xref: /linux/block/blk-iocost.c (revision 1c07425e902cd3137961c3d45b4271bf8a9b8eb9)
1 /* SPDX-License-Identifier: GPL-2.0
2  *
3  * IO cost model based controller.
4  *
5  * Copyright (C) 2019 Tejun Heo <tj@kernel.org>
6  * Copyright (C) 2019 Andy Newell <newella@fb.com>
7  * Copyright (C) 2019 Facebook
8  *
9  * One challenge of controlling IO resources is the lack of trivially
10  * observable cost metric.  This is distinguished from CPU and memory where
11  * wallclock time and the number of bytes can serve as accurate enough
12  * approximations.
13  *
14  * Bandwidth and iops are the most commonly used metrics for IO devices but
15  * depending on the type and specifics of the device, different IO patterns
16  * easily lead to multiple orders of magnitude variations rendering them
17  * useless for the purpose of IO capacity distribution.  While on-device
18  * time, with a lot of clutches, could serve as a useful approximation for
19  * non-queued rotational devices, this is no longer viable with modern
20  * devices, even the rotational ones.
21  *
22  * While there is no cost metric we can trivially observe, it isn't a
23  * complete mystery.  For example, on a rotational device, seek cost
24  * dominates while a contiguous transfer contributes a smaller amount
25  * proportional to the size.  If we can characterize at least the relative
26  * costs of these different types of IOs, it should be possible to
27  * implement a reasonable work-conserving proportional IO resource
28  * distribution.
29  *
30  * 1. IO Cost Model
31  *
32  * IO cost model estimates the cost of an IO given its basic parameters and
33  * history (e.g. the end sector of the last IO).  The cost is measured in
34  * device time.  If a given IO is estimated to cost 10ms, the device should
35  * be able to process ~100 of those IOs in a second.
36  *
37  * Currently, there's only one builtin cost model - linear.  Each IO is
38  * classified as sequential or random and given a base cost accordingly.
39  * On top of that, a size cost proportional to the length of the IO is
40  * added.  While simple, this model captures the operational
41  * characteristics of a wide varienty of devices well enough.  Default
42  * parameters for several different classes of devices are provided and the
43  * parameters can be configured from userspace via
44  * /sys/fs/cgroup/io.cost.model.
45  *
46  * If needed, tools/cgroup/iocost_coef_gen.py can be used to generate
47  * device-specific coefficients.
48  *
49  * 2. Control Strategy
50  *
51  * The device virtual time (vtime) is used as the primary control metric.
52  * The control strategy is composed of the following three parts.
53  *
54  * 2-1. Vtime Distribution
55  *
56  * When a cgroup becomes active in terms of IOs, its hierarchical share is
57  * calculated.  Please consider the following hierarchy where the numbers
58  * inside parentheses denote the configured weights.
59  *
60  *           root
61  *         /       \
62  *      A (w:100)  B (w:300)
63  *      /       \
64  *  A0 (w:100)  A1 (w:100)
65  *
66  * If B is idle and only A0 and A1 are actively issuing IOs, as the two are
67  * of equal weight, each gets 50% share.  If then B starts issuing IOs, B
68  * gets 300/(100+300) or 75% share, and A0 and A1 equally splits the rest,
69  * 12.5% each.  The distribution mechanism only cares about these flattened
70  * shares.  They're called hweights (hierarchical weights) and always add
71  * upto 1 (WEIGHT_ONE).
72  *
73  * A given cgroup's vtime runs slower in inverse proportion to its hweight.
74  * For example, with 12.5% weight, A0's time runs 8 times slower (100/12.5)
75  * against the device vtime - an IO which takes 10ms on the underlying
76  * device is considered to take 80ms on A0.
77  *
78  * This constitutes the basis of IO capacity distribution.  Each cgroup's
79  * vtime is running at a rate determined by its hweight.  A cgroup tracks
80  * the vtime consumed by past IOs and can issue a new IO if doing so
81  * wouldn't outrun the current device vtime.  Otherwise, the IO is
82  * suspended until the vtime has progressed enough to cover it.
83  *
84  * 2-2. Vrate Adjustment
85  *
86  * It's unrealistic to expect the cost model to be perfect.  There are too
87  * many devices and even on the same device the overall performance
88  * fluctuates depending on numerous factors such as IO mixture and device
89  * internal garbage collection.  The controller needs to adapt dynamically.
90  *
91  * This is achieved by adjusting the overall IO rate according to how busy
92  * the device is.  If the device becomes overloaded, we're sending down too
93  * many IOs and should generally slow down.  If there are waiting issuers
94  * but the device isn't saturated, we're issuing too few and should
95  * generally speed up.
96  *
97  * To slow down, we lower the vrate - the rate at which the device vtime
98  * passes compared to the wall clock.  For example, if the vtime is running
99  * at the vrate of 75%, all cgroups added up would only be able to issue
100  * 750ms worth of IOs per second, and vice-versa for speeding up.
101  *
102  * Device business is determined using two criteria - rq wait and
103  * completion latencies.
104  *
105  * When a device gets saturated, the on-device and then the request queues
106  * fill up and a bio which is ready to be issued has to wait for a request
107  * to become available.  When this delay becomes noticeable, it's a clear
108  * indication that the device is saturated and we lower the vrate.  This
109  * saturation signal is fairly conservative as it only triggers when both
110  * hardware and software queues are filled up, and is used as the default
111  * busy signal.
112  *
113  * As devices can have deep queues and be unfair in how the queued commands
114  * are executed, solely depending on rq wait may not result in satisfactory
115  * control quality.  For a better control quality, completion latency QoS
116  * parameters can be configured so that the device is considered saturated
117  * if N'th percentile completion latency rises above the set point.
118  *
119  * The completion latency requirements are a function of both the
120  * underlying device characteristics and the desired IO latency quality of
121  * service.  There is an inherent trade-off - the tighter the latency QoS,
122  * the higher the bandwidth lossage.  Latency QoS is disabled by default
123  * and can be set through /sys/fs/cgroup/io.cost.qos.
124  *
125  * 2-3. Work Conservation
126  *
127  * Imagine two cgroups A and B with equal weights.  A is issuing a small IO
128  * periodically while B is sending out enough parallel IOs to saturate the
129  * device on its own.  Let's say A's usage amounts to 100ms worth of IO
130  * cost per second, i.e., 10% of the device capacity.  The naive
131  * distribution of half and half would lead to 60% utilization of the
132  * device, a significant reduction in the total amount of work done
133  * compared to free-for-all competition.  This is too high a cost to pay
134  * for IO control.
135  *
136  * To conserve the total amount of work done, we keep track of how much
137  * each active cgroup is actually using and yield part of its weight if
138  * there are other cgroups which can make use of it.  In the above case,
139  * A's weight will be lowered so that it hovers above the actual usage and
140  * B would be able to use the rest.
141  *
142  * As we don't want to penalize a cgroup for donating its weight, the
143  * surplus weight adjustment factors in a margin and has an immediate
144  * snapback mechanism in case the cgroup needs more IO vtime for itself.
145  *
146  * Note that adjusting down surplus weights has the same effects as
147  * accelerating vtime for other cgroups and work conservation can also be
148  * implemented by adjusting vrate dynamically.  However, squaring who can
149  * donate and should take back how much requires hweight propagations
150  * anyway making it easier to implement and understand as a separate
151  * mechanism.
152  *
153  * 3. Monitoring
154  *
155  * Instead of debugfs or other clumsy monitoring mechanisms, this
156  * controller uses a drgn based monitoring script -
157  * tools/cgroup/iocost_monitor.py.  For details on drgn, please see
158  * https://github.com/osandov/drgn.  The output looks like the following.
159  *
160  *  sdb RUN   per=300ms cur_per=234.218:v203.695 busy= +1 vrate= 62.12%
161  *                 active      weight      hweight% inflt% dbt  delay usages%
162  *  test/a              *    50/   50  33.33/ 33.33  27.65   2  0*041 033:033:033
163  *  test/b              *   100/  100  66.67/ 66.67  17.56   0  0*000 066:079:077
164  *
165  * - per	: Timer period
166  * - cur_per	: Internal wall and device vtime clock
167  * - vrate	: Device virtual time rate against wall clock
168  * - weight	: Surplus-adjusted and configured weights
169  * - hweight	: Surplus-adjusted and configured hierarchical weights
170  * - inflt	: The percentage of in-flight IO cost at the end of last period
171  * - del_ms	: Deferred issuer delay induction level and duration
172  * - usages	: Usage history
173  */
174 
175 #include <linux/kernel.h>
176 #include <linux/module.h>
177 #include <linux/timer.h>
178 #include <linux/time64.h>
179 #include <linux/parser.h>
180 #include <linux/sched/signal.h>
181 #include <asm/local.h>
182 #include <asm/local64.h>
183 #include "blk-rq-qos.h"
184 #include "blk-stat.h"
185 #include "blk-wbt.h"
186 #include "blk-cgroup.h"
187 
188 #ifdef CONFIG_TRACEPOINTS
189 
190 /* copied from TRACE_CGROUP_PATH, see cgroup-internal.h */
191 #define TRACE_IOCG_PATH_LEN 1024
192 static DEFINE_SPINLOCK(trace_iocg_path_lock);
193 static char trace_iocg_path[TRACE_IOCG_PATH_LEN];
194 
195 #define TRACE_IOCG_PATH(type, iocg, ...)					\
196 	do {									\
197 		unsigned long flags;						\
198 		if (trace_iocost_##type##_enabled()) {				\
199 			spin_lock_irqsave(&trace_iocg_path_lock, flags);	\
200 			cgroup_path(iocg_to_blkg(iocg)->blkcg->css.cgroup,	\
201 				    trace_iocg_path, TRACE_IOCG_PATH_LEN);	\
202 			trace_iocost_##type(iocg, trace_iocg_path,		\
203 					      ##__VA_ARGS__);			\
204 			spin_unlock_irqrestore(&trace_iocg_path_lock, flags);	\
205 		}								\
206 	} while (0)
207 
208 #else	/* CONFIG_TRACE_POINTS */
209 #define TRACE_IOCG_PATH(type, iocg, ...)	do { } while (0)
210 #endif	/* CONFIG_TRACE_POINTS */
211 
212 enum {
213 	MILLION			= 1000000,
214 
215 	/* timer period is calculated from latency requirements, bound it */
216 	MIN_PERIOD		= USEC_PER_MSEC,
217 	MAX_PERIOD		= USEC_PER_SEC,
218 
219 	/*
220 	 * iocg->vtime is targeted at 50% behind the device vtime, which
221 	 * serves as its IO credit buffer.  Surplus weight adjustment is
222 	 * immediately canceled if the vtime margin runs below 10%.
223 	 */
224 	MARGIN_MIN_PCT		= 10,
225 	MARGIN_LOW_PCT		= 20,
226 	MARGIN_TARGET_PCT	= 50,
227 
228 	INUSE_ADJ_STEP_PCT	= 25,
229 
230 	/* Have some play in timer operations */
231 	TIMER_SLACK_PCT		= 1,
232 
233 	/* 1/64k is granular enough and can easily be handled w/ u32 */
234 	WEIGHT_ONE		= 1 << 16,
235 };
236 
237 enum {
238 	/*
239 	 * As vtime is used to calculate the cost of each IO, it needs to
240 	 * be fairly high precision.  For example, it should be able to
241 	 * represent the cost of a single page worth of discard with
242 	 * suffificient accuracy.  At the same time, it should be able to
243 	 * represent reasonably long enough durations to be useful and
244 	 * convenient during operation.
245 	 *
246 	 * 1s worth of vtime is 2^37.  This gives us both sub-nanosecond
247 	 * granularity and days of wrap-around time even at extreme vrates.
248 	 */
249 	VTIME_PER_SEC_SHIFT	= 37,
250 	VTIME_PER_SEC		= 1LLU << VTIME_PER_SEC_SHIFT,
251 	VTIME_PER_USEC		= VTIME_PER_SEC / USEC_PER_SEC,
252 	VTIME_PER_NSEC		= VTIME_PER_SEC / NSEC_PER_SEC,
253 
254 	/* bound vrate adjustments within two orders of magnitude */
255 	VRATE_MIN_PPM		= 10000,	/* 1% */
256 	VRATE_MAX_PPM		= 100000000,	/* 10000% */
257 
258 	VRATE_MIN		= VTIME_PER_USEC * VRATE_MIN_PPM / MILLION,
259 	VRATE_CLAMP_ADJ_PCT	= 4,
260 
261 	/* if IOs end up waiting for requests, issue less */
262 	RQ_WAIT_BUSY_PCT	= 5,
263 
264 	/* unbusy hysterisis */
265 	UNBUSY_THR_PCT		= 75,
266 
267 	/*
268 	 * The effect of delay is indirect and non-linear and a huge amount of
269 	 * future debt can accumulate abruptly while unthrottled. Linearly scale
270 	 * up delay as debt is going up and then let it decay exponentially.
271 	 * This gives us quick ramp ups while delay is accumulating and long
272 	 * tails which can help reducing the frequency of debt explosions on
273 	 * unthrottle. The parameters are experimentally determined.
274 	 *
275 	 * The delay mechanism provides adequate protection and behavior in many
276 	 * cases. However, this is far from ideal and falls shorts on both
277 	 * fronts. The debtors are often throttled too harshly costing a
278 	 * significant level of fairness and possibly total work while the
279 	 * protection against their impacts on the system can be choppy and
280 	 * unreliable.
281 	 *
282 	 * The shortcoming primarily stems from the fact that, unlike for page
283 	 * cache, the kernel doesn't have well-defined back-pressure propagation
284 	 * mechanism and policies for anonymous memory. Fully addressing this
285 	 * issue will likely require substantial improvements in the area.
286 	 */
287 	MIN_DELAY_THR_PCT	= 500,
288 	MAX_DELAY_THR_PCT	= 25000,
289 	MIN_DELAY		= 250,
290 	MAX_DELAY		= 250 * USEC_PER_MSEC,
291 
292 	/* halve debts if avg usage over 100ms is under 50% */
293 	DFGV_USAGE_PCT		= 50,
294 	DFGV_PERIOD		= 100 * USEC_PER_MSEC,
295 
296 	/* don't let cmds which take a very long time pin lagging for too long */
297 	MAX_LAGGING_PERIODS	= 10,
298 
299 	/* switch iff the conditions are met for longer than this */
300 	AUTOP_CYCLE_NSEC	= 10LLU * NSEC_PER_SEC,
301 
302 	/*
303 	 * Count IO size in 4k pages.  The 12bit shift helps keeping
304 	 * size-proportional components of cost calculation in closer
305 	 * numbers of digits to per-IO cost components.
306 	 */
307 	IOC_PAGE_SHIFT		= 12,
308 	IOC_PAGE_SIZE		= 1 << IOC_PAGE_SHIFT,
309 	IOC_SECT_TO_PAGE_SHIFT	= IOC_PAGE_SHIFT - SECTOR_SHIFT,
310 
311 	/* if apart further than 16M, consider randio for linear model */
312 	LCOEF_RANDIO_PAGES	= 4096,
313 };
314 
315 enum ioc_running {
316 	IOC_IDLE,
317 	IOC_RUNNING,
318 	IOC_STOP,
319 };
320 
321 /* io.cost.qos controls including per-dev enable of the whole controller */
322 enum {
323 	QOS_ENABLE,
324 	QOS_CTRL,
325 	NR_QOS_CTRL_PARAMS,
326 };
327 
328 /* io.cost.qos params */
329 enum {
330 	QOS_RPPM,
331 	QOS_RLAT,
332 	QOS_WPPM,
333 	QOS_WLAT,
334 	QOS_MIN,
335 	QOS_MAX,
336 	NR_QOS_PARAMS,
337 };
338 
339 /* io.cost.model controls */
340 enum {
341 	COST_CTRL,
342 	COST_MODEL,
343 	NR_COST_CTRL_PARAMS,
344 };
345 
346 /* builtin linear cost model coefficients */
347 enum {
348 	I_LCOEF_RBPS,
349 	I_LCOEF_RSEQIOPS,
350 	I_LCOEF_RRANDIOPS,
351 	I_LCOEF_WBPS,
352 	I_LCOEF_WSEQIOPS,
353 	I_LCOEF_WRANDIOPS,
354 	NR_I_LCOEFS,
355 };
356 
357 enum {
358 	LCOEF_RPAGE,
359 	LCOEF_RSEQIO,
360 	LCOEF_RRANDIO,
361 	LCOEF_WPAGE,
362 	LCOEF_WSEQIO,
363 	LCOEF_WRANDIO,
364 	NR_LCOEFS,
365 };
366 
367 enum {
368 	AUTOP_INVALID,
369 	AUTOP_HDD,
370 	AUTOP_SSD_QD1,
371 	AUTOP_SSD_DFL,
372 	AUTOP_SSD_FAST,
373 };
374 
375 struct ioc_params {
376 	u32				qos[NR_QOS_PARAMS];
377 	u64				i_lcoefs[NR_I_LCOEFS];
378 	u64				lcoefs[NR_LCOEFS];
379 	u32				too_fast_vrate_pct;
380 	u32				too_slow_vrate_pct;
381 };
382 
383 struct ioc_margins {
384 	s64				min;
385 	s64				low;
386 	s64				target;
387 };
388 
389 struct ioc_missed {
390 	local_t				nr_met;
391 	local_t				nr_missed;
392 	u32				last_met;
393 	u32				last_missed;
394 };
395 
396 struct ioc_pcpu_stat {
397 	struct ioc_missed		missed[2];
398 
399 	local64_t			rq_wait_ns;
400 	u64				last_rq_wait_ns;
401 };
402 
403 /* per device */
404 struct ioc {
405 	struct rq_qos			rqos;
406 
407 	bool				enabled;
408 
409 	struct ioc_params		params;
410 	struct ioc_margins		margins;
411 	u32				period_us;
412 	u32				timer_slack_ns;
413 	u64				vrate_min;
414 	u64				vrate_max;
415 
416 	spinlock_t			lock;
417 	struct timer_list		timer;
418 	struct list_head		active_iocgs;	/* active cgroups */
419 	struct ioc_pcpu_stat __percpu	*pcpu_stat;
420 
421 	enum ioc_running		running;
422 	atomic64_t			vtime_rate;
423 	u64				vtime_base_rate;
424 	s64				vtime_err;
425 
426 	seqcount_spinlock_t		period_seqcount;
427 	u64				period_at;	/* wallclock starttime */
428 	u64				period_at_vtime; /* vtime starttime */
429 
430 	atomic64_t			cur_period;	/* inc'd each period */
431 	int				busy_level;	/* saturation history */
432 
433 	bool				weights_updated;
434 	atomic_t			hweight_gen;	/* for lazy hweights */
435 
436 	/* debt forgivness */
437 	u64				dfgv_period_at;
438 	u64				dfgv_period_rem;
439 	u64				dfgv_usage_us_sum;
440 
441 	u64				autop_too_fast_at;
442 	u64				autop_too_slow_at;
443 	int				autop_idx;
444 	bool				user_qos_params:1;
445 	bool				user_cost_model:1;
446 };
447 
448 struct iocg_pcpu_stat {
449 	local64_t			abs_vusage;
450 };
451 
452 struct iocg_stat {
453 	u64				usage_us;
454 	u64				wait_us;
455 	u64				indebt_us;
456 	u64				indelay_us;
457 };
458 
459 /* per device-cgroup pair */
460 struct ioc_gq {
461 	struct blkg_policy_data		pd;
462 	struct ioc			*ioc;
463 
464 	/*
465 	 * A iocg can get its weight from two sources - an explicit
466 	 * per-device-cgroup configuration or the default weight of the
467 	 * cgroup.  `cfg_weight` is the explicit per-device-cgroup
468 	 * configuration.  `weight` is the effective considering both
469 	 * sources.
