   nr_lagging, nr_shortages);
986 
987 		return;
988 	}
989 
990 	/*
991 	 * If vrate is out of bounds, apply clamp gradually as the
992 	 * bounds can change abruptly.  Otherwise, apply busy_level
993 	 * based adjustment.
994 	 */
995 	if (vrate < vrate_min) {
996 		vrate = div64_u64(vrate * (100 + VRATE_CLAMP_ADJ_PCT), 100);
997 		vrate = min(vrate, vrate_min);
998 	} else if (vrate > vrate_max) {
999 		vrate = div64_u64(vrate * (100 - VRATE_CLAMP_ADJ_PCT), 100);
1000 		vrate = max(vrate, vrate_max);
1001 	} else {
1002 		int idx = min_t(int, abs(ioc->busy_level),
1003 				ARRAY_SIZE(vrate_adj_pct) - 1);
1004 		u32 adj_pct = vrate_adj_pct[idx];
1005 
1006 		if (ioc->busy_level > 0)
1007 			adj_pct = 100 - adj_pct;
1008 		else
1009 			adj_pct = 100 + adj_pct;
1010 
1011 		vrate = clamp(DIV64_U64_ROUND_UP(vrate * adj_pct, 100),
1012 			      vrate_min, vrate_max);
1013 	}
1014 
1015 	trace_iocost_ioc_vrate_adj(ioc, vrate, missed_ppm, rq_wait_pct,
1016 				   nr_lagging, nr_shortages);
1017 
1018 	ioc->vtime_base_rate = vrate;
1019 	ioc_refresh_margins(ioc);
1020 }
1021 
1022 /* take a snapshot of the current [v]time and vrate */
1023 static void ioc_now(struct ioc *ioc, struct ioc_now *now)
1024 {
1025 	unsigned seq;
1026 
1027 	now->now_ns = ktime_get();
1028 	now->now = ktime_to_us(now->now_ns);
1029 	now->vrate = atomic64_read(&ioc->vtime_rate);
1030 
1031 	/*
1032 	 * The current vtime is
1033 	 *
1034 	 *   vtime at period start + (wallclock time since the start) * vrate
1035 	 *
1036 	 * As a consistent snapshot of `period_at_vtime` and `period_at` is
1037 	 * needed, they're seqcount protected.
1038 	 */
1039 	do {
1040 		seq = read_seqcount_begin(&ioc->period_seqcount);
1041 		now->vnow = ioc->period_at_vtime +
1042 			(now->now - ioc->period_at) * now->vrate;
1043 	} while (read_seqcount_retry(&ioc->period_seqcount, seq));
1044 }
1045 
1046 static void ioc_start_period(struct ioc *ioc, struct ioc_now *now)
1047 {
1048 	WARN_ON_ONCE(ioc->running != IOC_RUNNING);
1049 
1050 	write_seqcount_begin(&ioc->period_seqcount);
1051 	ioc->period_at = now->now;
1052 	ioc->period_at_vtime = now->vnow;
1053 	write_seqcount_end(&ioc->period_seqcount);
1054 
1055 	ioc->timer.expires = jiffies + usecs_to_jiffies(ioc->period_us);
1056 	add_timer(&ioc->timer);
1057 }
1058 
1059 /*
1060  * Update @iocg's `active` and `inuse` to @active and @inuse, update level
1061  * weight sums and propagate upwards accordingly. If @save, the current margin
1062  * is saved to be used as reference for later inuse in-period adjustments.
1063  */
1064 static void __propagate_weights(struct ioc_gq *iocg, u32 active, u32 inuse,
1065 				bool save, struct ioc_now *now)
1066 {
1067 	struct ioc *ioc = iocg->ioc;
1068 	int lvl;
1069 
1070 	lockdep_assert_held(&ioc->lock);
1071 
1072 	/*
1073 	 * For an active leaf node, its inuse shouldn't be zero or exceed
1074 	 * @active. An active internal node's inuse is solely determined by the
1075 	 * inuse to active ratio of its children regardless of @inuse.
1076 	 */
1077 	if (list_empty(&iocg->active_list) && iocg->child_active_sum) {
1078 		inuse = DIV64_U64_ROUND_UP(active * iocg->child_inuse_sum,
1079 					   iocg->child_active_sum);
1080 	} else {
1081 		inuse = clamp_t(u32, inuse, 1, active);
1082 	}
1083 
1084 	iocg->last_inuse = iocg->inuse;
1085 	if (save)
1086 		iocg->saved_margin = now->vnow - atomic64_read(&iocg->vtime);
1087 
1088 	if (active == iocg->active && inuse == iocg->inuse)
1089 		return;
1090 
1091 	for (lvl = iocg->level - 1; lvl >= 0; lvl--) {
1092 		struct ioc_gq *parent = iocg->ancestors[lvl];
1093 		struct ioc_gq *child = iocg->ancestors[lvl + 1];
1094 		u32 parent_active = 0, parent_inuse = 0;
1095 
1096 		/* update the level sums */
1097 		parent->child_active_sum += (s32)(active - child->active);
1098 		parent->child_inuse_sum += (s32)(inuse - child->inuse);
1099 		/* apply the updates */
1100 		child->active = active;
1101 		child->inuse = inuse;
1102 
1103 		/*
1104 		 * The delta between inuse and active sums indicates that
1105 		 * much of weight is being given away.  Parent's inuse
1106 		 * and active should reflect the ratio.
1107 		 */
1108 		if (parent->child_active_sum) {
1109 			parent_active = parent->weight;
1110 			parent_inuse = DIV64_U64_ROUND_UP(
1111 				parent_active * parent->child_inuse_sum,
1112 				parent->child_active_sum);
1113 		}
1114 
1115 		/* do we need to keep walking up? */
1116 		if (parent_active == parent->active &&
1117 		    parent_inuse == parent->inuse)
1118 			break;
1119 
1120 		active = parent_active;
1121 		inuse = parent_inuse;
1122 	}
1123 
1124 	ioc->weights_updated = true;
1125 }
1126 
1127 static void commit_weights(struct ioc *ioc)
1128 {
1129 	lockdep_assert_held(&ioc->lock);
1130 
1131 	if (ioc->weights_updated) {
1132 		/* paired with rmb in current_hweight(), see there */
1133 		smp_wmb();
1134 		atomic_inc(&ioc->hweight_gen);
1135 		ioc->weights_updated = false;
1136 	}
1137 }
1138 
1139 static void propagate_weights(struct ioc_gq *iocg, u32 active, u32 inuse,
1140 			      bool save, struct ioc_now *now)
1141 {
1142 	__propagate_weights(iocg, active, inuse, save, now);
1143 	commit_weights(iocg->ioc);
1144 }
1145 
1146 static void current_hweight(struct ioc_gq *iocg, u32 *hw_activep, u32 *hw_inusep)
1147 {
1148 	struct ioc *ioc = iocg->ioc;
1149 	int lvl;
1150 	u32 hwa, hwi;
1151 	int ioc_gen;
1152 
1153 	/* hot path - if uptodate, use cached */
1154 	ioc_gen = atomic_read(&ioc->hweight_gen);
1155 	if (ioc_gen == iocg->hweight_gen)
1156 		goto out;
1157 
1158 	/*
1159 	 * Paired with wmb in commit_weights(). If we saw the updated
1160 	 * hweight_gen, all the weight updates from __propagate_weights() are
1161 	 * visible too.
1162 	 *
1163 	 * We can race with weight updates during calculation and get it
1164 	 * wrong.  However, hweight_gen would have changed and a future
1165 	 * reader will recalculate and we're guaranteed to discard the
1166 	 * wrong result soon.
1167 	 */
1168 	smp_rmb();
1169 
1170 	hwa = hwi = WEIGHT_ONE;
1171 	for (lvl = 0; lvl <= iocg->level - 1; lvl++) {
1172 		struct ioc_gq *parent = iocg->ancestors[lvl];
1173 		struct ioc_gq *child = iocg->ancestors[lvl + 1];
1174 		u64 active_sum = READ_ONCE(parent->child_active_sum);
1175 		u64 inuse_sum = READ_ONCE(parent->child_inuse_sum);
1176 		u32 active = READ_ONCE(child->active);
1177 		u32 inuse = READ_ONCE(child->inuse);
1178 
1179 		/* we can race with deactivations and either may read as zero */
1180 		if (!active_sum || !inuse_sum)
1181 			continue;
1182 
1183 		active_sum = max_t(u64, active, active_sum);
1184 		hwa = div64_u64((u64)hwa * active, active_sum);
1185 
1186 		inuse_sum = max_t(u64, inuse, inuse_sum);
1187 		hwi = div64_u64((u64)hwi * inuse, inuse_sum);
1188 	}
1189 
1190 	iocg->hweight_active = max_t(u32, hwa, 1);
1191 	iocg->hweight_inuse = max_t(u32, hwi, 1);
1192 	iocg->hweight_gen = ioc_gen;
1193 out:
1194 	if (hw_activep)
1195 		*hw_activep = iocg->hweight_active;
1196 	if (hw_inusep)
1197 		*hw_inusep = iocg->hweight_inuse;
1198 }
1199 
1200 /*
1201  * Calculate the hweight_inuse @iocg would get with max @inuse assuming all the
1202  * other weights stay unchanged.
1203  */
1204 static u32 current_hweight_max(struct ioc_gq *iocg)
1205 {
1206 	u32 hwm = WEIGHT_ONE;
1207 	u32 inuse = iocg->active;
1208 	u64 child_inuse_sum;
1209 	int lvl;
1210 
1211 	lockdep_assert_held(&iocg->ioc->lock);
1212 
1213 	for (lvl = iocg->level - 1; lvl >= 0; lvl--) {
1214 		struct ioc_gq *parent = iocg->ancestors[lvl];
1215 		struct ioc_gq *child = iocg->ancestors[lvl + 1];
1216 
1217 		child_inuse_sum = parent->child_inuse_sum + inuse - child->inuse;
1218 		hwm = div64_u64((u64)hwm * inuse, child_inuse_sum);
1219 		inuse = DIV64_U64_ROUND_UP(parent->active * child_inuse_sum,
1220 					   parent->child_active_sum);
1221 	}
1222 
1223 	return max_t(u32, hwm, 1);
1224 }
1225 
1226 static void weight_updated(struct ioc_gq *iocg, struct ioc_now *now)
1227 {
1228 	struct ioc *ioc = iocg->ioc;
1229 	struct blkcg_gq *blkg = iocg_to_blkg(iocg);
1230 	struct ioc_cgrp *iocc = blkcg_to_iocc(blkg->blkcg);
1231 	u32 weight;
1232 
1233 	lockdep_assert_held(&ioc->lock);
1234 
1235 	weight = iocg->cfg_weight ?: iocc->dfl_weight;
1236 	if (weight != iocg->weight && iocg->active)
1237 		propagate_weights(iocg, weight, iocg->inuse, true, now);
1238 	iocg->weight = weight;
1239 }
1240 
1241 static bool iocg_activate(struct ioc_gq *iocg, struct ioc_now *now)
1242 {
1243 	struct ioc *ioc = iocg->ioc;
1244 	u64 last_period, cur_period;
1245 	u64 vtime, vtarget;
1246 	int i;
1247 
1248 	/*
1249 	 * If seem to be already active, just update the stamp to tell the
1250 	 * timer that we're still active.  We don't mind occassional races.
1251 	 */
1252 	if (!list_empty(&iocg->active_list)) {
1253 		ioc_now(ioc, now);
1254 		cur_period = atomic64_read(&ioc->cur_period);
1255 		if (atomic64_read(&iocg->active_period) != cur_period)
1256 			atomic64_set(&iocg->active_period, cur_period);
1257 		return true;
1258 	}
1259 
1260 	/* racy check on internal node IOs, treat as root level IOs */
1261 	if (iocg->child_active_sum)
1262 		return false;
1263 
1264 	spin_lock_irq(&ioc->lock);
1265 
1266 	ioc_now(ioc, now);
1267 
1268 	/* update period */
1269 	cur_period = atomic64_read(&ioc->cur_period);
1270 	last_period = atomic64_read(&iocg->active_period);
1271 	atomic64_set(&iocg->active_period, cur_period);
1272 
1273 	/* already activated or breaking leaf-only constraint? */
1274 	if (!list_empty(&iocg->active_list))
1275 		goto succeed_unlock;
1276 	for (i = iocg->level - 1; i > 0; i--)
1277 		if (!list_empty(&iocg->ancestors[i]->active_list))
1278 			goto fail_unlock;
1279 
1280 	if (iocg->child_active_sum)
1281 		goto fail_unlock;
1282 
1283 	/*
1284 	 * Always start with the target budget. On deactivation, we throw away
1285 	 * anything above it.
1286 	 */
1287 	vtarget = now->vnow - ioc->margins.target;
1288 	vtime = atomic64_read(&iocg->vtime);
1289 
1290 	atomic64_add(vtarget - vtime, &iocg->vtime);
1291 	atomic64_add(vtarget - vtime, &iocg->done_vtime);
1292 	vtime = vtarget;
1293 
1294 	/*
1295 	 * Activate, propagate weight and start period timer if not
1296 	 * running.  Reset hweight_gen to avoid accidental match from
1297 	 * wrapping.
