1 /* SPDX-License-Identifier: GPL-2.0 2 * 3 * IO cost model based controller. 4 * 5 * Copyright (C) 2019 Tejun Heo <tj@kernel.org> 6 * Copyright (C) 2019 Andy Newell <newella@fb.com> 7 * Copyright (C) 2019 Facebook 8 * 9 * One challenge of controlling IO resources is the lack of trivially 10 * observable cost metric. This is distinguished from CPU and memory where 11 * wallclock time and the number of bytes can serve as accurate enough 12 * approximations. 13 * 14 * Bandwidth and iops are the most commonly used metrics for IO devices but 15 * depending on the type and specifics of the device, different IO patterns 16 * easily lead to multiple orders of magnitude variations rendering them 17 * useless for the purpose of IO capacity distribution. While on-device 18 * time, with a lot of clutches, could serve as a useful approximation for 19 * non-queued rotational devices, this is no longer viable with modern 20 * devices, even the rotational ones. 21 * 22 * While there is no cost metric we can trivially observe, it isn't a 23 * complete mystery. For example, on a rotational device, seek cost 24 * dominates while a contiguous transfer contributes a smaller amount 25 * proportional to the size. If we can characterize at least the relative 26 * costs of these different types of IOs, it should be possible to 27 * implement a reasonable work-conserving proportional IO resource 28 * distribution. 29 * 30 * 1. IO Cost Model 31 * 32 * IO cost model estimates the cost of an IO given its basic parameters and 33 * history (e.g. the end sector of the last IO). The cost is measured in 34 * device time. If a given IO is estimated to cost 10ms, the device should 35 * be able to process ~100 of those IOs in a second. 36 * 37 * Currently, there's only one builtin cost model - linear. Each IO is 38 * classified as sequential or random and given a base cost accordingly. 39 * On top of that, a size cost proportional to the length of the IO is 40 * added. While simple, this model captures the operational 41 * characteristics of a wide varienty of devices well enough. Default 42 * parameters for several different classes of devices are provided and the 43 * parameters can be configured from userspace via 44 * /sys/fs/cgroup/io.cost.model. 45 * 46 * If needed, tools/cgroup/iocost_coef_gen.py can be used to generate 47 * device-specific coefficients. 48 * 49 * 2. Control Strategy 50 * 51 * The device virtual time (vtime) is used as the primary control metric. 52 * The control strategy is composed of the following three parts. 53 * 54 * 2-1. Vtime Distribution 55 * 56 * When a cgroup becomes active in terms of IOs, its hierarchical share is 57 * calculated. Please consider the following hierarchy where the numbers 58 * inside parentheses denote the configured weights. 59 * 60 * root 61 * / \ 62 * A (w:100) B (w:300) 63 * / \ 64 * A0 (w:100) A1 (w:100) 65 * 66 * If B is idle and only A0 and A1 are actively issuing IOs, as the two are 67 * of equal weight, each gets 50% share. If then B starts issuing IOs, B 68 * gets 300/(100+300) or 75% share, and A0 and A1 equally splits the rest, 69 * 12.5% each. The distribution mechanism only cares about these flattened 70 * shares. They're called hweights (hierarchical weights) and always add 71 * upto 1 (WEIGHT_ONE). 72 * 73 * A given cgroup's vtime runs slower in inverse proportion to its hweight. 74 * For example, with 12.5% weight, A0's time runs 8 times slower (100/12.5) 75 * against the device vtime - an IO which takes 10ms on the underlying 76 * device is considered to take 80ms on A0. 77 * 78 * This constitutes the basis of IO capacity distribution. Each cgroup's 79 * vtime is running at a rate determined by its hweight. A cgroup tracks 80 * the vtime consumed by past IOs and can issue a new IO if doing so 81 * wouldn't outrun the current device vtime. Otherwise, the IO is 82 * suspended until the vtime has progressed enough to cover it. 83 * 84 * 2-2. Vrate Adjustment 85 * 86 * It's unrealistic to expect the cost model to be perfect. There are too 87 * many devices and even on the same device the overall performance 88 * fluctuates depending on numerous factors such as IO mixture and device 89 * internal garbage collection. The controller needs to adapt dynamically. 90 * 91 * This is achieved by adjusting the overall IO rate according to how busy 92 * the device is. If the device becomes overloaded, we're sending down too 93 * many IOs and should generally slow down. If there are waiting issuers 94 * but the device isn't saturated, we're issuing too few and should 95 * generally speed up. 96 * 97 * To slow down, we lower the vrate - the rate at which the device vtime 98 * passes compared to the wall clock. For example, if the vtime is running 99 * at the vrate of 75%, all cgroups added up would only be able to issue 100 * 750ms worth of IOs per second, and vice-versa for speeding up. 101 * 102 * Device business is determined using two criteria - rq wait and 103 * completion latencies. 104 * 105 * When a device gets saturated, the on-device and then the request queues 106 * fill up and a bio which is ready to be issued has to wait for a request 107 * to become available. When this delay becomes noticeable, it's a clear 108 * indication that the device is saturated and we lower the vrate. This 109 * saturation signal is fairly conservative as it only triggers when both 110 * hardware and software queues are filled up, and is used as the default 111 * busy signal. 112 * 113 * As devices can have deep queues and be unfair in how the queued commands 114 * are executed, solely depending on rq wait may not result in satisfactory 115 * control quality. For a better control quality, completion latency QoS 116 * parameters can be configured so that the device is considered saturated 117 * if N'th percentile completion latency rises above the set point. 118 * 119 * The completion latency requirements are a function of both the 120 * underlying device characteristics and the desired IO latency quality of 121 * service. There is an inherent trade-off - the tighter the latency QoS, 122 * the higher the bandwidth lossage. Latency QoS is disabled by default 123 * and can be set through /sys/fs/cgroup/io.cost.qos. 124 * 125 * 2-3. Work Conservation 126 * 127 * Imagine two cgroups A and B with equal weights. A is issuing a small IO 128 * periodically while B is sending out enough parallel IOs to saturate the 129 * device on its own. Let's say A's usage amounts to 100ms worth of IO 130 * cost per second, i.e., 10% of the device capacity. The naive 131 * distribution of half and half would lead to 60% utilization of the 132 * device, a significant reduction in the total amount of work done 133 * compared to free-for-all competition. This is too high a cost to pay 134 * for IO control. 135 * 136 * To conserve the total amount of work done, we keep track of how much 137 * each active cgroup is actually using and yield part of its weight if 138 * there are other cgroups which can make use of it. In the above case, 139 * A's weight will be lowered so that it hovers above the actual usage and 140 * B would be able to use the rest. 141 * 142 * As we don't want to penalize a cgroup for donating its weight, the 143 * surplus weight adjustment factors in a margin and has an immediate 144 * snapback mechanism in case the cgroup needs more IO vtime for itself. 145 * 146 * Note that adjusting down surplus weights has the same effects as 147 * accelerating vtime for other cgroups and work conservation can also be 148 * implemented by adjusting vrate dynamically. However, squaring who can 149 * donate and should take back how much requires hweight propagations 150 * anyway making it easier to implement and understand as a separate 151 * mechanism. 152 * 153 * 3. Monitoring 154 * 155 * Instead of debugfs or other clumsy monitoring mechanisms, this 156 * controller uses a drgn based monitoring script - 157 * tools/cgroup/iocost_monitor.py. For details on drgn, please see 158 * https://github.com/osandov/drgn. The output looks like the following. 159 * 160 * sdb RUN per=300ms cur_per=234.218:v203.695 busy= +1 vrate= 62.12% 161 * active weight hweight% inflt% dbt delay usages% 162 * test/a * 50/ 50 33.33/ 33.33 27.65 2 0*041 033:033:033 163 * test/b * 100/ 100 66.67/ 66.67 17.56 0 0*000 066:079:077 164 * 165 * - per : Timer period 166 * - cur_per : Internal wall and device vtime clock 167 * - vrate : Device virtual time rate against wall clock 168 * - weight : Surplus-adjusted and configured weights 169 * - hweight : Surplus-adjusted and configured hierarchical weights 170 * - inflt : The percentage of in-flight IO cost at the end of last period 171 * - del_ms : Deferred issuer delay induction level and duration 172 * - usages : Usage history 173 */ 174 175 #include <linux/kernel.h> 176 #include <linux/module.h> 177 #include <linux/timer.h> 178 #include <linux/time64.h> 179 #include <linux/parser.h> 180 #include <linux/sched/signal.h> 181 #include <asm/local.h> 182 #include <asm/local64.h> 183 #include "blk-rq-qos.h" 184 #include "blk-stat.h" 185 #include "blk-wbt.h" 186 #include "blk-cgroup.h" 187 188 #ifdef CONFIG_TRACEPOINTS 189 190 /* copied from TRACE_CGROUP_PATH, see cgroup-internal.h */ 191 #define TRACE_IOCG_PATH_LEN 1024 192 static DEFINE_SPINLOCK(trace_iocg_path_lock); 193 static char trace_iocg_path[TRACE_IOCG_PATH_LEN]; 194 195 #define TRACE_IOCG_PATH(type, iocg, ...) \ 196 do { \ 197 unsigned long flags; \ 198 if (trace_iocost_##type##_enabled()) { \ 199 spin_lock_irqsave(&trace_iocg_path_lock, flags); \ 200 cgroup_path(iocg_to_blkg(iocg)->blkcg->css.cgroup, \ 201 trace_iocg_path, TRACE_IOCG_PATH_LEN); \ 202 trace_iocost_##type(iocg, trace_iocg_path, \ 203 ##__VA_ARGS__); \ 204 spin_unlock_irqrestore(&trace_iocg_path_lock, flags); \ 205 } \ 206 } while (0) 207 208 #else /* CONFIG_TRACE_POINTS */ 209 #define TRACE_IOCG_PATH(type, iocg, ...) do { } while (0) 210 #endif /* CONFIG_TRACE_POINTS */ 211 212 enum { 213 MILLION = 1000000, 214 215 /* timer period is calculated from latency requirements, bound it */ 216 MIN_PERIOD = USEC_PER_MSEC, 217 MAX_PERIOD = USEC_PER_SEC, 218 219 /* 220 * iocg->vtime is targeted at 50% behind the device vtime, which 221 * serves as its IO credit buffer. Surplus weight adjustment is 222 * immediately canceled if the vtime margin runs below 10%. 223 */ 224 MARGIN_MIN_PCT = 10, 225 MARGIN_LOW_PCT = 20, 226 MARGIN_TARGET_PCT = 50, 227 228 INUSE_ADJ_STEP_PCT = 25, 229 230 /* Have some play in timer operations */ 231 TIMER_SLACK_PCT = 1, 232 233 /* 1/64k is granular enough and can easily be handled w/ u32 */ 234 WEIGHT_ONE = 1 << 16, 235 }; 236 237 enum { 238 /* 239 * As vtime is used to calculate the cost of each IO, it needs to 240 * be fairly high precision. For example, it should be able to 241 * represent the cost of a single page worth of discard with 242 * suffificient accuracy. At the same time, it should be able to 243 * represent reasonably long enough durations to be useful and 244 * convenient during operation. 245 * 246 * 1s worth of vtime is 2^37. This gives us both sub-nanosecond 247 * granularity and days of wrap-around time even at extreme vrates. 248 */ 249 VTIME_PER_SEC_SHIFT = 37, 250 VTIME_PER_SEC = 1LLU << VTIME_PER_SEC_SHIFT, 251 VTIME_PER_USEC = VTIME_PER_SEC / USEC_PER_SEC, 252 VTIME_PER_NSEC = VTIME_PER_SEC / NSEC_PER_SEC, 253 254 /* bound vrate adjustments within two orders of magnitude */ 255 VRATE_MIN_PPM = 10000, /* 1% */ 256 VRATE_MAX_PPM = 100000000, /* 10000% */ 257 258 VRATE_MIN = VTIME_PER_USEC * VRATE_MIN_PPM / MILLION, 259 VRATE_CLAMP_ADJ_PCT = 4, 260 261 /* switch iff the conditions are met for longer than this */ 262 AUTOP_CYCLE_NSEC = 10LLU * NSEC_PER_SEC, 263 }; 264 265 enum { 266 /* if IOs end up waiting for requests, issue less */ 267 RQ_WAIT_BUSY_PCT = 5, 268 269 /* unbusy hysterisis */ 270 UNBUSY_THR_PCT = 75, 271 272 /* 273 * The effect of delay is indirect and non-linear and a huge amount of 274 * future debt can accumulate abruptly while unthrottled. Linearly scale 275 * up delay as debt is going up and then let it decay exponentially. 