470 	 *
471 	 * When an idle cgroup becomes active its `active` goes from 0 to
472 	 * `weight`.  `inuse` is the surplus adjusted active weight.
473 	 * `active` and `inuse` are used to calculate `hweight_active` and
474 	 * `hweight_inuse`.
475 	 *
476 	 * `last_inuse` remembers `inuse` while an iocg is idle to persist
477 	 * surplus adjustments.
478 	 *
479 	 * `inuse` may be adjusted dynamically during period. `saved_*` are used
480 	 * to determine and track adjustments.
481 	 */
482 	u32				cfg_weight;
483 	u32				weight;
484 	u32				active;
485 	u32				inuse;
486 
487 	u32				last_inuse;
488 	s64				saved_margin;
489 
490 	sector_t			cursor;		/* to detect randio */
491 
492 	/*
493 	 * `vtime` is this iocg's vtime cursor which progresses as IOs are
494 	 * issued.  If lagging behind device vtime, the delta represents
495 	 * the currently available IO budget.  If running ahead, the
496 	 * overage.
497 	 *
498 	 * `vtime_done` is the same but progressed on completion rather
499 	 * than issue.  The delta behind `vtime` represents the cost of
500 	 * currently in-flight IOs.
501 	 */
502 	atomic64_t			vtime;
503 	atomic64_t			done_vtime;
504 	u64				abs_vdebt;
505 
506 	/* current delay in effect and when it started */
507 	u64				delay;
508 	u64				delay_at;
509 
510 	/*
511 	 * The period this iocg was last active in.  Used for deactivation
512 	 * and invalidating `vtime`.
513 	 */
514 	atomic64_t			active_period;
515 	struct list_head		active_list;
516 
517 	/* see __propagate_weights() and current_hweight() for details */
518 	u64				child_active_sum;
519 	u64				child_inuse_sum;
520 	u64				child_adjusted_sum;
521 	int				hweight_gen;
522 	u32				hweight_active;
523 	u32				hweight_inuse;
524 	u32				hweight_donating;
525 	u32				hweight_after_donation;
526 
527 	struct list_head		walk_list;
528 	struct list_head		surplus_list;
529 
530 	struct wait_queue_head		waitq;
531 	struct hrtimer			waitq_timer;
532 
533 	/* timestamp at the latest activation */
534 	u64				activated_at;
535 
536 	/* statistics */
537 	struct iocg_pcpu_stat __percpu	*pcpu_stat;
538 	struct iocg_stat		stat;
539 	struct iocg_stat		last_stat;
540 	u64				last_stat_abs_vusage;
541 	u64				usage_delta_us;
542 	u64				wait_since;
543 	u64				indebt_since;
544 	u64				indelay_since;
545 
546 	/* this iocg's depth in the hierarchy and ancestors including self */
547 	int				level;
548 	struct ioc_gq			*ancestors[];
549 };
550 
551 /* per cgroup */
552 struct ioc_cgrp {
553 	struct blkcg_policy_data	cpd;
554 	unsigned int			dfl_weight;
555 };
556 
557 struct ioc_now {
558 	u64				now_ns;
559 	u64				now;
560 	u64				vnow;
561 };
562 
563 struct iocg_wait {
564 	struct wait_queue_entry		wait;
565 	struct bio			*bio;
566 	u64				abs_cost;
567 	bool				committed;
568 };
569 
570 struct iocg_wake_ctx {
571 	struct ioc_gq			*iocg;
572 	u32				hw_inuse;
573 	s64				vbudget;
574 };
575 
576 static const struct ioc_params autop[] = {
577 	[AUTOP_HDD] = {
578 		.qos				= {
579 			[QOS_RLAT]		=        250000, /* 250ms */
580 			[QOS_WLAT]		=        250000,
581 			[QOS_MIN]		= VRATE_MIN_PPM,
582 			[QOS_MAX]		= VRATE_MAX_PPM,
583 		},
584 		.i_lcoefs			= {
585 			[I_LCOEF_RBPS]		=     174019176,
586 			[I_LCOEF_RSEQIOPS]	=         41708,
587 			[I_LCOEF_RRANDIOPS]	=           370,
588 			[I_LCOEF_WBPS]		=     178075866,
589 			[I_LCOEF_WSEQIOPS]	=         42705,
590 			[I_LCOEF_WRANDIOPS]	=           378,
591 		},
592 	},
593 	[AUTOP_SSD_QD1] = {
594 		.qos				= {
595 			[QOS_RLAT]		=         25000, /* 25ms */
596 			[QOS_WLAT]		=         25000,
597 			[QOS_MIN]		= VRATE_MIN_PPM,
598 			[QOS_MAX]		= VRATE_MAX_PPM,
599 		},
600 		.i_lcoefs			= {
601 			[I_LCOEF_RBPS]		=     245855193,
602 			[I_LCOEF_RSEQIOPS]	=         61575,
603 			[I_LCOEF_RRANDIOPS]	=          6946,
604 			[I_LCOEF_WBPS]		=     141365009,
605 			[I_LCOEF_WSEQIOPS]	=         33716,
606 			[I_LCOEF_WRANDIOPS]	=         26796,
607 		},
608 	},
609 	[AUTOP_SSD_DFL] = {
610 		.qos				= {
611 			[QOS_RLAT]		=         25000, /* 25ms */
612 			[QOS_WLAT]		=         25000,
613 			[QOS_MIN]		= VRATE_MIN_PPM,
614 			[QOS_MAX]		= VRATE_MAX_PPM,
615 		},
616 		.i_lcoefs			= {
617 			[I_LCOEF_RBPS]		=     488636629,
618 			[I_LCOEF_RSEQIOPS]	=          8932,
619 			[I_LCOEF_RRANDIOPS]	=          8518,
620 			[I_LCOEF_WBPS]		=     427891549,
621 			[I_LCOEF_WSEQIOPS]	=         28755,
622 			[I_LCOEF_WRANDIOPS]	=         21940,
623 		},
624 		.too_fast_vrate_pct		=           500,
625 	},
626 	[AUTOP_SSD_FAST] = {
627 		.qos				= {
628 			[QOS_RLAT]		=          5000, /* 5ms */
629 			[QOS_WLAT]		=          5000,
630 			[QOS_MIN]		= VRATE_MIN_PPM,
631 			[QOS_MAX]		= VRATE_MAX_PPM,
632 		},
633 		.i_lcoefs			= {
634 			[I_LCOEF_RBPS]		=    3102524156LLU,
635 			[I_LCOEF_RSEQIOPS]	=        724816,
636 			[I_LCOEF_RRANDIOPS]	=        778122,
637 			[I_LCOEF_WBPS]		=    1742780862LLU,
638 			[I_LCOEF_WSEQIOPS]	=        425702,
639 			[I_LCOEF_WRANDIOPS]	=	 443193,
640 		},
641 		.too_slow_vrate_pct		=            10,
642 	},
643 };
644 
645 /*
646  * vrate adjust percentages indexed by ioc->busy_level.  We adjust up on
647  * vtime credit shortage and down on device saturation.
648  */
649 static u32 vrate_adj_pct[] =
650 	{ 0, 0, 0, 0,
651 	  1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
652 	  2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
653 	  4, 4, 4, 4, 4, 4, 4, 4, 8, 8, 8, 8, 8, 8, 8, 8, 16 };
654 
655 static struct blkcg_policy blkcg_policy_iocost;
656 
657 /* accessors and helpers */
658 static struct ioc *rqos_to_ioc(struct rq_qos *rqos)
659 {
660 	return container_of(rqos, struct ioc, rqos);
661 }
662 
663 static struct ioc *q_to_ioc(struct request_queue *q)
664 {
665 	return rqos_to_ioc(rq_qos_id(q, RQ_QOS_COST));
666 }
667 
668 static const char __maybe_unused *ioc_name(struct ioc *ioc)
669 {
670 	struct gendisk *disk = ioc->rqos.q->disk;
671 
672 	if (!disk)
673 		return "<unknown>";
674 	return disk->disk_name;
675 }
676 
677 static struct ioc_gq *pd_to_iocg(struct blkg_policy_data *pd)
678 {
679 	return pd ? container_of(pd, struct ioc_gq, pd) : NULL;
680 }
681 
682 static struct ioc_gq *blkg_to_iocg(struct blkcg_gq *blkg)
683 {
684 	return pd_to_iocg(blkg_to_pd(blkg, &blkcg_policy_iocost));
685 }
686 
687 static struct blkcg_gq *iocg_to_blkg(struct ioc_gq *iocg)
688 {
689 	return pd_to_blkg(&iocg->pd);
690 }
691 
692 static struct ioc_cgrp *blkcg_to_iocc(struct blkcg *blkcg)
693 {
694 	return container_of(blkcg_to_cpd(blkcg, &blkcg_policy_iocost),
695 			    struct ioc_cgrp, cpd);
696 }
697 
698 /*
699  * Scale @abs_cost to the inverse of @hw_inuse.  The lower the hierarchical
700  * weight, the more expensive each IO.  Must round up.
701  */
702 static u64 abs_cost_to_cost(u64 abs_cost, u32 hw_inuse)
703 {
704 	return DIV64_U64_ROUND_UP(abs_cost * WEIGHT_ONE, hw_inuse);
705 }
706 
707 /*
708  * The inverse of abs_cost_to_cost().  Must round up.
709  */
710 static u64 cost_to_abs_cost(u64 cost, u32 hw_inuse)
711 {
712 	return DIV64_U64_ROUND_UP(cost * hw_inuse, WEIGHT_ONE);
713 }
714 
715 static void iocg_commit_bio(struct ioc_gq *iocg, struct bio *bio,
716 			    u64 abs_cost, u64 cost)
717 {
718 	struct iocg_pcpu_stat *gcs;
719 
720 	bio->bi_iocost_cost = cost;
721 	atomic64_add(cost, &iocg->vtime);
722 
723 	gcs = get_cpu_ptr(iocg->pcpu_stat);
724 	local64_add(abs_cost, &gcs->abs_vusage);
725 	put_cpu_ptr(gcs);
726 }
727 
728 static void iocg_lock(struct ioc_gq *iocg, bool lock_ioc, unsigned long *flags)
729 {
730 	if (lock_ioc) {
731 		spin_lock_irqsave(&iocg->ioc->lock, *flags);
732 		spin_lock(&iocg->waitq.lock);
733 	} else {
734 		spin_lock_irqsave(&iocg->waitq.lock, *flags);
735 	}
736 }
737 
738 static void iocg_unlock(struct ioc_gq *iocg, bool unlock_ioc, unsigned long *flags)
739 {
740 	if (unlock_ioc) {
741 		spin_unlock(&iocg->waitq.lock);
742 		spin_unlock_irqrestore(&iocg->ioc->lock, *flags);
743 	} else {
744 		spin_unlock_irqrestore(&iocg->waitq.lock, *flags);
745 	}
746 }
747 
748 #define CREATE_TRACE_POINTS
749 #include <trace/events/iocost.h>
750 
751 static void ioc_refresh_margins(struct ioc *ioc)
752 {
753 	struct ioc_margins *margins = &ioc->margins;
754 	u32 period_us = ioc->period_us;
755 	u64 vrate = ioc->vtime_base_rate;
756 
757 	margins->min = (period_us * MARGIN_MIN_PCT / 100) * vrate;
758 	margins->low = (period_us * MARGIN_LOW_PCT / 100) * vrate;
759 	margins->target = (period_us * MARGIN_TARGET_PCT / 100) * vrate;
760 }
761 
762 /* latency Qos params changed, update period_us and all the dependent params */
763 static void ioc_refresh_period_us(struct ioc *ioc)
764 {
765 	u32 ppm, lat, multi, period_us;
766 
767 	lockdep_assert_held(&ioc->lock);
768 
769 	/* pick the higher latency target */
770 	if (ioc->params.qos[QOS_RLAT] >= ioc->params.qos[QOS_WLAT]) {
771 		ppm = ioc->params.qos[QOS_RPPM];
772 		lat = ioc->params.qos[QOS_RLAT];
773 	} else {
774 		ppm = ioc->params.qos[QOS_WPPM];
775 		lat = ioc->params.qos[QOS_WLAT];
776 	}
777 
778 	/*
779 	 * We want the period to be long enough to contain a healthy number
780 	 * of IOs while short enough for granular control.  Define it as a
781 	 * multiple of the latency target.  Ideally, the multiplier should
782 	 * be scaled according to the percentile so that it would nominally
783 	 * contain a certain number of requests.  Let's be simpler and
784 	 * scale it linearly so that it's 2x >= pct(90) and 10x at pct(50).
785 	 */
786 	if (ppm)
787 		multi = max_t(u32, (MILLION - ppm) / 50000, 2);
788 	else
789 		multi = 2;
790 	period_us = multi * lat;
791 	period_us = clamp_t(u32, period_us, MIN_PERIOD, MAX_PERIOD);
792 
793 	/* calculate dependent params */
794 	ioc->period_us = period_us;
795 	ioc->timer_slack_ns = div64_u64(
796 		(u64)period_us * NSEC_PER_USEC * TIMER_SLACK_PCT,
797 		100);
798 	ioc_refresh_margins(ioc);
799 }
800 
801 static int ioc_autop_idx(struct ioc *ioc)
802 {
803 	int idx = ioc->autop_idx;
804 	const struct ioc_params *p = &autop[idx];
805 	u32 vrate_pct;
806 	u64 now_ns;
807 
808 	/* rotational? */
809 	if (!blk_queue_nonrot(ioc->rqos.q))
810 		return AUTOP_HDD;
811 
812 	/* handle SATA SSDs w/ broken NCQ */
813 	if (blk_queue_depth(ioc->rqos.q) == 1)
814 		return AUTOP_SSD_QD1;
815 
816 	/* use one of the normal ssd sets */
817 	if (idx < AUTOP_SSD_DFL)
818 		return AUTOP_SSD_DFL;
819 
820 	/* if user is overriding anything, maintain what was there */
821 	if (ioc->user_qos_params || ioc->user_cost_model)
822 		return idx;
823 
824 	/* step up/down based on the vrate */
825 	vrate_pct = div64_u64(ioc->vtime_base_rate * 100, VTIME_PER_USEC);
826 	now_ns = ktime_get_ns();
827 
828 	if (p->too_fast_vrate_pct && p->too_fast_vrate_pct <= vrate_pct) {
829 		if (!ioc->autop_too_fast_at)
830 			ioc->autop_too_fast_at = now_ns;
831 		if (now_ns - ioc->autop_too_fast_at >= AUTOP_CYCLE_NSEC)
832 			return idx + 1;
833 	} else {
834 		ioc->autop_too_fast_at = 0;
835 	}
836 
837 	if (p->too_slow_vrate_pct && p->too_slow_vrate_pct >= vrate_pct) {
838 		if (!ioc->autop_too_slow_at)
839 			ioc->autop_too_slow_at = now_ns;
840 		if (now_ns - ioc->autop_too_slow_at >= AUTOP_CYCLE_NSEC)
841 			return idx - 1;
842 	} else {
843 		ioc->autop_too_slow_at = 0;
844 	}
845 
846 	return idx;
847 }
848 
849 /*
850  * Take the followings as input
851  *
852  *  @bps	maximum sequential throughput
853  *  @seqiops	maximum sequential 4k iops
854  *  @randiops	maximum random 4k iops
855  *
856  * and calculate the linear model cost coefficients.
857  *
858  *  *@page	per-page cost		1s / (@bps / 4096)
859  *  *@seqio	base cost of a seq IO	max((1s / @seqiops) - *@page, 0)
860  *  @randiops	base cost of a rand IO	max((1s / @randiops) - *@page, 0)
861  */
862 static void calc_lcoefs(u64 bps, u64 seqiops, u64 randiops,
863 			u64 *page, u64 *seqio, u64 *randio)
864 {
865 	u64 v;
866 
867 	*page = *seqio = *randio = 0;
868 
869 	if (bps)
870 		*page = DIV64_U64_ROUND_UP(VTIME_PER_SEC,
871 					   DIV_ROUND_UP_ULL(bps, IOC_PAGE_SIZE));
872 
873 	if (seqiops) {
874 		v = DIV64_U64_ROUND_UP(VTIME_PER_SEC, seqiops);
875 		if (v > *page)
876 			*seqio = v - *page;
877 	}
878 
879 	if (randiops) {
880 		v = DIV64_U64_ROUND_UP(VTIME_PER_SEC, randiops);
881 		if (v > *page)
882 			*randio = v - *page;
883 	}
884 }
885 
886 static void ioc_refresh_lcoefs(struct ioc *ioc)
887 {
888 	u64 *u = ioc->params.i_lcoefs;
889 	u64 *c = ioc->params.lcoefs;
890 
891 	calc_lcoefs(u[I_LCOEF_RBPS], u[I_LCOEF_RSEQIOPS], u[I_LCOEF_RRANDIOPS],
892 		    &c[LCOEF_RPAGE], &c[LCOEF_RSEQIO], &c[LCOEF_RRANDIO]);
893 	calc_lcoefs(u[I_LCOEF_WBPS], u[I_LCOEF_WSEQIOPS], u[I_LCOEF_WRANDIOPS],
894 		    &c[LCOEF_WPAGE], &c[LCOEF_WSEQIO], &c[LCOEF_WRANDIO]);
895 }
896 
897 static bool ioc_refresh_params(struct ioc *ioc, bool force)
898 {
899 	const struct ioc_params *p;
900 	int idx;
901 
902 	lockdep_assert_held(&ioc->lock);
903 
904 	idx = ioc_autop_idx(ioc);
905 	p = &autop[idx];
906 
907 	if (idx == ioc->autop_idx && !force)
908 		return false;
909 
910 	if (idx != ioc->autop_idx) {
911 		atomic64_set(&ioc->vtime_rate, VTIME_PER_USEC);
912 		ioc->vtime_base_rate = VTIME_PER_USEC;
913 	}
914 
915 	ioc->autop_idx = idx;
916 	ioc->autop_too_fast_at = 0;
917 	ioc->autop_too_slow_at = 0;
918 
919 	if (!ioc->user_qos_params)
920 		memcpy(ioc->params.qos, p->qos, sizeof(p->qos));
921 	if (!ioc->user_cost_model)
922 		memcpy(ioc->params.i_lcoefs, p->i_lcoefs, sizeof(p->i_lcoefs));
923 
924 	ioc_refresh_period_us(ioc);
925 	ioc_refresh_lcoefs(ioc);
926 
927 	ioc->vrate_min = DIV64_U64_ROUND_UP((u64)ioc->params.qos[QOS_MIN] *
928 					    VTIME_PER_USEC, MILLION);
929 	ioc->vrate_max = div64_u64((u64)ioc->params.qos[QOS_MAX] *
930 				   VTIME_PER_USEC, MILLION);
931 
932 	return true;
933 }
934 
935 /*
936  * When an iocg accumulates too much vtime or gets deactivated, we throw away
937  * some vtime, which lowers the overall device utilization. As the exact amount
938  * which is being thrown away is known, we can compensate by accelerating the
939  * vrate accordingly so that the extra vtime generated in the current period
940  * matches what got lost.