1298 	 */
1299 	iocg->hweight_gen = atomic_read(&ioc->hweight_gen) - 1;
1300 	list_add(&iocg->active_list, &ioc->active_iocgs);
1301 
1302 	propagate_weights(iocg, iocg->weight,
1303 			  iocg->last_inuse ?: iocg->weight, true, now);
1304 
1305 	TRACE_IOCG_PATH(iocg_activate, iocg, now,
1306 			last_period, cur_period, vtime);
1307 
1308 	iocg->activated_at = now->now;
1309 
1310 	if (ioc->running == IOC_IDLE) {
1311 		ioc->running = IOC_RUNNING;
1312 		ioc->dfgv_period_at = now->now;
1313 		ioc->dfgv_period_rem = 0;
1314 		ioc_start_period(ioc, now);
1315 	}
1316 
1317 succeed_unlock:
1318 	spin_unlock_irq(&ioc->lock);
1319 	return true;
1320 
1321 fail_unlock:
1322 	spin_unlock_irq(&ioc->lock);
1323 	return false;
1324 }
1325 
1326 static bool iocg_kick_delay(struct ioc_gq *iocg, struct ioc_now *now)
1327 {
1328 	struct ioc *ioc = iocg->ioc;
1329 	struct blkcg_gq *blkg = iocg_to_blkg(iocg);
1330 	u64 tdelta, delay, new_delay;
1331 	s64 vover, vover_pct;
1332 	u32 hwa;
1333 
1334 	lockdep_assert_held(&iocg->waitq.lock);
1335 
1336 	/* calculate the current delay in effect - 1/2 every second */
1337 	tdelta = now->now - iocg->delay_at;
1338 	if (iocg->delay)
1339 		delay = iocg->delay >> div64_u64(tdelta, USEC_PER_SEC);
1340 	else
1341 		delay = 0;
1342 
1343 	/* calculate the new delay from the debt amount */
1344 	current_hweight(iocg, &hwa, NULL);
1345 	vover = atomic64_read(&iocg->vtime) +
1346 		abs_cost_to_cost(iocg->abs_vdebt, hwa) - now->vnow;
1347 	vover_pct = div64_s64(100 * vover,
1348 			      ioc->period_us * ioc->vtime_base_rate);
1349 
1350 	if (vover_pct <= MIN_DELAY_THR_PCT)
1351 		new_delay = 0;
1352 	else if (vover_pct >= MAX_DELAY_THR_PCT)
1353 		new_delay = MAX_DELAY;
1354 	else
1355 		new_delay = MIN_DELAY +
1356 			div_u64((MAX_DELAY - MIN_DELAY) *
1357 				(vover_pct - MIN_DELAY_THR_PCT),
1358 				MAX_DELAY_THR_PCT - MIN_DELAY_THR_PCT);
1359 
1360 	/* pick the higher one and apply */
1361 	if (new_delay > delay) {
1362 		iocg->delay = new_delay;
1363 		iocg->delay_at = now->now;
1364 		delay = new_delay;
1365 	}
1366 
1367 	if (delay >= MIN_DELAY) {
1368 		if (!iocg->indelay_since)
1369 			iocg->indelay_since = now->now;
1370 		blkcg_set_delay(blkg, delay * NSEC_PER_USEC);
1371 		return true;
1372 	} else {
1373 		if (iocg->indelay_since) {
1374 			iocg->local_stat.indelay_us += now->now - iocg->indelay_since;
1375 			iocg->indelay_since = 0;
1376 		}
1377 		iocg->delay = 0;
1378 		blkcg_clear_delay(blkg);
1379 		return false;
1380 	}
1381 }
1382 
1383 static void iocg_incur_debt(struct ioc_gq *iocg, u64 abs_cost,
1384 			    struct ioc_now *now)
1385 {
1386 	struct iocg_pcpu_stat *gcs;
1387 
1388 	lockdep_assert_held(&iocg->ioc->lock);
1389 	lockdep_assert_held(&iocg->waitq.lock);
1390 	WARN_ON_ONCE(list_empty(&iocg->active_list));
1391 
1392 	/*
1393 	 * Once in debt, debt handling owns inuse. @iocg stays at the minimum
1394 	 * inuse donating all of it share to others until its debt is paid off.
1395 	 */
1396 	if (!iocg->abs_vdebt && abs_cost) {
1397 		iocg->indebt_since = now->now;
1398 		propagate_weights(iocg, iocg->active, 0, false, now);
1399 	}
1400 
1401 	iocg->abs_vdebt += abs_cost;
1402 
1403 	gcs = get_cpu_ptr(iocg->pcpu_stat);
1404 	local64_add(abs_cost, &gcs->abs_vusage);
1405 	put_cpu_ptr(gcs);
1406 }
1407 
1408 static void iocg_pay_debt(struct ioc_gq *iocg, u64 abs_vpay,
1409 			  struct ioc_now *now)
1410 {
1411 	lockdep_assert_held(&iocg->ioc->lock);
1412 	lockdep_assert_held(&iocg->waitq.lock);
1413 
1414 	/* make sure that nobody messed with @iocg */
1415 	WARN_ON_ONCE(list_empty(&iocg->active_list));
1416 	WARN_ON_ONCE(iocg->inuse > 1);
1417 
1418 	iocg->abs_vdebt -= min(abs_vpay, iocg->abs_vdebt);
1419 
1420 	/* if debt is paid in full, restore inuse */
1421 	if (!iocg->abs_vdebt) {
1422 		iocg->local_stat.indebt_us += now->now - iocg->indebt_since;
1423 		iocg->indebt_since = 0;
1424 
1425 		propagate_weights(iocg, iocg->active, iocg->last_inuse,
1426 				  false, now);
1427 	}
1428 }
1429 
1430 static int iocg_wake_fn(struct wait_queue_entry *wq_entry, unsigned mode,
1431 			int flags, void *key)
1432 {
1433 	struct iocg_wait *wait = container_of(wq_entry, struct iocg_wait, wait);
1434 	struct iocg_wake_ctx *ctx = (struct iocg_wake_ctx *)key;
1435 	u64 cost = abs_cost_to_cost(wait->abs_cost, ctx->hw_inuse);
1436 
1437 	ctx->vbudget -= cost;
1438 
1439 	if (ctx->vbudget < 0)
1440 		return -1;
1441 
1442 	iocg_commit_bio(ctx->iocg, wait->bio, wait->abs_cost, cost);
1443 	wait->committed = true;
1444 
1445 	/*
1446 	 * autoremove_wake_function() removes the wait entry only when it
1447 	 * actually changed the task state. We want the wait always removed.
1448 	 * Remove explicitly and use default_wake_function(). Note that the
1449 	 * order of operations is important as finish_wait() tests whether
1450 	 * @wq_entry is removed without grabbing the lock.
1451 	 */
1452 	default_wake_function(wq_entry, mode, flags, key);
1453 	list_del_init_careful(&wq_entry->entry);
1454 	return 0;
1455 }
1456 
1457 /*
1458  * Calculate the accumulated budget, pay debt if @pay_debt and wake up waiters
1459  * accordingly. When @pay_debt is %true, the caller must be holding ioc->lock in
1460  * addition to iocg->waitq.lock.
1461  */
1462 static void iocg_kick_waitq(struct ioc_gq *iocg, bool pay_debt,
1463 			    struct ioc_now *now)
1464 {
1465 	struct ioc *ioc = iocg->ioc;
1466 	struct iocg_wake_ctx ctx = { .iocg = iocg };
1467 	u64 vshortage, expires, oexpires;
1468 	s64 vbudget;
1469 	u32 hwa;
1470 
1471 	lockdep_assert_held(&iocg->waitq.lock);
1472 
1473 	current_hweight(iocg, &hwa, NULL);
1474 	vbudget = now->vnow - atomic64_read(&iocg->vtime);
1475 
1476 	/* pay off debt */
1477 	if (pay_debt && iocg->abs_vdebt && vbudget > 0) {
1478 		u64 abs_vbudget = cost_to_abs_cost(vbudget, hwa);
1479 		u64 abs_vpay = min_t(u64, abs_vbudget, iocg->abs_vdebt);
1480 		u64 vpay = abs_cost_to_cost(abs_vpay, hwa);
1481 
1482 		lockdep_assert_held(&ioc->lock);
1483 
1484 		atomic64_add(vpay, &iocg->vtime);
1485 		atomic64_add(vpay, &iocg->done_vtime);
1486 		iocg_pay_debt(iocg, abs_vpay, now);
1487 		vbudget -= vpay;
1488 	}
1489 
1490 	if (iocg->abs_vdebt || iocg->delay)
1491 		iocg_kick_delay(iocg, now);
1492 
1493 	/*
1494 	 * Debt can still be outstanding if we haven't paid all yet or the
1495 	 * caller raced and called without @pay_debt. Shouldn't wake up waiters
1496 	 * under debt. Make sure @vbudget reflects the outstanding amount and is
1497 	 * not positive.
1498 	 */
1499 	if (iocg->abs_vdebt) {
1500 		s64 vdebt = abs_cost_to_cost(iocg->abs_vdebt, hwa);
1501 		vbudget = min_t(s64, 0, vbudget - vdebt);
1502 	}
1503 
1504 	/*
1505 	 * Wake up the ones which are due and see how much vtime we'll need for
1506 	 * the next one. As paying off debt restores hw_inuse, it must be read
1507 	 * after the above debt payment.
1508 	 */
1509 	ctx.vbudget = vbudget;
1510 	current_hweight(iocg, NULL, &ctx.hw_inuse);
1511 
1512 	__wake_up_locked_key(&iocg->waitq, TASK_NORMAL, &ctx);
1513 
1514 	if (!waitqueue_active(&iocg->waitq)) {
1515 		if (iocg->wait_since) {
1516 			iocg->local_stat.wait_us += now->now - iocg->wait_since;
1517 			iocg->wait_since = 0;
1518 		}
1519 		return;
1520 	}
1521 
1522 	if (!iocg->wait_since)
1523 		iocg->wait_since = now->now;
1524 
1525 	if (WARN_ON_ONCE(ctx.vbudget >= 0))
1526 		return;
1527 
1528 	/* determine next wakeup, add a timer margin to guarantee chunking */
1529 	vshortage = -ctx.vbudget;
1530 	expires = now->now_ns +
1531 		DIV64_U64_ROUND_UP(vshortage, ioc->vtime_base_rate) *
1532 		NSEC_PER_USEC;
1533 	expires += ioc->timer_slack_ns;
1534 
1535 	/* if already active and close enough, don't bother */
1536 	oexpires = ktime_to_ns(hrtimer_get_softexpires(&iocg->waitq_timer));
1537 	if (hrtimer_is_queued(&iocg->waitq_timer) &&
1538 	    abs(oexpires - expires) <= ioc->timer_slack_ns)
1539 		return;
1540 
1541 	hrtimer_start_range_ns(&iocg->waitq_timer, ns_to_ktime(expires),
1542 			       ioc->timer_slack_ns, HRTIMER_MODE_ABS);
1543 }
1544 
1545 static enum hrtimer_restart iocg_waitq_timer_fn(struct hrtimer *timer)
1546 {
1547 	struct ioc_gq *iocg = container_of(timer, struct ioc_gq, waitq_timer);
1548 	bool pay_debt = READ_ONCE(iocg->abs_vdebt);
1549 	struct ioc_now now;
1550 	unsigned long flags;
1551 
1552 	ioc_now(iocg->ioc, &now);
1553 
1554 	iocg_lock(iocg, pay_debt, &flags);
1555 	iocg_kick_waitq(iocg, pay_debt, &now);
1556 	iocg_unlock(iocg, pay_debt, &flags);
1557 
1558 	return HRTIMER_NORESTART;
1559 }
1560 
1561 static void ioc_lat_stat(struct ioc *ioc, u32 *missed_ppm_ar, u32 *rq_wait_pct_p)
1562 {
1563 	u32 nr_met[2] = { };
1564 	u32 nr_missed[2] = { };
1565 	u64 rq_wait_ns = 0;
1566 	int cpu, rw;
1567 
1568 	for_each_online_cpu(cpu) {
1569 		struct ioc_pcpu_stat *stat = per_cpu_ptr(ioc->pcpu_stat, cpu);
1570 		u64 this_rq_wait_ns;
1571 
1572 		for (rw = READ; rw <= WRITE; rw++) {
1573 			u32 this_met = local_read(&stat->missed[rw].nr_met);
1574 			u32 this_missed = local_read(&stat->missed[rw].nr_missed);
1575 
1576 			nr_met[rw] += this_met - stat->missed[rw].last_met;
1577 			nr_missed[rw] += this_missed - stat->missed[rw].last_missed;
1578 			stat->missed[rw].last_met = this_met;
1579 			stat->missed[rw].last_missed = this_missed;
1580 		}
1581 
1582 		this_rq_wait_ns = local64_read(&stat->rq_wait_ns);
1583 		rq_wait_ns += this_rq_wait_ns - stat->last_rq_wait_ns;
1584 		stat->last_rq_wait_ns = this_rq_wait_ns;
1585 	}
1586 
1587 	for (rw = READ; rw <= WRITE; rw++) {
1588 		if (nr_met[rw] + nr_missed[rw])
1589 			missed_ppm_ar[rw] =
1590 				DIV64_U64_ROUND_UP((u64)nr_missed[rw] * MILLION,
1591 						   nr_met[rw] + nr_missed[rw]);
1592 		else
1593 			missed_ppm_ar[rw] = 0;
1594 	}
1595 
1596 	*rq_wait_pct_p = div64_u64(rq_wait_ns * 100,
1597 				   ioc->period_us * NSEC_PER_USEC);
1598 }
1599 
1600 /* was iocg idle this period? */
1601 static bool iocg_is_idle(struct ioc_gq *iocg)
1602 {
1603 	struct ioc *ioc = iocg->ioc;
1604 
1605 	/* did something get issued this period? */
1606 	if (atomic64_read(&iocg->active_period) ==
1607 	    atomic64_read(&ioc->cur_period))
1608 		return false;
1609 
1610 	/* is something in flight? */
1611 	if (atomic64_read(&iocg->done_vtime) != atomic64_read(&iocg->vtime))
1612 		return false;
1613 
1614 	return true;
1615 }
1616 
1617 /*
1618  * Call this function on the target leaf @iocg's to build pre-order traversal
1619  * list of all the ancestors in @inner_walk. The inner nodes are linked through
1620  * ->walk_list and the caller is responsible for dissolving the list after use.