276 * This gives us quick ramp ups while delay is accumulating and long 277 * tails which can help reducing the frequency of debt explosions on 278 * unthrottle. The parameters are experimentally determined. 279 * 280 * The delay mechanism provides adequate protection and behavior in many 281 * cases. However, this is far from ideal and falls shorts on both 282 * fronts. The debtors are often throttled too harshly costing a 283 * significant level of fairness and possibly total work while the 284 * protection against their impacts on the system can be choppy and 285 * unreliable. 286 * 287 * The shortcoming primarily stems from the fact that, unlike for page 288 * cache, the kernel doesn't have well-defined back-pressure propagation 289 * mechanism and policies for anonymous memory. Fully addressing this 290 * issue will likely require substantial improvements in the area. 291 */ 292 MIN_DELAY_THR_PCT = 500, 293 MAX_DELAY_THR_PCT = 25000, 294 MIN_DELAY = 250, 295 MAX_DELAY = 250 * USEC_PER_MSEC, 296 297 /* halve debts if avg usage over 100ms is under 50% */ 298 DFGV_USAGE_PCT = 50, 299 DFGV_PERIOD = 100 * USEC_PER_MSEC, 300 301 /* don't let cmds which take a very long time pin lagging for too long */ 302 MAX_LAGGING_PERIODS = 10, 303 304 /* 305 * Count IO size in 4k pages. The 12bit shift helps keeping 306 * size-proportional components of cost calculation in closer 307 * numbers of digits to per-IO cost components. 308 */ 309 IOC_PAGE_SHIFT = 12, 310 IOC_PAGE_SIZE = 1 << IOC_PAGE_SHIFT, 311 IOC_SECT_TO_PAGE_SHIFT = IOC_PAGE_SHIFT - SECTOR_SHIFT, 312 313 /* if apart further than 16M, consider randio for linear model */ 314 LCOEF_RANDIO_PAGES = 4096, 315 }; 316 317 enum ioc_running { 318 IOC_IDLE, 319 IOC_RUNNING, 320 IOC_STOP, 321 }; 322 323 /* io.cost.qos controls including per-dev enable of the whole controller */ 324 enum { 325 QOS_ENABLE, 326 QOS_CTRL, 327 NR_QOS_CTRL_PARAMS, 328 }; 329 330 /* io.cost.qos params */ 331 enum { 332 QOS_RPPM, 333 QOS_RLAT, 334 QOS_WPPM, 335 QOS_WLAT, 336 QOS_MIN, 337 QOS_MAX, 338 NR_QOS_PARAMS, 339 }; 340 341 /* io.cost.model controls */ 342 enum { 343 COST_CTRL, 344 COST_MODEL, 345 NR_COST_CTRL_PARAMS, 346 }; 347 348 /* builtin linear cost model coefficients */ 349 enum { 350 I_LCOEF_RBPS, 351 I_LCOEF_RSEQIOPS, 352 I_LCOEF_RRANDIOPS, 353 I_LCOEF_WBPS, 354 I_LCOEF_WSEQIOPS, 355 I_LCOEF_WRANDIOPS, 356 NR_I_LCOEFS, 357 }; 358 359 enum { 360 LCOEF_RPAGE, 361 LCOEF_RSEQIO, 362 LCOEF_RRANDIO, 363 LCOEF_WPAGE, 364 LCOEF_WSEQIO, 365 LCOEF_WRANDIO, 366 NR_LCOEFS, 367 }; 368 369 enum { 370 AUTOP_INVALID, 371 AUTOP_HDD, 372 AUTOP_SSD_QD1, 373 AUTOP_SSD_DFL, 374 AUTOP_SSD_FAST, 375 }; 376 377 struct ioc_params { 378 u32 qos[NR_QOS_PARAMS]; 379 u64 i_lcoefs[NR_I_LCOEFS]; 380 u64 lcoefs[NR_LCOEFS]; 381 u32 too_fast_vrate_pct; 382 u32 too_slow_vrate_pct; 383 }; 384 385 struct ioc_margins { 386 s64 min; 387 s64 low; 388 s64 target; 389 }; 390 391 struct ioc_missed { 392 local_t nr_met; 393 local_t nr_missed; 394 u32 last_met; 395 u32 last_missed; 396 }; 397 398 struct ioc_pcpu_stat { 399 struct ioc_missed missed[2]; 400 401 local64_t rq_wait_ns; 402 u64 last_rq_wait_ns; 403 }; 404 405 /* per device */ 406 struct ioc { 407 struct rq_qos rqos; 408 409 bool enabled; 410 411 struct ioc_params params; 412 struct ioc_margins margins; 413 u32 period_us; 414 u32 timer_slack_ns; 415 u64 vrate_min; 416 u64 vrate_max; 417 418 spinlock_t lock; 419 struct timer_list timer; 420 struct list_head active_iocgs; /* active cgroups */ 421 struct ioc_pcpu_stat __percpu *pcpu_stat; 422 423 enum ioc_running running; 424 atomic64_t vtime_rate; 425 u64 vtime_base_rate; 426 s64 vtime_err; 427 428 seqcount_spinlock_t period_seqcount; 429 u64 period_at; /* wallclock starttime */ 430 u64 period_at_vtime; /* vtime starttime */ 431 432 atomic64_t cur_period; /* inc'd each period */ 433 int busy_level; /* saturation history */ 434 435 bool weights_updated; 436 atomic_t hweight_gen; /* for lazy hweights */ 437 438 /* debt forgivness */ 439 u64 dfgv_period_at; 440 u64 dfgv_period_rem; 441 u64 dfgv_usage_us_sum; 442 443 u64 autop_too_fast_at; 444 u64 autop_too_slow_at; 445 int autop_idx; 446 bool user_qos_params:1; 447 bool user_cost_model:1; 448 }; 449 450 struct iocg_pcpu_stat { 451 local64_t abs_vusage; 452 }; 453 454 struct iocg_stat { 455 u64 usage_us; 456 u64 wait_us; 457 u64 indebt_us; 458 u64 indelay_us; 459 }; 460 461 /* per device-cgroup pair */ 462 struct ioc_gq { 463 struct blkg_policy_data pd; 464 struct ioc *ioc; 465 466 /* 467 * A iocg can get its weight from two sources - an explicit 468 * per-device-cgroup configuration or the default weight of the 469 * cgroup. `cfg_weight` is the explicit per-device-cgroup 470 * configuration. `weight` is the effective considering both 471 * sources. 472 * 473 * When an idle cgroup becomes active its `active` goes from 0 to 474 * `weight`. `inuse` is the surplus adjusted active weight. 475 * `active` and `inuse` are used to calculate `hweight_active` and 476 * `hweight_inuse`. 477 * 478 * `last_inuse` remembers `inuse` while an iocg is idle to persist 479 * surplus adjustments. 480 * 481 * `inuse` may be adjusted dynamically during period. `saved_*` are used 482 * to determine and track adjustments. 483 */ 484 u32 cfg_weight; 485 u32 weight; 486 u32 active; 487 u32 inuse; 488 489 u32 last_inuse; 490 s64 saved_margin; 491 492 sector_t cursor; /* to detect randio */ 493 494 /* 495 * `vtime` is this iocg's vtime cursor which progresses as IOs are 496 * issued. If lagging behind device vtime, the delta represents 497 * the currently available IO budget. If running ahead, the 498 * overage. 499 * 500 * `vtime_done` is the same but progressed on completion rather 501 * than issue. The delta behind `vtime` represents the cost of 502 * currently in-flight IOs. 503 */ 504 atomic64_t vtime; 505 atomic64_t done_vtime; 506 u64 abs_vdebt; 507 508 /* current delay in effect and when it started */ 509 u64 delay; 510 u64 delay_at; 511 512 /* 513 * The period this iocg was last active in. Used for deactivation 514 * and invalidating `vtime`. 515 */ 516 atomic64_t active_period; 517 struct list_head active_list; 518 519 /* see __propagate_weights() and current_hweight() for details */ 520 u64 child_active_sum; 521 u64 child_inuse_sum; 522 u64 child_adjusted_sum; 523 int hweight_gen; 524 u32 hweight_active; 525 u32 hweight_inuse; 526 u32 hweight_donating; 527 u32 hweight_after_donation; 528 529 struct list_head walk_list; 530 struct list_head surplus_list; 531 532 struct wait_queue_head waitq; 533 struct hrtimer waitq_timer; 534 535 /* timestamp at the latest activation */ 536 u64 activated_at; 537 538 /* statistics */ 539 struct iocg_pcpu_stat __percpu *pcpu_stat; 540 struct iocg_stat stat; 541 struct iocg_stat last_stat; 542 u64 last_stat_abs_vusage; 543 u64 usage_delta_us; 544 u64 wait_since; 545 u64 indebt_since; 546 u64 indelay_since; 547 548 /* this iocg's depth in the hierarchy and ancestors including self */ 549 int level; 550 struct ioc_gq *ancestors[]; 551 }; 552 553 /* per cgroup */ 554 struct ioc_cgrp { 555 struct blkcg_policy_data cpd; 556 unsigned int dfl_weight; 557 }; 558 559 struct ioc_now { 560 u64 now_ns; 561 u64 now; 562 u64 vnow; 563 }; 564 565 struct iocg_wait { 566 struct wait_queue_entry wait; 567 struct bio *bio; 568 u64 abs_cost; 569 bool committed; 570 }; 571 572 struct iocg_wake_ctx { 573 struct ioc_gq *iocg; 574 u32 hw_inuse; 575 s64 vbudget; 576 }; 577 578 static const struct ioc_params autop[] = { 579 [AUTOP_HDD] = { 580 .qos = { 581 [QOS_RLAT] = 250000, /* 250ms */ 582 [QOS_WLAT] = 250000, 583 [QOS_MIN] = VRATE_MIN_PPM, 584 [QOS_MAX] = VRATE_MAX_PPM, 585 }, 586 .i_lcoefs = { 587 [I_LCOEF_RBPS] = 174019176, 588 [I_LCOEF_RSEQIOPS] = 41708, 589 [I_LCOEF_RRANDIOPS] = 370, 590 [I_LCOEF_WBPS] = 178075866, 591 [I_LCOEF_WSEQIOPS] = 42705, 592 [I_LCOEF_WRANDIOPS] = 378, 593 }, 594 }, 595 [AUTOP_SSD_QD1] = { 596 .qos = { 597 [QOS_RLAT] = 25000, /* 25ms */ 598 [QOS_WLAT] = 25000, 599 [QOS_MIN] = VRATE_MIN_PPM, 600 [QOS_MAX] = VRATE_MAX_PPM, 601 }, 602 .i_lcoefs = { 603 [I_LCOEF_RBPS] = 245855193, 604 [I_LCOEF_RSEQIOPS] = 61575, 605 [I_LCOEF_RRANDIOPS] = 6946, 606 [I_LCOEF_WBPS] = 141365009, 607 [I_LCOEF_WSEQIOPS] = 33716, 608 [I_LCOEF_WRANDIOPS] = 26796, 609 }, 610 }, 611 [AUTOP_SSD_DFL] = { 612 .qos = { 613 [QOS_RLAT] = 25000, /* 25ms */ 614 [QOS_WLAT] = 25000, 615 [QOS_MIN] = VRATE_MIN_PPM, 616 [QOS_MAX] = VRATE_MAX_PPM, 617 }, 618 .i_lcoefs = { 619 [I_LCOEF_RBPS] = 488636629, 620 [I_LCOEF_RSEQIOPS] = 8932, 621 [I_LCOEF_RRANDIOPS] = 8518, 622 [I_LCOEF_WBPS] = 427891549, 623 [I_LCOEF_WSEQIOPS] = 28755, 624 [I_LCOEF_WRANDIOPS] = 21940, 625 }, 626 .too_fast_vrate_pct = 500, 627 }, 628 [AUTOP_SSD_FAST] = { 629 .qos = { 630 [QOS_RLAT] = 5000, /* 5ms */ 631 [QOS_WLAT] = 5000, 632 [QOS_MIN] = VRATE_MIN_PPM, 633 [QOS_MAX] = VRATE_MAX_PPM, 634 }, 635 .i_lcoefs = { 636 [I_LCOEF_RBPS] = 3102524156LLU, 637 [I_LCOEF_RSEQIOPS] = 724816, 638 [I_LCOEF_RRANDIOPS] = 778122, 639 [I_LCOEF_WBPS] = 1742780862LLU, 640 [I_LCOEF_WSEQIOPS] = 425702, 641 [I_LCOEF_WRANDIOPS] = 443193, 642 }, 643 .too_slow_vrate_pct = 10, 644 }, 645 }; 646 647 /* 648 * vrate adjust percentages indexed by ioc->busy_level. We adjust up on 649 * vtime credit shortage and down on device saturation. 650 */ 651 static u32 vrate_adj_pct[] = 652 { 0, 0, 0, 0, 653 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 654 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 655 4, 4, 4, 4, 4, 4, 4, 4, 8, 8, 8, 8, 8, 8, 8, 8, 16 }; 656 657 static struct blkcg_policy blkcg_policy_iocost; 658 659 /* accessors and helpers */ 660 static struct ioc *rqos_to_ioc(struct rq_qos *rqos) 661 { 662 return container_of(rqos, struct ioc, rqos); 663 } 664 665 static struct ioc *q_to_ioc(struct request_queue *q) 666 { 667 return rqos_to_ioc(rq_qos_id(q, RQ_QOS_COST)); 668 } 669 670 static const char __maybe_unused *ioc_name(struct ioc *ioc) 671 { 672 struct gendisk *disk = ioc->rqos.disk; 673 674 if (!disk) 675 return "<unknown>"; 676 return disk->disk_name; 677 } 678 679 static struct ioc_gq *pd_to_iocg(struct blkg_policy_data *pd) 680 { 681 return pd ? container_of(pd, struct ioc_gq, pd) : NULL; 682 } 683 684 static struct ioc_gq *blkg_to_iocg(struct blkcg_gq *blkg) 685 { 686 return pd_to_iocg(blkg_to_pd(blkg, &blkcg_policy_iocost)); 687 } 688 689 static struct blkcg_gq *iocg_to_blkg(struct ioc_gq *iocg) 690 { 691 return pd_to_blkg(&iocg->pd); 692 } 693 694 static struct ioc_cgrp *blkcg_to_iocc(struct blkcg *blkcg) 695 { 696 return container_of(blkcg_to_cpd(blkcg, &blkcg_policy_iocost), 697 struct ioc_cgrp, cpd); 698 } 699 700 /* 701 * Scale @abs_cost to the inverse of @hw_inuse. The lower the hierarchical 702 * weight, the more expensive each IO. Must round up. 703 */ 704 static u64 abs_cost_to_cost(u64 abs_cost, u32 hw_inuse) 705 { 706 return DIV64_U64_ROUND_UP(abs_cost * WEIGHT_ONE, hw_inuse); 707 } 708 709 /* 710 * The inverse of abs_cost_to_cost(). Must round up. 711 */ 712 static u64 cost_to_abs_cost(u64 cost, u32 hw_inuse) 713 { 714 return DIV64_U64_ROUND_UP(cost * hw_inuse, WEIGHT_ONE); 715 } 716 717 static void iocg_commit_bio(struct ioc_gq *iocg, struct bio *bio, 718 u64 abs_cost, u64 cost) 719 { 720 struct iocg_pcpu_stat *gcs; 721 722 bio->bi_iocost_cost = cost; 723 atomic64_add(cost, &iocg->vtime); 724 725 gcs = get_cpu_ptr(iocg->pcpu_stat); 726 local64_add(abs_cost, &gcs->abs_vusage); 727 put_cpu_ptr(gcs); 728 } 729 730 static void iocg_lock(struct ioc_gq *iocg, bool lock_ioc, unsigned long *flags) 731 { 732 if (lock_ioc) { 733 spin_lock_irqsave(&iocg->ioc->lock, *flags); 734 spin_lock(&iocg->waitq.lock); 735 } else { 736 spin_lock_irqsave(&iocg->waitq.lock, *flags); 737 } 738 } 739 740 static void iocg_unlock(struct ioc_gq *iocg, bool unlock_ioc, unsigned long *flags) 741 { 742 if (unlock_ioc) { 743 spin_unlock(&iocg->waitq.lock); 744 spin_unlock_irqrestore(&iocg->ioc->lock, *flags); 745 } else { 746 spin_unlock_irqrestore(&iocg->waitq.lock, *flags); 747 } 748 } 749 750 #define CREATE_TRACE_POINTS 751 #include <trace/events/iocost.h> 752 753 static void ioc_refresh_margins(struct ioc *ioc) 754 { 755 struct ioc_margins *margins = &ioc->margins; 756 u32 period_us = ioc->period_us; 757 u64 vrate = ioc->vtime_base_rate; 758 759 margins->min = (period_us * MARGIN_MIN_PCT / 100) * vrate; 760 margins->low = (period_us * MARGIN_LOW_PCT / 100) * vrate; 761 margins->target = (period_us * MARGIN_TARGET_PCT / 100) * vrate; 762 } 763 764 /* latency Qos params changed, update period_us and all the dependent params */ 765 static void ioc_refresh_period_us(struct ioc *ioc) 766 { 767 u32 ppm, lat, multi, period_us; 768 769 lockdep_assert_held(&ioc->lock); 770 771 /* pick the higher latency target */ 772 if (ioc->params.qos[QOS_RLAT] >= ioc->params.qos[QOS_WLAT]) { 773 ppm = ioc->params.qos[QOS_RPPM]; 774 lat = ioc->params.qos[QOS_RLAT]; 775 } else { 776 ppm = ioc->params.qos[QOS_WPPM]; 777 lat = ioc->params.qos[QOS_WLAT]; 778 } 779 780 /* 781 * We want the period to be long enough to contain a healthy number 782 * of IOs while short enough for granular control. Define it as a 783 * multiple of the latency target. Ideally, the multiplier should 784 * be scaled according to the percentile so that it would nominally 785 * contain a certain number of requests. Let's be simpler and 786 * scale it linearly so that it's 2x >= pct(90) and 10x at pct(50). 