941  */
942 static void ioc_refresh_vrate(struct ioc *ioc, struct ioc_now *now)
943 {
944 	s64 pleft = ioc->period_at + ioc->period_us - now->now;
945 	s64 vperiod = ioc->period_us * ioc->vtime_base_rate;
946 	s64 vcomp, vcomp_min, vcomp_max;
947 
948 	lockdep_assert_held(&ioc->lock);
949 
950 	/* we need some time left in this period */
951 	if (pleft <= 0)
952 		goto done;
953 
954 	/*
955 	 * Calculate how much vrate should be adjusted to offset the error.
956 	 * Limit the amount of adjustment and deduct the adjusted amount from
957 	 * the error.
958 	 */
959 	vcomp = -div64_s64(ioc->vtime_err, pleft);
960 	vcomp_min = -(ioc->vtime_base_rate >> 1);
961 	vcomp_max = ioc->vtime_base_rate;
962 	vcomp = clamp(vcomp, vcomp_min, vcomp_max);
963 
964 	ioc->vtime_err += vcomp * pleft;
965 
966 	atomic64_set(&ioc->vtime_rate, ioc->vtime_base_rate + vcomp);
967 done:
968 	/* bound how much error can accumulate */
969 	ioc->vtime_err = clamp(ioc->vtime_err, -vperiod, vperiod);
970 }
971 
972 static void ioc_adjust_base_vrate(struct ioc *ioc, u32 rq_wait_pct,
973 				  int nr_lagging, int nr_shortages,
974 				  int prev_busy_level, u32 *missed_ppm)
975 {
976 	u64 vrate = ioc->vtime_base_rate;
977 	u64 vrate_min = ioc->vrate_min, vrate_max = ioc->vrate_max;
978 
979 	if (!ioc->busy_level || (ioc->busy_level < 0 && nr_lagging)) {
980 		if (ioc->busy_level != prev_busy_level || nr_lagging)
981 			trace_iocost_ioc_vrate_adj(ioc, vrate,
982 						   missed_ppm, rq_wait_pct,
983 						   nr_lagging, nr_shortages);
984 
985 		return;
986 	}
987 
988 	/*
989 	 * If vrate is out of bounds, apply clamp gradually as the
990 	 * bounds can change abruptly.  Otherwise, apply busy_level
991 	 * based adjustment.
992 	 */
993 	if (vrate < vrate_min) {
994 		vrate = div64_u64(vrate * (100 + VRATE_CLAMP_ADJ_PCT), 100);
995 		vrate = min(vrate, vrate_min);
996 	} else if (vrate > vrate_max) {
997 		vrate = div64_u64(vrate * (100 - VRATE_CLAMP_ADJ_PCT), 100);
998 		vrate = max(vrate, vrate_max);
999 	} else {
1000 		int idx = min_t(int, abs(ioc->busy_level),
1001 				ARRAY_SIZE(vrate_adj_pct) - 1);
1002 		u32 adj_pct = vrate_adj_pct[idx];
1003 
1004 		if (ioc->busy_level > 0)
1005 			adj_pct = 100 - adj_pct;
1006 		else
1007 			adj_pct = 100 + adj_pct;
1008 
1009 		vrate = clamp(DIV64_U64_ROUND_UP(vrate * adj_pct, 100),
1010 			      vrate_min, vrate_max);
1011 	}
1012 
1013 	trace_iocost_ioc_vrate_adj(ioc, vrate, missed_ppm, rq_wait_pct,
1014 				   nr_lagging, nr_shortages);
1015 
1016 	ioc->vtime_base_rate = vrate;
1017 	ioc_refresh_margins(ioc);
1018 }
1019 
1020 /* take a snapshot of the current [v]time and vrate */
1021 static void ioc_now(struct ioc *ioc, struct ioc_now *now)
1022 {
1023 	unsigned seq;
1024 	u64 vrate;
1025 
1026 	now->now_ns = ktime_get();
1027 	now->now = ktime_to_us(now->now_ns);
1028 	vrate = atomic64_read(&ioc->vtime_rate);
1029 
1030 	/*
1031 	 * The current vtime is
1032 	 *
1033 	 *   vtime at period start + (wallclock time since the start) * vrate
1034 	 *
1035 	 * As a consistent snapshot of `period_at_vtime` and `period_at` is
1036 	 * needed, they're seqcount protected.
1037 	 */
1038 	do {
1039 		seq = read_seqcount_begin(&ioc->period_seqcount);
1040 		now->vnow = ioc->period_at_vtime +
1041 			(now->now - ioc->period_at) * vrate;
1042 	} while (read_seqcount_retry(&ioc->period_seqcount, seq));
1043 }
1044 
1045 static void ioc_start_period(struct ioc *ioc, struct ioc_now *now)
1046 {
1047 	WARN_ON_ONCE(ioc->running != IOC_RUNNING);
1048 
1049 	write_seqcount_begin(&ioc->period_seqcount);
1050 	ioc->period_at = now->now;
1051 	ioc->period_at_vtime = now->vnow;
1052 	write_seqcount_end(&ioc->period_seqcount);
1053 
1054 	ioc->timer.expires = jiffies + usecs_to_jiffies(ioc->period_us);
1055 	add_timer(&ioc->timer);
1056 }
1057 
1058 /*
1059  * Update @iocg's `active` and `inuse` to @active and @inuse, update level
1060  * weight sums and propagate upwards accordingly. If @save, the current margin
1061  * is saved to be used as reference for later inuse in-period adjustments.
1062  */
1063 static void __propagate_weights(struct ioc_gq *iocg, u32 active, u32 inuse,
1064 				bool save, struct ioc_now *now)
1065 {
1066 	struct ioc *ioc = iocg->ioc;
1067 	int lvl;
1068 
1069 	lockdep_assert_held(&ioc->lock);
1070 
1071 	/*
1072 	 * For an active leaf node, its inuse shouldn't be zero or exceed
1073 	 * @active. An active internal node's inuse is solely determined by the
1074 	 * inuse to active ratio of its children regardless of @inuse.
1075 	 */
1076 	if (list_empty(&iocg->active_list) && iocg->child_active_sum) {
1077 		inuse = DIV64_U64_ROUND_UP(active * iocg->child_inuse_sum,
1078 					   iocg->child_active_sum);
1079 	} else {
1080 		inuse = clamp_t(u32, inuse, 1, active);
1081 	}
1082 
1083 	iocg->last_inuse = iocg->inuse;
1084 	if (save)
1085 		iocg->saved_margin = now->vnow - atomic64_read(&iocg->vtime);
1086 
1087 	if (active == iocg->active && inuse == iocg->inuse)
1088 		return;
1089 
1090 	for (lvl = iocg->level - 1; lvl >= 0; lvl--) {
1091 		struct ioc_gq *parent = iocg->ancestors[lvl];
1092 		struct ioc_gq *child = iocg->ancestors[lvl + 1];
1093 		u32 parent_active = 0, parent_inuse = 0;
1094 
1095 		/* update the level sums */
1096 		parent->child_active_sum += (s32)(active - child->active);
1097 		parent->child_inuse_sum += (s32)(inuse - child->inuse);
1098 		/* apply the updates */
1099 		child->active = active;
1100 		child->inuse = inuse;
1101 
1102 		/*
1103 		 * The delta between inuse and active sums indicates that
1104 		 * much of weight is being given away.  Parent's inuse
1105 		 * and active should reflect the ratio.
1106 		 */
1107 		if (parent->child_active_sum) {
1108 			parent_active = parent->weight;
1109 			parent_inuse = DIV64_U64_ROUND_UP(
1110 				parent_active * parent->child_inuse_sum,
1111 				parent->child_active_sum);
1112 		}
1113 
1114 		/* do we need to keep walking up? */
1115 		if (parent_active == parent->active &&
1116 		    parent_inuse == parent->inuse)
1117 			break;
1118 
1119 		active = parent_active;
1120 		inuse = parent_inuse;
1121 	}
1122 
1123 	ioc->weights_updated = true;
1124 }
1125 
1126 static void commit_weights(struct ioc *ioc)
1127 {
1128 	lockdep_assert_held(&ioc->lock);
1129 
1130 	if (ioc->weights_updated) {
1131 		/* paired with rmb in current_hweight(), see there */
1132 		smp_wmb();
1133 		atomic_inc(&ioc->hweight_gen);
1134 		ioc->weights_updated = false;
1135 	}
1136 }
1137 
1138 static void propagate_weights(struct ioc_gq *iocg, u32 active, u32 inuse,
1139 			      bool save, struct ioc_now *now)
1140 {
1141 	__propagate_weights(iocg, active, inuse, save, now);
1142 	commit_weights(iocg->ioc);
1143 }
1144 
1145 static void current_hweight(struct ioc_gq *iocg, u32 *hw_activep, u32 *hw_inusep)
1146 {
1147 	struct ioc *ioc = iocg->ioc;
1148 	int lvl;
1149 	u32 hwa, hwi;
1150 	int ioc_gen;
1151 
1152 	/* hot path - if uptodate, use cached */
1153 	ioc_gen = atomic_read(&ioc->hweight_gen);
1154 	if (ioc_gen == iocg->hweight_gen)
1155 		goto out;
1156 
1157 	/*
1158 	 * Paired with wmb in commit_weights(). If we saw the updated
1159 	 * hweight_gen, all the weight updates from __propagate_weights() are
1160 	 * visible too.
1161 	 *
1162 	 * We can race with weight updates during calculation and get it
1163 	 * wrong.  However, hweight_gen would have changed and a future
1164 	 * reader will recalculate and we're guaranteed to discard the
1165 	 * wrong result soon.
1166 	 */
1167 	smp_rmb();
1168 
1169 	hwa = hwi = WEIGHT_ONE;
1170 	for (lvl = 0; lvl <= iocg->level - 1; lvl++) {
1171 		struct ioc_gq *parent = iocg->ancestors[lvl];
1172 		struct ioc_gq *child = iocg->ancestors[lvl + 1];
1173 		u64 active_sum = READ_ONCE(parent->child_active_sum);
1174 		u64 inuse_sum = READ_ONCE(parent->child_inuse_sum);
1175 		u32 active = READ_ONCE(child->active);
1176 		u32 inuse = READ_ONCE(child->inuse);
1177 
1178 		/* we can race with deactivations and either may read as zero */
1179 		if (!active_sum || !inuse_sum)
1180 			continue;
1181 
1182 		active_sum = max_t(u64, active, active_sum);
1183 		hwa = div64_u64((u64)hwa * active, active_sum);
1184 
1185 		inuse_sum = max_t(u64, inuse, inuse_sum);
1186 		hwi = div64_u64((u64)hwi * inuse, inuse_sum);
1187 	}
1188 
1189 	iocg->hweight_active = max_t(u32, hwa, 1);
1190 	iocg->hweight_inuse = max_t(u32, hwi, 1);
1191 	iocg->hweight_gen = ioc_gen;
1192 out:
1193 	if (hw_activep)
1194 		*hw_activep = iocg->hweight_active;
1195 	if (hw_inusep)
1196 		*hw_inusep = iocg->hweight_inuse;
1197 }
1198 
1199 /*
1200  * Calculate the hweight_inuse @iocg would get with max @inuse assuming all the
1201  * other weights stay unchanged.
1202  */
1203 static u32 current_hweight_max(struct ioc_gq *iocg)
1204 {
1205 	u32 hwm = WEIGHT_ONE;
1206 	u32 inuse = iocg->active;
1207 	u64 child_inuse_sum;
1208 	int lvl;
1209 
1210 	lockdep_assert_held(&iocg->ioc->lock);
1211 
1212 	for (lvl = iocg->level - 1; lvl >= 0; lvl--) {
1213 		struct ioc_gq *parent = iocg->ancestors[lvl];
1214 		struct ioc_gq *child = iocg->ancestors[lvl + 1];
1215 
1216 		child_inuse_sum = parent->child_inuse_sum + inuse - child->inuse;
1217 		hwm = div64_u64((u64)hwm * inuse, child_inuse_sum);
1218 		inuse = DIV64_U64_ROUND_UP(parent->active * child_inuse_sum,
1219 					   parent->child_active_sum);
1220 	}
1221 
1222 	return max_t(u32, hwm, 1);
1223 }
1224 
1225 static void weight_updated(struct ioc_gq *iocg, struct ioc_now *now)
1226 {
1227 	struct ioc *ioc = iocg->ioc;
1228 	struct blkcg_gq *blkg = iocg_to_blkg(iocg);
1229 	struct ioc_cgrp *iocc = blkcg_to_iocc(blkg->blkcg);
1230 	u32 weight;
1231 
1232 	lockdep_assert_held(&ioc->lock);
1233 
1234 	weight = iocg->cfg_weight ?: iocc->dfl_weight;
1235 	if (weight != iocg->weight && iocg->active)
1236 		propagate_weights(iocg, weight, iocg->inuse, true, now);
1237 	iocg->weight = weight;
1238 }
1239 
1240 static bool iocg_activate(struct ioc_gq *iocg, struct ioc_now *now)
1241 {
1242 	struct ioc *ioc = iocg->ioc;
1243 	u64 last_period, cur_period;
1244 	u64 vtime, vtarget;
1245 	int i;
1246 
1247 	/*
1248 	 * If seem to be already active, just update the stamp to tell the
1249 	 * timer that we're still active.  We don't mind occassional races.
1250 	 */
1251 	if (!list_empty(&iocg->active_list)) {
1252 		ioc_now(ioc, now);
1253 		cur_period = atomic64_read(&ioc->cur_period);
1254 		if (atomic64_read(&iocg->active_period) != cur_period)
1255 			atomic64_set(&iocg->active_period, cur_period);
1256 		return true;
1257 	}
1258 
1259 	/* racy check on internal node IOs, treat as root level IOs */
1260 	if (iocg->child_active_sum)
1261 		return false;
1262 
1263 	spin_lock_irq(&ioc->lock);
1264 
1265 	ioc_now(ioc, now);
1266 
1267 	/* update period */
1268 	cur_period = atomic64_read(&ioc->cur_period);
1269 	last_period = atomic64_read(&iocg->active_period);
1270 	atomic64_set(&iocg->active_period, cur_period);
1271 
1272 	/* already activated or breaking leaf-only constraint? */
1273 	if (!list_empty(&iocg->active_list))
1274 		goto succeed_unlock;
1275 	for (i = iocg->level - 1; i > 0; i--)
1276 		if (!list_empty(&iocg->ancestors[i]->active_list))
1277 			goto fail_unlock;
1278 
1279 	if (iocg->child_active_sum)
1280 		goto fail_unlock;
1281 
1282 	/*
1283 	 * Always start with the target budget. On deactivation, we throw away
1284 	 * anything above it.
1285 	 */
1286 	vtarget = now->vnow - ioc->margins.target;
1287 	vtime = atomic64_read(&iocg->vtime);
1288 
1289 	atomic64_add(vtarget - vtime, &iocg->vtime);
1290 	atomic64_add(vtarget - vtime, &iocg->done_vtime);
1291 	vtime = vtarget;
1292 
1293 	/*
1294 	 * Activate, propagate weight and start period timer if not
1295 	 * running.  Reset hweight_gen to avoid accidental match from
1296 	 * wrapping.
1297 	 */
1298 	iocg->hweight_gen = atomic_read(&ioc->hweight_gen) - 1;
1299 	list_add(&iocg->active_list, &ioc->active_iocgs);
1300 
1301 	propagate_weights(iocg, iocg->weight,
1302 			  iocg->last_inuse ?: iocg->weight, true, now);
1303 
1304 	TRACE_IOCG_PATH(iocg_activate, iocg, now,
1305 			last_period, cur_period, vtime);
1306 
1307 	iocg->activated_at = now->now;
1308 
1309 	if (ioc->running == IOC_IDLE) {
1310 		ioc->running = IOC_RUNNING;
1311 		ioc->dfgv_period_at = now->now;
1312 		ioc->dfgv_period_rem = 0;
1313 		ioc_start_period(ioc, now);
1314 	}
1315 
1316 succeed_unlock:
1317 	spin_unlock_irq(&ioc->lock);
1318 	return true;
1319 
1320 fail_unlock:
1321 	spin_unlock_irq(&ioc->lock);
1322 	return false;
1323 }
1324 
1325 static bool iocg_kick_delay(struct ioc_gq *iocg, struct ioc_now *now)
1326 {
1327 	struct ioc *ioc = iocg->ioc;
1328 	struct blkcg_gq *blkg = iocg_to_blkg(iocg);
1329 	u64 tdelta, delay, new_delay;
1330 	s64 vover, vover_pct;
1331 	u32 hwa;
1332 
1333 	lockdep_assert_held(&iocg->waitq.lock);
1334 
1335 	/* calculate the current delay in effect - 1/2 every second */
1336 	tdelta = now->now - iocg->delay_at;
1337 	if (iocg->delay)
1338 		delay = iocg->delay >> div64_u64(tdelta, USEC_PER_SEC);
1339 	else
1340 		delay = 0;
1341 
1342 	/* calculate the new delay from the debt amount */
1343 	current_hweight(iocg, &hwa, NULL);
1344 	vover = atomic64_read(&iocg->vtime) +
1345 		abs_cost_to_cost(iocg->abs_vdebt, hwa) - now->vnow;
1346 	vover_pct = div64_s64(100 * vover,
1347 			      ioc->period_us * ioc->vtime_base_rate);
1348 
1349 	if (vover_pct <= MIN_DELAY_THR_PCT)
1350 		new_delay = 0;
1351 	else if (vover_pct >= MAX_DELAY_THR_PCT)
1352 		new_delay = MAX_DELAY;
1353 	else
1354 		new_delay = MIN_DELAY +
1355 			div_u64((MAX_DELAY - MIN_DELAY) *
1356 				(vover_pct - MIN_DELAY_THR_PCT),
1357 				MAX_DELAY_THR_PCT - MIN_DELAY_THR_PCT);
1358 
1359 	/* pick the higher one and apply */
1360 	if (new_delay > delay) {
1361 		iocg->delay = new_delay;
1362 		iocg->delay_at = now->now;
1363 		delay = new_delay;
1364 	}
1365 
1366 	if (delay >= MIN_DELAY) {
1367 		if (!iocg->indelay_since)
1368 			iocg->indelay_since = now->now;
1369 		blkcg_set_delay(blkg, delay * NSEC_PER_USEC);
1370 		return true;
1371 	} else {
1372 		if (iocg->indelay_since) {
1373 			iocg->stat.indelay_us += now->now - iocg->indelay_since;
1374 			iocg->indelay_since = 0;
1375 		}
1376 		iocg->delay = 0;
1377 		blkcg_clear_delay(blkg);
1378 		return false;
1379 	}
1380 }
1381 
1382 static void iocg_incur_debt(struct ioc_gq *iocg, u64 abs_cost,
1383 			    struct ioc_now *now)
1384 {
1385 	struct iocg_pcpu_stat *gcs;
1386 
1387 	lockdep_assert_held(&iocg->ioc->lock);
1388 	lockdep_assert_held(&iocg->waitq.lock);
1389 	WARN_ON_ONCE(list_empty(&iocg->active_list));
1390 
1391 	/*
1392 	 * Once in debt, debt handling owns inuse. @iocg stays at the minimum
1393 	 * inuse donating all of it share to others until its debt is paid off.