1621  */
1622 static void iocg_build_inner_walk(struct ioc_gq *iocg,
1623 				  struct list_head *inner_walk)
1624 {
1625 	int lvl;
1626 
1627 	WARN_ON_ONCE(!list_empty(&iocg->walk_list));
1628 
1629 	/* find the first ancestor which hasn't been visited yet */
1630 	for (lvl = iocg->level - 1; lvl >= 0; lvl--) {
1631 		if (!list_empty(&iocg->ancestors[lvl]->walk_list))
1632 			break;
1633 	}
1634 
1635 	/* walk down and visit the inner nodes to get pre-order traversal */
1636 	while (++lvl <= iocg->level - 1) {
1637 		struct ioc_gq *inner = iocg->ancestors[lvl];
1638 
1639 		/* record traversal order */
1640 		list_add_tail(&inner->walk_list, inner_walk);
1641 	}
1642 }
1643 
1644 /* collect per-cpu counters and propagate the deltas to the parent */
1645 static void iocg_flush_stat_one(struct ioc_gq *iocg, struct ioc_now *now)
1646 {
1647 	struct ioc *ioc = iocg->ioc;
1648 	struct iocg_stat new_stat;
1649 	u64 abs_vusage = 0;
1650 	u64 vusage_delta;
1651 	int cpu;
1652 
1653 	lockdep_assert_held(&iocg->ioc->lock);
1654 
1655 	/* collect per-cpu counters */
1656 	for_each_possible_cpu(cpu) {
1657 		abs_vusage += local64_read(
1658 				per_cpu_ptr(&iocg->pcpu_stat->abs_vusage, cpu));
1659 	}
1660 	vusage_delta = abs_vusage - iocg->last_stat_abs_vusage;
1661 	iocg->last_stat_abs_vusage = abs_vusage;
1662 
1663 	iocg->usage_delta_us = div64_u64(vusage_delta, ioc->vtime_base_rate);
1664 	iocg->local_stat.usage_us += iocg->usage_delta_us;
1665 
1666 	/* propagate upwards */
1667 	new_stat.usage_us =
1668 		iocg->local_stat.usage_us + iocg->desc_stat.usage_us;
1669 	new_stat.wait_us =
1670 		iocg->local_stat.wait_us + iocg->desc_stat.wait_us;
1671 	new_stat.indebt_us =
1672 		iocg->local_stat.indebt_us + iocg->desc_stat.indebt_us;
1673 	new_stat.indelay_us =
1674 		iocg->local_stat.indelay_us + iocg->desc_stat.indelay_us;
1675 
1676 	/* propagate the deltas to the parent */
1677 	if (iocg->level > 0) {
1678 		struct iocg_stat *parent_stat =
1679 			&iocg->ancestors[iocg->level - 1]->desc_stat;
1680 
1681 		parent_stat->usage_us +=
1682 			new_stat.usage_us - iocg->last_stat.usage_us;
1683 		parent_stat->wait_us +=
1684 			new_stat.wait_us - iocg->last_stat.wait_us;
1685 		parent_stat->indebt_us +=
1686 			new_stat.indebt_us - iocg->last_stat.indebt_us;
1687 		parent_stat->indelay_us +=
1688 			new_stat.indelay_us - iocg->last_stat.indelay_us;
1689 	}
1690 
1691 	iocg->last_stat = new_stat;
1692 }
1693 
1694 /* get stat counters ready for reading on all active iocgs */
1695 static void iocg_flush_stat(struct list_head *target_iocgs, struct ioc_now *now)
1696 {
1697 	LIST_HEAD(inner_walk);
1698 	struct ioc_gq *iocg, *tiocg;
1699 
1700 	/* flush leaves and build inner node walk list */
1701 	list_for_each_entry(iocg, target_iocgs, active_list) {
1702 		iocg_flush_stat_one(iocg, now);
1703 		iocg_build_inner_walk(iocg, &inner_walk);
1704 	}
1705 
1706 	/* keep flushing upwards by walking the inner list backwards */
1707 	list_for_each_entry_safe_reverse(iocg, tiocg, &inner_walk, walk_list) {
1708 		iocg_flush_stat_one(iocg, now);
1709 		list_del_init(&iocg->walk_list);
1710 	}
1711 }
1712 
1713 /*
1714  * Determine what @iocg's hweight_inuse should be after donating unused
1715  * capacity. @hwm is the upper bound and used to signal no donation. This
1716  * function also throws away @iocg's excess budget.
1717  */
1718 static u32 hweight_after_donation(struct ioc_gq *iocg, u32 old_hwi, u32 hwm,
1719 				  u32 usage, struct ioc_now *now)
1720 {
1721 	struct ioc *ioc = iocg->ioc;
1722 	u64 vtime = atomic64_read(&iocg->vtime);
1723 	s64 excess, delta, target, new_hwi;
1724 
1725 	/* debt handling owns inuse for debtors */
1726 	if (iocg->abs_vdebt)
1727 		return 1;
1728 
1729 	/* see whether minimum margin requirement is met */
1730 	if (waitqueue_active(&iocg->waitq) ||
1731 	    time_after64(vtime, now->vnow - ioc->margins.min))
1732 		return hwm;
1733 
1734 	/* throw away excess above target */
1735 	excess = now->vnow - vtime - ioc->margins.target;
1736 	if (excess > 0) {
1737 		atomic64_add(excess, &iocg->vtime);
1738 		atomic64_add(excess, &iocg->done_vtime);
1739 		vtime += excess;
1740 		ioc->vtime_err -= div64_u64(excess * old_hwi, WEIGHT_ONE);
1741 	}
1742 
1743 	/*
1744 	 * Let's say the distance between iocg's and device's vtimes as a
1745 	 * fraction of period duration is delta. Assuming that the iocg will
1746 	 * consume the usage determined above, we want to determine new_hwi so
1747 	 * that delta equals MARGIN_TARGET at the end of the next period.
1748 	 *
1749 	 * We need to execute usage worth of IOs while spending the sum of the
1750 	 * new budget (1 - MARGIN_TARGET) and the leftover from the last period
1751 	 * (delta):
1752 	 *
1753 	 *   usage = (1 - MARGIN_TARGET + delta) * new_hwi
1754 	 *
1755 	 * Therefore, the new_hwi is:
1756 	 *
1757 	 *   new_hwi = usage / (1 - MARGIN_TARGET + delta)
1758 	 */
1759 	delta = div64_s64(WEIGHT_ONE * (now->vnow - vtime),
1760 			  now->vnow - ioc->period_at_vtime);
1761 	target = WEIGHT_ONE * MARGIN_TARGET_PCT / 100;
1762 	new_hwi = div64_s64(WEIGHT_ONE * usage, WEIGHT_ONE - target + delta);
1763 
1764 	return clamp_t(s64, new_hwi, 1, hwm);
1765 }
1766 
1767 /*
1768  * For work-conservation, an iocg which isn't using all of its share should
1769  * donate the leftover to other iocgs. There are two ways to achieve this - 1.
1770  * bumping up vrate accordingly 2. lowering the donating iocg's inuse weight.
1771  *
1772  * #1 is mathematically simpler but has the drawback of requiring synchronous
1773  * global hweight_inuse updates when idle iocg's get activated or inuse weights
1774  * change due to donation snapbacks as it has the possibility of grossly
1775  * overshooting what's allowed by the model and vrate.
1776  *
1777  * #2 is inherently safe with local operations. The donating iocg can easily
1778  * snap back to higher weights when needed without worrying about impacts on
1779  * other nodes as the impacts will be inherently correct. This also makes idle
1780  * iocg activations safe. The only effect activations have is decreasing
1781  * hweight_inuse of others, the right solution to which is for those iocgs to
1782  * snap back to higher weights.
1783  *
1784  * So, we go with #2. The challenge is calculating how each donating iocg's
1785  * inuse should be adjusted to achieve the target donation amounts. This is done
1786  * using Andy's method described in the following pdf.
1787  *
1788  *   https://drive.google.com/file/d/1PsJwxPFtjUnwOY1QJ5AeICCcsL7BM3bo
1789  *
1790  * Given the weights and target after-donation hweight_inuse values, Andy's
1791  * method determines how the proportional distribution should look like at each
1792  * sibling level to maintain the relative relationship between all non-donating
1793  * pairs. To roughly summarize, it divides the tree into donating and
1794  * non-donating parts, calculates global donation rate which is used to
1795  * determine the target hweight_inuse for each node, and then derives per-level
1796  * proportions.
1797  *
1798  * The following pdf shows that global distribution calculated this way can be
1799  * achieved by scaling inuse weights of donating leaves and propagating the
1800  * adjustments upwards proportionally.
1801  *
1802  *   https://drive.google.com/file/d/1vONz1-fzVO7oY5DXXsLjSxEtYYQbOvsE
1803  *
1804  * Combining the above two, we can determine how each leaf iocg's inuse should
1805  * be adjusted to achieve the target donation.
1806  *
1807  *   https://drive.google.com/file/d/1WcrltBOSPN0qXVdBgnKm4mdp9FhuEFQN
1808  *
1809  * The inline comments use symbols from the last pdf.
1810  *
1811  *   b is the sum of the absolute budgets in the subtree. 1 for the root node.
1812  *   f is the sum of the absolute budgets of non-donating nodes in the subtree.
1813  *   t is the sum of the absolute budgets of donating nodes in the subtree.
1814  *   w is the weight of the node. w = w_f + w_t
1815  *   w_f is the non-donating portion of w. w_f = w * f / b
1816  *   w_b is the donating portion of w. w_t = w * t / b
1817  *   s is the sum of all sibling weights. s = Sum(w) for siblings
1818  *   s_f and s_t are the non-donating and donating portions of s.
1819  *
1820  * Subscript p denotes the parent's counterpart and ' the adjusted value - e.g.
1821  * w_pt is the donating portion of the parent's weight and w'_pt the same value
1822  * after adjustments. Subscript r denotes the root node's values.
1823  */
1824 static void transfer_surpluses(struct list_head *surpluses, struct ioc_now *now)
1825 {
1826 	LIST_HEAD(over_hwa);
1827 	LIST_HEAD(inner_walk);
1828 	struct ioc_gq *iocg, *tiocg, *root_iocg;
1829 	u32 after_sum, over_sum, over_target, gamma;
1830 
1831 	/*
1832 	 * It's pretty unlikely but possible for the total sum of
1833 	 * hweight_after_donation's to be higher than WEIGHT_ONE, which will
1834 	 * confuse the following calculations. If such condition is detected,
1835 	 * scale down everyone over its full share equally to keep the sum below
1836 	 * WEIGHT_ONE.
1837 	 */
1838 	after_sum = 0;
1839 	over_sum = 0;
1840 	list_for_each_entry(iocg, surpluses, surplus_list) {
1841 		u32 hwa;
1842 
1843 		current_hweight(iocg, &hwa, NULL);
1844 		after_sum += iocg->hweight_after_donation;
1845 
1846 		if (iocg->hweight_after_donation > hwa) {
1847 			over_sum += iocg->hweight_after_donation;
1848 			list_add(&iocg->walk_list, &over_hwa);
1849 		}
1850 	}
1851 
1852 	if (after_sum >= WEIGHT_ONE) {
1853 		/*
1854 		 * The delta should be deducted from the over_sum, calculate
1855 		 * target over_sum value.
1856 		 */
1857 		u32 over_delta = after_sum - (WEIGHT_ONE - 1);
1858 		WARN_ON_ONCE(over_sum <= over_delta);
1859 		over_target = over_sum - over_delta;
1860 	} else {
1861 		over_target = 0;
1862 	}
1863 
1864 	list_for_each_entry_safe(iocg, tiocg, &over_hwa, walk_list) {
1865 		if (over_target)
1866 			iocg->hweight_after_donation =
1867 				div_u64((u64)iocg->hweight_after_donation *
1868 					over_target, over_sum);
1869 		list_del_init(&iocg->walk_list);
1870 	}
1871 
1872 	/*
1873 	 * Build pre-order inner node walk list and prepare for donation
1874 	 * adjustment calculations.
1875 	 */
1876 	list_for_each_entry(iocg, surpluses, surplus_list) {
1877 		iocg_build_inner_walk(iocg, &inner_walk);
1878 	}
1879 
1880 	root_iocg = list_first_entry(&inner_walk, struct ioc_gq, walk_list);
1881 	WARN_ON_ONCE(root_iocg->level > 0);
1882 
1883 	list_for_each_entry(iocg, &inner_walk, walk_list) {
1884 		iocg->child_adjusted_sum = 0;
1885 		iocg->hweight_donating = 0;
1886 		iocg->hweight_after_donation = 0;
1887 	}
1888 
1889 	/*
1890 	 * Propagate the donating budget (b_t) and after donation budget (b'_t)
1891 	 * up the hierarchy.