787 */ 788 if (ppm) 789 multi = max_t(u32, (MILLION - ppm) / 50000, 2); 790 else 791 multi = 2; 792 period_us = multi * lat; 793 period_us = clamp_t(u32, period_us, MIN_PERIOD, MAX_PERIOD); 794 795 /* calculate dependent params */ 796 ioc->period_us = period_us; 797 ioc->timer_slack_ns = div64_u64( 798 (u64)period_us * NSEC_PER_USEC * TIMER_SLACK_PCT, 799 100); 800 ioc_refresh_margins(ioc); 801 } 802 803 /* 804 * ioc->rqos.disk isn't initialized when this function is called from 805 * the init path. 806 */ 807 static int ioc_autop_idx(struct ioc *ioc, struct gendisk *disk) 808 { 809 int idx = ioc->autop_idx; 810 const struct ioc_params *p = &autop[idx]; 811 u32 vrate_pct; 812 u64 now_ns; 813 814 /* rotational? */ 815 if (!blk_queue_nonrot(disk->queue)) 816 return AUTOP_HDD; 817 818 /* handle SATA SSDs w/ broken NCQ */ 819 if (blk_queue_depth(disk->queue) == 1) 820 return AUTOP_SSD_QD1; 821 822 /* use one of the normal ssd sets */ 823 if (idx < AUTOP_SSD_DFL) 824 return AUTOP_SSD_DFL; 825 826 /* if user is overriding anything, maintain what was there */ 827 if (ioc->user_qos_params || ioc->user_cost_model) 828 return idx; 829 830 /* step up/down based on the vrate */ 831 vrate_pct = div64_u64(ioc->vtime_base_rate * 100, VTIME_PER_USEC); 832 now_ns = blk_time_get_ns(); 833 834 if (p->too_fast_vrate_pct && p->too_fast_vrate_pct <= vrate_pct) { 835 if (!ioc->autop_too_fast_at) 836 ioc->autop_too_fast_at = now_ns; 837 if (now_ns - ioc->autop_too_fast_at >= AUTOP_CYCLE_NSEC) 838 return idx + 1; 839 } else { 840 ioc->autop_too_fast_at = 0; 841 } 842 843 if (p->too_slow_vrate_pct && p->too_slow_vrate_pct >= vrate_pct) { 844 if (!ioc->autop_too_slow_at) 845 ioc->autop_too_slow_at = now_ns; 846 if (now_ns - ioc->autop_too_slow_at >= AUTOP_CYCLE_NSEC) 847 return idx - 1; 848 } else { 849 ioc->autop_too_slow_at = 0; 850 } 851 852 return idx; 853 } 854 855 /* 856 * Take the followings as input 857 * 858 * @bps maximum sequential throughput 859 * @seqiops maximum sequential 4k iops 860 * @randiops maximum random 4k iops 861 * 862 * and calculate the linear model cost coefficients. 863 * 864 * *@page per-page cost 1s / (@bps / 4096) 865 * *@seqio base cost of a seq IO max((1s / @seqiops) - *@page, 0) 866 * @randiops base cost of a rand IO max((1s / @randiops) - *@page, 0) 867 */ 868 static void calc_lcoefs(u64 bps, u64 seqiops, u64 randiops, 869 u64 *page, u64 *seqio, u64 *randio) 870 { 871 u64 v; 872 873 *page = *seqio = *randio = 0; 874 875 if (bps) { 876 u64 bps_pages = DIV_ROUND_UP_ULL(bps, IOC_PAGE_SIZE); 877 878 if (bps_pages) 879 *page = DIV64_U64_ROUND_UP(VTIME_PER_SEC, bps_pages); 880 else 881 *page = 1; 882 } 883 884 if (seqiops) { 885 v = DIV64_U64_ROUND_UP(VTIME_PER_SEC, seqiops); 886 if (v > *page) 887 *seqio = v - *page; 888 } 889 890 if (randiops) { 891 v = DIV64_U64_ROUND_UP(VTIME_PER_SEC, randiops); 892 if (v > *page) 893 *randio = v - *page; 894 } 895 } 896 897 static void ioc_refresh_lcoefs(struct ioc *ioc) 898 { 899 u64 *u = ioc->params.i_lcoefs; 900 u64 *c = ioc->params.lcoefs; 901 902 calc_lcoefs(u[I_LCOEF_RBPS], u[I_LCOEF_RSEQIOPS], u[I_LCOEF_RRANDIOPS], 903 &c[LCOEF_RPAGE], &c[LCOEF_RSEQIO], &c[LCOEF_RRANDIO]); 904 calc_lcoefs(u[I_LCOEF_WBPS], u[I_LCOEF_WSEQIOPS], u[I_LCOEF_WRANDIOPS], 905 &c[LCOEF_WPAGE], &c[LCOEF_WSEQIO], &c[LCOEF_WRANDIO]); 906 } 907 908 /* 909 * struct gendisk is required as an argument because ioc->rqos.disk 910 * is not properly initialized when called from the init path. 911 */ 912 static bool ioc_refresh_params_disk(struct ioc *ioc, bool force, 913 struct gendisk *disk) 914 { 915 const struct ioc_params *p; 916 int idx; 917 918 lockdep_assert_held(&ioc->lock); 919 920 idx = ioc_autop_idx(ioc, disk); 921 p = &autop[idx]; 922 923 if (idx == ioc->autop_idx && !force) 924 return false; 925 926 if (idx != ioc->autop_idx) { 927 atomic64_set(&ioc->vtime_rate, VTIME_PER_USEC); 928 ioc->vtime_base_rate = VTIME_PER_USEC; 929 } 930 931 ioc->autop_idx = idx; 932 ioc->autop_too_fast_at = 0; 933 ioc->autop_too_slow_at = 0; 934 935 if (!ioc->user_qos_params) 936 memcpy(ioc->params.qos, p->qos, sizeof(p->qos)); 937 if (!ioc->user_cost_model) 938 memcpy(ioc->params.i_lcoefs, p->i_lcoefs, sizeof(p->i_lcoefs)); 939 940 ioc_refresh_period_us(ioc); 941 ioc_refresh_lcoefs(ioc); 942 943 ioc->vrate_min = DIV64_U64_ROUND_UP((u64)ioc->params.qos[QOS_MIN] * 944 VTIME_PER_USEC, MILLION); 945 ioc->vrate_max = DIV64_U64_ROUND_UP((u64)ioc->params.qos[QOS_MAX] * 946 VTIME_PER_USEC, MILLION); 947 948 return true; 949 } 950 951 static bool ioc_refresh_params(struct ioc *ioc, bool force) 952 { 953 return ioc_refresh_params_disk(ioc, force, ioc->rqos.disk); 954 } 955 956 /* 957 * When an iocg accumulates too much vtime or gets deactivated, we throw away 958 * some vtime, which lowers the overall device utilization. As the exact amount 959 * which is being thrown away is known, we can compensate by accelerating the 960 * vrate accordingly so that the extra vtime generated in the current period 961 * matches what got lost. 962 */ 963 static void ioc_refresh_vrate(struct ioc *ioc, struct ioc_now *now) 964 { 965 s64 pleft = ioc->period_at + ioc->period_us - now->now; 966 s64 vperiod = ioc->period_us * ioc->vtime_base_rate; 967 s64 vcomp, vcomp_min, vcomp_max; 968 969 lockdep_assert_held(&ioc->lock); 970 971 /* we need some time left in this period */ 972 if (pleft <= 0) 973 goto done; 974 975 /* 976 * Calculate how much vrate should be adjusted to offset the error. 977 * Limit the amount of adjustment and deduct the adjusted amount from 978 * the error. 979 */ 980 vcomp = -div64_s64(ioc->vtime_err, pleft); 981 vcomp_min = -(ioc->vtime_base_rate >> 1); 982 vcomp_max = ioc->vtime_base_rate; 983 vcomp = clamp(vcomp, vcomp_min, vcomp_max); 984 985 ioc->vtime_err += vcomp * pleft; 986 987 atomic64_set(&ioc->vtime_rate, ioc->vtime_base_rate + vcomp); 988 done: 989 /* bound how much error can accumulate */ 990 ioc->vtime_err = clamp(ioc->vtime_err, -vperiod, vperiod); 991 } 992 993 static void ioc_adjust_base_vrate(struct ioc *ioc, u32 rq_wait_pct, 994 int nr_lagging, int nr_shortages, 995 int prev_busy_level, u32 *missed_ppm) 996 { 997 u64 vrate = ioc->vtime_base_rate; 998 u64 vrate_min = ioc->vrate_min, vrate_max = ioc->vrate_max; 999 1000 if (!ioc->busy_level || (ioc->busy_level < 0 && nr_lagging)) { 1001 if (ioc->busy_level != prev_busy_level || nr_lagging) 1002 trace_iocost_ioc_vrate_adj(ioc, vrate, 1003 missed_ppm, rq_wait_pct, 1004 nr_lagging, nr_shortages); 1005 1006 return; 1007 } 1008 1009 /* 1010 * If vrate is out of bounds, apply clamp gradually as the 1011 * bounds can change abruptly. Otherwise, apply busy_level 1012 * based adjustment. 1013 */ 1014 if (vrate < vrate_min) { 1015 vrate = div64_u64(vrate * (100 + VRATE_CLAMP_ADJ_PCT), 100); 1016 vrate = min(vrate, vrate_min); 1017 } else if (vrate > vrate_max) { 1018 vrate = div64_u64(vrate * (100 - VRATE_CLAMP_ADJ_PCT), 100); 1019 vrate = max(vrate, vrate_max); 1020 } else { 1021 int idx = min_t(int, abs(ioc->busy_level), 1022 ARRAY_SIZE(vrate_adj_pct) - 1); 1023 u32 adj_pct = vrate_adj_pct[idx]; 1024 1025 if (ioc->busy_level > 0) 1026 adj_pct = 100 - adj_pct; 1027 else 1028 adj_pct = 100 + adj_pct; 1029 1030 vrate = clamp(DIV64_U64_ROUND_UP(vrate * adj_pct, 100), 1031 vrate_min, vrate_max); 1032 } 1033 1034 trace_iocost_ioc_vrate_adj(ioc, vrate, missed_ppm, rq_wait_pct, 1035 nr_lagging, nr_shortages); 1036 1037 ioc->vtime_base_rate = vrate; 1038 ioc_refresh_margins(ioc); 1039 } 1040 1041 /* take a snapshot of the current [v]time and vrate */ 1042 static void ioc_now(struct ioc *ioc, struct ioc_now *now) 1043 { 1044 unsigned seq; 1045 u64 vrate; 1046 1047 now->now_ns = blk_time_get_ns(); 1048 now->now = ktime_to_us(now->now_ns); 1049 vrate = atomic64_read(&ioc->vtime_rate); 1050 1051 /* 1052 * The current vtime is 1053 * 1054 * vtime at period start + (wallclock time since the start) * vrate 1055 * 1056 * As a consistent snapshot of `period_at_vtime` and `period_at` is 1057 * needed, they're seqcount protected. 1058 */ 1059 do { 1060 seq = read_seqcount_begin(&ioc->period_seqcount); 1061 now->vnow = ioc->period_at_vtime + 1062 (now->now - ioc->period_at) * vrate; 1063 } while (read_seqcount_retry(&ioc->period_seqcount, seq)); 1064 } 1065 1066 static void ioc_start_period(struct ioc *ioc, struct ioc_now *now) 1067 { 1068 WARN_ON_ONCE(ioc->running != IOC_RUNNING); 1069 1070 write_seqcount_begin(&ioc->period_seqcount); 1071 ioc->period_at = now->now; 1072 ioc->period_at_vtime = now->vnow; 1073 write_seqcount_end(&ioc->period_seqcount); 1074 1075 ioc->timer.expires = jiffies + usecs_to_jiffies(ioc->period_us); 1076 add_timer(&ioc->timer); 1077 } 1078 1079 /* 1080 * Update @iocg's `active` and `inuse` to @active and @inuse, update level 1081 * weight sums and propagate upwards accordingly. If @save, the current margin 1082 * is saved to be used as reference for later inuse in-period adjustments. 1083 */ 1084 static void __propagate_weights(struct ioc_gq *iocg, u32 active, u32 inuse, 1085 bool save, struct ioc_now *now) 1086 { 1087 struct ioc *ioc = iocg->ioc; 1088 int lvl; 1089 1090 lockdep_assert_held(&ioc->lock); 1091 1092 /* 1093 * For an active leaf node, its inuse shouldn't be zero or exceed 1094 * @active. An active internal node's inuse is solely determined by the 1095 * inuse to active ratio of its children regardless of @inuse. 1096 */ 1097 if (list_empty(&iocg->active_list) && iocg->child_active_sum) { 1098 inuse = DIV64_U64_ROUND_UP(active * iocg->child_inuse_sum, 1099 iocg->child_active_sum); 1100 } else { 1101 inuse = clamp_t(u32, inuse, 1, active); 1102 } 1103 1104 iocg->last_inuse = iocg->inuse; 1105 if (save) 1106 iocg->saved_margin = now->vnow - atomic64_read(&iocg->vtime); 1107 1108 if (active == iocg->active && inuse == iocg->inuse) 1109 return; 1110 1111 for (lvl = iocg->level - 1; lvl >= 0; lvl--) { 1112 struct ioc_gq *parent = iocg->ancestors[lvl]; 1113 struct ioc_gq *child = iocg->ancestors[lvl + 1]; 1114 u32 parent_active = 0, parent_inuse = 0; 1115 1116 /* update the level sums */ 1117 parent->child_active_sum += (s32)(active - child->active); 1118 parent->child_inuse_sum += (s32)(inuse - child->inuse); 1119 /* apply the updates */ 1120 child->active = active; 1121 child->inuse = inuse; 1122 1123 /* 1124 * The delta between inuse and active sums indicates that 1125 * much of weight is being given away. Parent's inuse 1126 * and active should reflect the ratio. 