1394 	 */
1395 	if (!iocg->abs_vdebt && abs_cost) {
1396 		iocg->indebt_since = now->now;
1397 		propagate_weights(iocg, iocg->active, 0, false, now);
1398 	}
1399 
1400 	iocg->abs_vdebt += abs_cost;
1401 
1402 	gcs = get_cpu_ptr(iocg->pcpu_stat);
1403 	local64_add(abs_cost, &gcs->abs_vusage);
1404 	put_cpu_ptr(gcs);
1405 }
1406 
1407 static void iocg_pay_debt(struct ioc_gq *iocg, u64 abs_vpay,
1408 			  struct ioc_now *now)
1409 {
1410 	lockdep_assert_held(&iocg->ioc->lock);
1411 	lockdep_assert_held(&iocg->waitq.lock);
1412 
1413 	/* make sure that nobody messed with @iocg */
1414 	WARN_ON_ONCE(list_empty(&iocg->active_list));
1415 	WARN_ON_ONCE(iocg->inuse > 1);
1416 
1417 	iocg->abs_vdebt -= min(abs_vpay, iocg->abs_vdebt);
1418 
1419 	/* if debt is paid in full, restore inuse */
1420 	if (!iocg->abs_vdebt) {
1421 		iocg->stat.indebt_us += now->now - iocg->indebt_since;
1422 		iocg->indebt_since = 0;
1423 
1424 		propagate_weights(iocg, iocg->active, iocg->last_inuse,
1425 				  false, now);
1426 	}
1427 }
1428 
1429 static int iocg_wake_fn(struct wait_queue_entry *wq_entry, unsigned mode,
1430 			int flags, void *key)
1431 {
1432 	struct iocg_wait *wait = container_of(wq_entry, struct iocg_wait, wait);
1433 	struct iocg_wake_ctx *ctx = key;
1434 	u64 cost = abs_cost_to_cost(wait->abs_cost, ctx->hw_inuse);
1435 
1436 	ctx->vbudget -= cost;
1437 
1438 	if (ctx->vbudget < 0)
1439 		return -1;
1440 
1441 	iocg_commit_bio(ctx->iocg, wait->bio, wait->abs_cost, cost);
1442 	wait->committed = true;
1443 
1444 	/*
1445 	 * autoremove_wake_function() removes the wait entry only when it
1446 	 * actually changed the task state. We want the wait always removed.
1447 	 * Remove explicitly and use default_wake_function(). Note that the
1448 	 * order of operations is important as finish_wait() tests whether
1449 	 * @wq_entry is removed without grabbing the lock.
1450 	 */
1451 	default_wake_function(wq_entry, mode, flags, key);
1452 	list_del_init_careful(&wq_entry->entry);
1453 	return 0;
1454 }
1455 
1456 /*
1457  * Calculate the accumulated budget, pay debt if @pay_debt and wake up waiters
1458  * accordingly. When @pay_debt is %true, the caller must be holding ioc->lock in
1459  * addition to iocg->waitq.lock.
1460  */
1461 static void iocg_kick_waitq(struct ioc_gq *iocg, bool pay_debt,
1462 			    struct ioc_now *now)
1463 {
1464 	struct ioc *ioc = iocg->ioc;
1465 	struct iocg_wake_ctx ctx = { .iocg = iocg };
1466 	u64 vshortage, expires, oexpires;
1467 	s64 vbudget;
1468 	u32 hwa;
1469 
1470 	lockdep_assert_held(&iocg->waitq.lock);
1471 
1472 	current_hweight(iocg, &hwa, NULL);
1473 	vbudget = now->vnow - atomic64_read(&iocg->vtime);
1474 
1475 	/* pay off debt */
1476 	if (pay_debt && iocg->abs_vdebt && vbudget > 0) {
1477 		u64 abs_vbudget = cost_to_abs_cost(vbudget, hwa);
1478 		u64 abs_vpay = min_t(u64, abs_vbudget, iocg->abs_vdebt);
1479 		u64 vpay = abs_cost_to_cost(abs_vpay, hwa);
1480 
1481 		lockdep_assert_held(&ioc->lock);
1482 
1483 		atomic64_add(vpay, &iocg->vtime);
1484 		atomic64_add(vpay, &iocg->done_vtime);
1485 		iocg_pay_debt(iocg, abs_vpay, now);
1486 		vbudget -= vpay;
1487 	}
1488 
1489 	if (iocg->abs_vdebt || iocg->delay)
1490 		iocg_kick_delay(iocg, now);
1491 
1492 	/*
1493 	 * Debt can still be outstanding if we haven't paid all yet or the
1494 	 * caller raced and called without @pay_debt. Shouldn't wake up waiters
1495 	 * under debt. Make sure @vbudget reflects the outstanding amount and is
1496 	 * not positive.
1497 	 */
1498 	if (iocg->abs_vdebt) {
1499 		s64 vdebt = abs_cost_to_cost(iocg->abs_vdebt, hwa);
1500 		vbudget = min_t(s64, 0, vbudget - vdebt);
1501 	}
1502 
1503 	/*
1504 	 * Wake up the ones which are due and see how much vtime we'll need for
1505 	 * the next one. As paying off debt restores hw_inuse, it must be read
1506 	 * after the above debt payment.
1507 	 */
1508 	ctx.vbudget = vbudget;
1509 	current_hweight(iocg, NULL, &ctx.hw_inuse);
1510 
1511 	__wake_up_locked_key(&iocg->waitq, TASK_NORMAL, &ctx);
1512 
1513 	if (!waitqueue_active(&iocg->waitq)) {
1514 		if (iocg->wait_since) {
1515 			iocg->stat.wait_us += now->now - iocg->wait_since;
1516 			iocg->wait_since = 0;
1517 		}
1518 		return;
1519 	}
1520 
1521 	if (!iocg->wait_since)
1522 		iocg->wait_since = now->now;
1523 
1524 	if (WARN_ON_ONCE(ctx.vbudget >= 0))
1525 		return;
1526 
1527 	/* determine next wakeup, add a timer margin to guarantee chunking */
1528 	vshortage = -ctx.vbudget;
1529 	expires = now->now_ns +
1530 		DIV64_U64_ROUND_UP(vshortage, ioc->vtime_base_rate) *
1531 		NSEC_PER_USEC;
1532 	expires += ioc->timer_slack_ns;
1533 
1534 	/* if already active and close enough, don't bother */
1535 	oexpires = ktime_to_ns(hrtimer_get_softexpires(&iocg->waitq_timer));
1536 	if (hrtimer_is_queued(&iocg->waitq_timer) &&
1537 	    abs(oexpires - expires) <= ioc->timer_slack_ns)
1538 		return;
1539 
1540 	hrtimer_start_range_ns(&iocg->waitq_timer, ns_to_ktime(expires),
1541 			       ioc->timer_slack_ns, HRTIMER_MODE_ABS);
1542 }
1543 
1544 static enum hrtimer_restart iocg_waitq_timer_fn(struct hrtimer *timer)
1545 {
1546 	struct ioc_gq *iocg = container_of(timer, struct ioc_gq, waitq_timer);
1547 	bool pay_debt = READ_ONCE(iocg->abs_vdebt);
1548 	struct ioc_now now;
1549 	unsigned long flags;
1550 
1551 	ioc_now(iocg->ioc, &now);
1552 
1553 	iocg_lock(iocg, pay_debt, &flags);
1554 	iocg_kick_waitq(iocg, pay_debt, &now);
1555 	iocg_unlock(iocg, pay_debt, &flags);
1556 
1557 	return HRTIMER_NORESTART;
1558 }
1559 
1560 static void ioc_lat_stat(struct ioc *ioc, u32 *missed_ppm_ar, u32 *rq_wait_pct_p)
1561 {
1562 	u32 nr_met[2] = { };
1563 	u32 nr_missed[2] = { };
1564 	u64 rq_wait_ns = 0;
1565 	int cpu, rw;
1566 
1567 	for_each_online_cpu(cpu) {
1568 		struct ioc_pcpu_stat *stat = per_cpu_ptr(ioc->pcpu_stat, cpu);
1569 		u64 this_rq_wait_ns;
1570 
1571 		for (rw = READ; rw <= WRITE; rw++) {
1572 			u32 this_met = local_read(&stat->missed[rw].nr_met);
1573 			u32 this_missed = local_read(&stat->missed[rw].nr_missed);
1574 
1575 			nr_met[rw] += this_met - stat->missed[rw].last_met;
1576 			nr_missed[rw] += this_missed - stat->missed[rw].last_missed;
1577 			stat->missed[rw].last_met = this_met;
1578 			stat->missed[rw].last_missed = this_missed;
1579 		}
1580 
1581 		this_rq_wait_ns = local64_read(&stat->rq_wait_ns);
1582 		rq_wait_ns += this_rq_wait_ns - stat->last_rq_wait_ns;
1583 		stat->last_rq_wait_ns = this_rq_wait_ns;
1584 	}
1585 
1586 	for (rw = READ; rw <= WRITE; rw++) {
1587 		if (nr_met[rw] + nr_missed[rw])
1588 			missed_ppm_ar[rw] =
1589 				DIV64_U64_ROUND_UP((u64)nr_missed[rw] * MILLION,
1590 						   nr_met[rw] + nr_missed[rw]);
1591 		else
1592 			missed_ppm_ar[rw] = 0;
1593 	}
1594 
1595 	*rq_wait_pct_p = div64_u64(rq_wait_ns * 100,
1596 				   ioc->period_us * NSEC_PER_USEC);
1597 }
1598 
1599 /* was iocg idle this period? */
1600 static bool iocg_is_idle(struct ioc_gq *iocg)
1601 {
1602 	struct ioc *ioc = iocg->ioc;
1603 
1604 	/* did something get issued this period? */
1605 	if (atomic64_read(&iocg->active_period) ==
1606 	    atomic64_read(&ioc->cur_period))
1607 		return false;
1608 
1609 	/* is something in flight? */
1610 	if (atomic64_read(&iocg->done_vtime) != atomic64_read(&iocg->vtime))
1611 		return false;
1612 
1613 	return true;
1614 }
1615 
1616 /*
1617  * Call this function on the target leaf @iocg's to build pre-order traversal
1618  * list of all the ancestors in @inner_walk. The inner nodes are linked through
1619  * ->walk_list and the caller is responsible for dissolving the list after use.
1620  */
1621 static void iocg_build_inner_walk(struct ioc_gq *iocg,
1622 				  struct list_head *inner_walk)
1623 {
1624 	int lvl;
1625 
1626 	WARN_ON_ONCE(!list_empty(&iocg->walk_list));
1627 
1628 	/* find the first ancestor which hasn't been visited yet */
1629 	for (lvl = iocg->level - 1; lvl >= 0; lvl--) {
1630 		if (!list_empty(&iocg->ancestors[lvl]->walk_list))
1631 			break;
1632 	}
1633 
1634 	/* walk down and visit the inner nodes to get pre-order traversal */
1635 	while (++lvl <= iocg->level - 1) {
1636 		struct ioc_gq *inner = iocg->ancestors[lvl];
1637 
1638 		/* record traversal order */
1639 		list_add_tail(&inner->walk_list, inner_walk);
1640 	}
1641 }
1642 
1643 /* propagate the deltas to the parent */
1644 static void iocg_flush_stat_upward(struct ioc_gq *iocg)
1645 {
1646 	if (iocg->level > 0) {
1647 		struct iocg_stat *parent_stat =
1648 			&iocg->ancestors[iocg->level - 1]->stat;
1649 
1650 		parent_stat->usage_us +=
1651 			iocg->stat.usage_us - iocg->last_stat.usage_us;
1652 		parent_stat->wait_us +=
1653 			iocg->stat.wait_us - iocg->last_stat.wait_us;
1654 		parent_stat->indebt_us +=
1655 			iocg->stat.indebt_us - iocg->last_stat.indebt_us;
1656 		parent_stat->indelay_us +=
1657 			iocg->stat.indelay_us - iocg->last_stat.indelay_us;
1658 	}
1659 
1660 	iocg->last_stat = iocg->stat;
1661 }
1662 
1663 /* collect per-cpu counters and propagate the deltas to the parent */
1664 static void iocg_flush_stat_leaf(struct ioc_gq *iocg, struct ioc_now *now)
1665 {
1666 	struct ioc *ioc = iocg->ioc;
1667 	u64 abs_vusage = 0;
1668 	u64 vusage_delta;
1669 	int cpu;
1670 
1671 	lockdep_assert_held(&iocg->ioc->lock);
1672 
1673 	/* collect per-cpu counters */
1674 	for_each_possible_cpu(cpu) {
1675 		abs_vusage += local64_read(
1676 				per_cpu_ptr(&iocg->pcpu_stat->abs_vusage, cpu));
1677 	}
1678 	vusage_delta = abs_vusage - iocg->last_stat_abs_vusage;
1679 	iocg->last_stat_abs_vusage = abs_vusage;
1680 
1681 	iocg->usage_delta_us = div64_u64(vusage_delta, ioc->vtime_base_rate);
1682 	iocg->stat.usage_us += iocg->usage_delta_us;
1683 
1684 	iocg_flush_stat_upward(iocg);
1685 }
1686 
1687 /* get stat counters ready for reading on all active iocgs */
1688 static void iocg_flush_stat(struct list_head *target_iocgs, struct ioc_now *now)
1689 {
1690 	LIST_HEAD(inner_walk);
1691 	struct ioc_gq *iocg, *tiocg;
1692 
1693 	/* flush leaves and build inner node walk list */
1694 	list_for_each_entry(iocg, target_iocgs, active_list) {
1695 		iocg_flush_stat_leaf(iocg, now);
1696 		iocg_build_inner_walk(iocg, &inner_walk);
1697 	}
1698 
1699 	/* keep flushing upwards by walking the inner list backwards */
1700 	list_for_each_entry_safe_reverse(iocg, tiocg, &inner_walk, walk_list) {
1701 		iocg_flush_stat_upward(iocg);
1702 		list_del_init(&iocg->walk_list);
1703 	}
1704 }
1705 
1706 /*
1707  * Determine what @iocg's hweight_inuse should be after donating unused
1708  * capacity. @hwm is the upper bound and used to signal no donation. This
1709  * function also throws away @iocg's excess budget.
1710  */
1711 static u32 hweight_after_donation(struct ioc_gq *iocg, u32 old_hwi, u32 hwm,
1712 				  u32 usage, struct ioc_now *now)
1713 {
1714 	struct ioc *ioc = iocg->ioc;
1715 	u64 vtime = atomic64_read(&iocg->vtime);
1716 	s64 excess, delta, target, new_hwi;
1717 
1718 	/* debt handling owns inuse for debtors */
1719 	if (iocg->abs_vdebt)
1720 		return 1;
1721 
1722 	/* see whether minimum margin requirement is met */
1723 	if (waitqueue_active(&iocg->waitq) ||
1724 	    time_after64(vtime, now->vnow - ioc->margins.min))
1725 		return hwm;
1726 
1727 	/* throw away excess above target */
1728 	excess = now->vnow - vtime - ioc->margins.target;
1729 	if (excess > 0) {
1730 		atomic64_add(excess, &iocg->vtime);
1731 		atomic64_add(excess, &iocg->done_vtime);
1732 		vtime += excess;
1733 		ioc->vtime_err -= div64_u64(excess * old_hwi, WEIGHT_ONE);
1734 	}
1735 
1736 	/*
1737 	 * Let's say the distance between iocg's and device's vtimes as a
1738 	 * fraction of period duration is delta. Assuming that the iocg will
1739 	 * consume the usage determined above, we want to determine new_hwi so
1740 	 * that delta equals MARGIN_TARGET at the end of the next period.
1741 	 *
1742 	 * We need to execute usage worth of IOs while spending the sum of the
1743 	 * new budget (1 - MARGIN_TARGET) and the leftover from the last period
1744 	 * (delta):
1745 	 *
1746 	 *   usage = (1 - MARGIN_TARGET + delta) * new_hwi
1747 	 *
1748 	 * Therefore, the new_hwi is:
1749 	 *
1750 	 *   new_hwi = usage / (1 - MARGIN_TARGET + delta)
1751 	 */
1752 	delta = div64_s64(WEIGHT_ONE * (now->vnow - vtime),
1753 			  now->vnow - ioc->period_at_vtime);
1754 	target = WEIGHT_ONE * MARGIN_TARGET_PCT / 100;
1755 	new_hwi = div64_s64(WEIGHT_ONE * usage, WEIGHT_ONE - target + delta);
1756 
1757 	return clamp_t(s64, new_hwi, 1, hwm);
1758 }
1759 
1760 /*
1761  * For work-conservation, an iocg which isn't using all of its share should
1762  * donate the leftover to other iocgs. There are two ways to achieve this - 1.
1763  * bumping up vrate accordingly 2. lowering the donating iocg's inuse weight.
1764  *
1765  * #1 is mathematically simpler but has the drawback of requiring synchronous
1766  * global hweight_inuse updates when idle iocg's get activated or inuse weights
1767  * change due to donation snapbacks as it has the possibility of grossly
1768  * overshooting what's allowed by the model and vrate.