1892 	 */
1893 	list_for_each_entry(iocg, surpluses, surplus_list) {
1894 		struct ioc_gq *parent = iocg->ancestors[iocg->level - 1];
1895 
1896 		parent->hweight_donating += iocg->hweight_donating;
1897 		parent->hweight_after_donation += iocg->hweight_after_donation;
1898 	}
1899 
1900 	list_for_each_entry_reverse(iocg, &inner_walk, walk_list) {
1901 		if (iocg->level > 0) {
1902 			struct ioc_gq *parent = iocg->ancestors[iocg->level - 1];
1903 
1904 			parent->hweight_donating += iocg->hweight_donating;
1905 			parent->hweight_after_donation += iocg->hweight_after_donation;
1906 		}
1907 	}
1908 
1909 	/*
1910 	 * Calculate inner hwa's (b) and make sure the donation values are
1911 	 * within the accepted ranges as we're doing low res calculations with
1912 	 * roundups.
1913 	 */
1914 	list_for_each_entry(iocg, &inner_walk, walk_list) {
1915 		if (iocg->level) {
1916 			struct ioc_gq *parent = iocg->ancestors[iocg->level - 1];
1917 
1918 			iocg->hweight_active = DIV64_U64_ROUND_UP(
1919 				(u64)parent->hweight_active * iocg->active,
1920 				parent->child_active_sum);
1921 
1922 		}
1923 
1924 		iocg->hweight_donating = min(iocg->hweight_donating,
1925 					     iocg->hweight_active);
1926 		iocg->hweight_after_donation = min(iocg->hweight_after_donation,
1927 						   iocg->hweight_donating - 1);
1928 		if (WARN_ON_ONCE(iocg->hweight_active <= 1 ||
1929 				 iocg->hweight_donating <= 1 ||
1930 				 iocg->hweight_after_donation == 0)) {
1931 			pr_warn("iocg: invalid donation weights in ");
1932 			pr_cont_cgroup_path(iocg_to_blkg(iocg)->blkcg->css.cgroup);
1933 			pr_cont(": active=%u donating=%u after=%u\n",
1934 				iocg->hweight_active, iocg->hweight_donating,
1935 				iocg->hweight_after_donation);
1936 		}
1937 	}
1938 
1939 	/*
1940 	 * Calculate the global donation rate (gamma) - the rate to adjust
1941 	 * non-donating budgets by.
1942 	 *
1943 	 * No need to use 64bit multiplication here as the first operand is
1944 	 * guaranteed to be smaller than WEIGHT_ONE (1<<16).
1945 	 *
1946 	 * We know that there are beneficiary nodes and the sum of the donating
1947 	 * hweights can't be whole; however, due to the round-ups during hweight
1948 	 * calculations, root_iocg->hweight_donating might still end up equal to
1949 	 * or greater than whole. Limit the range when calculating the divider.
1950 	 *
1951 	 * gamma = (1 - t_r') / (1 - t_r)
1952 	 */
1953 	gamma = DIV_ROUND_UP(
1954 		(WEIGHT_ONE - root_iocg->hweight_after_donation) * WEIGHT_ONE,
1955 		WEIGHT_ONE - min_t(u32, root_iocg->hweight_donating, WEIGHT_ONE - 1));
1956 
1957 	/*
1958 	 * Calculate adjusted hwi, child_adjusted_sum and inuse for the inner
1959 	 * nodes.
1960 	 */
1961 	list_for_each_entry(iocg, &inner_walk, walk_list) {
1962 		struct ioc_gq *parent;
1963 		u32 inuse, wpt, wptp;
1964 		u64 st, sf;
1965 
1966 		if (iocg->level == 0) {
1967 			/* adjusted weight sum for 1st level: s' = s * b_pf / b'_pf */
1968 			iocg->child_adjusted_sum = DIV64_U64_ROUND_UP(
1969 				iocg->child_active_sum * (WEIGHT_ONE - iocg->hweight_donating),
1970 				WEIGHT_ONE - iocg->hweight_after_donation);
1971 			continue;
1972 		}
1973 
1974 		parent = iocg->ancestors[iocg->level - 1];
1975 
1976 		/* b' = gamma * b_f + b_t' */
1977 		iocg->hweight_inuse = DIV64_U64_ROUND_UP(
1978 			(u64)gamma * (iocg->hweight_active - iocg->hweight_donating),
1979 			WEIGHT_ONE) + iocg->hweight_after_donation;
1980 
1981 		/* w' = s' * b' / b'_p */
1982 		inuse = DIV64_U64_ROUND_UP(
1983 			(u64)parent->child_adjusted_sum * iocg->hweight_inuse,
1984 			parent->hweight_inuse);
1985 
1986 		/* adjusted weight sum for children: s' = s_f + s_t * w'_pt / w_pt */
1987 		st = DIV64_U64_ROUND_UP(
1988 			iocg->child_active_sum * iocg->hweight_donating,
1989 			iocg->hweight_active);
1990 		sf = iocg->child_active_sum - st;
1991 		wpt = DIV64_U64_ROUND_UP(
1992 			(u64)iocg->active * iocg->hweight_donating,
1993 			iocg->hweight_active);
1994 		wptp = DIV64_U64_ROUND_UP(
1995 			(u64)inuse * iocg->hweight_after_donation,
1996 			iocg->hweight_inuse);
1997 
1998 		iocg->child_adjusted_sum = sf + DIV64_U64_ROUND_UP(st * wptp, wpt);
1999 	}
2000 
2001 	/*
2002 	 * All inner nodes now have ->hweight_inuse and ->child_adjusted_sum and
2003 	 * we can finally determine leaf adjustments.
2004 	 */
2005 	list_for_each_entry(iocg, surpluses, surplus_list) {
2006 		struct ioc_gq *parent = iocg->ancestors[iocg->level - 1];
2007 		u32 inuse;
2008 
2009 		/*
2010 		 * In-debt iocgs participated in the donation calculation with
2011 		 * the minimum target hweight_inuse. Configuring inuse
2012 		 * accordingly would work fine but debt handling expects
2013 		 * @iocg->inuse stay at the minimum and we don't wanna
2014 		 * interfere.
2015 		 */
2016 		if (iocg->abs_vdebt) {
2017 			WARN_ON_ONCE(iocg->inuse > 1);
2018 			continue;
2019 		}
2020 
2021 		/* w' = s' * b' / b'_p, note that b' == b'_t for donating leaves */
2022 		inuse = DIV64_U64_ROUND_UP(
2023 			parent->child_adjusted_sum * iocg->hweight_after_donation,
2024 			parent->hweight_inuse);
2025 
2026 		TRACE_IOCG_PATH(inuse_transfer, iocg, now,
2027 				iocg->inuse, inuse,
2028 				iocg->hweight_inuse,
2029 				iocg->hweight_after_donation);
2030 
2031 		__propagate_weights(iocg, iocg->active, inuse, true, now);
2032 	}
2033 
2034 	/* walk list should be dissolved after use */
2035 	list_for_each_entry_safe(iocg, tiocg, &inner_walk, walk_list)
2036 		list_del_init(&iocg->walk_list);
2037 }
2038 
2039 /*
2040  * A low weight iocg can amass a large amount of debt, for example, when
2041  * anonymous memory gets reclaimed aggressively. If the system has a lot of
2042  * memory paired with a slow IO device, the debt can span multiple seconds or
2043  * more. If there are no other subsequent IO issuers, the in-debt iocg may end
2044  * up blocked paying its debt while the IO device is idle.
2045  *
2046  * The following protects against such cases. If the device has been
2047  * sufficiently idle for a while, the debts are halved and delays are
2048  * recalculated.
2049  */
2050 static void ioc_forgive_debts(struct ioc *ioc, u64 usage_us_sum, int nr_debtors,
2051 			      struct ioc_now *now)
2052 {
2053 	struct ioc_gq *iocg;
2054 	u64 dur, usage_pct, nr_cycles;
2055 
2056 	/* if no debtor, reset the cycle */
2057 	if (!nr_debtors) {
2058 		ioc->dfgv_period_at = now->now;
2059 		ioc->dfgv_period_rem = 0;
2060 		ioc->dfgv_usage_us_sum = 0;
2061 		return;
2062 	}
2063 
2064 	/*
2065 	 * Debtors can pass through a lot of writes choking the device and we
2066 	 * don't want to be forgiving debts while the device is struggling from
2067 	 * write bursts. If we're missing latency targets, consider the device
2068 	 * fully utilized.
2069 	 */
2070 	if (ioc->busy_level > 0)
2071 		usage_us_sum = max_t(u64, usage_us_sum, ioc->period_us);
2072 
2073 	ioc->dfgv_usage_us_sum += usage_us_sum;
2074 	if (time_before64(now->now, ioc->dfgv_period_at + DFGV_PERIOD))
2075 		return;
2076 
2077 	/*
2078 	 * At least DFGV_PERIOD has passed since the last period. Calculate the
2079 	 * average usage and reset the period counters.
2080 	 */
2081 	dur = now->now - ioc->dfgv_period_at;
2082 	usage_pct = div64_u64(100 * ioc->dfgv_usage_us_sum, dur);
2083 
2084 	ioc->dfgv_period_at = now->now;
2085 	ioc->dfgv_usage_us_sum = 0;
2086 
2087 	/* if was too busy, reset everything */
2088 	if (usage_pct > DFGV_USAGE_PCT) {
2089 		ioc->dfgv_period_rem = 0;
2090 		return;
2091 	}
2092 
2093 	/*
2094 	 * Usage is lower than threshold. Let's forgive some debts. Debt
2095 	 * forgiveness runs off of the usual ioc timer but its period usually
2096 	 * doesn't match ioc's. Compensate the difference by performing the
2097 	 * reduction as many times as would fit in the duration since the last
2098 	 * run and carrying over the left-over duration in @ioc->dfgv_period_rem
2099 	 * - if ioc period is 75% of DFGV_PERIOD, one out of three consecutive
2100 	 * reductions is doubled.
2101 	 */
2102 	nr_cycles = dur + ioc->dfgv_period_rem;
2103 	ioc->dfgv_period_rem = do_div(nr_cycles, DFGV_PERIOD);
2104 
2105 	list_for_each_entry(iocg, &ioc->active_iocgs, active_list) {
2106 		u64 __maybe_unused old_debt, __maybe_unused old_delay;
2107 
2108 		if (!iocg->abs_vdebt && !iocg->delay)
2109 			continue;
2110 
2111 		spin_lock(&iocg->waitq.lock);
2112 
2113 		old_debt = iocg->abs_vdebt;
2114 		old_delay = iocg->delay;
2115 
2116 		if (iocg->abs_vdebt)
2117 			iocg->abs_vdebt = iocg->abs_vdebt >> nr_cycles ?: 1;
2118 		if (iocg->delay)
2119 			iocg->delay = iocg->delay >> nr_cycles ?: 1;
2120 
2121 		iocg_kick_waitq(iocg, true, now);
2122 
2123 		TRACE_IOCG_PATH(iocg_forgive_debt, iocg, now, usage_pct,
2124 				old_debt, iocg->abs_vdebt,
2125 				old_delay, iocg->delay);
2126 
2127 		spin_unlock(&iocg->waitq.lock);
2128 	}
2129 }
2130 
2131 /*
2132  * Check the active iocgs' state to avoid oversleeping and deactive
2133  * idle iocgs.
2134  *
2135  * Since waiters determine the sleep durations based on the vrate
2136  * they saw at the time of sleep, if vrate has increased, some
2137  * waiters could be sleeping for too long. Wake up tardy waiters
2138  * which should have woken up in the last period and expire idle
2139  * iocgs.
2140  */
2141 static int ioc_check_iocgs(struct ioc *ioc, struct ioc_now *now)
2142 {
2143 	int nr_debtors = 0;
2144 	struct ioc_gq *iocg, *tiocg;
2145 
2146 	list_for_each_entry_safe(iocg, tiocg, &ioc->active_iocgs, active_list) {
2147 		if (!waitqueue_active(&iocg->waitq) && !iocg->abs_vdebt &&
2148 		    !iocg->delay && !iocg_is_idle(iocg))
2149 			continue;
2150 
2151 		spin_lock(&iocg->waitq.lock);
2152 
2153 		/* flush wait and indebt stat deltas */
2154 		if (iocg->wait_since) {
2155 			iocg->local_stat.wait_us += now->now - iocg->wait_since;
2156 			iocg->wait_since = now->now;
2157 		}
2158 		if (iocg->indebt_since) {
2159 			iocg->local_stat.indebt_us +=
2160 				now->now - iocg->indebt_since;
2161 			iocg->indebt_since = now->now;
2162 		}
2163 		if (iocg->indelay_since) {
2164 			iocg->local_stat.indelay_us +=
2165 				now->now - iocg->indelay_since;
2166 			iocg->indelay_since = now->now;
2167 		}
2168 
2169 		if (waitqueue_active(&iocg->waitq) || iocg->abs_vdebt ||
2170 		    iocg->delay) {
2171 			/* might be oversleeping vtime / hweight changes, kick */
2172 			iocg_kick_waitq(iocg, true, now);
2173 			if (iocg->abs_vdebt || iocg->delay)
2174 				nr_debtors++;
2175 		} else if (iocg_is_idle(iocg)) {
2176 			/* no waiter and idle, deactivate */
2177 			u64 vtime = atomic64_read(&iocg->vtime);
2178 			s64 excess;
2179 
2180 			/*
2181 			 * @iocg has been inactive for a full duration and will
2182 			 * have a high budget. Account anything above target as
2183 			 * error and throw away. On reactivation, it'll start
2184 			 * with the target budget.