1127 */ 1128 if (parent->child_active_sum) { 1129 parent_active = parent->weight; 1130 parent_inuse = DIV64_U64_ROUND_UP( 1131 parent_active * parent->child_inuse_sum, 1132 parent->child_active_sum); 1133 } 1134 1135 /* do we need to keep walking up? */ 1136 if (parent_active == parent->active && 1137 parent_inuse == parent->inuse) 1138 break; 1139 1140 active = parent_active; 1141 inuse = parent_inuse; 1142 } 1143 1144 ioc->weights_updated = true; 1145 } 1146 1147 static void commit_weights(struct ioc *ioc) 1148 { 1149 lockdep_assert_held(&ioc->lock); 1150 1151 if (ioc->weights_updated) { 1152 /* paired with rmb in current_hweight(), see there */ 1153 smp_wmb(); 1154 atomic_inc(&ioc->hweight_gen); 1155 ioc->weights_updated = false; 1156 } 1157 } 1158 1159 static void propagate_weights(struct ioc_gq *iocg, u32 active, u32 inuse, 1160 bool save, struct ioc_now *now) 1161 { 1162 __propagate_weights(iocg, active, inuse, save, now); 1163 commit_weights(iocg->ioc); 1164 } 1165 1166 static void current_hweight(struct ioc_gq *iocg, u32 *hw_activep, u32 *hw_inusep) 1167 { 1168 struct ioc *ioc = iocg->ioc; 1169 int lvl; 1170 u32 hwa, hwi; 1171 int ioc_gen; 1172 1173 /* hot path - if uptodate, use cached */ 1174 ioc_gen = atomic_read(&ioc->hweight_gen); 1175 if (ioc_gen == iocg->hweight_gen) 1176 goto out; 1177 1178 /* 1179 * Paired with wmb in commit_weights(). If we saw the updated 1180 * hweight_gen, all the weight updates from __propagate_weights() are 1181 * visible too. 1182 * 1183 * We can race with weight updates during calculation and get it 1184 * wrong. However, hweight_gen would have changed and a future 1185 * reader will recalculate and we're guaranteed to discard the 1186 * wrong result soon. 1187 */ 1188 smp_rmb(); 1189 1190 hwa = hwi = WEIGHT_ONE; 1191 for (lvl = 0; lvl <= iocg->level - 1; lvl++) { 1192 struct ioc_gq *parent = iocg->ancestors[lvl]; 1193 struct ioc_gq *child = iocg->ancestors[lvl + 1]; 1194 u64 active_sum = READ_ONCE(parent->child_active_sum); 1195 u64 inuse_sum = READ_ONCE(parent->child_inuse_sum); 1196 u32 active = READ_ONCE(child->active); 1197 u32 inuse = READ_ONCE(child->inuse); 1198 1199 /* we can race with deactivations and either may read as zero */ 1200 if (!active_sum || !inuse_sum) 1201 continue; 1202 1203 active_sum = max_t(u64, active, active_sum); 1204 hwa = div64_u64((u64)hwa * active, active_sum); 1205 1206 inuse_sum = max_t(u64, inuse, inuse_sum); 1207 hwi = div64_u64((u64)hwi * inuse, inuse_sum); 1208 } 1209 1210 iocg->hweight_active = max_t(u32, hwa, 1); 1211 iocg->hweight_inuse = max_t(u32, hwi, 1); 1212 iocg->hweight_gen = ioc_gen; 1213 out: 1214 if (hw_activep) 1215 *hw_activep = iocg->hweight_active; 1216 if (hw_inusep) 1217 *hw_inusep = iocg->hweight_inuse; 1218 } 1219 1220 /* 1221 * Calculate the hweight_inuse @iocg would get with max @inuse assuming all the 1222 * other weights stay unchanged. 1223 */ 1224 static u32 current_hweight_max(struct ioc_gq *iocg) 1225 { 1226 u32 hwm = WEIGHT_ONE; 1227 u32 inuse = iocg->active; 1228 u64 child_inuse_sum; 1229 int lvl; 1230 1231 lockdep_assert_held(&iocg->ioc->lock); 1232 1233 for (lvl = iocg->level - 1; lvl >= 0; lvl--) { 1234 struct ioc_gq *parent = iocg->ancestors[lvl]; 1235 struct ioc_gq *child = iocg->ancestors[lvl + 1]; 1236 1237 child_inuse_sum = parent->child_inuse_sum + inuse - child->inuse; 1238 hwm = div64_u64((u64)hwm * inuse, child_inuse_sum); 1239 inuse = DIV64_U64_ROUND_UP(parent->active * child_inuse_sum, 1240 parent->child_active_sum); 1241 } 1242 1243 return max_t(u32, hwm, 1); 1244 } 1245 1246 static void weight_updated(struct ioc_gq *iocg, struct ioc_now *now) 1247 { 1248 struct ioc *ioc = iocg->ioc; 1249 struct blkcg_gq *blkg = iocg_to_blkg(iocg); 1250 struct ioc_cgrp *iocc = blkcg_to_iocc(blkg->blkcg); 1251 u32 weight; 1252 1253 lockdep_assert_held(&ioc->lock); 1254 1255 weight = iocg->cfg_weight ?: iocc->dfl_weight; 1256 if (weight != iocg->weight && iocg->active) 1257 propagate_weights(iocg, weight, iocg->inuse, true, now); 1258 iocg->weight = weight; 1259 } 1260 1261 static bool iocg_activate(struct ioc_gq *iocg, struct ioc_now *now) 1262 { 1263 struct ioc *ioc = iocg->ioc; 1264 u64 __maybe_unused last_period, cur_period; 1265 u64 vtime, vtarget; 1266 int i; 1267 1268 /* 1269 * If seem to be already active, just update the stamp to tell the 1270 * timer that we're still active. We don't mind occassional races. 1271 */ 1272 if (!list_empty(&iocg->active_list)) { 1273 ioc_now(ioc, now); 1274 cur_period = atomic64_read(&ioc->cur_period); 1275 if (atomic64_read(&iocg->active_period) != cur_period) 1276 atomic64_set(&iocg->active_period, cur_period); 1277 return true; 1278 } 1279 1280 /* racy check on internal node IOs, treat as root level IOs */ 1281 if (iocg->child_active_sum) 1282 return false; 1283 1284 spin_lock_irq(&ioc->lock); 1285 1286 ioc_now(ioc, now); 1287 1288 /* update period */ 1289 cur_period = atomic64_read(&ioc->cur_period); 1290 last_period = atomic64_read(&iocg->active_period); 1291 atomic64_set(&iocg->active_period, cur_period); 1292 1293 /* already activated or breaking leaf-only constraint? */ 1294 if (!list_empty(&iocg->active_list)) 1295 goto succeed_unlock; 1296 for (i = iocg->level - 1; i > 0; i--) 1297 if (!list_empty(&iocg->ancestors[i]->active_list)) 1298 goto fail_unlock; 1299 1300 if (iocg->child_active_sum) 1301 goto fail_unlock; 1302 1303 /* 1304 * Always start with the target budget. On deactivation, we throw away 1305 * anything above it. 1306 */ 1307 vtarget = now->vnow - ioc->margins.target; 1308 vtime = atomic64_read(&iocg->vtime); 1309 1310 atomic64_add(vtarget - vtime, &iocg->vtime); 1311 atomic64_add(vtarget - vtime, &iocg->done_vtime); 1312 vtime = vtarget; 1313 1314 /* 1315 * Activate, propagate weight and start period timer if not 1316 * running. Reset hweight_gen to avoid accidental match from 1317 * wrapping. 1318 */ 1319 iocg->hweight_gen = atomic_read(&ioc->hweight_gen) - 1; 1320 list_add(&iocg->active_list, &ioc->active_iocgs); 1321 1322 propagate_weights(iocg, iocg->weight, 1323 iocg->last_inuse ?: iocg->weight, true, now); 1324 1325 TRACE_IOCG_PATH(iocg_activate, iocg, now, 1326 last_period, cur_period, vtime); 1327 1328 iocg->activated_at = now->now; 1329 1330 if (ioc->running == IOC_IDLE) { 1331 ioc->running = IOC_RUNNING; 1332 ioc->dfgv_period_at = now->now; 1333 ioc->dfgv_period_rem = 0; 1334 ioc_start_period(ioc, now); 1335 } 1336 1337 succeed_unlock: 1338 spin_unlock_irq(&ioc->lock); 1339 return true; 1340 1341 fail_unlock: 1342 spin_unlock_irq(&ioc->lock); 1343 return false; 1344 } 1345 1346 static bool iocg_kick_delay(struct ioc_gq *iocg, struct ioc_now *now) 1347 { 1348 struct ioc *ioc = iocg->ioc; 1349 struct blkcg_gq *blkg = iocg_to_blkg(iocg); 1350 u64 tdelta, delay, new_delay, shift; 1351 s64 vover, vover_pct; 1352 u32 hwa; 1353 1354 lockdep_assert_held(&iocg->waitq.lock); 1355 1356 /* 1357 * If the delay is set by another CPU, we may be in the past. No need to 1358 * change anything if so. This avoids decay calculation underflow. 1359 */ 1360 if (time_before64(now->now, iocg->delay_at)) 1361 return false; 1362 1363 /* calculate the current delay in effect - 1/2 every second */ 1364 tdelta = now->now - iocg->delay_at; 1365 shift = div64_u64(tdelta, USEC_PER_SEC); 1366 if (iocg->delay && shift < BITS_PER_LONG) 1367 delay = iocg->delay >> shift; 1368 else 1369 delay = 0; 1370 1371 /* calculate the new delay from the debt amount */ 1372 current_hweight(iocg, &hwa, NULL); 1373 vover = atomic64_read(&iocg->vtime) + 1374 abs_cost_to_cost(iocg->abs_vdebt, hwa) - now->vnow; 1375 vover_pct = div64_s64(100 * vover, 1376 ioc->period_us * ioc->vtime_base_rate); 1377 1378 if (vover_pct <= MIN_DELAY_THR_PCT) 1379 new_delay = 0; 1380 else if (vover_pct >= MAX_DELAY_THR_PCT) 1381 new_delay = MAX_DELAY; 1382 else 1383 new_delay = MIN_DELAY + 1384 div_u64((MAX_DELAY - MIN_DELAY) * 1385 (vover_pct - MIN_DELAY_THR_PCT), 1386 MAX_DELAY_THR_PCT - MIN_DELAY_THR_PCT); 1387 1388 /* pick the higher one and apply */ 1389 if (new_delay > delay) { 1390 iocg->delay = new_delay; 1391 iocg->delay_at = now->now; 1392 delay = new_delay; 1393 } 1394 1395 if (delay >= MIN_DELAY) { 1396 if (!iocg->indelay_since) 1397 iocg->indelay_since = now->now; 1398 blkcg_set_delay(blkg, delay * NSEC_PER_USEC); 1399 return true; 1400 } else { 1401 if (iocg->indelay_since) { 1402 iocg->stat.indelay_us += now->now - iocg->indelay_since; 1403 iocg->indelay_since = 0; 1404 } 1405 iocg->delay = 0; 1406 blkcg_clear_delay(blkg); 1407 return false; 1408 } 1409 } 1410 1411 static void iocg_incur_debt(struct ioc_gq *iocg, u64 abs_cost, 1412 struct ioc_now *now) 1413 { 1414 struct iocg_pcpu_stat *gcs; 1415 1416 lockdep_assert_held(&iocg->ioc->lock); 1417 lockdep_assert_held(&iocg->waitq.lock); 1418 WARN_ON_ONCE(list_empty(&iocg->active_list)); 1419 1420 /* 1421 * Once in debt, debt handling owns inuse. @iocg stays at the minimum 1422 * inuse donating all of it share to others until its debt is paid off. 1423 */ 1424 if (!iocg->abs_vdebt && abs_cost) { 1425 iocg->indebt_since = now->now; 1426 propagate_weights(iocg, iocg->active, 0, false, now); 1427 } 1428 1429 iocg->abs_vdebt += abs_cost; 1430 1431 gcs = get_cpu_ptr(iocg->pcpu_stat); 1432 local64_add(abs_cost, &gcs->abs_vusage); 1433 put_cpu_ptr(gcs); 1434 } 1435 1436 static void iocg_pay_debt(struct ioc_gq *iocg, u64 abs_vpay, 1437 struct ioc_now *now) 1438 { 1439 lockdep_assert_held(&iocg->ioc->lock); 1440 lockdep_assert_held(&iocg->waitq.lock); 1441 1442 /* 1443 * make sure that nobody messed with @iocg. Check iocg->pd.online 1444 * to avoid warn when removing blkcg or disk. 1445 */ 1446 WARN_ON_ONCE(list_empty(&iocg->active_list) && iocg->pd.online); 1447 WARN_ON_ONCE(iocg->inuse > 1); 1448 1449 iocg->abs_vdebt -= min(abs_vpay, iocg->abs_vdebt); 1450 1451 /* if debt is paid in full, restore inuse */ 1452 if (!iocg->abs_vdebt) { 1453 iocg->stat.indebt_us += now->now - iocg->indebt_since; 1454 iocg->indebt_since = 0; 1455 1456 propagate_weights(iocg, iocg->active, iocg->last_inuse, 1457 false, now); 1458 } 1459 } 1460 1461 static int iocg_wake_fn(struct wait_queue_entry *wq_entry, unsigned mode, 1462 int flags, void *key) 1463 { 1464 struct iocg_wait *wait = container_of(wq_entry, struct iocg_wait, wait); 1465 struct iocg_wake_ctx *ctx = key; 1466 u64 cost = abs_cost_to_cost(wait->abs_cost, ctx->hw_inuse); 1467 1468 ctx->vbudget -= cost; 1469 1470 if (ctx->vbudget < 0) 1471 return -1; 1472 1473 iocg_commit_bio(ctx->iocg, wait->bio, wait->abs_cost, cost); 1474 wait->committed = true; 1475 1476 /* 1477 * autoremove_wake_function() removes the wait entry only when it 1478 * actually changed the task state. We want the wait always removed. 1479 * Remove explicitly and use default_wake_function(). Note that the 1480 * order of operations is important as finish_wait() tests whether 1481 * @wq_entry is removed without grabbing the lock. 1482 */ 1483 default_wake_function(wq_entry, mode, flags, key); 1484 list_del_init_careful(&wq_entry->entry); 1485 return 0; 1486 } 1487 1488 /* 1489 * Calculate the accumulated budget, pay debt if @pay_debt and wake up waiters 1490 * accordingly. When @pay_debt is %true, the caller must be holding ioc->lock in 1491 * addition to iocg->waitq.lock. 1492 */ 1493 static void iocg_kick_waitq(struct ioc_gq *iocg, bool pay_debt, 1494 struct ioc_now *now) 1495 { 1496 struct ioc *ioc = iocg->ioc; 1497 struct iocg_wake_ctx ctx = { .iocg = iocg }; 1498 u64 vshortage, expires, oexpires; 1499 s64 vbudget; 1500 u32 hwa; 1501 1502 lockdep_assert_held(&iocg->waitq.lock); 1503 1504 current_hweight(iocg, &hwa, NULL); 1505 vbudget = now->vnow - atomic64_read(&iocg->vtime); 1506 1507 /* pay off debt */ 1508 if (pay_debt && iocg->abs_vdebt && vbudget > 0) { 1509 u64 abs_vbudget = cost_to_abs_cost(vbudget, hwa); 1510 u64 abs_vpay = min_t(u64, abs_vbudget, iocg->abs_vdebt); 1511 u64 vpay = abs_cost_to_cost(abs_vpay, hwa); 1512 1513 lockdep_assert_held(&ioc->lock); 1514 1515 atomic64_add(vpay, &iocg->vtime); 1516 atomic64_add(vpay, &iocg->done_vtime); 1517 iocg_pay_debt(iocg, abs_vpay, now); 1518 vbudget -= vpay; 1519 } 1520 1521 if (iocg->abs_vdebt || iocg->delay) 1522 iocg_kick_delay(iocg, now); 1523 1524 /* 1525 * Debt can still be outstanding if we haven't paid all yet or the 1526 * caller raced and called without @pay_debt. Shouldn't wake up waiters 1527 * under debt. Make sure @vbudget reflects the outstanding amount and is 1528 * not positive. 