1769  *
1770  * #2 is inherently safe with local operations. The donating iocg can easily
1771  * snap back to higher weights when needed without worrying about impacts on
1772  * other nodes as the impacts will be inherently correct. This also makes idle
1773  * iocg activations safe. The only effect activations have is decreasing
1774  * hweight_inuse of others, the right solution to which is for those iocgs to
1775  * snap back to higher weights.
1776  *
1777  * So, we go with #2. The challenge is calculating how each donating iocg's
1778  * inuse should be adjusted to achieve the target donation amounts. This is done
1779  * using Andy's method described in the following pdf.
1780  *
1781  *   https://drive.google.com/file/d/1PsJwxPFtjUnwOY1QJ5AeICCcsL7BM3bo
1782  *
1783  * Given the weights and target after-donation hweight_inuse values, Andy's
1784  * method determines how the proportional distribution should look like at each
1785  * sibling level to maintain the relative relationship between all non-donating
1786  * pairs. To roughly summarize, it divides the tree into donating and
1787  * non-donating parts, calculates global donation rate which is used to
1788  * determine the target hweight_inuse for each node, and then derives per-level
1789  * proportions.
1790  *
1791  * The following pdf shows that global distribution calculated this way can be
1792  * achieved by scaling inuse weights of donating leaves and propagating the
1793  * adjustments upwards proportionally.
1794  *
1795  *   https://drive.google.com/file/d/1vONz1-fzVO7oY5DXXsLjSxEtYYQbOvsE
1796  *
1797  * Combining the above two, we can determine how each leaf iocg's inuse should
1798  * be adjusted to achieve the target donation.
1799  *
1800  *   https://drive.google.com/file/d/1WcrltBOSPN0qXVdBgnKm4mdp9FhuEFQN
1801  *
1802  * The inline comments use symbols from the last pdf.
1803  *
1804  *   b is the sum of the absolute budgets in the subtree. 1 for the root node.
1805  *   f is the sum of the absolute budgets of non-donating nodes in the subtree.
1806  *   t is the sum of the absolute budgets of donating nodes in the subtree.
1807  *   w is the weight of the node. w = w_f + w_t
1808  *   w_f is the non-donating portion of w. w_f = w * f / b
1809  *   w_b is the donating portion of w. w_t = w * t / b
1810  *   s is the sum of all sibling weights. s = Sum(w) for siblings
1811  *   s_f and s_t are the non-donating and donating portions of s.
1812  *
1813  * Subscript p denotes the parent's counterpart and ' the adjusted value - e.g.
1814  * w_pt is the donating portion of the parent's weight and w'_pt the same value
1815  * after adjustments. Subscript r denotes the root node's values.
1816  */
1817 static void transfer_surpluses(struct list_head *surpluses, struct ioc_now *now)
1818 {
1819 	LIST_HEAD(over_hwa);
1820 	LIST_HEAD(inner_walk);
1821 	struct ioc_gq *iocg, *tiocg, *root_iocg;
1822 	u32 after_sum, over_sum, over_target, gamma;
1823 
1824 	/*
1825 	 * It's pretty unlikely but possible for the total sum of
1826 	 * hweight_after_donation's to be higher than WEIGHT_ONE, which will
1827 	 * confuse the following calculations. If such condition is detected,
1828 	 * scale down everyone over its full share equally to keep the sum below
1829 	 * WEIGHT_ONE.
1830 	 */
1831 	after_sum = 0;
1832 	over_sum = 0;
1833 	list_for_each_entry(iocg, surpluses, surplus_list) {
1834 		u32 hwa;
1835 
1836 		current_hweight(iocg, &hwa, NULL);
1837 		after_sum += iocg->hweight_after_donation;
1838 
1839 		if (iocg->hweight_after_donation > hwa) {
1840 			over_sum += iocg->hweight_after_donation;
1841 			list_add(&iocg->walk_list, &over_hwa);
1842 		}
1843 	}
1844 
1845 	if (after_sum >= WEIGHT_ONE) {
1846 		/*
1847 		 * The delta should be deducted from the over_sum, calculate
1848 		 * target over_sum value.
1849 		 */
1850 		u32 over_delta = after_sum - (WEIGHT_ONE - 1);
1851 		WARN_ON_ONCE(over_sum <= over_delta);
1852 		over_target = over_sum - over_delta;
1853 	} else {
1854 		over_target = 0;
1855 	}
1856 
1857 	list_for_each_entry_safe(iocg, tiocg, &over_hwa, walk_list) {
1858 		if (over_target)
1859 			iocg->hweight_after_donation =
1860 				div_u64((u64)iocg->hweight_after_donation *
1861 					over_target, over_sum);
1862 		list_del_init(&iocg->walk_list);
1863 	}
1864 
1865 	/*
1866 	 * Build pre-order inner node walk list and prepare for donation
1867 	 * adjustment calculations.
1868 	 */
1869 	list_for_each_entry(iocg, surpluses, surplus_list) {
1870 		iocg_build_inner_walk(iocg, &inner_walk);
1871 	}
1872 
1873 	root_iocg = list_first_entry(&inner_walk, struct ioc_gq, walk_list);
1874 	WARN_ON_ONCE(root_iocg->level > 0);
1875 
1876 	list_for_each_entry(iocg, &inner_walk, walk_list) {
1877 		iocg->child_adjusted_sum = 0;
1878 		iocg->hweight_donating = 0;
1879 		iocg->hweight_after_donation = 0;
1880 	}
1881 
1882 	/*
1883 	 * Propagate the donating budget (b_t) and after donation budget (b'_t)
1884 	 * up the hierarchy.
1885 	 */
1886 	list_for_each_entry(iocg, surpluses, surplus_list) {
1887 		struct ioc_gq *parent = iocg->ancestors[iocg->level - 1];
1888 
1889 		parent->hweight_donating += iocg->hweight_donating;
1890 		parent->hweight_after_donation += iocg->hweight_after_donation;
1891 	}
1892 
1893 	list_for_each_entry_reverse(iocg, &inner_walk, walk_list) {
1894 		if (iocg->level > 0) {
1895 			struct ioc_gq *parent = iocg->ancestors[iocg->level - 1];
1896 
1897 			parent->hweight_donating += iocg->hweight_donating;
1898 			parent->hweight_after_donation += iocg->hweight_after_donation;
1899 		}
1900 	}
1901 
1902 	/*
1903 	 * Calculate inner hwa's (b) and make sure the donation values are
1904 	 * within the accepted ranges as we're doing low res calculations with
1905 	 * roundups.
1906 	 */
1907 	list_for_each_entry(iocg, &inner_walk, walk_list) {
1908 		if (iocg->level) {
1909 			struct ioc_gq *parent = iocg->ancestors[iocg->level - 1];
1910 
1911 			iocg->hweight_active = DIV64_U64_ROUND_UP(
1912 				(u64)parent->hweight_active * iocg->active,
1913 				parent->child_active_sum);
1914 
1915 		}
1916 
1917 		iocg->hweight_donating = min(iocg->hweight_donating,
1918 					     iocg->hweight_active);
1919 		iocg->hweight_after_donation = min(iocg->hweight_after_donation,
1920 						   iocg->hweight_donating - 1);
1921 		if (WARN_ON_ONCE(iocg->hweight_active <= 1 ||
1922 				 iocg->hweight_donating <= 1 ||
1923 				 iocg->hweight_after_donation == 0)) {
1924 			pr_warn("iocg: invalid donation weights in ");
1925 			pr_cont_cgroup_path(iocg_to_blkg(iocg)->blkcg->css.cgroup);
1926 			pr_cont(": active=%u donating=%u after=%u\n",
1927 				iocg->hweight_active, iocg->hweight_donating,
1928 				iocg->hweight_after_donation);
1929 		}
1930 	}
1931 
1932 	/*
1933 	 * Calculate the global donation rate (gamma) - the rate to adjust
1934 	 * non-donating budgets by.
1935 	 *
1936 	 * No need to use 64bit multiplication here as the first operand is
1937 	 * guaranteed to be smaller than WEIGHT_ONE (1<<16).
1938 	 *
1939 	 * We know that there are beneficiary nodes and the sum of the donating
1940 	 * hweights can't be whole; however, due to the round-ups during hweight
1941 	 * calculations, root_iocg->hweight_donating might still end up equal to
1942 	 * or greater than whole. Limit the range when calculating the divider.
1943 	 *
1944 	 * gamma = (1 - t_r') / (1 - t_r)
1945 	 */
1946 	gamma = DIV_ROUND_UP(
1947 		(WEIGHT_ONE - root_iocg->hweight_after_donation) * WEIGHT_ONE,
1948 		WEIGHT_ONE - min_t(u32, root_iocg->hweight_donating, WEIGHT_ONE - 1));
1949 
1950 	/*
1951 	 * Calculate adjusted hwi, child_adjusted_sum and inuse for the inner
1952 	 * nodes.
1953 	 */
1954 	list_for_each_entry(iocg, &inner_walk, walk_list) {
1955 		struct ioc_gq *parent;
1956 		u32 inuse, wpt, wptp;
1957 		u64 st, sf;
1958 
1959 		if (iocg->level == 0) {
1960 			/* adjusted weight sum for 1st level: s' = s * b_pf / b'_pf */
1961 			iocg->child_adjusted_sum = DIV64_U64_ROUND_UP(
1962 				iocg->child_active_sum * (WEIGHT_ONE - iocg->hweight_donating),
1963 				WEIGHT_ONE - iocg->hweight_after_donation);
1964 			continue;
1965 		}
1966 
1967 		parent = iocg->ancestors[iocg->level - 1];
1968 
1969 		/* b' = gamma * b_f + b_t' */
1970 		iocg->hweight_inuse = DIV64_U64_ROUND_UP(
1971 			(u64)gamma * (iocg->hweight_active - iocg->hweight_donating),
1972 			WEIGHT_ONE) + iocg->hweight_after_donation;
1973 
1974 		/* w' = s' * b' / b'_p */
1975 		inuse = DIV64_U64_ROUND_UP(
1976 			(u64)parent->child_adjusted_sum * iocg->hweight_inuse,
1977 			parent->hweight_inuse);
1978 
1979 		/* adjusted weight sum for children: s' = s_f + s_t * w'_pt / w_pt */
1980 		st = DIV64_U64_ROUND_UP(
1981 			iocg->child_active_sum * iocg->hweight_donating,
1982 			iocg->hweight_active);
1983 		sf = iocg->child_active_sum - st;
1984 		wpt = DIV64_U64_ROUND_UP(
1985 			(u64)iocg->active * iocg->hweight_donating,
1986 			iocg->hweight_active);
1987 		wptp = DIV64_U64_ROUND_UP(
1988 			(u64)inuse * iocg->hweight_after_donation,
1989 			iocg->hweight_inuse);
1990 
1991 		iocg->child_adjusted_sum = sf + DIV64_U64_ROUND_UP(st * wptp, wpt);
1992 	}
1993 
1994 	/*
1995 	 * All inner nodes now have ->hweight_inuse and ->child_adjusted_sum and
1996 	 * we can finally determine leaf adjustments.
1997 	 */
1998 	list_for_each_entry(iocg, surpluses, surplus_list) {
1999 		struct ioc_gq *parent = iocg->ancestors[iocg->level - 1];
2000 		u32 inuse;
2001 
2002 		/*
2003 		 * In-debt iocgs participated in the donation calculation with
2004 		 * the minimum target hweight_inuse. Configuring inuse
2005 		 * accordingly would work fine but debt handling expects
2006 		 * @iocg->inuse stay at the minimum and we don't wanna
2007 		 * interfere.
2008 		 */
2009 		if (iocg->abs_vdebt) {
2010 			WARN_ON_ONCE(iocg->inuse > 1);
2011 			continue;
2012 		}
2013 
2014 		/* w' = s' * b' / b'_p, note that b' == b'_t for donating leaves */
2015 		inuse = DIV64_U64_ROUND_UP(
2016 			parent->child_adjusted_sum * iocg->hweight_after_donation,
2017 			parent->hweight_inuse);
2018 
2019 		TRACE_IOCG_PATH(inuse_transfer, iocg, now,
2020 				iocg->inuse, inuse,
2021 				iocg->hweight_inuse,
2022 				iocg->hweight_after_donation);
2023 
2024 		__propagate_weights(iocg, iocg->active, inuse, true, now);
2025 	}
2026 
2027 	/* walk list should be dissolved after use */
2028 	list_for_each_entry_safe(iocg, tiocg, &inner_walk, walk_list)
2029 		list_del_init(&iocg->walk_list);
2030 }
2031 
2032 /*
2033  * A low weight iocg can amass a large amount of debt, for example, when
2034  * anonymous memory gets reclaimed aggressively. If the system has a lot of
2035  * memory paired with a slow IO device, the debt can span multiple seconds or
2036  * more. If there are no other subsequent IO issuers, the in-debt iocg may end
2037  * up blocked paying its debt while the IO device is idle.
2038  *
2039  * The following protects against such cases. If the device has been
2040  * sufficiently idle for a while, the debts are halved and delays are
2041  * recalculated.
2042  */
2043 static void ioc_forgive_debts(struct ioc *ioc, u64 usage_us_sum, int nr_debtors,
2044 			      struct ioc_now *now)
2045 {
2046 	struct ioc_gq *iocg;
2047 	u64 dur, usage_pct, nr_cycles;
2048 
2049 	/* if no debtor, reset the cycle */
2050 	if (!nr_debtors) {
2051 		ioc->dfgv_period_at = now->now;
2052 		ioc->dfgv_period_rem = 0;
2053 		ioc->dfgv_usage_us_sum = 0;
2054 		return;
2055 	}
2056 
2057 	/*
2058 	 * Debtors can pass through a lot of writes choking the device and we
2059 	 * don't want to be forgiving debts while the device is struggling from
2060 	 * write bursts. If we're missing latency targets, consider the device
2061 	 * fully utilized.
2062 	 */
2063 	if (ioc->busy_level > 0)
2064 		usage_us_sum = max_t(u64, usage_us_sum, ioc->period_us);
2065 
2066 	ioc->dfgv_usage_us_sum += usage_us_sum;
2067 	if (time_before64(now->now, ioc->dfgv_period_at + DFGV_PERIOD))
2068 		return;
2069 
2070 	/*
2071 	 * At least DFGV_PERIOD has passed since the last period. Calculate the
2072 	 * average usage and reset the period counters.
2073 	 */
2074 	dur = now->now - ioc->dfgv_period_at;
2075 	usage_pct = div64_u64(100 * ioc->dfgv_usage_us_sum, dur);
2076 
2077 	ioc->dfgv_period_at = now->now;
2078 	ioc->dfgv_usage_us_sum = 0;
2079 
2080 	/* if was too busy, reset everything */
2081 	if (usage_pct > DFGV_USAGE_PCT) {
2082 		ioc->dfgv_period_rem = 0;
2083 		return;
2084 	}
2085 
2086 	/*
2087 	 * Usage is lower than threshold. Let's forgive some debts. Debt
2088 	 * forgiveness runs off of the usual ioc timer but its period usually
2089 	 * doesn't match ioc's. Compensate the difference by performing the
2090 	 * reduction as many times as would fit in the duration since the last
2091 	 * run and carrying over the left-over duration in @ioc->dfgv_period_rem
2092 	 * - if ioc period is 75% of DFGV_PERIOD, one out of three consecutive
2093 	 * reductions is doubled.
2094 	 */
2095 	nr_cycles = dur + ioc->dfgv_period_rem;
2096 	ioc->dfgv_period_rem = do_div(nr_cycles, DFGV_PERIOD);
2097 
2098 	list_for_each_entry(iocg, &ioc->active_iocgs, active_list) {
2099 		u64 __maybe_unused old_debt, __maybe_unused old_delay;
2100 
2101 		if (!iocg->abs_vdebt && !iocg->delay)
2102 			continue;
2103 
2104 		spin_lock(&iocg->waitq.lock);
2105 
2106 		old_debt = iocg->abs_vdebt;
2107 		old_delay = iocg->delay;
2108 
2109 		if (iocg->abs_vdebt)
2110 			iocg->abs_vdebt = iocg->abs_vdebt >> nr_cycles ?: 1;
2111 		if (iocg->delay)
2112 			iocg->delay = iocg->delay >> nr_cycles ?: 1;
2113 
2114 		iocg_kick_waitq(iocg, true, now);
2115 
2116 		TRACE_IOCG_PATH(iocg_forgive_debt, iocg, now, usage_pct,
2117 				old_debt, iocg->abs_vdebt,
2118 				old_delay, iocg->delay);
2119 
2120 		spin_unlock(&iocg->waitq.lock);
2121 	}
2122 }
2123 
2124 /*
2125  * Check the active iocgs' state to avoid oversleeping and deactive
2126  * idle iocgs.
2127  *
2128  * Since waiters determine the sleep durations based on the vrate
2129  * they saw at the time of sleep, if vrate has increased, some
2130  * waiters could be sleeping for too long. Wake up tardy waiters
2131  * which should have woken up in the last period and expire idle
2132  * iocgs.
2133  */
2134 static int ioc_check_iocgs(struct ioc *ioc, struct ioc_now *now)
2135 {
2136 	int nr_debtors = 0;
2137 	struct ioc_gq *iocg, *tiocg;
2138 
2139 	list_for_each_entry_safe(iocg, tiocg, &ioc->active_iocgs, active_list) {
2140 		if (!waitqueue_active(&iocg->waitq) && !iocg->abs_vdebt &&
2141 		    !iocg->delay && !iocg_is_idle(iocg))
2142 			continue;
2143 
2144 		spin_lock(&iocg->waitq.lock);
2145 
2146 		/* flush wait and indebt stat deltas */
2147 		if (iocg->wait_since) {
2148 			iocg->stat.wait_us += now->now - iocg->wait_since;
2149 			iocg->wait_since = now->now;
2150 		}
2151 		if (iocg->indebt_since) {
2152 			iocg->stat.indebt_us +=
2153 				now->now - iocg->indebt_since;
2154 			iocg->indebt_since = now->now;
2155 		}
2156 		if (iocg->indelay_since) {
2157 			iocg->stat.indelay_us +=
2158 				now->now - iocg->indelay_since;
2159 			iocg->indelay_since = now->now;
2160 		}
2161 
2162 		if (waitqueue_active(&iocg->waitq) || iocg->abs_vdebt ||
2163 		    iocg->delay) {
2164 			/* might be oversleeping vtime / hweight changes, kick */
2165 			iocg_kick_waitq(iocg, true, now);
2166 			if (iocg->abs_vdebt || iocg->delay)
2167 				nr_debtors++;
2168 		} else if (iocg_is_idle(iocg)) {
2169 			/* no waiter and idle, deactivate */
2170 			u64 vtime = atomic64_read(&iocg->vtime);
2171 			s64 excess;
2172 
2173 			/*
2174 			 * @iocg has been inactive for a full duration and will
2175 			 * have a high budget. Account anything above target as
2176 			 * error and throw away. On reactivation, it'll start
2177 			 * with the target budget.