2185 			 */
2186 			excess = now->vnow - vtime - ioc->margins.target;
2187 			if (excess > 0) {
2188 				u32 old_hwi;
2189 
2190 				current_hweight(iocg, NULL, &old_hwi);
2191 				ioc->vtime_err -= div64_u64(excess * old_hwi,
2192 							    WEIGHT_ONE);
2193 			}
2194 
2195 			TRACE_IOCG_PATH(iocg_idle, iocg, now,
2196 					atomic64_read(&iocg->active_period),
2197 					atomic64_read(&ioc->cur_period), vtime);
2198 			__propagate_weights(iocg, 0, 0, false, now);
2199 			list_del_init(&iocg->active_list);
2200 		}
2201 
2202 		spin_unlock(&iocg->waitq.lock);
2203 	}
2204 
2205 	commit_weights(ioc);
2206 	return nr_debtors;
2207 }
2208 
2209 static void ioc_timer_fn(struct timer_list *timer)
2210 {
2211 	struct ioc *ioc = container_of(timer, struct ioc, timer);
2212 	struct ioc_gq *iocg, *tiocg;
2213 	struct ioc_now now;
2214 	LIST_HEAD(surpluses);
2215 	int nr_debtors, nr_shortages = 0, nr_lagging = 0;
2216 	u64 usage_us_sum = 0;
2217 	u32 ppm_rthr = MILLION - ioc->params.qos[QOS_RPPM];
2218 	u32 ppm_wthr = MILLION - ioc->params.qos[QOS_WPPM];
2219 	u32 missed_ppm[2], rq_wait_pct;
2220 	u64 period_vtime;
2221 	int prev_busy_level;
2222 
2223 	/* how were the latencies during the period? */
2224 	ioc_lat_stat(ioc, missed_ppm, &rq_wait_pct);
2225 
2226 	/* take care of active iocgs */
2227 	spin_lock_irq(&ioc->lock);
2228 
2229 	ioc_now(ioc, &now);
2230 
2231 	period_vtime = now.vnow - ioc->period_at_vtime;
2232 	if (WARN_ON_ONCE(!period_vtime)) {
2233 		spin_unlock_irq(&ioc->lock);
2234 		return;
2235 	}
2236 
2237 	nr_debtors = ioc_check_iocgs(ioc, &now);
2238 
2239 	/*
2240 	 * Wait and indebt stat are flushed above and the donation calculation
2241 	 * below needs updated usage stat. Let's bring stat up-to-date.
2242 	 */
2243 	iocg_flush_stat(&ioc->active_iocgs, &now);
2244 
2245 	/* calc usage and see whether some weights need to be moved around */
2246 	list_for_each_entry(iocg, &ioc->active_iocgs, active_list) {
2247 		u64 vdone, vtime, usage_us;
2248 		u32 hw_active, hw_inuse;
2249 
2250 		/*
2251 		 * Collect unused and wind vtime closer to vnow to prevent
2252 		 * iocgs from accumulating a large amount of budget.
2253 		 */
2254 		vdone = atomic64_read(&iocg->done_vtime);
2255 		vtime = atomic64_read(&iocg->vtime);
2256 		current_hweight(iocg, &hw_active, &hw_inuse);
2257 
2258 		/*
2259 		 * Latency QoS detection doesn't account for IOs which are
2260 		 * in-flight for longer than a period.  Detect them by
2261 		 * comparing vdone against period start.  If lagging behind
2262 		 * IOs from past periods, don't increase vrate.
2263 		 */
2264 		if ((ppm_rthr != MILLION || ppm_wthr != MILLION) &&
2265 		    !atomic_read(&iocg_to_blkg(iocg)->use_delay) &&
2266 		    time_after64(vtime, vdone) &&
2267 		    time_after64(vtime, now.vnow -
2268 				 MAX_LAGGING_PERIODS * period_vtime) &&
2269 		    time_before64(vdone, now.vnow - period_vtime))
2270 			nr_lagging++;
2271 
2272 		/*
2273 		 * Determine absolute usage factoring in in-flight IOs to avoid
2274 		 * high-latency completions appearing as idle.
2275 		 */
2276 		usage_us = iocg->usage_delta_us;
2277 		usage_us_sum += usage_us;
2278 
2279 		/* see whether there's surplus vtime */
2280 		WARN_ON_ONCE(!list_empty(&iocg->surplus_list));
2281 		if (hw_inuse < hw_active ||
2282 		    (!waitqueue_active(&iocg->waitq) &&
2283 		     time_before64(vtime, now.vnow - ioc->margins.low))) {
2284 			u32 hwa, old_hwi, hwm, new_hwi, usage;
2285 			u64 usage_dur;
2286 
2287 			if (vdone != vtime) {
2288 				u64 inflight_us = DIV64_U64_ROUND_UP(
2289 					cost_to_abs_cost(vtime - vdone, hw_inuse),
2290 					ioc->vtime_base_rate);
2291 
2292 				usage_us = max(usage_us, inflight_us);
2293 			}
2294 
2295 			/* convert to hweight based usage ratio */
2296 			if (time_after64(iocg->activated_at, ioc->period_at))
2297 				usage_dur = max_t(u64, now.now - iocg->activated_at, 1);
2298 			else
2299 				usage_dur = max_t(u64, now.now - ioc->period_at, 1);
2300 
2301 			usage = clamp_t(u32,
2302 				DIV64_U64_ROUND_UP(usage_us * WEIGHT_ONE,
2303 						   usage_dur),
2304 				1, WEIGHT_ONE);
2305 
2306 			/*
2307 			 * Already donating or accumulated enough to start.
2308 			 * Determine the donation amount.
2309 			 */
2310 			current_hweight(iocg, &hwa, &old_hwi);
2311 			hwm = current_hweight_max(iocg);
2312 			new_hwi = hweight_after_donation(iocg, old_hwi, hwm,
2313 							 usage, &now);
2314 			/*
2315 			 * Donation calculation assumes hweight_after_donation
2316 			 * to be positive, a condition that a donor w/ hwa < 2
2317 			 * can't meet. Don't bother with donation if hwa is
2318 			 * below 2. It's not gonna make a meaningful difference
2319 			 * anyway.
2320 			 */
2321 			if (new_hwi < hwm && hwa >= 2) {
2322 				iocg->hweight_donating = hwa;
2323 				iocg->hweight_after_donation = new_hwi;
2324 				list_add(&iocg->surplus_list, &surpluses);
2325 			} else {
2326 				TRACE_IOCG_PATH(inuse_shortage, iocg, &now,
2327 						iocg->inuse, iocg->active,
2328 						iocg->hweight_inuse, new_hwi);
2329 
2330 				__propagate_weights(iocg, iocg->active,
2331 						    iocg->active, true, &now);
2332 				nr_shortages++;
2333 			}
2334 		} else {
2335 			/* genuinely short on vtime */
2336 			nr_shortages++;
2337 		}
2338 	}
2339 
2340 	if (!list_empty(&surpluses) && nr_shortages)
2341 		transfer_surpluses(&surpluses, &now);
2342 
2343 	commit_weights(ioc);
2344 
2345 	/* surplus list should be dissolved after use */
2346 	list_for_each_entry_safe(iocg, tiocg, &surpluses, surplus_list)
2347 		list_del_init(&iocg->surplus_list);
2348 
2349 	/*
2350 	 * If q is getting clogged or we're missing too much, we're issuing
2351 	 * too much IO and should lower vtime rate.  If we're not missing
2352 	 * and experiencing shortages but not surpluses, we're too stingy
2353 	 * and should increase vtime rate.
2354 	 */
2355 	prev_busy_level = ioc->busy_level;
2356 	if (rq_wait_pct > RQ_WAIT_BUSY_PCT ||
2357 	    missed_ppm[READ] > ppm_rthr ||
2358 	    missed_ppm[WRITE] > ppm_wthr) {
2359 		/* clearly missing QoS targets, slow down vrate */
2360 		ioc->busy_level = max(ioc->busy_level, 0);
2361 		ioc->busy_level++;
2362 	} else if (rq_wait_pct <= RQ_WAIT_BUSY_PCT * UNBUSY_THR_PCT / 100 &&
2363 		   missed_ppm[READ] <= ppm_rthr * UNBUSY_THR_PCT / 100 &&
2364 		   missed_ppm[WRITE] <= ppm_wthr * UNBUSY_THR_PCT / 100) {
2365 		/* QoS targets are being met with >25% margin */
2366 		if (nr_shortages) {
2367 			/*
2368 			 * We're throttling while the device has spare
2369 			 * capacity.  If vrate was being slowed down, stop.
2370 			 */
2371 			ioc->busy_level = min(ioc->busy_level, 0);
2372 
2373 			/*
2374 			 * If there are IOs spanning multiple periods, wait
2375 			 * them out before pushing the device harder.
2376 			 */
2377 			if (!nr_lagging)
2378 				ioc->busy_level--;
2379 		} else {
2380 			/*
2381 			 * Nobody is being throttled and the users aren't
2382 			 * issuing enough IOs to saturate the device.  We
2383 			 * simply don't know how close the device is to
2384 			 * saturation.  Coast.
2385 			 */
2386 			ioc->busy_level = 0;
2387 		}
2388 	} else {
2389 		/* inside the hysterisis margin, we're good */
2390 		ioc->busy_level = 0;
2391 	}
2392 
2393 	ioc->busy_level = clamp(ioc->busy_level, -1000, 1000);
2394 
2395 	ioc_adjust_base_vrate(ioc, rq_wait_pct, nr_lagging, nr_shortages,
2396 			      prev_busy_level, missed_ppm);
2397 
2398 	ioc_refresh_params(ioc, false);
2399 
2400 	ioc_forgive_debts(ioc, usage_us_sum, nr_debtors, &now);
2401 
2402 	/*
2403 	 * This period is done.  Move onto the next one.  If nothing's
2404 	 * going on with the device, stop the timer.
2405 	 */
2406 	atomic64_inc(&ioc->cur_period);
2407 
2408 	if (ioc->running != IOC_STOP) {
2409 		if (!list_empty(&ioc->active_iocgs)) {
2410 			ioc_start_period(ioc, &now);
2411 		} else {
2412 			ioc->busy_level = 0;
2413 			ioc->vtime_err = 0;
2414 			ioc->running = IOC_IDLE;
2415 		}
2416 
2417 		ioc_refresh_vrate(ioc, &now);
2418 	}
2419 
2420 	spin_unlock_irq(&ioc->lock);
2421 }
2422 
2423 static u64 adjust_inuse_and_calc_cost(struct ioc_gq *iocg, u64 vtime,
2424 				      u64 abs_cost, struct ioc_now *now)
2425 {
2426 	struct ioc *ioc = iocg->ioc;
2427 	struct ioc_margins *margins = &ioc->margins;
2428 	u32 __maybe_unused old_inuse = iocg->inuse, __maybe_unused old_hwi;
2429 	u32 hwi, adj_step;
2430 	s64 margin;
2431 	u64 cost, new_inuse;
2432 
2433 	current_hweight(iocg, NULL, &hwi);
2434 	old_hwi = hwi;
2435 	cost = abs_cost_to_cost(abs_cost, hwi);
2436 	margin = now->vnow - vtime - cost;
2437 
2438 	/* debt handling owns inuse for debtors */
2439 	if (iocg->abs_vdebt)
2440 		return cost;
2441 
2442 	/*
2443 	 * We only increase inuse during period and do so if the margin has
2444 	 * deteriorated since the previous adjustment.
2445 	 */
2446 	if (margin >= iocg->saved_margin || margin >= margins->low ||
2447 	    iocg->inuse == iocg->active)
2448 		return cost;
2449 
2450 	spin_lock_irq(&ioc->lock);
2451 
2452 	/* we own inuse only when @iocg is in the normal active state */
2453 	if (iocg->abs_vdebt || list_empty(&iocg->active_list)) {
2454 		spin_unlock_irq(&ioc->lock);
2455 		return cost;
2456 	}
2457 
2458 	/*
2459 	 * Bump up inuse till @abs_cost fits in the existing budget.
2460 	 * adj_step must be determined after acquiring ioc->lock - we might
2461 	 * have raced and lost to another thread for activation and could
2462 	 * be reading 0 iocg->active before ioc->lock which will lead to
2463 	 * infinite loop.