1529 */ 1530 if (iocg->abs_vdebt) { 1531 s64 vdebt = abs_cost_to_cost(iocg->abs_vdebt, hwa); 1532 vbudget = min_t(s64, 0, vbudget - vdebt); 1533 } 1534 1535 /* 1536 * Wake up the ones which are due and see how much vtime we'll need for 1537 * the next one. As paying off debt restores hw_inuse, it must be read 1538 * after the above debt payment. 1539 */ 1540 ctx.vbudget = vbudget; 1541 current_hweight(iocg, NULL, &ctx.hw_inuse); 1542 1543 __wake_up_locked_key(&iocg->waitq, TASK_NORMAL, &ctx); 1544 1545 if (!waitqueue_active(&iocg->waitq)) { 1546 if (iocg->wait_since) { 1547 iocg->stat.wait_us += now->now - iocg->wait_since; 1548 iocg->wait_since = 0; 1549 } 1550 return; 1551 } 1552 1553 if (!iocg->wait_since) 1554 iocg->wait_since = now->now; 1555 1556 if (WARN_ON_ONCE(ctx.vbudget >= 0)) 1557 return; 1558 1559 /* determine next wakeup, add a timer margin to guarantee chunking */ 1560 vshortage = -ctx.vbudget; 1561 expires = now->now_ns + 1562 DIV64_U64_ROUND_UP(vshortage, ioc->vtime_base_rate) * 1563 NSEC_PER_USEC; 1564 expires += ioc->timer_slack_ns; 1565 1566 /* if already active and close enough, don't bother */ 1567 oexpires = ktime_to_ns(hrtimer_get_softexpires(&iocg->waitq_timer)); 1568 if (hrtimer_is_queued(&iocg->waitq_timer) && 1569 abs(oexpires - expires) <= ioc->timer_slack_ns) 1570 return; 1571 1572 hrtimer_start_range_ns(&iocg->waitq_timer, ns_to_ktime(expires), 1573 ioc->timer_slack_ns, HRTIMER_MODE_ABS); 1574 } 1575 1576 static enum hrtimer_restart iocg_waitq_timer_fn(struct hrtimer *timer) 1577 { 1578 struct ioc_gq *iocg = container_of(timer, struct ioc_gq, waitq_timer); 1579 bool pay_debt = READ_ONCE(iocg->abs_vdebt); 1580 struct ioc_now now; 1581 unsigned long flags; 1582 1583 ioc_now(iocg->ioc, &now); 1584 1585 iocg_lock(iocg, pay_debt, &flags); 1586 iocg_kick_waitq(iocg, pay_debt, &now); 1587 iocg_unlock(iocg, pay_debt, &flags); 1588 1589 return HRTIMER_NORESTART; 1590 } 1591 1592 static void ioc_lat_stat(struct ioc *ioc, u32 *missed_ppm_ar, u32 *rq_wait_pct_p) 1593 { 1594 u32 nr_met[2] = { }; 1595 u32 nr_missed[2] = { }; 1596 u64 rq_wait_ns = 0; 1597 int cpu, rw; 1598 1599 for_each_online_cpu(cpu) { 1600 struct ioc_pcpu_stat *stat = per_cpu_ptr(ioc->pcpu_stat, cpu); 1601 u64 this_rq_wait_ns; 1602 1603 for (rw = READ; rw <= WRITE; rw++) { 1604 u32 this_met = local_read(&stat->missed[rw].nr_met); 1605 u32 this_missed = local_read(&stat->missed[rw].nr_missed); 1606 1607 nr_met[rw] += this_met - stat->missed[rw].last_met; 1608 nr_missed[rw] += this_missed - stat->missed[rw].last_missed; 1609 stat->missed[rw].last_met = this_met; 1610 stat->missed[rw].last_missed = this_missed; 1611 } 1612 1613 this_rq_wait_ns = local64_read(&stat->rq_wait_ns); 1614 rq_wait_ns += this_rq_wait_ns - stat->last_rq_wait_ns; 1615 stat->last_rq_wait_ns = this_rq_wait_ns; 1616 } 1617 1618 for (rw = READ; rw <= WRITE; rw++) { 1619 if (nr_met[rw] + nr_missed[rw]) 1620 missed_ppm_ar[rw] = 1621 DIV64_U64_ROUND_UP((u64)nr_missed[rw] * MILLION, 1622 nr_met[rw] + nr_missed[rw]); 1623 else 1624 missed_ppm_ar[rw] = 0; 1625 } 1626 1627 *rq_wait_pct_p = div64_u64(rq_wait_ns * 100, 1628 ioc->period_us * NSEC_PER_USEC); 1629 } 1630 1631 /* was iocg idle this period? */ 1632 static bool iocg_is_idle(struct ioc_gq *iocg) 1633 { 1634 struct ioc *ioc = iocg->ioc; 1635 1636 /* did something get issued this period? */ 1637 if (atomic64_read(&iocg->active_period) == 1638 atomic64_read(&ioc->cur_period)) 1639 return false; 1640 1641 /* is something in flight? */ 1642 if (atomic64_read(&iocg->done_vtime) != atomic64_read(&iocg->vtime)) 1643 return false; 1644 1645 return true; 1646 } 1647 1648 /* 1649 * Call this function on the target leaf @iocg's to build pre-order traversal 1650 * list of all the ancestors in @inner_walk. The inner nodes are linked through 1651 * ->walk_list and the caller is responsible for dissolving the list after use. 1652 */ 1653 static void iocg_build_inner_walk(struct ioc_gq *iocg, 1654 struct list_head *inner_walk) 1655 { 1656 int lvl; 1657 1658 WARN_ON_ONCE(!list_empty(&iocg->walk_list)); 1659 1660 /* find the first ancestor which hasn't been visited yet */ 1661 for (lvl = iocg->level - 1; lvl >= 0; lvl--) { 1662 if (!list_empty(&iocg->ancestors[lvl]->walk_list)) 1663 break; 1664 } 1665 1666 /* walk down and visit the inner nodes to get pre-order traversal */ 1667 while (++lvl <= iocg->level - 1) { 1668 struct ioc_gq *inner = iocg->ancestors[lvl]; 1669 1670 /* record traversal order */ 1671 list_add_tail(&inner->walk_list, inner_walk); 1672 } 1673 } 1674 1675 /* propagate the deltas to the parent */ 1676 static void iocg_flush_stat_upward(struct ioc_gq *iocg) 1677 { 1678 if (iocg->level > 0) { 1679 struct iocg_stat *parent_stat = 1680 &iocg->ancestors[iocg->level - 1]->stat; 1681 1682 parent_stat->usage_us += 1683 iocg->stat.usage_us - iocg->last_stat.usage_us; 1684 parent_stat->wait_us += 1685 iocg->stat.wait_us - iocg->last_stat.wait_us; 1686 parent_stat->indebt_us += 1687 iocg->stat.indebt_us - iocg->last_stat.indebt_us; 1688 parent_stat->indelay_us += 1689 iocg->stat.indelay_us - iocg->last_stat.indelay_us; 1690 } 1691 1692 iocg->last_stat = iocg->stat; 1693 } 1694 1695 /* collect per-cpu counters and propagate the deltas to the parent */ 1696 static void iocg_flush_stat_leaf(struct ioc_gq *iocg, struct ioc_now *now) 1697 { 1698 struct ioc *ioc = iocg->ioc; 1699 u64 abs_vusage = 0; 1700 u64 vusage_delta; 1701 int cpu; 1702 1703 lockdep_assert_held(&iocg->ioc->lock); 1704 1705 /* collect per-cpu counters */ 1706 for_each_possible_cpu(cpu) { 1707 abs_vusage += local64_read( 1708 per_cpu_ptr(&iocg->pcpu_stat->abs_vusage, cpu)); 1709 } 1710 vusage_delta = abs_vusage - iocg->last_stat_abs_vusage; 1711 iocg->last_stat_abs_vusage = abs_vusage; 1712 1713 iocg->usage_delta_us = div64_u64(vusage_delta, ioc->vtime_base_rate); 1714 iocg->stat.usage_us += iocg->usage_delta_us; 1715 1716 iocg_flush_stat_upward(iocg); 1717 } 1718 1719 /* get stat counters ready for reading on all active iocgs */ 1720 static void iocg_flush_stat(struct list_head *target_iocgs, struct ioc_now *now) 1721 { 1722 LIST_HEAD(inner_walk); 1723 struct ioc_gq *iocg, *tiocg; 1724 1725 /* flush leaves and build inner node walk list */ 1726 list_for_each_entry(iocg, target_iocgs, active_list) { 1727 iocg_flush_stat_leaf(iocg, now); 1728 iocg_build_inner_walk(iocg, &inner_walk); 1729 } 1730 1731 /* keep flushing upwards by walking the inner list backwards */ 1732 list_for_each_entry_safe_reverse(iocg, tiocg, &inner_walk, walk_list) { 1733 iocg_flush_stat_upward(iocg); 1734 list_del_init(&iocg->walk_list); 1735 } 1736 } 1737 1738 /* 1739 * Determine what @iocg's hweight_inuse should be after donating unused 1740 * capacity. @hwm is the upper bound and used to signal no donation. This 1741 * function also throws away @iocg's excess budget. 1742 */ 1743 static u32 hweight_after_donation(struct ioc_gq *iocg, u32 old_hwi, u32 hwm, 1744 u32 usage, struct ioc_now *now) 1745 { 1746 struct ioc *ioc = iocg->ioc; 1747 u64 vtime = atomic64_read(&iocg->vtime); 1748 s64 excess, delta, target, new_hwi; 1749 1750 /* debt handling owns inuse for debtors */ 1751 if (iocg->abs_vdebt) 1752 return 1; 1753 1754 /* see whether minimum margin requirement is met */ 1755 if (waitqueue_active(&iocg->waitq) || 1756 time_after64(vtime, now->vnow - ioc->margins.min)) 1757 return hwm; 1758 1759 /* throw away excess above target */ 1760 excess = now->vnow - vtime - ioc->margins.target; 1761 if (excess > 0) { 1762 atomic64_add(excess, &iocg->vtime); 1763 atomic64_add(excess, &iocg->done_vtime); 1764 vtime += excess; 1765 ioc->vtime_err -= div64_u64(excess * old_hwi, WEIGHT_ONE); 1766 } 1767 1768 /* 1769 * Let's say the distance between iocg's and device's vtimes as a 1770 * fraction of period duration is delta. Assuming that the iocg will 1771 * consume the usage determined above, we want to determine new_hwi so 1772 * that delta equals MARGIN_TARGET at the end of the next period. 1773 * 1774 * We need to execute usage worth of IOs while spending the sum of the 1775 * new budget (1 - MARGIN_TARGET) and the leftover from the last period 1776 * (delta): 1777 * 1778 * usage = (1 - MARGIN_TARGET + delta) * new_hwi 1779 * 1780 * Therefore, the new_hwi is: 1781 * 1782 * new_hwi = usage / (1 - MARGIN_TARGET + delta) 1783 */ 1784 delta = div64_s64(WEIGHT_ONE * (now->vnow - vtime), 1785 now->vnow - ioc->period_at_vtime); 1786 target = WEIGHT_ONE * MARGIN_TARGET_PCT / 100; 1787 new_hwi = div64_s64(WEIGHT_ONE * usage, WEIGHT_ONE - target + delta); 1788 1789 return clamp_t(s64, new_hwi, 1, hwm); 1790 } 1791 1792 /* 1793 * For work-conservation, an iocg which isn't using all of its share should 1794 * donate the leftover to other iocgs. There are two ways to achieve this - 1. 1795 * bumping up vrate accordingly 2. lowering the donating iocg's inuse weight. 1796 * 1797 * #1 is mathematically simpler but has the drawback of requiring synchronous 1798 * global hweight_inuse updates when idle iocg's get activated or inuse weights 1799 * change due to donation snapbacks as it has the possibility of grossly 1800 * overshooting what's allowed by the model and vrate. 1801 * 1802 * #2 is inherently safe with local operations. The donating iocg can easily 1803 * snap back to higher weights when needed without worrying about impacts on 1804 * other nodes as the impacts will be inherently correct. This also makes idle 1805 * iocg activations safe. The only effect activations have is decreasing 1806 * hweight_inuse of others, the right solution to which is for those iocgs to 1807 * snap back to higher weights. 1808 * 1809 * So, we go with #2. The challenge is calculating how each donating iocg's 1810 * inuse should be adjusted to achieve the target donation amounts. This is done 1811 * using Andy's method described in the following pdf. 1812 * 1813 * https://drive.google.com/file/d/1PsJwxPFtjUnwOY1QJ5AeICCcsL7BM3bo 1814 * 1815 * Given the weights and target after-donation hweight_inuse values, Andy's 1816 * method determines how the proportional distribution should look like at each 1817 * sibling level to maintain the relative relationship between all non-donating 1818 * pairs. To roughly summarize, it divides the tree into donating and 1819 * non-donating parts, calculates global donation rate which is used to 1820 * determine the target hweight_inuse for each node, and then derives per-level 1821 * proportions. 1822 * 1823 * The following pdf shows that global distribution calculated this way can be 1824 * achieved by scaling inuse weights of donating leaves and propagating the 1825 * adjustments upwards proportionally. 1826 * 1827 * https://drive.google.com/file/d/1vONz1-fzVO7oY5DXXsLjSxEtYYQbOvsE 1828 * 1829 * Combining the above two, we can determine how each leaf iocg's inuse should 1830 * be adjusted to achieve the target donation. 1831 * 1832 * https://drive.google.com/file/d/1WcrltBOSPN0qXVdBgnKm4mdp9FhuEFQN 1833 * 1834 * The inline comments use symbols from the last pdf. 1835 * 1836 * b is the sum of the absolute budgets in the subtree. 1 for the root node. 1837 * f is the sum of the absolute budgets of non-donating nodes in the subtree. 1838 * t is the sum of the absolute budgets of donating nodes in the subtree. 