2178 			 */
2179 			excess = now->vnow - vtime - ioc->margins.target;
2180 			if (excess > 0) {
2181 				u32 old_hwi;
2182 
2183 				current_hweight(iocg, NULL, &old_hwi);
2184 				ioc->vtime_err -= div64_u64(excess * old_hwi,
2185 							    WEIGHT_ONE);
2186 			}
2187 
2188 			TRACE_IOCG_PATH(iocg_idle, iocg, now,
2189 					atomic64_read(&iocg->active_period),
2190 					atomic64_read(&ioc->cur_period), vtime);
2191 			__propagate_weights(iocg, 0, 0, false, now);
2192 			list_del_init(&iocg->active_list);
2193 		}
2194 
2195 		spin_unlock(&iocg->waitq.lock);
2196 	}
2197 
2198 	commit_weights(ioc);
2199 	return nr_debtors;
2200 }
2201 
2202 static void ioc_timer_fn(struct timer_list *timer)
2203 {
2204 	struct ioc *ioc = container_of(timer, struct ioc, timer);
2205 	struct ioc_gq *iocg, *tiocg;
2206 	struct ioc_now now;
2207 	LIST_HEAD(surpluses);
2208 	int nr_debtors, nr_shortages = 0, nr_lagging = 0;
2209 	u64 usage_us_sum = 0;
2210 	u32 ppm_rthr;
2211 	u32 ppm_wthr;
2212 	u32 missed_ppm[2], rq_wait_pct;
2213 	u64 period_vtime;
2214 	int prev_busy_level;
2215 
2216 	/* how were the latencies during the period? */
2217 	ioc_lat_stat(ioc, missed_ppm, &rq_wait_pct);
2218 
2219 	/* take care of active iocgs */
2220 	spin_lock_irq(&ioc->lock);
2221 
2222 	ppm_rthr = MILLION - ioc->params.qos[QOS_RPPM];
2223 	ppm_wthr = MILLION - ioc->params.qos[QOS_WPPM];
2224 	ioc_now(ioc, &now);
2225 
2226 	period_vtime = now.vnow - ioc->period_at_vtime;
2227 	if (WARN_ON_ONCE(!period_vtime)) {
2228 		spin_unlock_irq(&ioc->lock);
2229 		return;
2230 	}
2231 
2232 	nr_debtors = ioc_check_iocgs(ioc, &now);
2233 
2234 	/*
2235 	 * Wait and indebt stat are flushed above and the donation calculation
2236 	 * below needs updated usage stat. Let's bring stat up-to-date.
2237 	 */
2238 	iocg_flush_stat(&ioc->active_iocgs, &now);
2239 
2240 	/* calc usage and see whether some weights need to be moved around */
2241 	list_for_each_entry(iocg, &ioc->active_iocgs, active_list) {
2242 		u64 vdone, vtime, usage_us;
2243 		u32 hw_active, hw_inuse;
2244 
2245 		/*
2246 		 * Collect unused and wind vtime closer to vnow to prevent
2247 		 * iocgs from accumulating a large amount of budget.
2248 		 */
2249 		vdone = atomic64_read(&iocg->done_vtime);
2250 		vtime = atomic64_read(&iocg->vtime);
2251 		current_hweight(iocg, &hw_active, &hw_inuse);
2252 
2253 		/*
2254 		 * Latency QoS detection doesn't account for IOs which are
2255 		 * in-flight for longer than a period.  Detect them by
2256 		 * comparing vdone against period start.  If lagging behind
2257 		 * IOs from past periods, don't increase vrate.
2258 		 */
2259 		if ((ppm_rthr != MILLION || ppm_wthr != MILLION) &&
2260 		    !atomic_read(&iocg_to_blkg(iocg)->use_delay) &&
2261 		    time_after64(vtime, vdone) &&
2262 		    time_after64(vtime, now.vnow -
2263 				 MAX_LAGGING_PERIODS * period_vtime) &&
2264 		    time_before64(vdone, now.vnow - period_vtime))
2265 			nr_lagging++;
2266 
2267 		/*
2268 		 * Determine absolute usage factoring in in-flight IOs to avoid
2269 		 * high-latency completions appearing as idle.
2270 		 */
2271 		usage_us = iocg->usage_delta_us;
2272 		usage_us_sum += usage_us;
2273 
2274 		/* see whether there's surplus vtime */
2275 		WARN_ON_ONCE(!list_empty(&iocg->surplus_list));
2276 		if (hw_inuse < hw_active ||
2277 		    (!waitqueue_active(&iocg->waitq) &&
2278 		     time_before64(vtime, now.vnow - ioc->margins.low))) {
2279 			u32 hwa, old_hwi, hwm, new_hwi, usage;
2280 			u64 usage_dur;
2281 
2282 			if (vdone != vtime) {
2283 				u64 inflight_us = DIV64_U64_ROUND_UP(
2284 					cost_to_abs_cost(vtime - vdone, hw_inuse),
2285 					ioc->vtime_base_rate);
2286 
2287 				usage_us = max(usage_us, inflight_us);
2288 			}
2289 
2290 			/* convert to hweight based usage ratio */
2291 			if (time_after64(iocg->activated_at, ioc->period_at))
2292 				usage_dur = max_t(u64, now.now - iocg->activated_at, 1);
2293 			else
2294 				usage_dur = max_t(u64, now.now - ioc->period_at, 1);
2295 
2296 			usage = clamp_t(u32,
2297 				DIV64_U64_ROUND_UP(usage_us * WEIGHT_ONE,
2298 						   usage_dur),
2299 				1, WEIGHT_ONE);
2300 
2301 			/*
2302 			 * Already donating or accumulated enough to start.
2303 			 * Determine the donation amount.
2304 			 */
2305 			current_hweight(iocg, &hwa, &old_hwi);
2306 			hwm = current_hweight_max(iocg);
2307 			new_hwi = hweight_after_donation(iocg, old_hwi, hwm,
2308 							 usage, &now);
2309 			/*
2310 			 * Donation calculation assumes hweight_after_donation
2311 			 * to be positive, a condition that a donor w/ hwa < 2
2312 			 * can't meet. Don't bother with donation if hwa is
2313 			 * below 2. It's not gonna make a meaningful difference
2314 			 * anyway.
2315 			 */
2316 			if (new_hwi < hwm && hwa >= 2) {
2317 				iocg->hweight_donating = hwa;
2318 				iocg->hweight_after_donation = new_hwi;
2319 				list_add(&iocg->surplus_list, &surpluses);
2320 			} else if (!iocg->abs_vdebt) {
2321 				/*
2322 				 * @iocg doesn't have enough to donate. Reset
2323 				 * its inuse to active.
2324 				 *
2325 				 * Don't reset debtors as their inuse's are
2326 				 * owned by debt handling. This shouldn't affect
2327 				 * donation calculuation in any meaningful way
2328 				 * as @iocg doesn't have a meaningful amount of
2329 				 * share anyway.
2330 				 */
2331 				TRACE_IOCG_PATH(inuse_shortage, iocg, &now,
2332 						iocg->inuse, iocg->active,
2333 						iocg->hweight_inuse, new_hwi);
2334 
2335 				__propagate_weights(iocg, iocg->active,
2336 						    iocg->active, true, &now);
2337 				nr_shortages++;
2338 			}
2339 		} else {
2340 			/* genuinely short on vtime */
2341 			nr_shortages++;
2342 		}
2343 	}
2344 
2345 	if (!list_empty(&surpluses) && nr_shortages)
2346 		transfer_surpluses(&surpluses, &now);
2347 
2348 	commit_weights(ioc);
2349 
2350 	/* surplus list should be dissolved after use */
2351 	list_for_each_entry_safe(iocg, tiocg, &surpluses, surplus_list)
2352 		list_del_init(&iocg->surplus_list);
2353 
2354 	/*
2355 	 * If q is getting clogged or we're missing too much, we're issuing
2356 	 * too much IO and should lower vtime rate.  If we're not missing
2357 	 * and experiencing shortages but not surpluses, we're too stingy
2358 	 * and should increase vtime rate.
2359 	 */
2360 	prev_busy_level = ioc->busy_level;
2361 	if (rq_wait_pct > RQ_WAIT_BUSY_PCT ||
2362 	    missed_ppm[READ] > ppm_rthr ||
2363 	    missed_ppm[WRITE] > ppm_wthr) {
2364 		/* clearly missing QoS targets, slow down vrate */
2365 		ioc->busy_level = max(ioc->busy_level, 0);
2366 		ioc->busy_level++;
2367 	} else if (rq_wait_pct <= RQ_WAIT_BUSY_PCT * UNBUSY_THR_PCT / 100 &&
2368 		   missed_ppm[READ] <= ppm_rthr * UNBUSY_THR_PCT / 100 &&
2369 		   missed_ppm[WRITE] <= ppm_wthr * UNBUSY_THR_PCT / 100) {
2370 		/* QoS targets are being met with >25% margin */
2371 		if (nr_shortages) {
2372 			/*
2373 			 * We're throttling while the device has spare
2374 			 * capacity.  If vrate was being slowed down, stop.
2375 			 */
2376 			ioc->busy_level = min(ioc->busy_level, 0);
2377 
2378 			/*
2379 			 * If there are IOs spanning multiple periods, wait
2380 			 * them out before pushing the device harder.
2381 			 */
2382 			if (!nr_lagging)
2383 				ioc->busy_level--;
2384 		} else {
2385 			/*
2386 			 * Nobody is being throttled and the users aren't
2387 			 * issuing enough IOs to saturate the device.  We
2388 			 * simply don't know how close the device is to
2389 			 * saturation.  Coast.
2390 			 */
2391 			ioc->busy_level = 0;
2392 		}
2393 	} else {
2394 		/* inside the hysterisis margin, we're good */
2395 		ioc->busy_level = 0;
2396 	}
2397 
2398 	ioc->busy_level = clamp(ioc->busy_level, -1000, 1000);
2399 
2400 	ioc_adjust_base_vrate(ioc, rq_wait_pct, nr_lagging, nr_shortages,
2401 			      prev_busy_level, missed_ppm);
2402 
2403 	ioc_refresh_params(ioc, false);
2404 
2405 	ioc_forgive_debts(ioc, usage_us_sum, nr_debtors, &now);
2406 
2407 	/*
2408 	 * This period is done.  Move onto the next one.  If nothing's
2409 	 * going on with the device, stop the timer.
2410 	 */
2411 	atomic64_inc(&ioc->cur_period);
2412 
2413 	if (ioc->running != IOC_STOP) {
2414 		if (!list_empty(&ioc->active_iocgs)) {
2415 			ioc_start_period(ioc, &now);
2416 		} else {
2417 			ioc->busy_level = 0;
2418 			ioc->vtime_err = 0;
2419 			ioc->running = IOC_IDLE;
2420 		}
2421 
2422 		ioc_refresh_vrate(ioc, &now);
2423 	}
2424 
2425 	spin_unlock_irq(&ioc->lock);
2426 }
2427 
2428 static u64 adjust_inuse_and_calc_cost(struct ioc_gq *iocg, u64 vtime,
2429 				      u64 abs_cost, struct ioc_now *now)
2430 {
2431 	struct ioc *ioc = iocg->ioc;
2432 	struct ioc_margins *margins = &ioc->margins;
2433 	u32 __maybe_unused old_inuse = iocg->inuse, __maybe_unused old_hwi;
2434 	u32 hwi, adj_step;
2435 	s64 margin;
2436 	u64 cost, new_inuse;
2437 
2438 	current_hweight(iocg, NULL, &hwi);
2439 	old_hwi = hwi;
2440 	cost = abs_cost_to_cost(abs_cost, hwi);
2441 	margin = now->vnow - vtime - cost;
2442 
2443 	/* debt handling owns inuse for debtors */
2444 	if (iocg->abs_vdebt)
2445 		return cost;
2446 
2447 	/*
2448 	 * We only increase inuse during period and do so if the margin has
2449 	 * deteriorated since the previous adjustment.
2450 	 */
2451 	if (margin >= iocg->saved_margin || margin >= margins->low ||
2452 	    iocg->inuse == iocg->active)
2453 		return cost;
2454 
2455 	spin_lock_irq(&ioc->lock);
2456 
2457 	/* we own inuse only when @iocg is in the normal active state */
2458 	if (iocg->abs_vdebt || list_empty(&iocg->active_list)) {
2459 		spin_unlock_irq(&ioc->lock);
2460 		return cost;
2461 	}
2462 
2463 	/*
2464 	 * Bump up inuse till @abs_cost fits in the existing budget.
2465 	 * adj_step must be determined after acquiring ioc->lock - we might
2466 	 * have raced and lost to another thread for activation and could
2467 	 * be reading 0 iocg->active before ioc->lock which will lead to
2468 	 * infinite loop.
2469 	 */
2470 	new_inuse = iocg->inuse;
2471 	adj_step = DIV_ROUND_UP(iocg->active * INUSE_ADJ_STEP_PCT, 100);
2472 	do {
2473 		new_inuse = new_inuse + adj_step;
2474 		propagate_weights(iocg, iocg->active, new_inuse, true, now);
2475 		current_hweight(iocg, NULL, &hwi);
2476 		cost = abs_cost_to_cost(abs_cost, hwi);
2477 	} while (time_after64(vtime + cost, now->vnow) &&
2478 		 iocg->inuse != iocg->active);
2479 
2480 	spin_unlock_irq(&ioc->lock);
2481 
2482 	TRACE_IOCG_PATH(inuse_adjust, iocg, now,
2483 			old_inuse, iocg->inuse, old_hwi, hwi);
2484 
2485 	return cost;
2486 }
2487 
2488 static void calc_vtime_cost_builtin(struct bio *bio, struct ioc_gq *iocg,
2489 				    bool is_merge, u64 *costp)
2490 {
2491 	struct ioc *ioc = iocg->ioc;
2492 	u64 coef_seqio, coef_randio, coef_page;
2493 	u64 pages = max_t(u64, bio_sectors(bio) >> IOC_SECT_TO_PAGE_SHIFT, 1);
2494 	u64 seek_pages = 0;
2495 	u64 cost = 0;
2496 
2497 	switch (bio_op(bio)) {
2498 	case REQ_OP_READ:
2499 		coef_seqio	= ioc->params.lcoefs[LCOEF_RSEQIO];
2500 		coef_randio	= ioc->params.lcoefs[LCOEF_RRANDIO];
2501 		coef_page	= ioc->params.lcoefs[LCOEF_RPAGE];
2502 		break;
2503 	case REQ_OP_WRITE:
2504 		coef_seqio	= ioc->params.lcoefs[LCOEF_WSEQIO];
2505 		coef_randio	= ioc->params.lcoefs[LCOEF_WRANDIO];
2506 		coef_page	= ioc->params.lcoefs[LCOEF_WPAGE];
2507 		break;
2508 	default:
2509 		goto out;
2510 	}
2511 
2512 	if (iocg->cursor) {
2513 		seek_pages = abs(bio->bi_iter.bi_sector - iocg->cursor);
2514 		seek_pages >>= IOC_SECT_TO_PAGE_SHIFT;
2515 	}
2516 
2517 	if (!is_merge) {
2518 		if (seek_pages > LCOEF_RANDIO_PAGES) {
2519 			cost += coef_randio;
2520 		} else {
2521 			cost += coef_seqio;
2522 		}
2523 	}
2524 	cost += pages * coef_page;
2525 out:
2526 	*costp = cost;
2527 }
2528 
2529 static u64 calc_vtime_cost(struct bio *bio, struct ioc_gq *iocg, bool is_merge)
2530 {
2531 	u64 cost;
2532 
2533 	calc_vtime_cost_builtin(bio, iocg, is_merge, &cost);
2534 	return cost;
2535 }
2536 
2537 static void calc_size_vtime_cost_builtin(struct request *rq, struct ioc *ioc,
2538 					 u64 *costp)
2539 {
2540 	unsigned int pages = blk_rq_stats_sectors(rq) >> IOC_SECT_TO_PAGE_SHIFT;
2541 
2542 	switch (req_op(rq)) {
2543 	case REQ_OP_READ:
2544 		*costp = pages * ioc->params.lcoefs[LCOEF_RPAGE];
2545 		break;
2546 	case REQ_OP_WRITE:
2547 		*costp = pages * ioc->params.lcoefs[LCOEF_WPAGE];
2548 		break;
2549 	default:
2550 		*costp = 0;
2551 	}
2552 }
2553 
2554 static u64 calc_size_vtime_cost(struct request *rq, struct ioc *ioc)
2555 {
2556 	u64 cost;
2557 
2558 	calc_size_vtime_cost_builtin(rq, ioc, &cost);
2559 	return cost;
2560 }
2561 
2562 static void ioc_rqos_throttle(struct rq_qos *rqos, struct bio *bio)
2563 {
2564 	struct blkcg_gq *blkg = bio->bi_blkg;
2565 	struct ioc *ioc = rqos_to_ioc(rqos);
2566 	struct ioc_gq *iocg = blkg_to_iocg(blkg);
2567 	struct ioc_now now;
2568 	struct iocg_wait wait;
2569 	u64 abs_cost, cost, vtime;
2570 	bool use_debt, ioc_locked;
2571 	unsigned long flags;
2572 
2573 	/* bypass IOs if disabled, still initializing, or for root cgroup */
2574 	if (!ioc->enabled || !iocg || !iocg->level)
2575 		return;
2576 
2577 	/* calculate the absolute vtime cost */
2578 	abs_cost = calc_vtime_cost(bio, iocg, false);
2579 	if (!abs_cost)
2580 		return;
2581 
2582 	if (!iocg_activate(iocg, &now))
2583 		return;
2584 
2585 	iocg->cursor = bio_end_sector(bio);
2586 	vtime = atomic64_read(&iocg->vtime);
2587 	cost = adjust_inuse_and_calc_cost(iocg, vtime, abs_cost, &now);
2588 
2589 	/*
2590 	 * If no one's waiting and within budget, issue right away.  The
2591 	 * tests are racy but the races aren't systemic - we only miss once
2592 	 * in a while which is fine.
2593 	 */
2594 	if (!waitqueue_active(&iocg->waitq) && !iocg->abs_vdebt &&
2595 	    time_before_eq64(vtime + cost, now.vnow)) {
2596 		iocg_commit_bio(iocg, bio, abs_cost, cost);
2597 		return;
2598 	}
2599 
2600 	/*
2601 	 * We're over budget. This can be handled in two ways. IOs which may
2602 	 * cause priority inversions are punted to @ioc->aux_iocg and charged as
2603 	 * debt. Otherwise, the issuer is blocked on @iocg->waitq. Debt handling
2604 	 * requires @ioc->lock, waitq handling @iocg->waitq.lock. Determine
2605 	 * whether debt handling is needed and acquire locks accordingly.