2464 	 */
2465 	new_inuse = iocg->inuse;
2466 	adj_step = DIV_ROUND_UP(iocg->active * INUSE_ADJ_STEP_PCT, 100);
2467 	do {
2468 		new_inuse = new_inuse + adj_step;
2469 		propagate_weights(iocg, iocg->active, new_inuse, true, now);
2470 		current_hweight(iocg, NULL, &hwi);
2471 		cost = abs_cost_to_cost(abs_cost, hwi);
2472 	} while (time_after64(vtime + cost, now->vnow) &&
2473 		 iocg->inuse != iocg->active);
2474 
2475 	spin_unlock_irq(&ioc->lock);
2476 
2477 	TRACE_IOCG_PATH(inuse_adjust, iocg, now,
2478 			old_inuse, iocg->inuse, old_hwi, hwi);
2479 
2480 	return cost;
2481 }
2482 
2483 static void calc_vtime_cost_builtin(struct bio *bio, struct ioc_gq *iocg,
2484 				    bool is_merge, u64 *costp)
2485 {
2486 	struct ioc *ioc = iocg->ioc;
2487 	u64 coef_seqio, coef_randio, coef_page;
2488 	u64 pages = max_t(u64, bio_sectors(bio) >> IOC_SECT_TO_PAGE_SHIFT, 1);
2489 	u64 seek_pages = 0;
2490 	u64 cost = 0;
2491 
2492 	switch (bio_op(bio)) {
2493 	case REQ_OP_READ:
2494 		coef_seqio	= ioc->params.lcoefs[LCOEF_RSEQIO];
2495 		coef_randio	= ioc->params.lcoefs[LCOEF_RRANDIO];
2496 		coef_page	= ioc->params.lcoefs[LCOEF_RPAGE];
2497 		break;
2498 	case REQ_OP_WRITE:
2499 		coef_seqio	= ioc->params.lcoefs[LCOEF_WSEQIO];
2500 		coef_randio	= ioc->params.lcoefs[LCOEF_WRANDIO];
2501 		coef_page	= ioc->params.lcoefs[LCOEF_WPAGE];
2502 		break;
2503 	default:
2504 		goto out;
2505 	}
2506 
2507 	if (iocg->cursor) {
2508 		seek_pages = abs(bio->bi_iter.bi_sector - iocg->cursor);
2509 		seek_pages >>= IOC_SECT_TO_PAGE_SHIFT;
2510 	}
2511 
2512 	if (!is_merge) {
2513 		if (seek_pages > LCOEF_RANDIO_PAGES) {
2514 			cost += coef_randio;
2515 		} else {
2516 			cost += coef_seqio;
2517 		}
2518 	}
2519 	cost += pages * coef_page;
2520 out:
2521 	*costp = cost;
2522 }
2523 
2524 static u64 calc_vtime_cost(struct bio *bio, struct ioc_gq *iocg, bool is_merge)
2525 {
2526 	u64 cost;
2527 
2528 	calc_vtime_cost_builtin(bio, iocg, is_merge, &cost);
2529 	return cost;
2530 }
2531 
2532 static void calc_size_vtime_cost_builtin(struct request *rq, struct ioc *ioc,
2533 					 u64 *costp)
2534 {
2535 	unsigned int pages = blk_rq_stats_sectors(rq) >> IOC_SECT_TO_PAGE_SHIFT;
2536 
2537 	switch (req_op(rq)) {
2538 	case REQ_OP_READ:
2539 		*costp = pages * ioc->params.lcoefs[LCOEF_RPAGE];
2540 		break;
2541 	case REQ_OP_WRITE:
2542 		*costp = pages * ioc->params.lcoefs[LCOEF_WPAGE];
2543 		break;
2544 	default:
2545 		*costp = 0;
2546 	}
2547 }
2548 
2549 static u64 calc_size_vtime_cost(struct request *rq, struct ioc *ioc)
2550 {
2551 	u64 cost;
2552 
2553 	calc_size_vtime_cost_builtin(rq, ioc, &cost);
2554 	return cost;
2555 }
2556 
2557 static void ioc_rqos_throttle(struct rq_qos *rqos, struct bio *bio)
2558 {
2559 	struct blkcg_gq *blkg = bio->bi_blkg;
2560 	struct ioc *ioc = rqos_to_ioc(rqos);
2561 	struct ioc_gq *iocg = blkg_to_iocg(blkg);
2562 	struct ioc_now now;
2563 	struct iocg_wait wait;
2564 	u64 abs_cost, cost, vtime;
2565 	bool use_debt, ioc_locked;
2566 	unsigned long flags;
2567 
2568 	/* bypass IOs if disabled, still initializing, or for root cgroup */
2569 	if (!ioc->enabled || !iocg || !iocg->level)
2570 		return;
2571 
2572 	/* calculate the absolute vtime cost */
2573 	abs_cost = calc_vtime_cost(bio, iocg, false);
2574 	if (!abs_cost)
2575 		return;
2576 
2577 	if (!iocg_activate(iocg, &now))
2578 		return;
2579 
2580 	iocg->cursor = bio_end_sector(bio);
2581 	vtime = atomic64_read(&iocg->vtime);
2582 	cost = adjust_inuse_and_calc_cost(iocg, vtime, abs_cost, &now);
2583 
2584 	/*
2585 	 * If no one's waiting and within budget, issue right away.  The
2586 	 * tests are racy but the races aren't systemic - we only miss once
2587 	 * in a while which is fine.
2588 	 */
2589 	if (!waitqueue_active(&iocg->waitq) && !iocg->abs_vdebt &&
2590 	    time_before_eq64(vtime + cost, now.vnow)) {
2591 		iocg_commit_bio(iocg, bio, abs_cost, cost);
2592 		return;
2593 	}
2594 
2595 	/*
2596 	 * We're over budget. This can be handled in two ways. IOs which may
2597 	 * cause priority inversions are punted to @ioc->aux_iocg and charged as
2598 	 * debt. Otherwise, the issuer is blocked on @iocg->waitq. Debt handling
2599 	 * requires @ioc->lock, waitq handling @iocg->waitq.lock. Determine
2600 	 * whether debt handling is needed and acquire locks accordingly.
2601 	 */
2602 	use_debt = bio_issue_as_root_blkg(bio) || fatal_signal_pending(current);
2603 	ioc_locked = use_debt || READ_ONCE(iocg->abs_vdebt);
2604 retry_lock:
2605 	iocg_lock(iocg, ioc_locked, &flags);
2606 
2607 	/*
2608 	 * @iocg must stay activated for debt and waitq handling. Deactivation
2609 	 * is synchronized against both ioc->lock and waitq.lock and we won't
2610 	 * get deactivated as long as we're waiting or has debt, so we're good
2611 	 * if we're activated here. In the unlikely cases that we aren't, just
2612 	 * issue the IO.
2613 	 */
2614 	if (unlikely(list_empty(&iocg->active_list))) {
2615 		iocg_unlock(iocg, ioc_locked, &flags);
2616 		iocg_commit_bio(iocg, bio, abs_cost, cost);
2617 		return;
2618 	}
2619 
2620 	/*
2621 	 * We're over budget. If @bio has to be issued regardless, remember
2622 	 * the abs_cost instead of advancing vtime. iocg_kick_waitq() will pay
2623 	 * off the debt before waking more IOs.
2624 	 *
2625 	 * This way, the debt is continuously paid off each period with the
2626 	 * actual budget available to the cgroup. If we just wound vtime, we
2627 	 * would incorrectly use the current hw_inuse for the entire amount
2628 	 * which, for example, can lead to the cgroup staying blocked for a
2629 	 * long time even with substantially raised hw_inuse.
2630 	 *
2631 	 * An iocg with vdebt should stay online so that the timer can keep
2632 	 * deducting its vdebt and [de]activate use_delay mechanism
2633 	 * accordingly. We don't want to race against the timer trying to
2634 	 * clear them and leave @iocg inactive w/ dangling use_delay heavily
2635 	 * penalizing the cgroup and its descendants.
2636 	 */
2637 	if (use_debt) {
2638 		iocg_incur_debt(iocg, abs_cost, &now);
2639 		if (iocg_kick_delay(iocg, &now))
2640 			blkcg_schedule_throttle(rqos->q,
2641 					(bio->bi_opf & REQ_SWAP) == REQ_SWAP);
2642 		iocg_unlock(iocg, ioc_locked, &flags);
2643 		return;
2644 	}
2645 
2646 	/* guarantee that iocgs w/ waiters have maximum inuse */
2647 	if (!iocg->abs_vdebt && iocg->inuse != iocg->active) {
2648 		if (!ioc_locked) {
2649 			iocg_unlock(iocg, false, &flags);
2650 			ioc_locked = true;
2651 			goto retry_lock;
2652 		}
2653 		propagate_weights(iocg, iocg->active, iocg->active, true,
2654 				  &now);
2655 	}
2656 
2657 	/*
2658 	 * Append self to the waitq and schedule the wakeup timer if we're
2659 	 * the first waiter.  The timer duration is calculated based on the
2660 	 * current vrate.  vtime and hweight changes can make it too short
2661 	 * or too long.  Each wait entry records the absolute cost it's
2662 	 * waiting for to allow re-evaluation using a custom wait entry.
2663 	 *
2664 	 * If too short, the timer simply reschedules itself.  If too long,
2665 	 * the period timer will notice and trigger wakeups.
2666 	 *
2667 	 * All waiters are on iocg->waitq and the wait states are
2668 	 * synchronized using waitq.lock.
2669 	 */
2670 	init_waitqueue_func_entry(&wait.wait, iocg_wake_fn);
2671 	wait.wait.private = current;
2672 	wait.bio = bio;
2673 	wait.abs_cost = abs_cost;
2674 	wait.committed = false;	/* will be set true by waker */
2675 
2676 	__add_wait_queue_entry_tail(&iocg->waitq, &wait.wait);
2677 	iocg_kick_waitq(iocg, ioc_locked, &now);
2678 
2679 	iocg_unlock(iocg, ioc_locked, &flags);
2680 
2681 	while (true) {
2682 		set_current_state(TASK_UNINTERRUPTIBLE);
2683 		if (wait.committed)
2684 			break;
2685 		io_schedule();
2686 	}
2687 
2688 	/* waker already committed us, proceed */
2689 	finish_wait(&iocg->waitq, &wait.wait);
2690 }
2691 
2692 static void ioc_rqos_merge(struct rq_qos *rqos, struct request *rq,
2693 			   struct bio *bio)
2694 {
2695 	struct ioc_gq *iocg = blkg_to_iocg(bio->bi_blkg);
2696 	struct ioc *ioc = rqos_to_ioc(rqos);
2697 	sector_t bio_end = bio_end_sector(bio);
2698 	struct ioc_now now;
2699 	u64 vtime, abs_cost, cost;
2700 	unsigned long flags;
2701 
2702 	/* bypass if disabled, still initializing, or for root cgroup */
2703 	if (!ioc->enabled || !iocg || !iocg->level)
2704 		return;
2705 
2706 	abs_cost = calc_vtime_cost(bio, iocg, true);
2707 	if (!abs_cost)
2708 		return;
2709 
2710 	ioc_now(ioc, &now);
2711 
2712 	vtime = atomic64_read(&iocg->vtime);
2713 	cost = adjust_inuse_and_calc_cost(iocg, vtime, abs_cost, &now);
2714 
2715 	/* update cursor if backmerging into the request at the cursor */
2716 	if (blk_rq_pos(rq) < bio_end &&
2717 	    blk_rq_pos(rq) + blk_rq_sectors(rq) == iocg->cursor)
2718 		iocg->cursor = bio_end;
2719 
2720 	/*
2721 	 * Charge if there's enough vtime budget and the existing request has
2722 	 * cost assigned.
2723 	 */
2724 	if (rq->bio && rq->bio->bi_iocost_cost &&
2725 	    time_before_eq64(atomic64_read(&iocg->vtime) + cost, now.vnow)) {
2726 		iocg_commit_bio(iocg, bio, abs_cost, cost);
2727 		return;
2728 	}
2729 
2730 	/*
2731 	 * Otherwise, account it as debt if @iocg is online, which it should
2732 	 * be for the vast majority of cases. See debt handling in
2733 	 * ioc_rqos_throttle() for details.