1839 * w is the weight of the node. w = w_f + w_t 1840 * w_f is the non-donating portion of w. w_f = w * f / b 1841 * w_b is the donating portion of w. w_t = w * t / b 1842 * s is the sum of all sibling weights. s = Sum(w) for siblings 1843 * s_f and s_t are the non-donating and donating portions of s. 1844 * 1845 * Subscript p denotes the parent's counterpart and ' the adjusted value - e.g. 1846 * w_pt is the donating portion of the parent's weight and w'_pt the same value 1847 * after adjustments. Subscript r denotes the root node's values. 1848 */ 1849 static void transfer_surpluses(struct list_head *surpluses, struct ioc_now *now) 1850 { 1851 LIST_HEAD(over_hwa); 1852 LIST_HEAD(inner_walk); 1853 struct ioc_gq *iocg, *tiocg, *root_iocg; 1854 u32 after_sum, over_sum, over_target, gamma; 1855 1856 /* 1857 * It's pretty unlikely but possible for the total sum of 1858 * hweight_after_donation's to be higher than WEIGHT_ONE, which will 1859 * confuse the following calculations. If such condition is detected, 1860 * scale down everyone over its full share equally to keep the sum below 1861 * WEIGHT_ONE. 1862 */ 1863 after_sum = 0; 1864 over_sum = 0; 1865 list_for_each_entry(iocg, surpluses, surplus_list) { 1866 u32 hwa; 1867 1868 current_hweight(iocg, &hwa, NULL); 1869 after_sum += iocg->hweight_after_donation; 1870 1871 if (iocg->hweight_after_donation > hwa) { 1872 over_sum += iocg->hweight_after_donation; 1873 list_add(&iocg->walk_list, &over_hwa); 1874 } 1875 } 1876 1877 if (after_sum >= WEIGHT_ONE) { 1878 /* 1879 * The delta should be deducted from the over_sum, calculate 1880 * target over_sum value. 1881 */ 1882 u32 over_delta = after_sum - (WEIGHT_ONE - 1); 1883 WARN_ON_ONCE(over_sum <= over_delta); 1884 over_target = over_sum - over_delta; 1885 } else { 1886 over_target = 0; 1887 } 1888 1889 list_for_each_entry_safe(iocg, tiocg, &over_hwa, walk_list) { 1890 if (over_target) 1891 iocg->hweight_after_donation = 1892 div_u64((u64)iocg->hweight_after_donation * 1893 over_target, over_sum); 1894 list_del_init(&iocg->walk_list); 1895 } 1896 1897 /* 1898 * Build pre-order inner node walk list and prepare for donation 1899 * adjustment calculations. 1900 */ 1901 list_for_each_entry(iocg, surpluses, surplus_list) { 1902 iocg_build_inner_walk(iocg, &inner_walk); 1903 } 1904 1905 root_iocg = list_first_entry(&inner_walk, struct ioc_gq, walk_list); 1906 WARN_ON_ONCE(root_iocg->level > 0); 1907 1908 list_for_each_entry(iocg, &inner_walk, walk_list) { 1909 iocg->child_adjusted_sum = 0; 1910 iocg->hweight_donating = 0; 1911 iocg->hweight_after_donation = 0; 1912 } 1913 1914 /* 1915 * Propagate the donating budget (b_t) and after donation budget (b'_t) 1916 * up the hierarchy. 1917 */ 1918 list_for_each_entry(iocg, surpluses, surplus_list) { 1919 struct ioc_gq *parent = iocg->ancestors[iocg->level - 1]; 1920 1921 parent->hweight_donating += iocg->hweight_donating; 1922 parent->hweight_after_donation += iocg->hweight_after_donation; 1923 } 1924 1925 list_for_each_entry_reverse(iocg, &inner_walk, walk_list) { 1926 if (iocg->level > 0) { 1927 struct ioc_gq *parent = iocg->ancestors[iocg->level - 1]; 1928 1929 parent->hweight_donating += iocg->hweight_donating; 1930 parent->hweight_after_donation += iocg->hweight_after_donation; 1931 } 1932 } 1933 1934 /* 1935 * Calculate inner hwa's (b) and make sure the donation values are 1936 * within the accepted ranges as we're doing low res calculations with 1937 * roundups. 1938 */ 1939 list_for_each_entry(iocg, &inner_walk, walk_list) { 1940 if (iocg->level) { 1941 struct ioc_gq *parent = iocg->ancestors[iocg->level - 1]; 1942 1943 iocg->hweight_active = DIV64_U64_ROUND_UP( 1944 (u64)parent->hweight_active * iocg->active, 1945 parent->child_active_sum); 1946 1947 } 1948 1949 iocg->hweight_donating = min(iocg->hweight_donating, 1950 iocg->hweight_active); 1951 iocg->hweight_after_donation = min(iocg->hweight_after_donation, 1952 iocg->hweight_donating - 1); 1953 if (WARN_ON_ONCE(iocg->hweight_active <= 1 || 1954 iocg->hweight_donating <= 1 || 1955 iocg->hweight_after_donation == 0)) { 1956 pr_warn("iocg: invalid donation weights in "); 1957 pr_cont_cgroup_path(iocg_to_blkg(iocg)->blkcg->css.cgroup); 1958 pr_cont(": active=%u donating=%u after=%u\n", 1959 iocg->hweight_active, iocg->hweight_donating, 1960 iocg->hweight_after_donation); 1961 } 1962 } 1963 1964 /* 1965 * Calculate the global donation rate (gamma) - the rate to adjust 1966 * non-donating budgets by. 1967 * 1968 * No need to use 64bit multiplication here as the first operand is 1969 * guaranteed to be smaller than WEIGHT_ONE (1<<16). 1970 * 1971 * We know that there are beneficiary nodes and the sum of the donating 1972 * hweights can't be whole; however, due to the round-ups during hweight 1973 * calculations, root_iocg->hweight_donating might still end up equal to 1974 * or greater than whole. Limit the range when calculating the divider. 1975 * 1976 * gamma = (1 - t_r') / (1 - t_r) 1977 */ 1978 gamma = DIV_ROUND_UP( 1979 (WEIGHT_ONE - root_iocg->hweight_after_donation) * WEIGHT_ONE, 1980 WEIGHT_ONE - min_t(u32, root_iocg->hweight_donating, WEIGHT_ONE - 1)); 1981 1982 /* 1983 * Calculate adjusted hwi, child_adjusted_sum and inuse for the inner 1984 * nodes. 1985 */ 1986 list_for_each_entry(iocg, &inner_walk, walk_list) { 1987 struct ioc_gq *parent; 1988 u32 inuse, wpt, wptp; 1989 u64 st, sf; 1990 1991 if (iocg->level == 0) { 1992 /* adjusted weight sum for 1st level: s' = s * b_pf / b'_pf */ 1993 iocg->child_adjusted_sum = DIV64_U64_ROUND_UP( 1994 iocg->child_active_sum * (WEIGHT_ONE - iocg->hweight_donating), 1995 WEIGHT_ONE - iocg->hweight_after_donation); 1996 continue; 1997 } 1998 1999 parent = iocg->ancestors[iocg->level - 1]; 2000 2001 /* b' = gamma * b_f + b_t' */ 2002 iocg->hweight_inuse = DIV64_U64_ROUND_UP( 2003 (u64)gamma * (iocg->hweight_active - iocg->hweight_donating), 2004 WEIGHT_ONE) + iocg->hweight_after_donation; 2005 2006 /* w' = s' * b' / b'_p */ 2007 inuse = DIV64_U64_ROUND_UP( 2008 (u64)parent->child_adjusted_sum * iocg->hweight_inuse, 2009 parent->hweight_inuse); 2010 2011 /* adjusted weight sum for children: s' = s_f + s_t * w'_pt / w_pt */ 2012 st = DIV64_U64_ROUND_UP( 2013 iocg->child_active_sum * iocg->hweight_donating, 2014 iocg->hweight_active); 2015 sf = iocg->child_active_sum - st; 2016 wpt = DIV64_U64_ROUND_UP( 2017 (u64)iocg->active * iocg->hweight_donating, 2018 iocg->hweight_active); 2019 wptp = DIV64_U64_ROUND_UP( 2020 (u64)inuse * iocg->hweight_after_donation, 2021 iocg->hweight_inuse); 2022 2023 iocg->child_adjusted_sum = sf + DIV64_U64_ROUND_UP(st * wptp, wpt); 2024 } 2025 2026 /* 2027 * All inner nodes now have ->hweight_inuse and ->child_adjusted_sum and 2028 * we can finally determine leaf adjustments. 2029 */ 2030 list_for_each_entry(iocg, surpluses, surplus_list) { 2031 struct ioc_gq *parent = iocg->ancestors[iocg->level - 1]; 2032 u32 inuse; 2033 2034 /* 2035 * In-debt iocgs participated in the donation calculation with 2036 * the minimum target hweight_inuse. Configuring inuse 2037 * accordingly would work fine but debt handling expects 2038 * @iocg->inuse stay at the minimum and we don't wanna 2039 * interfere. 2040 */ 2041 if (iocg->abs_vdebt) { 2042 WARN_ON_ONCE(iocg->inuse > 1); 2043 continue; 2044 } 2045 2046 /* w' = s' * b' / b'_p, note that b' == b'_t for donating leaves */ 2047 inuse = DIV64_U64_ROUND_UP( 2048 parent->child_adjusted_sum * iocg->hweight_after_donation, 2049 parent->hweight_inuse); 2050 2051 TRACE_IOCG_PATH(inuse_transfer, iocg, now, 2052 iocg->inuse, inuse, 2053 iocg->hweight_inuse, 2054 iocg->hweight_after_donation); 2055 2056 __propagate_weights(iocg, iocg->active, inuse, true, now); 2057 } 2058 2059 /* walk list should be dissolved after use */ 2060 list_for_each_entry_safe(iocg, tiocg, &inner_walk, walk_list) 2061 list_del_init(&iocg->walk_list); 2062 } 2063 2064 /* 2065 * A low weight iocg can amass a large amount of debt, for example, when 2066 * anonymous memory gets reclaimed aggressively. If the system has a lot of 2067 * memory paired with a slow IO device, the debt can span multiple seconds or 2068 * more. If there are no other subsequent IO issuers, the in-debt iocg may end 2069 * up blocked paying its debt while the IO device is idle. 2070 * 2071 * The following protects against such cases. If the device has been 2072 * sufficiently idle for a while, the debts are halved and delays are 2073 * recalculated. 2074 */ 2075 static void ioc_forgive_debts(struct ioc *ioc, u64 usage_us_sum, int nr_debtors, 2076 struct ioc_now *now) 2077 { 2078 struct ioc_gq *iocg; 2079 u64 dur, usage_pct, nr_cycles; 2080 2081 /* if no debtor, reset the cycle */ 2082 if (!nr_debtors) { 2083 ioc->dfgv_period_at = now->now; 2084 ioc->dfgv_period_rem = 0; 2085 ioc->dfgv_usage_us_sum = 0; 2086 return; 2087 } 2088 2089 /* 2090 * Debtors can pass through a lot of writes choking the device and we 2091 * don't want to be forgiving debts while the device is struggling from 2092 * write bursts. If we're missing latency targets, consider the device 2093 * fully utilized. 2094 */ 2095 if (ioc->busy_level > 0) 2096 usage_us_sum = max_t(u64, usage_us_sum, ioc->period_us); 2097 2098 ioc->dfgv_usage_us_sum += usage_us_sum; 2099 if (time_before64(now->now, ioc->dfgv_period_at + DFGV_PERIOD)) 2100 return; 2101 2102 /* 2103 * At least DFGV_PERIOD has passed since the last period. Calculate the 2104 * average usage and reset the period counters. 2105 */ 2106 dur = now->now - ioc->dfgv_period_at; 2107 usage_pct = div64_u64(100 * ioc->dfgv_usage_us_sum, dur); 2108 2109 ioc->dfgv_period_at = now->now; 2110 ioc->dfgv_usage_us_sum = 0; 2111 2112 /* if was too busy, reset everything */ 2113 if (usage_pct > DFGV_USAGE_PCT) { 2114 ioc->dfgv_period_rem = 0; 2115 return; 2116 } 2117 2118 /* 2119 * Usage is lower than threshold. Let's forgive some debts. Debt 2120 * forgiveness runs off of the usual ioc timer but its period usually 2121 * doesn't match ioc's. Compensate the difference by performing the 2122 * reduction as many times as would fit in the duration since the last 2123 * run and carrying over the left-over duration in @ioc->dfgv_period_rem 2124 * - if ioc period is 75% of DFGV_PERIOD, one out of three consecutive 2125 * reductions is doubled. 2126 */ 2127 nr_cycles = dur + ioc->dfgv_period_rem; 2128 ioc->dfgv_period_rem = do_div(nr_cycles, DFGV_PERIOD); 2129 2130 list_for_each_entry(iocg, &ioc->active_iocgs, active_list) { 2131 u64 __maybe_unused old_debt, __maybe_unused old_delay; 2132 2133 if (!iocg->abs_vdebt && !iocg->delay) 2134 continue; 2135 2136 spin_lock(&iocg->waitq.lock); 2137 2138 old_debt = iocg->abs_vdebt; 2139 old_delay = iocg->delay; 2140 2141 if (iocg->abs_vdebt) 2142 iocg->abs_vdebt = iocg->abs_vdebt >> nr_cycles ?: 1; 2143 if (iocg->delay) 2144 iocg->delay = iocg->delay >> nr_cycles ?: 1; 2145 2146 iocg_kick_waitq(iocg, true, now); 2147 2148 TRACE_IOCG_PATH(iocg_forgive_debt, iocg, now, usage_pct, 2149 old_debt, iocg->abs_vdebt, 2150 old_delay, iocg->delay); 2151 2152 spin_unlock(&iocg->waitq.lock); 2153 } 2154 } 2155 2156 /* 2157 * Check the active iocgs' state to avoid oversleeping and deactive 2158 * idle iocgs. 2159 * 2160 * Since waiters determine the sleep durations based on the vrate 2161 * they saw at the time of sleep, if vrate has increased, some 2162 * waiters could be sleeping for too long. Wake up tardy waiters 2163 * which should have woken up in the last period and expire idle 2164 * iocgs. 