2606 	 */
2607 	use_debt = bio_issue_as_root_blkg(bio) || fatal_signal_pending(current);
2608 	ioc_locked = use_debt || READ_ONCE(iocg->abs_vdebt);
2609 retry_lock:
2610 	iocg_lock(iocg, ioc_locked, &flags);
2611 
2612 	/*
2613 	 * @iocg must stay activated for debt and waitq handling. Deactivation
2614 	 * is synchronized against both ioc->lock and waitq.lock and we won't
2615 	 * get deactivated as long as we're waiting or has debt, so we're good
2616 	 * if we're activated here. In the unlikely cases that we aren't, just
2617 	 * issue the IO.
2618 	 */
2619 	if (unlikely(list_empty(&iocg->active_list))) {
2620 		iocg_unlock(iocg, ioc_locked, &flags);
2621 		iocg_commit_bio(iocg, bio, abs_cost, cost);
2622 		return;
2623 	}
2624 
2625 	/*
2626 	 * We're over budget. If @bio has to be issued regardless, remember
2627 	 * the abs_cost instead of advancing vtime. iocg_kick_waitq() will pay
2628 	 * off the debt before waking more IOs.
2629 	 *
2630 	 * This way, the debt is continuously paid off each period with the
2631 	 * actual budget available to the cgroup. If we just wound vtime, we
2632 	 * would incorrectly use the current hw_inuse for the entire amount
2633 	 * which, for example, can lead to the cgroup staying blocked for a
2634 	 * long time even with substantially raised hw_inuse.
2635 	 *
2636 	 * An iocg with vdebt should stay online so that the timer can keep
2637 	 * deducting its vdebt and [de]activate use_delay mechanism
2638 	 * accordingly. We don't want to race against the timer trying to
2639 	 * clear them and leave @iocg inactive w/ dangling use_delay heavily
2640 	 * penalizing the cgroup and its descendants.
2641 	 */
2642 	if (use_debt) {
2643 		iocg_incur_debt(iocg, abs_cost, &now);
2644 		if (iocg_kick_delay(iocg, &now))
2645 			blkcg_schedule_throttle(rqos->q->disk,
2646 					(bio->bi_opf & REQ_SWAP) == REQ_SWAP);
2647 		iocg_unlock(iocg, ioc_locked, &flags);
2648 		return;
2649 	}
2650 
2651 	/* guarantee that iocgs w/ waiters have maximum inuse */
2652 	if (!iocg->abs_vdebt && iocg->inuse != iocg->active) {
2653 		if (!ioc_locked) {
2654 			iocg_unlock(iocg, false, &flags);
2655 			ioc_locked = true;
2656 			goto retry_lock;
2657 		}
2658 		propagate_weights(iocg, iocg->active, iocg->active, true,
2659 				  &now);
2660 	}
2661 
2662 	/*
2663 	 * Append self to the waitq and schedule the wakeup timer if we're
2664 	 * the first waiter.  The timer duration is calculated based on the
2665 	 * current vrate.  vtime and hweight changes can make it too short
2666 	 * or too long.  Each wait entry records the absolute cost it's
2667 	 * waiting for to allow re-evaluation using a custom wait entry.
2668 	 *
2669 	 * If too short, the timer simply reschedules itself.  If too long,
2670 	 * the period timer will notice and trigger wakeups.
2671 	 *
2672 	 * All waiters are on iocg->waitq and the wait states are
2673 	 * synchronized using waitq.lock.
2674 	 */
2675 	init_waitqueue_func_entry(&wait.wait, iocg_wake_fn);
2676 	wait.wait.private = current;
2677 	wait.bio = bio;
2678 	wait.abs_cost = abs_cost;
2679 	wait.committed = false;	/* will be set true by waker */
2680 
2681 	__add_wait_queue_entry_tail(&iocg->waitq, &wait.wait);
2682 	iocg_kick_waitq(iocg, ioc_locked, &now);
2683 
2684 	iocg_unlock(iocg, ioc_locked, &flags);
2685 
2686 	while (true) {
2687 		set_current_state(TASK_UNINTERRUPTIBLE);
2688 		if (wait.committed)
2689 			break;
2690 		io_schedule();
2691 	}
2692 
2693 	/* waker already committed us, proceed */
2694 	finish_wait(&iocg->waitq, &wait.wait);
2695 }
2696 
2697 static void ioc_rqos_merge(struct rq_qos *rqos, struct request *rq,
2698 			   struct bio *bio)
2699 {
2700 	struct ioc_gq *iocg = blkg_to_iocg(bio->bi_blkg);
2701 	struct ioc *ioc = rqos_to_ioc(rqos);
2702 	sector_t bio_end = bio_end_sector(bio);
2703 	struct ioc_now now;
2704 	u64 vtime, abs_cost, cost;
2705 	unsigned long flags;
2706 
2707 	/* bypass if disabled, still initializing, or for root cgroup */
2708 	if (!ioc->enabled || !iocg || !iocg->level)
2709 		return;
2710 
2711 	abs_cost = calc_vtime_cost(bio, iocg, true);
2712 	if (!abs_cost)
2713 		return;
2714 
2715 	ioc_now(ioc, &now);
2716 
2717 	vtime = atomic64_read(&iocg->vtime);
2718 	cost = adjust_inuse_and_calc_cost(iocg, vtime, abs_cost, &now);
2719 
2720 	/* update cursor if backmerging into the request at the cursor */
2721 	if (blk_rq_pos(rq) < bio_end &&
2722 	    blk_rq_pos(rq) + blk_rq_sectors(rq) == iocg->cursor)
2723 		iocg->cursor = bio_end;
2724 
2725 	/*
2726 	 * Charge if there's enough vtime budget and the existing request has
2727 	 * cost assigned.
2728 	 */
2729 	if (rq->bio && rq->bio->bi_iocost_cost &&
2730 	    time_before_eq64(atomic64_read(&iocg->vtime) + cost, now.vnow)) {
2731 		iocg_commit_bio(iocg, bio, abs_cost, cost);
2732 		return;
2733 	}
2734 
2735 	/*
2736 	 * Otherwise, account it as debt if @iocg is online, which it should
2737 	 * be for the vast majority of cases. See debt handling in
2738 	 * ioc_rqos_throttle() for details.
2739 	 */
2740 	spin_lock_irqsave(&ioc->lock, flags);
2741 	spin_lock(&iocg->waitq.lock);
2742 
2743 	if (likely(!list_empty(&iocg->active_list))) {
2744 		iocg_incur_debt(iocg, abs_cost, &now);
2745 		if (iocg_kick_delay(iocg, &now))
2746 			blkcg_schedule_throttle(rqos->q->disk,
2747 					(bio->bi_opf & REQ_SWAP) == REQ_SWAP);
2748 	} else {
2749 		iocg_commit_bio(iocg, bio, abs_cost, cost);
2750 	}
2751 
2752 	spin_unlock(&iocg->waitq.lock);
2753 	spin_unlock_irqrestore(&ioc->lock, flags);
2754 }
2755 
2756 static void ioc_rqos_done_bio(struct rq_qos *rqos, struct bio *bio)
2757 {
2758 	struct ioc_gq *iocg = blkg_to_iocg(bio->bi_blkg);
2759 
2760 	if (iocg && bio->bi_iocost_cost)
2761 		atomic64_add(bio->bi_iocost_cost, &iocg->done_vtime);
2762 }
2763 
2764 static void ioc_rqos_done(struct rq_qos *rqos, struct request *rq)
2765 {
2766 	struct ioc *ioc = rqos_to_ioc(rqos);
2767 	struct ioc_pcpu_stat *ccs;
2768 	u64 on_q_ns, rq_wait_ns, size_nsec;
2769 	int pidx, rw;
2770 
2771 	if (!ioc->enabled || !rq->alloc_time_ns || !rq->start_time_ns)
2772 		return;
2773 
2774 	switch (req_op(rq)) {
2775 	case REQ_OP_READ:
2776 		pidx = QOS_RLAT;
2777 		rw = READ;
2778 		break;
2779 	case REQ_OP_WRITE:
2780 		pidx = QOS_WLAT;
2781 		rw = WRITE;
2782 		break;
2783 	default:
2784 		return;
2785 	}
2786 
2787 	on_q_ns = ktime_get_ns() - rq->alloc_time_ns;
2788 	rq_wait_ns = rq->start_time_ns - rq->alloc_time_ns;
2789 	size_nsec = div64_u64(calc_size_vtime_cost(rq, ioc), VTIME_PER_NSEC);
2790 
2791 	ccs = get_cpu_ptr(ioc->pcpu_stat);
2792 
2793 	if (on_q_ns <= size_nsec ||
2794 	    on_q_ns - size_nsec <= ioc->params.qos[pidx] * NSEC_PER_USEC)
2795 		local_inc(&ccs->missed[rw].nr_met);
2796 	else
2797 		local_inc(&ccs->missed[rw].nr_missed);
2798 
2799 	local64_add(rq_wait_ns, &ccs->rq_wait_ns);
2800 
2801 	put_cpu_ptr(ccs);
2802 }
2803 
2804 static void ioc_rqos_queue_depth_changed(struct rq_qos *rqos)
2805 {
2806 	struct ioc *ioc = rqos_to_ioc(rqos);
2807 
2808 	spin_lock_irq(&ioc->lock);
2809 	ioc_refresh_params(ioc, false);
2810 	spin_unlock_irq(&ioc->lock);
2811 }
2812 
2813 static void ioc_rqos_exit(struct rq_qos *rqos)
2814 {
2815 	struct ioc *ioc = rqos_to_ioc(rqos);
2816 
2817 	blkcg_deactivate_policy(rqos->q, &blkcg_policy_iocost);
2818 
2819 	spin_lock_irq(&ioc->lock);
2820 	ioc->running = IOC_STOP;
2821 	spin_unlock_irq(&ioc->lock);
2822 
2823 	timer_shutdown_sync(&ioc->timer);
2824 	free_percpu(ioc->pcpu_stat);
2825 	kfree(ioc);
2826 }
2827 
2828 static struct rq_qos_ops ioc_rqos_ops = {
2829 	.throttle = ioc_rqos_throttle,
2830 	.merge = ioc_rqos_merge,
2831 	.done_bio = ioc_rqos_done_bio,
2832 	.done = ioc_rqos_done,
2833 	.queue_depth_changed = ioc_rqos_queue_depth_changed,
2834 	.exit = ioc_rqos_exit,
2835 };
2836 
2837 static int blk_iocost_init(struct gendisk *disk)
2838 {
2839 	struct request_queue *q = disk->queue;
2840 	struct ioc *ioc;
2841 	struct rq_qos *rqos;
2842 	int i, cpu, ret;
2843 
2844 	ioc = kzalloc(sizeof(*ioc), GFP_KERNEL);
2845 	if (!ioc)
2846 		return -ENOMEM;
2847 
2848 	ioc->pcpu_stat = alloc_percpu(struct ioc_pcpu_stat);
2849 	if (!ioc->pcpu_stat) {
2850 		kfree(ioc);
2851 		return -ENOMEM;
2852 	}
2853 
2854 	for_each_possible_cpu(cpu) {
2855 		struct ioc_pcpu_stat *ccs = per_cpu_ptr(ioc->pcpu_stat, cpu);
2856 
2857 		for (i = 0; i < ARRAY_SIZE(ccs->missed); i++) {
2858 			local_set(&ccs->missed[i].nr_met, 0);
2859 			local_set(&ccs->missed[i].nr_missed, 0);
2860 		}
2861 		local64_set(&ccs->rq_wait_ns, 0);
2862 	}
2863 
2864 	rqos = &ioc->rqos;
2865 	rqos->id = RQ_QOS_COST;
2866 	rqos->ops = &ioc_rqos_ops;
2867 	rqos->q = q;
2868 
2869 	spin_lock_init(&ioc->lock);
2870 	timer_setup(&ioc->timer, ioc_timer_fn, 0);
2871 	INIT_LIST_HEAD(&ioc->active_iocgs);
2872 
2873 	ioc->running = IOC_IDLE;
2874 	ioc->vtime_base_rate = VTIME_PER_USEC;
2875 	atomic64_set(&ioc->vtime_rate, VTIME_PER_USEC);
2876 	seqcount_spinlock_init(&ioc->period_seqcount, &ioc->lock);
2877 	ioc->period_at = ktime_to_us(ktime_get());
2878 	atomic64_set(&ioc->cur_period, 0);
2879 	atomic_set(&ioc->hweight_gen, 0);
2880 
2881 	spin_lock_irq(&ioc->lock);
2882 	ioc->autop_idx = AUTOP_INVALID;
2883 	ioc_refresh_params(ioc, true);
2884 	spin_unlock_irq(&ioc->lock);
2885 
2886 	/*
2887 	 * rqos must be added before activation to allow ioc_pd_init() to
2888 	 * lookup the ioc from q. This means that the rqos methods may get
2889 	 * called before policy activation completion, can't assume that the
2890 	 * target bio has an iocg associated and need to test for NULL iocg.
2891 	 */
2892 	ret = rq_qos_add(q, rqos);
2893 	if (ret)
2894 		goto err_free_ioc;
2895 
2896 	ret = blkcg_activate_policy(q, &blkcg_policy_iocost);
2897 	if (ret)
2898 		goto err_del_qos;
2899 	return 0;
2900 
2901 err_del_qos:
2902 	rq_qos_del(q, rqos);
2903 err_free_ioc:
2904 	free_percpu(ioc->pcpu_stat);
2905 	kfree(ioc);
2906 	return ret;
2907 }
2908 
2909 static struct blkcg_policy_data *ioc_cpd_alloc(gfp_t gfp)
2910 {
2911 	struct ioc_cgrp *iocc;
2912 
2913 	iocc = kzalloc(sizeof(struct ioc_cgrp), gfp);
2914 	if (!iocc)
2915 		return NULL;
2916 
2917 	iocc->dfl_weight = CGROUP_WEIGHT_DFL * WEIGHT_ONE;
2918 	return &iocc->cpd;
2919 }
2920 
2921 static void ioc_cpd_free(struct blkcg_policy_data *cpd)
2922 {
2923 	kfree(container_of(cpd, struct ioc_cgrp, cpd));
2924 }
2925 
2926 static struct blkg_policy_data *ioc_pd_alloc(gfp_t gfp, struct request_queue *q,
2927 					     struct blkcg *blkcg)
2928 {
2929 	int levels = blkcg->css.cgroup->level + 1;
2930 	struct ioc_gq *iocg;
2931 
2932 	iocg = kzalloc_node(struct_size(iocg, ancestors, levels), gfp, q->node);
2933 	if (!iocg)
2934 		return NULL;
2935 
2936 	iocg->pcpu_stat = alloc_percpu_gfp(struct iocg_pcpu_stat, gfp);
2937 	if (!iocg->pcpu_stat) {
2938 		kfree(iocg);
2939 		return NULL;
2940 	}
2941 
2942 	return &iocg->pd;
2943 }
2944 
2945 static void ioc_pd_init(struct blkg_policy_data *pd)
2946 {
2947 	struct ioc_gq *iocg = pd_to_iocg(pd);
2948 	struct blkcg_gq *blkg = pd_to_blkg(&iocg->pd);
2949 	struct ioc *ioc = q_to_ioc(blkg->q);
2950 	struct ioc_now now;
2951 	struct blkcg_gq *tblkg;
2952 	unsigned long flags;
2953 
2954 	ioc_now(ioc, &now);
2955 
2956 	iocg->ioc = ioc;
2957 	atomic64_set(&iocg->vtime, now.vnow);
2958 	atomic64_set(&iocg->done_vtime, now.vnow);
2959 	atomic64_set(&iocg->active_period, atomic64_read(&ioc->cur_period));
2960 	INIT_LIST_HEAD(&iocg->active_list);
2961 	INIT_LIST_HEAD(&iocg->walk_list);
2962 	INIT_LIST_HEAD(&iocg->surplus_list);
2963 	iocg->hweight_active = WEIGHT_ONE;
2964 	iocg->hweight_inuse = WEIGHT_ONE;
2965 
2966 	init_waitqueue_head(&iocg->waitq);
2967 	hrtimer_init(&iocg->waitq_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
2968 	iocg->waitq_timer.function = iocg_waitq_timer_fn;
2969 
2970 	iocg->level = blkg->blkcg->css.cgroup->level;
2971 
2972 	for (tblkg = blkg; tblkg; tblkg = tblkg->parent) {
2973 		struct ioc_gq *tiocg = blkg_to_iocg(tblkg);
2974 		iocg->ancestors[tiocg->level] = tiocg;
2975 	}
2976 
2977 	spin_lock_irqsave(&ioc->lock, flags);
2978 	weight_updated(iocg, &now);
2979 	spin_unlock_irqrestore(&ioc->lock, flags);
2980 }
2981 
2982 static void ioc_pd_free(struct blkg_policy_data *pd)
2983 {
2984 	struct ioc_gq *iocg = pd_to_iocg(pd);
2985 	struct ioc *ioc = iocg->ioc;
2986 	unsigned long flags;
2987 
2988 	if (ioc) {
2989 		spin_lock_irqsave(&ioc->lock, flags);
2990 
2991 		if (!list_empty(&iocg->active_list)) {
2992 			struct ioc_now now;
2993 
2994 			ioc_now(ioc, &now);
2995 			propagate_weights(iocg, 0, 0, false, &now);
2996 			list_del_init(&iocg->active_list);
2997 		}
2998 
2999 		WARN_ON_ONCE(!list_empty(&iocg->walk_list));
3000 		WARN_ON_ONCE(!list_empty(&iocg->surplus_list));
3001 
3002 		spin_unlock_irqrestore(&ioc->lock, flags);
3003 
3004 		hrtimer_cancel(&iocg->waitq_timer);
3005 	}
3006 	free_percpu(iocg->pcpu_stat);
3007 	kfree(iocg);
3008 }
3009 
3010 static void ioc_pd_stat(struct blkg_policy_data *pd, struct seq_file *s)
3011 {
3012 	struct ioc_gq *iocg = pd_to_iocg(pd);