2734 	 */
2735 	spin_lock_irqsave(&ioc->lock, flags);
2736 	spin_lock(&iocg->waitq.lock);
2737 
2738 	if (likely(!list_empty(&iocg->active_list))) {
2739 		iocg_incur_debt(iocg, abs_cost, &now);
2740 		if (iocg_kick_delay(iocg, &now))
2741 			blkcg_schedule_throttle(rqos->q,
2742 					(bio->bi_opf & REQ_SWAP) == REQ_SWAP);
2743 	} else {
2744 		iocg_commit_bio(iocg, bio, abs_cost, cost);
2745 	}
2746 
2747 	spin_unlock(&iocg->waitq.lock);
2748 	spin_unlock_irqrestore(&ioc->lock, flags);
2749 }
2750 
2751 static void ioc_rqos_done_bio(struct rq_qos *rqos, struct bio *bio)
2752 {
2753 	struct ioc_gq *iocg = blkg_to_iocg(bio->bi_blkg);
2754 
2755 	if (iocg && bio->bi_iocost_cost)
2756 		atomic64_add(bio->bi_iocost_cost, &iocg->done_vtime);
2757 }
2758 
2759 static void ioc_rqos_done(struct rq_qos *rqos, struct request *rq)
2760 {
2761 	struct ioc *ioc = rqos_to_ioc(rqos);
2762 	struct ioc_pcpu_stat *ccs;
2763 	u64 on_q_ns, rq_wait_ns, size_nsec;
2764 	int pidx, rw;
2765 
2766 	if (!ioc->enabled || !rq->alloc_time_ns || !rq->start_time_ns)
2767 		return;
2768 
2769 	switch (req_op(rq) & REQ_OP_MASK) {
2770 	case REQ_OP_READ:
2771 		pidx = QOS_RLAT;
2772 		rw = READ;
2773 		break;
2774 	case REQ_OP_WRITE:
2775 		pidx = QOS_WLAT;
2776 		rw = WRITE;
2777 		break;
2778 	default:
2779 		return;
2780 	}
2781 
2782 	on_q_ns = ktime_get_ns() - rq->alloc_time_ns;
2783 	rq_wait_ns = rq->start_time_ns - rq->alloc_time_ns;
2784 	size_nsec = div64_u64(calc_size_vtime_cost(rq, ioc), VTIME_PER_NSEC);
2785 
2786 	ccs = get_cpu_ptr(ioc->pcpu_stat);
2787 
2788 	if (on_q_ns <= size_nsec ||
2789 	    on_q_ns - size_nsec <= ioc->params.qos[pidx] * NSEC_PER_USEC)
2790 		local_inc(&ccs->missed[rw].nr_met);
2791 	else
2792 		local_inc(&ccs->missed[rw].nr_missed);
2793 
2794 	local64_add(rq_wait_ns, &ccs->rq_wait_ns);
2795 
2796 	put_cpu_ptr(ccs);
2797 }
2798 
2799 static void ioc_rqos_queue_depth_changed(struct rq_qos *rqos)
2800 {
2801 	struct ioc *ioc = rqos_to_ioc(rqos);
2802 
2803 	spin_lock_irq(&ioc->lock);
2804 	ioc_refresh_params(ioc, false);
2805 	spin_unlock_irq(&ioc->lock);
2806 }
2807 
2808 static void ioc_rqos_exit(struct rq_qos *rqos)
2809 {
2810 	struct ioc *ioc = rqos_to_ioc(rqos);
2811 
2812 	blkcg_deactivate_policy(rqos->q, &blkcg_policy_iocost);
2813 
2814 	spin_lock_irq(&ioc->lock);
2815 	ioc->running = IOC_STOP;
2816 	spin_unlock_irq(&ioc->lock);
2817 
2818 	del_timer_sync(&ioc->timer);
2819 	free_percpu(ioc->pcpu_stat);
2820 	kfree(ioc);
2821 }
2822 
2823 static struct rq_qos_ops ioc_rqos_ops = {
2824 	.throttle = ioc_rqos_throttle,
2825 	.merge = ioc_rqos_merge,
2826 	.done_bio = ioc_rqos_done_bio,
2827 	.done = ioc_rqos_done,
2828 	.queue_depth_changed = ioc_rqos_queue_depth_changed,
2829 	.exit = ioc_rqos_exit,
2830 };
2831 
2832 static int blk_iocost_init(struct request_queue *q)
2833 {
2834 	struct ioc *ioc;
2835 	struct rq_qos *rqos;
2836 	int i, cpu, ret;
2837 
2838 	ioc = kzalloc(sizeof(*ioc), GFP_KERNEL);
2839 	if (!ioc)
2840 		return -ENOMEM;
2841 
2842 	ioc->pcpu_stat = alloc_percpu(struct ioc_pcpu_stat);
2843 	if (!ioc->pcpu_stat) {
2844 		kfree(ioc);
2845 		return -ENOMEM;
2846 	}
2847 
2848 	for_each_possible_cpu(cpu) {
2849 		struct ioc_pcpu_stat *ccs = per_cpu_ptr(ioc->pcpu_stat, cpu);
2850 
2851 		for (i = 0; i < ARRAY_SIZE(ccs->missed); i++) {
2852 			local_set(&ccs->missed[i].nr_met, 0);
2853 			local_set(&ccs->missed[i].nr_missed, 0);
2854 		}
2855 		local64_set(&ccs->rq_wait_ns, 0);
2856 	}
2857 
2858 	rqos = &ioc->rqos;
2859 	rqos->id = RQ_QOS_COST;
2860 	rqos->ops = &ioc_rqos_ops;
2861 	rqos->q = q;
2862 
2863 	spin_lock_init(&ioc->lock);
2864 	timer_setup(&ioc->timer, ioc_timer_fn, 0);
2865 	INIT_LIST_HEAD(&ioc->active_iocgs);
2866 
2867 	ioc->running = IOC_IDLE;
2868 	ioc->vtime_base_rate = VTIME_PER_USEC;
2869 	atomic64_set(&ioc->vtime_rate, VTIME_PER_USEC);
2870 	seqcount_spinlock_init(&ioc->period_seqcount, &ioc->lock);
2871 	ioc->period_at = ktime_to_us(ktime_get());
2872 	atomic64_set(&ioc->cur_period, 0);
2873 	atomic_set(&ioc->hweight_gen, 0);
2874 
2875 	spin_lock_irq(&ioc->lock);
2876 	ioc->autop_idx = AUTOP_INVALID;
2877 	ioc_refresh_params(ioc, true);
2878 	spin_unlock_irq(&ioc->lock);
2879 
2880 	/*
2881 	 * rqos must be added before activation to allow iocg_pd_init() to
2882 	 * lookup the ioc from q. This means that the rqos methods may get
2883 	 * called before policy activation completion, can't assume that the
2884 	 * target bio has an iocg associated and need to test for NULL iocg.
2885 	 */
2886 	rq_qos_add(q, rqos);
2887 	ret = blkcg_activate_policy(q, &blkcg_policy_iocost);
2888 	if (ret) {
2889 		rq_qos_del(q, rqos);
2890 		free_percpu(ioc->pcpu_stat);
2891 		kfree(ioc);
2892 		return ret;
2893 	}
2894 	return 0;
2895 }
2896 
2897 static struct blkcg_policy_data *ioc_cpd_alloc(gfp_t gfp)
2898 {
2899 	struct ioc_cgrp *iocc;
2900 
2901 	iocc = kzalloc(sizeof(struct ioc_cgrp), gfp);
2902 	if (!iocc)
2903 		return NULL;
2904 
2905 	iocc->dfl_weight = CGROUP_WEIGHT_DFL * WEIGHT_ONE;
2906 	return &iocc->cpd;
2907 }
2908 
2909 static void ioc_cpd_free(struct blkcg_policy_data *cpd)
2910 {
2911 	kfree(container_of(cpd, struct ioc_cgrp, cpd));
2912 }
2913 
2914 static struct blkg_policy_data *ioc_pd_alloc(gfp_t gfp, struct request_queue *q,
2915 					     struct blkcg *blkcg)
2916 {
2917 	int levels = blkcg->css.cgroup->level + 1;
2918 	struct ioc_gq *iocg;
2919 
2920 	iocg = kzalloc_node(struct_size(iocg, ancestors, levels), gfp, q->node);
2921 	if (!iocg)
2922 		return NULL;
2923 
2924 	iocg->pcpu_stat = alloc_percpu_gfp(struct iocg_pcpu_stat, gfp);
2925 	if (!iocg->pcpu_stat) {
2926 		kfree(iocg);
2927 		return NULL;
2928 	}
2929 
2930 	return &iocg->pd;
2931 }
2932 
2933 static void ioc_pd_init(struct blkg_policy_data *pd)
2934 {
2935 	struct ioc_gq *iocg = pd_to_iocg(pd);
2936 	struct blkcg_gq *blkg = pd_to_blkg(&iocg->pd);
2937 	struct ioc *ioc = q_to_ioc(blkg->q);
2938 	struct ioc_now now;
2939 	struct blkcg_gq *tblkg;
2940 	unsigned long flags;
2941 
2942 	ioc_now(ioc, &now);
2943 
2944 	iocg->ioc = ioc;
2945 	atomic64_set(&iocg->vtime, now.vnow);
2946 	atomic64_set(&iocg->done_vtime, now.vnow);
2947 	atomic64_set(&iocg->active_period, atomic64_read(&ioc->cur_period));
2948 	INIT_LIST_HEAD(&iocg->active_list);
2949 	INIT_LIST_HEAD(&iocg->walk_list);
2950 	INIT_LIST_HEAD(&iocg->surplus_list);
2951 	iocg->hweight_active = WEIGHT_ONE;
2952 	iocg->hweight_inuse = WEIGHT_ONE;
2953 
2954 	init_waitqueue_head(&iocg->waitq);
2955 	hrtimer_init(&iocg->waitq_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
2956 	iocg->waitq_timer.function = iocg_waitq_timer_fn;
2957 
2958 	iocg->level = blkg->blkcg->css.cgroup->level;
2959 
2960 	for (tblkg = blkg; tblkg; tblkg = tblkg->parent) {
2961 		struct ioc_gq *tiocg = blkg_to_iocg(tblkg);
2962 		iocg->ancestors[tiocg->level] = tiocg;
2963 	}
2964 
2965 	spin_lock_irqsave(&ioc->lock, flags);
2966 	weight_updated(iocg, &now);
2967 	spin_unlock_irqrestore(&ioc->lock, flags);
2968 }
2969 
2970 static void ioc_pd_free(struct blkg_policy_data *pd)
2971 {
2972 	struct ioc_gq *iocg = pd_to_iocg(pd);
2973 	struct ioc *ioc = iocg->ioc;
2974 	unsigned long flags;
2975 
2976 	if (ioc) {
2977 		spin_lock_irqsave(&ioc->lock, flags);
2978 
2979 		if (!list_empty(&iocg->active_list)) {
2980 			struct ioc_now now;
2981 
2982 			ioc_now(ioc, &now);
2983 			propagate_weights(iocg, 0, 0, false, &now);
2984 			list_del_init(&iocg->active_list);
2985 		}
2986 
2987 		WARN_ON_ONCE(!list_empty(&iocg->walk_list));
2988 		WARN_ON_ONCE(!list_empty(&iocg->surplus_list));
2989 
2990 		spin_unlock_irqrestore(&ioc->lock, flags);
2991 
2992 		hrtimer_cancel(&iocg->waitq_timer);
2993 	}
2994 	free_percpu(iocg->pcpu_stat);
2995 	kfree(iocg);
2996 }
2997 
2998 static bool ioc_pd_stat(struct blkg_policy_data *pd, struct seq_file *s)
2999 {
3000 	struct ioc_gq *iocg = pd_to_iocg(pd);
3001 	struct ioc *ioc = iocg->ioc;
3002 
3003 	if (!ioc->enabled)
3004 		return false;
3005 
3006 	if (iocg->level == 0) {
3007 		unsigned vp10k = DIV64_U64_ROUND_CLOSEST(
3008 			ioc->vtime_base_rate * 10000,
3009 			VTIME_PER_USEC);
3010 		seq_printf(s, " cost.vrate=%u.%02u", vp10k / 100, vp10k % 100);
3011 	}
3012 
3013 	seq_printf(s, " cost.usage=%llu", iocg->last_stat.usage_us);
3014 
3015 	if (blkcg_debug_stats)
3016 		seq_printf(s, " cost.wait=%llu cost.indebt=%llu cost.indelay=%llu",
3017 			iocg->last_stat.wait_us,
3018 			iocg->last_stat.indebt_us,
3019 			iocg->last_stat.indelay_us);
3020 	return true;
3021 }
3022 
3023 static u64 ioc_weight_prfill(struct seq_file *sf, struct blkg_policy_data *pd,
3024 			     int off)
3025 {
3026 	const char *dname = blkg_dev_name(pd->blkg);
3027 	struct ioc_gq *iocg = pd_to_iocg(pd);
3028 
3029 	if (dname && iocg->cfg_weight)
3030 		seq_printf(sf, "%s %u\n", dname, iocg->cfg_weight / WEIGHT_ONE);
3031 	return 0;
3032 }
3033 
3034 
3035 static int ioc_weight_show(struct seq_file *sf, void *v)
3036 {
3037 	struct blkcg *blkcg = css_to_blkcg(seq_css(sf));
3038 	struct ioc_cgrp *iocc = blkcg_to_iocc(blkcg);
3039 
3040 	seq_printf(sf, "default %u\n", iocc->dfl_weight / WEIGHT_ONE);
3041 	blkcg_print_blkgs(sf, blkcg, ioc_weight_prfill,
3042 			  &blkcg_policy_iocost, seq_cft(sf)->private, false);
3043 	return 0;
3044 }
3045 
3046 static ssize_t ioc_weight_write(struct kernfs_open_file *of, char *buf,
3047 				size_t nbytes, loff_t off)
3048 {
3049 	struct blkcg *blkcg = css_to_blkcg(of_css(of));
3050 	struct ioc_cgrp *iocc = blkcg_to_iocc(blkcg);
3051 	struct blkg_conf_ctx ctx;
3052 	struct ioc_now now;
3053 	struct ioc_gq *iocg;
3054 	u32 v;
3055 	int ret;
3056 
3057 	if (!strchr(buf, ':')) {
3058 		struct blkcg_gq *blkg;
3059 
3060 		if (!sscanf(buf, "default %u", &v) && !sscanf(buf, "%u", &v))
3061 			return -EINVAL;
3062 
3063 		if (v < CGROUP_WEIGHT_MIN || v > CGROUP_WEIGHT_MAX)
3064 			return -EINVAL;
3065 
3066 		spin_lock_irq(&blkcg->lock);
3067 		iocc->dfl_weight = v * WEIGHT_ONE;
3068 		hlist_for_each_entry(blkg, &blkcg->blkg_list, blkcg_node) {
3069 			struct ioc_gq *iocg = blkg_to_iocg(blkg);
3070 
3071 			if (iocg) {
3072 				spin_lock(&iocg->ioc->lock);
3073 				ioc_now(iocg->ioc, &now);
3074 				weight_updated(iocg, &now);