2165 */ 2166 static int ioc_check_iocgs(struct ioc *ioc, struct ioc_now *now) 2167 { 2168 int nr_debtors = 0; 2169 struct ioc_gq *iocg, *tiocg; 2170 2171 list_for_each_entry_safe(iocg, tiocg, &ioc->active_iocgs, active_list) { 2172 if (!waitqueue_active(&iocg->waitq) && !iocg->abs_vdebt && 2173 !iocg->delay && !iocg_is_idle(iocg)) 2174 continue; 2175 2176 spin_lock(&iocg->waitq.lock); 2177 2178 /* flush wait and indebt stat deltas */ 2179 if (iocg->wait_since) { 2180 iocg->stat.wait_us += now->now - iocg->wait_since; 2181 iocg->wait_since = now->now; 2182 } 2183 if (iocg->indebt_since) { 2184 iocg->stat.indebt_us += 2185 now->now - iocg->indebt_since; 2186 iocg->indebt_since = now->now; 2187 } 2188 if (iocg->indelay_since) { 2189 iocg->stat.indelay_us += 2190 now->now - iocg->indelay_since; 2191 iocg->indelay_since = now->now; 2192 } 2193 2194 if (waitqueue_active(&iocg->waitq) || iocg->abs_vdebt || 2195 iocg->delay) { 2196 /* might be oversleeping vtime / hweight changes, kick */ 2197 iocg_kick_waitq(iocg, true, now); 2198 if (iocg->abs_vdebt || iocg->delay) 2199 nr_debtors++; 2200 } else if (iocg_is_idle(iocg)) { 2201 /* no waiter and idle, deactivate */ 2202 u64 vtime = atomic64_read(&iocg->vtime); 2203 s64 excess; 2204 2205 /* 2206 * @iocg has been inactive for a full duration and will 2207 * have a high budget. Account anything above target as 2208 * error and throw away. On reactivation, it'll start 2209 * with the target budget. 2210 */ 2211 excess = now->vnow - vtime - ioc->margins.target; 2212 if (excess > 0) { 2213 u32 old_hwi; 2214 2215 current_hweight(iocg, NULL, &old_hwi); 2216 ioc->vtime_err -= div64_u64(excess * old_hwi, 2217 WEIGHT_ONE); 2218 } 2219 2220 TRACE_IOCG_PATH(iocg_idle, iocg, now, 2221 atomic64_read(&iocg->active_period), 2222 atomic64_read(&ioc->cur_period), vtime); 2223 __propagate_weights(iocg, 0, 0, false, now); 2224 list_del_init(&iocg->active_list); 2225 } 2226 2227 spin_unlock(&iocg->waitq.lock); 2228 } 2229 2230 commit_weights(ioc); 2231 return nr_debtors; 2232 } 2233 2234 static void ioc_timer_fn(struct timer_list *timer) 2235 { 2236 struct ioc *ioc = container_of(timer, struct ioc, timer); 2237 struct ioc_gq *iocg, *tiocg; 2238 struct ioc_now now; 2239 LIST_HEAD(surpluses); 2240 int nr_debtors, nr_shortages = 0, nr_lagging = 0; 2241 u64 usage_us_sum = 0; 2242 u32 ppm_rthr; 2243 u32 ppm_wthr; 2244 u32 missed_ppm[2], rq_wait_pct; 2245 u64 period_vtime; 2246 int prev_busy_level; 2247 2248 /* how were the latencies during the period? */ 2249 ioc_lat_stat(ioc, missed_ppm, &rq_wait_pct); 2250 2251 /* take care of active iocgs */ 2252 spin_lock_irq(&ioc->lock); 2253 2254 ppm_rthr = MILLION - ioc->params.qos[QOS_RPPM]; 2255 ppm_wthr = MILLION - ioc->params.qos[QOS_WPPM]; 2256 ioc_now(ioc, &now); 2257 2258 period_vtime = now.vnow - ioc->period_at_vtime; 2259 if (WARN_ON_ONCE(!period_vtime)) { 2260 spin_unlock_irq(&ioc->lock); 2261 return; 2262 } 2263 2264 nr_debtors = ioc_check_iocgs(ioc, &now); 2265 2266 /* 2267 * Wait and indebt stat are flushed above and the donation calculation 2268 * below needs updated usage stat. Let's bring stat up-to-date. 2269 */ 2270 iocg_flush_stat(&ioc->active_iocgs, &now); 2271 2272 /* calc usage and see whether some weights need to be moved around */ 2273 list_for_each_entry(iocg, &ioc->active_iocgs, active_list) { 2274 u64 vdone, vtime, usage_us; 2275 u32 hw_active, hw_inuse; 2276 2277 /* 2278 * Collect unused and wind vtime closer to vnow to prevent 2279 * iocgs from accumulating a large amount of budget. 2280 */ 2281 vdone = atomic64_read(&iocg->done_vtime); 2282 vtime = atomic64_read(&iocg->vtime); 2283 current_hweight(iocg, &hw_active, &hw_inuse); 2284 2285 /* 2286 * Latency QoS detection doesn't account for IOs which are 2287 * in-flight for longer than a period. Detect them by 2288 * comparing vdone against period start. If lagging behind 2289 * IOs from past periods, don't increase vrate. 2290 */ 2291 if ((ppm_rthr != MILLION || ppm_wthr != MILLION) && 2292 !atomic_read(&iocg_to_blkg(iocg)->use_delay) && 2293 time_after64(vtime, vdone) && 2294 time_after64(vtime, now.vnow - 2295 MAX_LAGGING_PERIODS * period_vtime) && 2296 time_before64(vdone, now.vnow - period_vtime)) 2297 nr_lagging++; 2298 2299 /* 2300 * Determine absolute usage factoring in in-flight IOs to avoid 2301 * high-latency completions appearing as idle. 2302 */ 2303 usage_us = iocg->usage_delta_us; 2304 usage_us_sum += usage_us; 2305 2306 /* see whether there's surplus vtime */ 2307 WARN_ON_ONCE(!list_empty(&iocg->surplus_list)); 2308 if (hw_inuse < hw_active || 2309 (!waitqueue_active(&iocg->waitq) && 2310 time_before64(vtime, now.vnow - ioc->margins.low))) { 2311 u32 hwa, old_hwi, hwm, new_hwi, usage; 2312 u64 usage_dur; 2313 2314 if (vdone != vtime) { 2315 u64 inflight_us = DIV64_U64_ROUND_UP( 2316 cost_to_abs_cost(vtime - vdone, hw_inuse), 2317 ioc->vtime_base_rate); 2318 2319 usage_us = max(usage_us, inflight_us); 2320 } 2321 2322 /* convert to hweight based usage ratio */ 2323 if (time_after64(iocg->activated_at, ioc->period_at)) 2324 usage_dur = max_t(u64, now.now - iocg->activated_at, 1); 2325 else 2326 usage_dur = max_t(u64, now.now - ioc->period_at, 1); 2327 2328 usage = clamp_t(u32, 2329 DIV64_U64_ROUND_UP(usage_us * WEIGHT_ONE, 2330 usage_dur), 2331 1, WEIGHT_ONE); 2332 2333 /* 2334 * Already donating or accumulated enough to start. 2335 * Determine the donation amount. 2336 */ 2337 current_hweight(iocg, &hwa, &old_hwi); 2338 hwm = current_hweight_max(iocg); 2339 new_hwi = hweight_after_donation(iocg, old_hwi, hwm, 2340 usage, &now); 2341 /* 2342 * Donation calculation assumes hweight_after_donation 2343 * to be positive, a condition that a donor w/ hwa < 2 2344 * can't meet. Don't bother with donation if hwa is 2345 * below 2. It's not gonna make a meaningful difference 2346 * anyway. 2347 */ 2348 if (new_hwi < hwm && hwa >= 2) { 2349 iocg->hweight_donating = hwa; 2350 iocg->hweight_after_donation = new_hwi; 2351 list_add(&iocg->surplus_list, &surpluses); 2352 } else if (!iocg->abs_vdebt) { 2353 /* 2354 * @iocg doesn't have enough to donate. Reset 2355 * its inuse to active. 2356 * 2357 * Don't reset debtors as their inuse's are 2358 * owned by debt handling. This shouldn't affect 2359 * donation calculuation in any meaningful way 2360 * as @iocg doesn't have a meaningful amount of 2361 * share anyway. 2362 */ 2363 TRACE_IOCG_PATH(inuse_shortage, iocg, &now, 2364 iocg->inuse, iocg->active, 2365 iocg->hweight_inuse, new_hwi); 2366 2367 __propagate_weights(iocg, iocg->active, 2368 iocg->active, true, &now); 2369 nr_shortages++; 2370 } 2371 } else { 2372 /* genuinely short on vtime */ 2373 nr_shortages++; 2374 } 2375 } 2376 2377 if (!list_empty(&surpluses) && nr_shortages) 2378 transfer_surpluses(&surpluses, &now); 2379 2380 commit_weights(ioc); 2381 2382 /* surplus list should be dissolved after use */ 2383 list_for_each_entry_safe(iocg, tiocg, &surpluses, surplus_list) 2384 list_del_init(&iocg->surplus_list); 2385 2386 /* 2387 * If q is getting clogged or we're missing too much, we're issuing 2388 * too much IO and should lower vtime rate. If we're not missing 2389 * and experiencing shortages but not surpluses, we're too stingy 2390 * and should increase vtime rate. 2391 */ 2392 prev_busy_level = ioc->busy_level; 2393 if (rq_wait_pct > RQ_WAIT_BUSY_PCT || 2394 missed_ppm[READ] > ppm_rthr || 2395 missed_ppm[WRITE] > ppm_wthr) { 2396 /* clearly missing QoS targets, slow down vrate */ 2397 ioc->busy_level = max(ioc->busy_level, 0); 2398 ioc->busy_level++; 2399 } else if (rq_wait_pct <= RQ_WAIT_BUSY_PCT * UNBUSY_THR_PCT / 100 && 2400 missed_ppm[READ] <= ppm_rthr * UNBUSY_THR_PCT / 100 && 2401 missed_ppm[WRITE] <= ppm_wthr * UNBUSY_THR_PCT / 100) { 2402 /* QoS targets are being met with >25% margin */ 2403 if (nr_shortages) { 2404 /* 2405 * We're throttling while the device has spare 2406 * capacity. If vrate was being slowed down, stop. 2407 */ 2408 ioc->busy_level = min(ioc->busy_level, 0); 2409 2410 /* 2411 * If there are IOs spanning multiple periods, wait 2412 * them out before pushing the device harder. 2413 */ 2414 if (!nr_lagging) 2415 ioc->busy_level--; 2416 } else { 2417 /* 2418 * Nobody is being throttled and the users aren't 2419 * issuing enough IOs to saturate the device. We 2420 * simply don't know how close the device is to 2421 * saturation. Coast. 2422 */ 2423 ioc->busy_level = 0; 2424 } 2425 } else { 2426 /* inside the hysterisis margin, we're good */ 2427 ioc->busy_level = 0; 2428 } 2429 2430 ioc->busy_level = clamp(ioc->busy_level, -1000, 1000); 2431 2432 ioc_adjust_base_vrate(ioc, rq_wait_pct, nr_lagging, nr_shortages, 2433 prev_busy_level, missed_ppm); 2434 2435 ioc_refresh_params(ioc, false); 2436 2437 ioc_forgive_debts(ioc, usage_us_sum, nr_debtors, &now); 2438 2439 /* 2440 * This period is done. Move onto the next one. If nothing's 2441 * going on with the device, stop the timer. 2442 */ 2443 atomic64_inc(&ioc->cur_period); 2444 2445 if (ioc->running != IOC_STOP) { 2446 if (!list_empty(&ioc->active_iocgs)) { 2447 ioc_start_period(ioc, &now); 2448 } else { 2449 ioc->busy_level = 0; 2450 ioc->vtime_err = 0; 2451 ioc->running = IOC_IDLE; 2452 } 2453 2454 ioc_refresh_vrate(ioc, &now); 2455 } 2456 2457 spin_unlock_irq(&ioc->lock); 2458 } 2459 2460 static u64 adjust_inuse_and_calc_cost(struct ioc_gq *iocg, u64 vtime, 2461 u64 abs_cost, struct ioc_now *now) 2462 { 2463 struct ioc *ioc = iocg->ioc; 2464 struct ioc_margins *margins = &ioc->margins; 2465 u32 __maybe_unused old_inuse = iocg->inuse, __maybe_unused old_hwi; 2466 u32 hwi, adj_step; 2467 s64 margin; 2468 u64 cost, new_inuse; 2469 unsigned long flags; 2470 2471 current_hweight(iocg, NULL, &hwi); 2472 old_hwi = hwi; 2473 cost = abs_cost_to_cost(abs_cost, hwi); 2474 margin = now->vnow - vtime - cost; 2475 2476 /* debt handling owns inuse for debtors */ 2477 if (iocg->abs_vdebt) 2478 return cost; 2479 2480 /* 2481 * We only increase inuse during period and do so if the margin has 2482 * deteriorated since the previous adjustment. 2483 */ 2484 if (margin >= iocg->saved_margin || margin >= margins->low || 2485 iocg->inuse == iocg->active) 2486 return cost; 2487 2488 spin_lock_irqsave(&ioc->lock, flags); 2489 2490 /* we own inuse only when @iocg is in the normal active state */ 2491 if (iocg->abs_vdebt || list_empty(&iocg->active_list)) { 2492 spin_unlock_irqrestore(&ioc->lock, flags); 2493 return cost; 2494 } 2495 2496 /* 2497 * Bump up inuse till @abs_cost fits in the existing budget. 2498 * adj_step must be determined after acquiring ioc->lock - we might 2499 * have raced and lost to another thread for activation and could 2500 * be reading 0 iocg->active before ioc->lock which will lead to 2501 * infinite loop. 2502 */ 2503 new_inuse = iocg->inuse; 2504 adj_step = DIV_ROUND_UP(iocg->active * INUSE_ADJ_STEP_PCT, 100); 2505 do { 2506 new_inuse = new_inuse + adj_step; 2507 propagate_weights(iocg, iocg->active, new_inuse, true, now); 2508 current_hweight(iocg, NULL, &hwi); 2509 cost = abs_cost_to_cost(abs_cost, hwi); 2510 } while (time_after64(vtime + cost, now->vnow) && 2511 iocg->inuse != iocg->active); 2512 2513 spin_unlock_irqrestore(&ioc->lock, flags); 2514 2515 TRACE_IOCG_PATH(inuse_adjust, iocg, now, 2516 old_inuse, iocg->inuse, old_hwi, hwi); 2517 2518 return cost; 2519 } 2520 2521 static void calc_vtime_cost_builtin(struct bio *bio, struct ioc_gq *iocg, 2522 bool is_merge, u64 *costp) 2523 { 2524 struct ioc *ioc = iocg->ioc; 2525 u64 coef_seqio, coef_randio, coef_page; 2526 u64 pages = max_t(u64, bio_sectors(bio) >> IOC_SECT_TO_PAGE_SHIFT, 1); 2527 u64 seek_pages = 0; 2528 u64 cost = 0; 2529 2530 /* Can't calculate cost for empty bio */ 2531 if (!bio->bi_iter.bi_size) 2532 goto out; 2533 2534 switch (bio_op(bio)) { 2535 case REQ_OP_READ: 2536 coef_seqio = ioc->params.lcoefs[LCOEF_RSEQIO]; 2537 coef_randio = ioc->params.lcoefs[LCOEF_RRANDIO]; 2538 coef_page = ioc->params.lcoefs[LCOEF_RPAGE]; 2539 break; 2540 case REQ_OP_WRITE: 2541 coef_seqio = ioc->params.lcoefs[LCOEF_WSEQIO]; 2542 coef_randio = ioc->params.lcoefs[LCOEF_WRANDIO]; 2543 coef_page = ioc->params.lcoefs[LCOEF_WPAGE]; 2544 break; 2545 default: 2546 goto out; 2547 } 2548 2549 if (iocg->cursor) { 2550 seek_pages = abs(bio->bi_iter.bi_sector - iocg->cursor); 2551 seek_pages >>= IOC_SECT_TO_PAGE_SHIFT; 2552 } 2553 2554 if (!is_merge) { 2555 if (seek_pages > LCOEF_RANDIO_PAGES) { 2556 cost += coef_randio; 2557 } else { 2558 cost += coef_seqio; 2559 } 2560 } 2561 cost += pages * coef_page; 2562 out: 2563 *costp = cost; 