3013 	struct ioc *ioc = iocg->ioc;
3014 
3015 	if (!ioc->enabled)
3016 		return;
3017 
3018 	if (iocg->level == 0) {
3019 		unsigned vp10k = DIV64_U64_ROUND_CLOSEST(
3020 			ioc->vtime_base_rate * 10000,
3021 			VTIME_PER_USEC);
3022 		seq_printf(s, " cost.vrate=%u.%02u", vp10k / 100, vp10k % 100);
3023 	}
3024 
3025 	seq_printf(s, " cost.usage=%llu", iocg->last_stat.usage_us);
3026 
3027 	if (blkcg_debug_stats)
3028 		seq_printf(s, " cost.wait=%llu cost.indebt=%llu cost.indelay=%llu",
3029 			iocg->last_stat.wait_us,
3030 			iocg->last_stat.indebt_us,
3031 			iocg->last_stat.indelay_us);
3032 }
3033 
3034 static u64 ioc_weight_prfill(struct seq_file *sf, struct blkg_policy_data *pd,
3035 			     int off)
3036 {
3037 	const char *dname = blkg_dev_name(pd->blkg);
3038 	struct ioc_gq *iocg = pd_to_iocg(pd);
3039 
3040 	if (dname && iocg->cfg_weight)
3041 		seq_printf(sf, "%s %u\n", dname, iocg->cfg_weight / WEIGHT_ONE);
3042 	return 0;
3043 }
3044 
3045 
3046 static int ioc_weight_show(struct seq_file *sf, void *v)
3047 {
3048 	struct blkcg *blkcg = css_to_blkcg(seq_css(sf));
3049 	struct ioc_cgrp *iocc = blkcg_to_iocc(blkcg);
3050 
3051 	seq_printf(sf, "default %u\n", iocc->dfl_weight / WEIGHT_ONE);
3052 	blkcg_print_blkgs(sf, blkcg, ioc_weight_prfill,
3053 			  &blkcg_policy_iocost, seq_cft(sf)->private, false);
3054 	return 0;
3055 }
3056 
3057 static ssize_t ioc_weight_write(struct kernfs_open_file *of, char *buf,
3058 				size_t nbytes, loff_t off)
3059 {
3060 	struct blkcg *blkcg = css_to_blkcg(of_css(of));
3061 	struct ioc_cgrp *iocc = blkcg_to_iocc(blkcg);
3062 	struct blkg_conf_ctx ctx;
3063 	struct ioc_now now;
3064 	struct ioc_gq *iocg;
3065 	u32 v;
3066 	int ret;
3067 
3068 	if (!strchr(buf, ':')) {
3069 		struct blkcg_gq *blkg;
3070 
3071 		if (!sscanf(buf, "default %u", &v) && !sscanf(buf, "%u", &v))
3072 			return -EINVAL;
3073 
3074 		if (v < CGROUP_WEIGHT_MIN || v > CGROUP_WEIGHT_MAX)
3075 			return -EINVAL;
3076 
3077 		spin_lock_irq(&blkcg->lock);
3078 		iocc->dfl_weight = v * WEIGHT_ONE;
3079 		hlist_for_each_entry(blkg, &blkcg->blkg_list, blkcg_node) {
3080 			struct ioc_gq *iocg = blkg_to_iocg(blkg);
3081 
3082 			if (iocg) {
3083 				spin_lock(&iocg->ioc->lock);
3084 				ioc_now(iocg->ioc, &now);
3085 				weight_updated(iocg, &now);
3086 				spin_unlock(&iocg->ioc->lock);
3087 			}
3088 		}
3089 		spin_unlock_irq(&blkcg->lock);
3090 
3091 		return nbytes;
3092 	}
3093 
3094 	ret = blkg_conf_prep(blkcg, &blkcg_policy_iocost, buf, &ctx);
3095 	if (ret)
3096 		return ret;
3097 
3098 	iocg = blkg_to_iocg(ctx.blkg);
3099 
3100 	if (!strncmp(ctx.body, "default", 7)) {
3101 		v = 0;
3102 	} else {
3103 		if (!sscanf(ctx.body, "%u", &v))
3104 			goto einval;
3105 		if (v < CGROUP_WEIGHT_MIN || v > CGROUP_WEIGHT_MAX)
3106 			goto einval;
3107 	}
3108 
3109 	spin_lock(&iocg->ioc->lock);
3110 	iocg->cfg_weight = v * WEIGHT_ONE;
3111 	ioc_now(iocg->ioc, &now);
3112 	weight_updated(iocg, &now);
3113 	spin_unlock(&iocg->ioc->lock);
3114 
3115 	blkg_conf_finish(&ctx);
3116 	return nbytes;
3117 
3118 einval:
3119 	blkg_conf_finish(&ctx);
3120 	return -EINVAL;
3121 }
3122 
3123 static u64 ioc_qos_prfill(struct seq_file *sf, struct blkg_policy_data *pd,
3124 			  int off)
3125 {
3126 	const char *dname = blkg_dev_name(pd->blkg);
3127 	struct ioc *ioc = pd_to_iocg(pd)->ioc;
3128 
3129 	if (!dname)
3130 		return 0;
3131 
3132 	seq_printf(sf, "%s enable=%d ctrl=%s rpct=%u.%02u rlat=%u wpct=%u.%02u wlat=%u min=%u.%02u max=%u.%02u\n",
3133 		   dname, ioc->enabled, ioc->user_qos_params ? "user" : "auto",
3134 		   ioc->params.qos[QOS_RPPM] / 10000,
3135 		   ioc->params.qos[QOS_RPPM] % 10000 / 100,
3136 		   ioc->params.qos[QOS_RLAT],
3137 		   ioc->params.qos[QOS_WPPM] / 10000,
3138 		   ioc->params.qos[QOS_WPPM] % 10000 / 100,
3139 		   ioc->params.qos[QOS_WLAT],
3140 		   ioc->params.qos[QOS_MIN] / 10000,
3141 		   ioc->params.qos[QOS_MIN] % 10000 / 100,
3142 		   ioc->params.qos[QOS_MAX] / 10000,
3143 		   ioc->params.qos[QOS_MAX] % 10000 / 100);
3144 	return 0;
3145 }
3146 
3147 static int ioc_qos_show(struct seq_file *sf, void *v)
3148 {
3149 	struct blkcg *blkcg = css_to_blkcg(seq_css(sf));
3150 
3151 	blkcg_print_blkgs(sf, blkcg, ioc_qos_prfill,
3152 			  &blkcg_policy_iocost, seq_cft(sf)->private, false);
3153 	return 0;
3154 }
3155 
3156 static const match_table_t qos_ctrl_tokens = {
3157 	{ QOS_ENABLE,		"enable=%u"	},
3158 	{ QOS_CTRL,		"ctrl=%s"	},
3159 	{ NR_QOS_CTRL_PARAMS,	NULL		},
3160 };
3161 
3162 static const match_table_t qos_tokens = {
3163 	{ QOS_RPPM,		"rpct=%s"	},
3164 	{ QOS_RLAT,		"rlat=%u"	},
3165 	{ QOS_WPPM,		"wpct=%s"	},
3166 	{ QOS_WLAT,		"wlat=%u"	},
3167 	{ QOS_MIN,		"min=%s"	},
3168 	{ QOS_MAX,		"max=%s"	},
3169 	{ NR_QOS_PARAMS,	NULL		},
3170 };
3171 
3172 static ssize_t ioc_qos_write(struct kernfs_open_file *of, char *input,
3173 			     size_t nbytes, loff_t off)
3174 {
3175 	struct block_device *bdev;
3176 	struct gendisk *disk;
3177 	struct ioc *ioc;
3178 	u32 qos[NR_QOS_PARAMS];
3179 	bool enable, user;
3180 	char *p;
3181 	int ret;
3182 
3183 	bdev = blkcg_conf_open_bdev(&input);
3184 	if (IS_ERR(bdev))
3185 		return PTR_ERR(bdev);
3186 
3187 	disk = bdev->bd_disk;
3188 	ioc = q_to_ioc(disk->queue);
3189 	if (!ioc) {
3190 		ret = blk_iocost_init(disk);
3191 		if (ret)
3192 			goto err;
3193 		ioc = q_to_ioc(disk->queue);
3194 	}
3195 
3196 	blk_mq_freeze_queue(disk->queue);
3197 	blk_mq_quiesce_queue(disk->queue);
3198 
3199 	spin_lock_irq(&ioc->lock);
3200 	memcpy(qos, ioc->params.qos, sizeof(qos));
3201 	enable = ioc->enabled;
3202 	user = ioc->user_qos_params;
3203 
3204 	while ((p = strsep(&input, " \t\n"))) {
3205 		substring_t args[MAX_OPT_ARGS];
3206 		char buf[32];
3207 		int tok;
3208 		s64 v;
3209 
3210 		if (!*p)
3211 			continue;
3212 
3213 		switch (match_token(p, qos_ctrl_tokens, args)) {
3214 		case QOS_ENABLE:
3215 			match_u64(&args[0], &v);
3216 			enable = v;
3217 			continue;
3218 		case QOS_CTRL:
3219 			match_strlcpy(buf, &args[0], sizeof(buf));
3220 			if (!strcmp(buf, "auto"))
3221 				user = false;
3222 			else if (!strcmp(buf, "user"))
3223 				user = true;
3224 			else
3225 				goto einval;
3226 			continue;
3227 		}
3228 
3229 		tok = match_token(p, qos_tokens, args);
3230 		switch (tok) {
3231 		case QOS_RPPM:
3232 		case QOS_WPPM:
3233 			if (match_strlcpy(buf, &args[0], sizeof(buf)) >=
3234 			    sizeof(buf))
3235 				goto einval;
3236 			if (cgroup_parse_float(buf, 2, &v))
3237 				goto einval;
3238 			if (v < 0 || v > 10000)
3239 				goto einval;
3240 			qos[tok] = v * 100;
3241 			break;
3242 		case QOS_RLAT:
3243 		case QOS_WLAT:
3244 			if (match_u64(&args[0], &v))
3245 				goto einval;
3246 			qos[tok] = v;
3247 			break;
3248 		case QOS_MIN:
3249 		case QOS_MAX:
3250 			if (match_strlcpy(buf, &args[0], sizeof(buf)) >=
3251 			    sizeof(buf))
3252 				goto einval;
3253 			if (cgroup_parse_float(buf, 2, &v))
3254 				goto einval;
3255 			if (v < 0)
3256 				goto einval;
3257 			qos[tok] = clamp_t(s64, v * 100,
3258 					   VRATE_MIN_PPM, VRATE_MAX_PPM);
3259 			break;
3260 		default:
3261 			goto einval;
3262 		}
3263 		user = true;
3264 	}
3265 
3266 	if (qos[QOS_MIN] > qos[QOS_MAX])
3267 		goto einval;
3268 
3269 	if (enable) {
3270 		blk_stat_enable_accounting(disk->queue);
3271 		blk_queue_flag_set(QUEUE_FLAG_RQ_ALLOC_TIME, disk->queue);
3272 		ioc->enabled = true;
3273 		wbt_disable_default(disk->queue);
3274 	} else {
3275 		blk_queue_flag_clear(QUEUE_FLAG_RQ_ALLOC_TIME, disk->queue);
3276 		ioc->enabled = false;
3277 		wbt_enable_default(disk->queue);
3278 	}
3279 
3280 	if (user) {
3281 		memcpy(ioc->params.qos, qos, sizeof(qos));
3282 		ioc->user_qos_params = true;
3283 	} else {
3284 		ioc->user_qos_params = false;
3285 	}
3286 
3287 	ioc_refresh_params(ioc, true);
3288 	spin_unlock_irq(&ioc->lock);
3289 
3290 	blk_mq_unquiesce_queue(disk->queue);
3291 	blk_mq_unfreeze_queue(disk->queue);
3292 
3293 	blkdev_put_no_open(bdev);
3294 	return nbytes;
3295 einval:
3296 	spin_unlock_irq(&ioc->lock);
3297 
3298 	blk_mq_unquiesce_queue(disk->queue);
3299 	blk_mq_unfreeze_queue(disk->queue);
3300 
3301 	ret = -EINVAL;
3302 err:
3303 	blkdev_put_no_open(bdev);
3304 	return ret;
3305 }
3306 
3307 static u64 ioc_cost_model_prfill(struct seq_file *sf,
3308 				 struct blkg_policy_data *pd, int off)
3309 {
3310 	const char *dname = blkg_dev_name(pd->blkg);
3311 	struct ioc *ioc = pd_to_iocg(pd)->ioc;
3312 	u64 *u = ioc->params.i_lcoefs;
3313 
3314 	if (!dname)
3315 		return 0;
3316 
3317 	seq_printf(sf, "%s ctrl=%s model=linear "
3318 		   "rbps=%llu rseqiops=%llu rrandiops=%llu "
3319 		   "wbps=%llu wseqiops=%llu wrandiops=%llu\n",
3320 		   dname, ioc->user_cost_model ? "user" : "auto",
3321 		   u[I_LCOEF_RBPS], u[I_LCOEF_RSEQIOPS], u[I_LCOEF_RRANDIOPS],
3322 		   u[I_LCOEF_WBPS], u[I_LCOEF_WSEQIOPS], u[I_LCOEF_WRANDIOPS]);
3323 	return 0;
3324 }
3325 
3326 static int ioc_cost_model_show(struct seq_file *sf, void *v)
3327 {
3328 	struct blkcg *blkcg = css_to_blkcg(seq_css(sf));
3329 
3330 	blkcg_print_blkgs(sf, blkcg, ioc_cost_model_prfill,
3331 			  &blkcg_policy_iocost, seq_cft(sf)->private, false);
3332 	return 0;
3333 }
3334 
3335 static const match_table_t cost_ctrl_tokens = {
3336 	{ COST_CTRL,		"ctrl=%s"	},
3337 	{ COST_MODEL,		"model=%s"	},
3338 	{ NR_COST_CTRL_PARAMS,	NULL		},
3339 };
3340 
3341 static const match_table_t i_lcoef_tokens = {
3342 	{ I_LCOEF_RBPS,		"rbps=%u"	},
3343 	{ I_LCOEF_RSEQIOPS,	"rseqiops=%u"	},
3344 	{ I_LCOEF_RRANDIOPS,	"rrandiops=%u"	},
3345 	{ I_LCOEF_WBPS,		"wbps=%u"	},
3346 	{ I_LCOEF_WSEQIOPS,	"wseqiops=%u"	},
3347 	{ I_LCOEF_WRANDIOPS,	"wrandiops=%u"	},
3348 	{ NR_I_LCOEFS,		NULL		},
3349 };
3350 
3351 static ssize_t ioc_cost_model_write(struct kernfs_open_file *of, char *input,
3352 				    size_t nbytes, loff_t off)
3353 {
3354 	struct block_device *bdev;
3355 	struct request_queue *q;
3356 	struct ioc *ioc;
3357 	u64 u[NR_I_LCOEFS];
3358 	bool user;
3359 	char *p;
3360 	int ret;
3361 
3362 	bdev = blkcg_conf_open_bdev(&input);
3363 	if (IS_ERR(bdev))
3364 		return PTR_ERR(bdev);
3365 
3366 	q = bdev_get_queue(bdev);
3367 	ioc = q_to_ioc(q);
3368 	if (!ioc) {
3369 		ret = blk_iocost_init(bdev->bd_disk);
3370 		if (ret)
3371 			goto err;
3372 		ioc = q_to_ioc(q);
3373 	}
3374 
3375 	blk_mq_freeze_queue(q);
3376 	blk_mq_quiesce_queue(q);
3377 
3378 	spin_lock_irq(&ioc->lock);
3379 	memcpy(u, ioc->params.i_lcoefs, sizeof(u));
3380 	user = ioc->user_cost_model;
3381 
3382 	while ((p = strsep(&input, " \t\n"))) {
3383 		substring_t args[MAX_OPT_ARGS];
3384 		char buf[32];
3385 		int tok;
3386 		u64 v;
3387 
3388 		if (!*p)
3389 			continue;
3390 
3391 		switch (match_token(p, cost_ctrl_tokens, args)) {
3392 		case COST_CTRL:
3393 			match_strlcpy(buf, &args[0], sizeof(buf));
3394 			if (!strcmp(buf, "auto"))
3395 				user = false;
3396 			else if (!strcmp(buf, "user"))
3397 				user = true;
3398 			else
3399 				goto einval;
3400 			continue;
3401 		case COST_MODEL:
3402 			match_strlcpy(buf, &args[0], sizeof(buf));
3403 			if (strcmp(buf, "linear"))
3404 				goto einval;
3405 			continue;
3406 		}
3407 
3408 		tok = match_token(p, i_lcoef_tokens, args);
3409 		if (tok == NR_I_LCOEFS)
3410 			goto einval;
3411 		if (match_u64(&args[0], &v))
3412 			goto einval;
3413 		u[tok] = v;
3414 		user = true;
3415 	}
3416 
3417 	if (user) {
3418 		memcpy(ioc->params.i_lcoefs, u, sizeof(u));
3419 		ioc->user_cost_model = true;
3420 	} else {
3421 		ioc->user_cost_model = false;
3422 	}
3423 	ioc_refresh_params(ioc, true);
3424 	spin_unlock_irq(&ioc->lock);
3425 
3426 	blk_mq_unquiesce_queue(q);
3427 	blk_mq_unfreeze_queue(q);
3428 
3429 	blkdev_put_no_open(bdev);
3430 	return nbytes;
3431 
3432 einval:
3433 	spin_unlock_irq(&ioc->lock);
3434 
3435 	blk_mq_unquiesce_queue(q);
3436 	blk_mq_unfreeze_queue(q);
3437 
3438 	ret = -EINVAL;
3439 err:
3440 	blkdev_put_no_open(bdev);
3441 	return ret;
3442 }
3443 
3444 static struct cftype ioc_files[] = {
3445 	{
3446 		.name = "weight",
3447 		.flags = CFTYPE_NOT_ON_ROOT,
3448 		.seq_show = ioc_weight_show,
3449 		.write = ioc_weight_write,
3450 	},
3451 	{
3452 		.name = "cost.qos",
3453 		.flags = CFTYPE_ONLY_ON_ROOT,
3454 		.seq_show = ioc_qos_show,
3455 		.write = ioc_qos_write,
3456 	},
3457 	{
3458 		.name = "cost.model",
3459 		.flags = CFTYPE_ONLY_ON_ROOT,
3460 		.seq_show = ioc_cost_model_show,
3461 		.write = ioc_cost_model_write,
3462 	},
3463 	{}
3464 };
3465 
3466 static struct blkcg_policy blkcg_policy_iocost = {
3467 	.dfl_cftypes	= ioc_files,
3468 	.cpd_alloc_fn	= ioc_cpd_alloc,
3469 	.cpd_free_fn	= ioc_cpd_free,
3470 	.pd_alloc_fn	= ioc_pd_alloc,
3471 	.pd_init_fn	= ioc_pd_init,
3472 	.pd_free_fn	= ioc_pd_free,
3473 	.pd_stat_fn	= ioc_pd_stat,
3474 };
3475 
3476 static int __init ioc_init(void)
3477 {
3478 	return blkcg_policy_register(&blkcg_policy_iocost);
3479 }
3480 
3481 static void __exit ioc_exit(void)
3482 {
3483 	blkcg_policy_unregister(&blkcg_policy_iocost);
3484 }
3485 
3486 module_init(ioc_init);
3487 module_exit(ioc_exit);
3488