3075 				spin_unlock(&iocg->ioc->lock);
3076 			}
3077 		}
3078 		spin_unlock_irq(&blkcg->lock);
3079 
3080 		return nbytes;
3081 	}
3082 
3083 	ret = blkg_conf_prep(blkcg, &blkcg_policy_iocost, buf, &ctx);
3084 	if (ret)
3085 		return ret;
3086 
3087 	iocg = blkg_to_iocg(ctx.blkg);
3088 
3089 	if (!strncmp(ctx.body, "default", 7)) {
3090 		v = 0;
3091 	} else {
3092 		if (!sscanf(ctx.body, "%u", &v))
3093 			goto einval;
3094 		if (v < CGROUP_WEIGHT_MIN || v > CGROUP_WEIGHT_MAX)
3095 			goto einval;
3096 	}
3097 
3098 	spin_lock(&iocg->ioc->lock);
3099 	iocg->cfg_weight = v * WEIGHT_ONE;
3100 	ioc_now(iocg->ioc, &now);
3101 	weight_updated(iocg, &now);
3102 	spin_unlock(&iocg->ioc->lock);
3103 
3104 	blkg_conf_finish(&ctx);
3105 	return nbytes;
3106 
3107 einval:
3108 	blkg_conf_finish(&ctx);
3109 	return -EINVAL;
3110 }
3111 
3112 static u64 ioc_qos_prfill(struct seq_file *sf, struct blkg_policy_data *pd,
3113 			  int off)
3114 {
3115 	const char *dname = blkg_dev_name(pd->blkg);
3116 	struct ioc *ioc = pd_to_iocg(pd)->ioc;
3117 
3118 	if (!dname)
3119 		return 0;
3120 
3121 	seq_printf(sf, "%s enable=%d ctrl=%s rpct=%u.%02u rlat=%u wpct=%u.%02u wlat=%u min=%u.%02u max=%u.%02u\n",
3122 		   dname, ioc->enabled, ioc->user_qos_params ? "user" : "auto",
3123 		   ioc->params.qos[QOS_RPPM] / 10000,
3124 		   ioc->params.qos[QOS_RPPM] % 10000 / 100,
3125 		   ioc->params.qos[QOS_RLAT],
3126 		   ioc->params.qos[QOS_WPPM] / 10000,
3127 		   ioc->params.qos[QOS_WPPM] % 10000 / 100,
3128 		   ioc->params.qos[QOS_WLAT],
3129 		   ioc->params.qos[QOS_MIN] / 10000,
3130 		   ioc->params.qos[QOS_MIN] % 10000 / 100,
3131 		   ioc->params.qos[QOS_MAX] / 10000,
3132 		   ioc->params.qos[QOS_MAX] % 10000 / 100);
3133 	return 0;
3134 }
3135 
3136 static int ioc_qos_show(struct seq_file *sf, void *v)
3137 {
3138 	struct blkcg *blkcg = css_to_blkcg(seq_css(sf));
3139 
3140 	blkcg_print_blkgs(sf, blkcg, ioc_qos_prfill,
3141 			  &blkcg_policy_iocost, seq_cft(sf)->private, false);
3142 	return 0;
3143 }
3144 
3145 static const match_table_t qos_ctrl_tokens = {
3146 	{ QOS_ENABLE,		"enable=%u"	},
3147 	{ QOS_CTRL,		"ctrl=%s"	},
3148 	{ NR_QOS_CTRL_PARAMS,	NULL		},
3149 };
3150 
3151 static const match_table_t qos_tokens = {
3152 	{ QOS_RPPM,		"rpct=%s"	},
3153 	{ QOS_RLAT,		"rlat=%u"	},
3154 	{ QOS_WPPM,		"wpct=%s"	},
3155 	{ QOS_WLAT,		"wlat=%u"	},
3156 	{ QOS_MIN,		"min=%s"	},
3157 	{ QOS_MAX,		"max=%s"	},
3158 	{ NR_QOS_PARAMS,	NULL		},
3159 };
3160 
3161 static ssize_t ioc_qos_write(struct kernfs_open_file *of, char *input,
3162 			     size_t nbytes, loff_t off)
3163 {
3164 	struct block_device *bdev;
3165 	struct ioc *ioc;
3166 	u32 qos[NR_QOS_PARAMS];
3167 	bool enable, user;
3168 	char *p;
3169 	int ret;
3170 
3171 	bdev = blkcg_conf_open_bdev(&input);
3172 	if (IS_ERR(bdev))
3173 		return PTR_ERR(bdev);
3174 
3175 	ioc = q_to_ioc(bdev_get_queue(bdev));
3176 	if (!ioc) {
3177 		ret = blk_iocost_init(bdev_get_queue(bdev));
3178 		if (ret)
3179 			goto err;
3180 		ioc = q_to_ioc(bdev_get_queue(bdev));
3181 	}
3182 
3183 	spin_lock_irq(&ioc->lock);
3184 	memcpy(qos, ioc->params.qos, sizeof(qos));
3185 	enable = ioc->enabled;
3186 	user = ioc->user_qos_params;
3187 	spin_unlock_irq(&ioc->lock);
3188 
3189 	while ((p = strsep(&input, " \t\n"))) {
3190 		substring_t args[MAX_OPT_ARGS];
3191 		char buf[32];
3192 		int tok;
3193 		s64 v;
3194 
3195 		if (!*p)
3196 			continue;
3197 
3198 		switch (match_token(p, qos_ctrl_tokens, args)) {
3199 		case QOS_ENABLE:
3200 			match_u64(&args[0], &v);
3201 			enable = v;
3202 			continue;
3203 		case QOS_CTRL:
3204 			match_strlcpy(buf, &args[0], sizeof(buf));
3205 			if (!strcmp(buf, "auto"))
3206 				user = false;
3207 			else if (!strcmp(buf, "user"))
3208 				user = true;
3209 			else
3210 				goto einval;
3211 			continue;
3212 		}
3213 
3214 		tok = match_token(p, qos_tokens, args);
3215 		switch (tok) {
3216 		case QOS_RPPM:
3217 		case QOS_WPPM:
3218 			if (match_strlcpy(buf, &args[0], sizeof(buf)) >=
3219 			    sizeof(buf))
3220 				goto einval;
3221 			if (cgroup_parse_float(buf, 2, &v))
3222 				goto einval;
3223 			if (v < 0 || v > 10000)
3224 				goto einval;
3225 			qos[tok] = v * 100;
3226 			break;
3227 		case QOS_RLAT:
3228 		case QOS_WLAT:
3229 			if (match_u64(&args[0], &v))
3230 				goto einval;
3231 			qos[tok] = v;
3232 			break;
3233 		case QOS_MIN:
3234 		case QOS_MAX:
3235 			if (match_strlcpy(buf, &args[0], sizeof(buf)) >=
3236 			    sizeof(buf))
3237 				goto einval;
3238 			if (cgroup_parse_float(buf, 2, &v))
3239 				goto einval;
3240 			if (v < 0)
3241 				goto einval;
3242 			qos[tok] = clamp_t(s64, v * 100,
3243 					   VRATE_MIN_PPM, VRATE_MAX_PPM);
3244 			break;
3245 		default:
3246 			goto einval;
3247 		}
3248 		user = true;
3249 	}
3250 
3251 	if (qos[QOS_MIN] > qos[QOS_MAX])
3252 		goto einval;
3253 
3254 	spin_lock_irq(&ioc->lock);
3255 
3256 	if (enable) {
3257 		blk_stat_enable_accounting(ioc->rqos.q);
3258 		blk_queue_flag_set(QUEUE_FLAG_RQ_ALLOC_TIME, ioc->rqos.q);
3259 		ioc->enabled = true;
3260 	} else {
3261 		blk_queue_flag_clear(QUEUE_FLAG_RQ_ALLOC_TIME, ioc->rqos.q);
3262 		ioc->enabled = false;
3263 	}
3264 
3265 	if (user) {
3266 		memcpy(ioc->params.qos, qos, sizeof(qos));
3267 		ioc->user_qos_params = true;
3268 	} else {
3269 		ioc->user_qos_params = false;
3270 	}
3271 
3272 	ioc_refresh_params(ioc, true);
3273 	spin_unlock_irq(&ioc->lock);
3274 
3275 	blkdev_put_no_open(bdev);
3276 	return nbytes;
3277 einval:
3278 	ret = -EINVAL;
3279 err:
3280 	blkdev_put_no_open(bdev);
3281 	return ret;
3282 }
3283 
3284 static u64 ioc_cost_model_prfill(struct seq_file *sf,
3285 				 struct blkg_policy_data *pd, int off)
3286 {
3287 	const char *dname = blkg_dev_name(pd->blkg);
3288 	struct ioc *ioc = pd_to_iocg(pd)->ioc;
3289 	u64 *u = ioc->params.i_lcoefs;
3290 
3291 	if (!dname)
3292 		return 0;
3293 
3294 	seq_printf(sf, "%s ctrl=%s model=linear "
3295 		   "rbps=%llu rseqiops=%llu rrandiops=%llu "
3296 		   "wbps=%llu wseqiops=%llu wrandiops=%llu\n",
3297 		   dname, ioc->user_cost_model ? "user" : "auto",
3298 		   u[I_LCOEF_RBPS], u[I_LCOEF_RSEQIOPS], u[I_LCOEF_RRANDIOPS],
3299 		   u[I_LCOEF_WBPS], u[I_LCOEF_WSEQIOPS], u[I_LCOEF_WRANDIOPS]);
3300 	return 0;
3301 }
3302 
3303 static int ioc_cost_model_show(struct seq_file *sf, void *v)
3304 {
3305 	struct blkcg *blkcg = css_to_blkcg(seq_css(sf));
3306 
3307 	blkcg_print_blkgs(sf, blkcg, ioc_cost_model_prfill,
3308 			  &blkcg_policy_iocost, seq_cft(sf)->private, false);
3309 	return 0;
3310 }
3311 
3312 static const match_table_t cost_ctrl_tokens = {
3313 	{ COST_CTRL,		"ctrl=%s"	},
3314 	{ COST_MODEL,		"model=%s"	},
3315 	{ NR_COST_CTRL_PARAMS,	NULL		},
3316 };
3317 
3318 static const match_table_t i_lcoef_tokens = {
3319 	{ I_LCOEF_RBPS,		"rbps=%u"	},
3320 	{ I_LCOEF_RSEQIOPS,	"rseqiops=%u"	},
3321 	{ I_LCOEF_RRANDIOPS,	"rrandiops=%u"	},
3322 	{ I_LCOEF_WBPS,		"wbps=%u"	},
3323 	{ I_LCOEF_WSEQIOPS,	"wseqiops=%u"	},
3324 	{ I_LCOEF_WRANDIOPS,	"wrandiops=%u"	},
3325 	{ NR_I_LCOEFS,		NULL		},
3326 };
3327 
3328 static ssize_t ioc_cost_model_write(struct kernfs_open_file *of, char *input,
3329 				    size_t nbytes, loff_t off)
3330 {
3331 	struct block_device *bdev;
3332 	struct ioc *ioc;
3333 	u64 u[NR_I_LCOEFS];
3334 	bool user;
3335 	char *p;
3336 	int ret;
3337 
3338 	bdev = blkcg_conf_open_bdev(&input);
3339 	if (IS_ERR(bdev))
3340 		return PTR_ERR(bdev);
3341 
3342 	ioc = q_to_ioc(bdev_get_queue(bdev));
3343 	if (!ioc) {
3344 		ret = blk_iocost_init(bdev_get_queue(bdev));
3345 		if (ret)
3346 			goto err;
3347 		ioc = q_to_ioc(bdev_get_queue(bdev));
3348 	}
3349 
3350 	spin_lock_irq(&ioc->lock);
3351 	memcpy(u, ioc->params.i_lcoefs, sizeof(u));
3352 	user = ioc->user_cost_model;
3353 	spin_unlock_irq(&ioc->lock);
3354 
3355 	while ((p = strsep(&input, " \t\n"))) {
3356 		substring_t args[MAX_OPT_ARGS];
3357 		char buf[32];
3358 		int tok;
3359 		u64 v;
3360 
3361 		if (!*p)
3362 			continue;
3363 
3364 		switch (match_token(p, cost_ctrl_tokens, args)) {
3365 		case COST_CTRL:
3366 			match_strlcpy(buf, &args[0], sizeof(buf));
3367 			if (!strcmp(buf, "auto"))
3368 				user = false;
3369 			else if (!strcmp(buf, "user"))
3370 				user = true;
3371 			else
3372 				goto einval;
3373 			continue;
3374 		case COST_MODEL:
3375 			match_strlcpy(buf, &args[0], sizeof(buf));
3376 			if (strcmp(buf, "linear"))
3377 				goto einval;
3378 			continue;
3379 		}
3380 
3381 		tok = match_token(p, i_lcoef_tokens, args);
3382 		if (tok == NR_I_LCOEFS)
3383 			goto einval;
3384 		if (match_u64(&args[0], &v))
3385 			goto einval;
3386 		u[tok] = v;
3387 		user = true;
3388 	}
3389 
3390 	spin_lock_irq(&ioc->lock);
3391 	if (user) {
3392 		memcpy(ioc->params.i_lcoefs, u, sizeof(u));
3393 		ioc->user_cost_model = true;
3394 	} else {
3395 		ioc->user_cost_model = false;
3396 	}
3397 	ioc_refresh_params(ioc, true);
3398 	spin_unlock_irq(&ioc->lock);
3399 
3400 	blkdev_put_no_open(bdev);
3401 	return nbytes;
3402 
3403 einval:
3404 	ret = -EINVAL;
3405 err:
3406 	blkdev_put_no_open(bdev);
3407 	return ret;
3408 }
3409 
3410 static struct cftype ioc_files[] = {
3411 	{
3412 		.name = "weight",
3413 		.flags = CFTYPE_NOT_ON_ROOT,
3414 		.seq_show = ioc_weight_show,
3415 		.write = ioc_weight_write,
3416 	},
3417 	{
3418 		.name = "cost.qos",
3419 		.flags = CFTYPE_ONLY_ON_ROOT,
3420 		.seq_show = ioc_qos_show,
3421 		.write = ioc_qos_write,
3422 	},
3423 	{
3424 		.name = "cost.model",
3425 		.flags = CFTYPE_ONLY_ON_ROOT,
3426 		.seq_show = ioc_cost_model_show,
3427 		.write = ioc_cost_model_write,
3428 	},
3429 	{}
3430 };
3431 
3432 static struct blkcg_policy blkcg_policy_iocost = {
3433 	.dfl_cftypes	= ioc_files,
3434 	.cpd_alloc_fn	= ioc_cpd_alloc,
3435 	.cpd_free_fn	= ioc_cpd_free,
3436 	.pd_alloc_fn	= ioc_pd_alloc,
3437 	.pd_init_fn	= ioc_pd_init,
3438 	.pd_free_fn	= ioc_pd_free,
3439 	.pd_stat_fn	= ioc_pd_stat,
3440 };
3441 
3442 static int __init ioc_init(void)
3443 {
3444 	return blkcg_policy_register(&blkcg_policy_iocost);
3445 }
3446 
3447 static void __exit ioc_exit(void)
3448 {
3449 	blkcg_policy_unregister(&blkcg_policy_iocost);
3450 }
3451 
3452 module_init(ioc_init);
3453 module_exit(ioc_exit);
3454