2564 } 2565 2566 static u64 calc_vtime_cost(struct bio *bio, struct ioc_gq *iocg, bool is_merge) 2567 { 2568 u64 cost; 2569 2570 calc_vtime_cost_builtin(bio, iocg, is_merge, &cost); 2571 return cost; 2572 } 2573 2574 static void calc_size_vtime_cost_builtin(struct request *rq, struct ioc *ioc, 2575 u64 *costp) 2576 { 2577 unsigned int pages = blk_rq_stats_sectors(rq) >> IOC_SECT_TO_PAGE_SHIFT; 2578 2579 switch (req_op(rq)) { 2580 case REQ_OP_READ: 2581 *costp = pages * ioc->params.lcoefs[LCOEF_RPAGE]; 2582 break; 2583 case REQ_OP_WRITE: 2584 *costp = pages * ioc->params.lcoefs[LCOEF_WPAGE]; 2585 break; 2586 default: 2587 *costp = 0; 2588 } 2589 } 2590 2591 static u64 calc_size_vtime_cost(struct request *rq, struct ioc *ioc) 2592 { 2593 u64 cost; 2594 2595 calc_size_vtime_cost_builtin(rq, ioc, &cost); 2596 return cost; 2597 } 2598 2599 static void ioc_rqos_throttle(struct rq_qos *rqos, struct bio *bio) 2600 { 2601 struct blkcg_gq *blkg = bio->bi_blkg; 2602 struct ioc *ioc = rqos_to_ioc(rqos); 2603 struct ioc_gq *iocg = blkg_to_iocg(blkg); 2604 struct ioc_now now; 2605 struct iocg_wait wait; 2606 u64 abs_cost, cost, vtime; 2607 bool use_debt, ioc_locked; 2608 unsigned long flags; 2609 2610 /* bypass IOs if disabled, still initializing, or for root cgroup */ 2611 if (!ioc->enabled || !iocg || !iocg->level) 2612 return; 2613 2614 /* calculate the absolute vtime cost */ 2615 abs_cost = calc_vtime_cost(bio, iocg, false); 2616 if (!abs_cost) 2617 return; 2618 2619 if (!iocg_activate(iocg, &now)) 2620 return; 2621 2622 iocg->cursor = bio_end_sector(bio); 2623 vtime = atomic64_read(&iocg->vtime); 2624 cost = adjust_inuse_and_calc_cost(iocg, vtime, abs_cost, &now); 2625 2626 /* 2627 * If no one's waiting and within budget, issue right away. The 2628 * tests are racy but the races aren't systemic - we only miss once 2629 * in a while which is fine. 2630 */ 2631 if (!waitqueue_active(&iocg->waitq) && !iocg->abs_vdebt && 2632 time_before_eq64(vtime + cost, now.vnow)) { 2633 iocg_commit_bio(iocg, bio, abs_cost, cost); 2634 return; 2635 } 2636 2637 /* 2638 * We're over budget. This can be handled in two ways. IOs which may 2639 * cause priority inversions are punted to @ioc->aux_iocg and charged as 2640 * debt. Otherwise, the issuer is blocked on @iocg->waitq. Debt handling 2641 * requires @ioc->lock, waitq handling @iocg->waitq.lock. Determine 2642 * whether debt handling is needed and acquire locks accordingly. 2643 */ 2644 use_debt = bio_issue_as_root_blkg(bio) || fatal_signal_pending(current); 2645 ioc_locked = use_debt || READ_ONCE(iocg->abs_vdebt); 2646 retry_lock: 2647 iocg_lock(iocg, ioc_locked, &flags); 2648 2649 /* 2650 * @iocg must stay activated for debt and waitq handling. Deactivation 2651 * is synchronized against both ioc->lock and waitq.lock and we won't 2652 * get deactivated as long as we're waiting or has debt, so we're good 2653 * if we're activated here. In the unlikely cases that we aren't, just 2654 * issue the IO. 2655 */ 2656 if (unlikely(list_empty(&iocg->active_list))) { 2657 iocg_unlock(iocg, ioc_locked, &flags); 2658 iocg_commit_bio(iocg, bio, abs_cost, cost); 2659 return; 2660 } 2661 2662 /* 2663 * We're over budget. If @bio has to be issued regardless, remember 2664 * the abs_cost instead of advancing vtime. iocg_kick_waitq() will pay 2665 * off the debt before waking more IOs. 2666 * 2667 * This way, the debt is continuously paid off each period with the 2668 * actual budget available to the cgroup. If we just wound vtime, we 2669 * would incorrectly use the current hw_inuse for the entire amount 2670 * which, for example, can lead to the cgroup staying blocked for a 2671 * long time even with substantially raised hw_inuse. 2672 * 2673 * An iocg with vdebt should stay online so that the timer can keep 2674 * deducting its vdebt and [de]activate use_delay mechanism 2675 * accordingly. We don't want to race against the timer trying to 2676 * clear them and leave @iocg inactive w/ dangling use_delay heavily 2677 * penalizing the cgroup and its descendants. 2678 */ 2679 if (use_debt) { 2680 iocg_incur_debt(iocg, abs_cost, &now); 2681 if (iocg_kick_delay(iocg, &now)) 2682 blkcg_schedule_throttle(rqos->disk, 2683 (bio->bi_opf & REQ_SWAP) == REQ_SWAP); 2684 iocg_unlock(iocg, ioc_locked, &flags); 2685 return; 2686 } 2687 2688 /* guarantee that iocgs w/ waiters have maximum inuse */ 2689 if (!iocg->abs_vdebt && iocg->inuse != iocg->active) { 2690 if (!ioc_locked) { 2691 iocg_unlock(iocg, false, &flags); 2692 ioc_locked = true; 2693 goto retry_lock; 2694 } 2695 propagate_weights(iocg, iocg->active, iocg->active, true, 2696 &now); 2697 } 2698 2699 /* 2700 * Append self to the waitq and schedule the wakeup timer if we're 2701 * the first waiter. The timer duration is calculated based on the 2702 * current vrate. vtime and hweight changes can make it too short 2703 * or too long. Each wait entry records the absolute cost it's 2704 * waiting for to allow re-evaluation using a custom wait entry. 2705 * 2706 * If too short, the timer simply reschedules itself. If too long, 2707 * the period timer will notice and trigger wakeups. 2708 * 2709 * All waiters are on iocg->waitq and the wait states are 2710 * synchronized using waitq.lock. 2711 */ 2712 init_waitqueue_func_entry(&wait.wait, iocg_wake_fn); 2713 wait.wait.private = current; 2714 wait.bio = bio; 2715 wait.abs_cost = abs_cost; 2716 wait.committed = false; /* will be set true by waker */ 2717 2718 __add_wait_queue_entry_tail(&iocg->waitq, &wait.wait); 2719 iocg_kick_waitq(iocg, ioc_locked, &now); 2720 2721 iocg_unlock(iocg, ioc_locked, &flags); 2722 2723 while (true) { 2724 set_current_state(TASK_UNINTERRUPTIBLE); 2725 if (wait.committed) 2726 break; 2727 io_schedule(); 2728 } 2729 2730 /* waker already committed us, proceed */ 2731 finish_wait(&iocg->waitq, &wait.wait); 2732 } 2733 2734 static void ioc_rqos_merge(struct rq_qos *rqos, struct request *rq, 2735 struct bio *bio) 2736 { 2737 struct ioc_gq *iocg = blkg_to_iocg(bio->bi_blkg); 2738 struct ioc *ioc = rqos_to_ioc(rqos); 2739 sector_t bio_end = bio_end_sector(bio); 2740 struct ioc_now now; 2741 u64 vtime, abs_cost, cost; 2742 unsigned long flags; 2743 2744 /* bypass if disabled, still initializing, or for root cgroup */ 2745 if (!ioc->enabled || !iocg || !iocg->level) 2746 return; 2747 2748 abs_cost = calc_vtime_cost(bio, iocg, true); 2749 if (!abs_cost) 2750 return; 2751 2752 ioc_now(ioc, &now); 2753 2754 vtime = atomic64_read(&iocg->vtime); 2755 cost = adjust_inuse_and_calc_cost(iocg, vtime, abs_cost, &now); 2756 2757 /* update cursor if backmerging into the request at the cursor */ 2758 if (blk_rq_pos(rq) < bio_end && 2759 blk_rq_pos(rq) + blk_rq_sectors(rq) == iocg->cursor) 2760 iocg->cursor = bio_end; 2761 2762 /* 2763 * Charge if there's enough vtime budget and the existing request has 2764 * cost assigned. 2765 */ 2766 if (rq->bio && rq->bio->bi_iocost_cost && 2767 time_before_eq64(atomic64_read(&iocg->vtime) + cost, now.vnow)) { 2768 iocg_commit_bio(iocg, bio, abs_cost, cost); 2769 return; 2770 } 2771 2772 /* 2773 * Otherwise, account it as debt if @iocg is online, which it should 2774 * be for the vast majority of cases. See debt handling in 2775 * ioc_rqos_throttle() for details. 2776 */ 2777 spin_lock_irqsave(&ioc->lock, flags); 2778 spin_lock(&iocg->waitq.lock); 2779 2780 if (likely(!list_empty(&iocg->active_list))) { 2781 iocg_incur_debt(iocg, abs_cost, &now); 2782 if (iocg_kick_delay(iocg, &now)) 2783 blkcg_schedule_throttle(rqos->disk, 2784 (bio->bi_opf & REQ_SWAP) == REQ_SWAP); 2785 } else { 2786 iocg_commit_bio(iocg, bio, abs_cost, cost); 2787 } 2788 2789 spin_unlock(&iocg->waitq.lock); 2790 spin_unlock_irqrestore(&ioc->lock, flags); 2791 } 2792 2793 static void ioc_rqos_done_bio(struct rq_qos *rqos, struct bio *bio) 2794 { 2795 struct ioc_gq *iocg = blkg_to_iocg(bio->bi_blkg); 2796 2797 if (iocg && bio->bi_iocost_cost) 2798 atomic64_add(bio->bi_iocost_cost, &iocg->done_vtime); 2799 } 2800 2801 static void ioc_rqos_done(struct rq_qos *rqos, struct request *rq) 2802 { 2803 struct ioc *ioc = rqos_to_ioc(rqos); 2804 struct ioc_pcpu_stat *ccs; 2805 u64 on_q_ns, rq_wait_ns, size_nsec; 2806 int pidx, rw; 2807 2808 if (!ioc->enabled || !rq->alloc_time_ns || !rq->start_time_ns) 2809 return; 2810 2811 switch (req_op(rq)) { 2812 case REQ_OP_READ: 2813 pidx = QOS_RLAT; 2814 rw = READ; 2815 break; 2816 case REQ_OP_WRITE: 2817 pidx = QOS_WLAT; 2818 rw = WRITE; 2819 break; 2820 default: 2821 return; 2822 } 2823 2824 on_q_ns = blk_time_get_ns() - rq->alloc_time_ns; 2825 rq_wait_ns = rq->start_time_ns - rq->alloc_time_ns; 2826 size_nsec = div64_u64(calc_size_vtime_cost(rq, ioc), VTIME_PER_NSEC); 2827 2828 ccs = get_cpu_ptr(ioc->pcpu_stat); 2829 2830 if (on_q_ns <= size_nsec || 2831 on_q_ns - size_nsec <= ioc->params.qos[pidx] * NSEC_PER_USEC) 2832 local_inc(&ccs->missed[rw].nr_met); 2833 else 2834 local_inc(&ccs->missed[rw].nr_missed); 2835 2836 local64_add(rq_wait_ns, &ccs->rq_wait_ns); 2837 2838 put_cpu_ptr(ccs); 2839 } 2840 2841 static void ioc_rqos_queue_depth_changed(struct rq_qos *rqos) 2842 { 2843 struct ioc *ioc = rqos_to_ioc(rqos); 2844 2845 spin_lock_irq(&ioc->lock); 2846 ioc_refresh_params(ioc, false); 2847 spin_unlock_irq(&ioc->lock); 2848 } 2849 2850 static void ioc_rqos_exit(struct rq_qos *rqos) 2851 { 2852 struct ioc *ioc = rqos_to_ioc(rqos); 2853 2854 blkcg_deactivate_policy(rqos->disk, &blkcg_policy_iocost); 2855 2856 spin_lock_irq(&ioc->lock); 2857 ioc->running = IOC_STOP; 2858 spin_unlock_irq(&ioc->lock); 2859 2860 timer_shutdown_sync(&ioc->timer); 2861 free_percpu(ioc->pcpu_stat); 2862 kfree(ioc); 2863 } 2864 2865 static const struct rq_qos_ops ioc_rqos_ops = { 2866 .throttle = ioc_rqos_throttle, 2867 .merge = ioc_rqos_merge, 2868 .done_bio = ioc_rqos_done_bio, 2869 .done = ioc_rqos_done, 2870 .queue_depth_changed = ioc_rqos_queue_depth_changed, 2871 .exit = ioc_rqos_exit, 2872 }; 2873 2874 static int blk_iocost_init(struct gendisk *disk) 2875 { 2876 struct ioc *ioc; 2877 int i, cpu, ret; 2878 2879 ioc = kzalloc(sizeof(*ioc), GFP_KERNEL); 2880 if (!ioc) 2881 return -ENOMEM; 2882 2883 ioc->pcpu_stat = alloc_percpu(struct ioc_pcpu_stat); 2884 if (!ioc->pcpu_stat) { 2885 kfree(ioc); 2886 return -ENOMEM; 2887 } 2888 2889 for_each_possible_cpu(cpu) { 2890 struct ioc_pcpu_stat *ccs = per_cpu_ptr(ioc->pcpu_stat, cpu); 2891 2892 for (i = 0; i < ARRAY_SIZE(ccs->missed); i++) { 2893 local_set(&ccs->missed[i].nr_met, 0); 2894 local_set(&ccs->missed[i].nr_missed, 0); 2895 } 2896 local64_set(&ccs->rq_wait_ns, 0); 2897 } 2898 2899 spin_lock_init(&ioc->lock); 2900 timer_setup(&ioc->timer, ioc_timer_fn, 0); 2901 INIT_LIST_HEAD(&ioc->active_iocgs); 2902 2903 ioc->running = IOC_IDLE; 2904 ioc->vtime_base_rate = VTIME_PER_USEC; 2905 atomic64_set(&ioc->vtime_rate, VTIME_PER_USEC); 2906 seqcount_spinlock_init(&ioc->period_seqcount, &ioc->lock); 2907 ioc->period_at = ktime_to_us(blk_time_get()); 2908 atomic64_set(&ioc->cur_period, 0); 2909 atomic_set(&ioc->hweight_gen, 0); 2910 2911 spin_lock_irq(&ioc->lock); 2912 ioc->autop_idx = AUTOP_INVALID; 2913 ioc_refresh_params_disk(ioc, true, disk); 2914 spin_unlock_irq(&ioc->lock); 2915 2916 /* 2917 * rqos must be added before activation to allow ioc_pd_init() to 2918 * lookup the ioc from q. This means that the rqos methods may get 2919 * called before policy activation completion, can't assume that the 2920 * target bio has an iocg associated and need to test for NULL iocg. 2921 */ 2922 ret = rq_qos_add(&ioc->rqos, disk, RQ_QOS_COST, &ioc_rqos_ops); 2923 if (ret) 2924 goto err_free_ioc; 2925 2926 ret = blkcg_activate_policy(disk, &blkcg_policy_iocost); 2927 if (ret) 2928 goto err_del_qos; 2929 return 0; 2930 2931 err_del_qos: 2932 rq_qos_del(&ioc->rqos); 2933 err_free_ioc: 2934 free_percpu(ioc->pcpu_stat); 2935 kfree(ioc); 2936 return ret; 2937 } 2938 2939 static struct blkcg_policy_data *ioc_cpd_alloc(gfp_t gfp) 2940 { 2941 struct ioc_cgrp *iocc; 2942 2943 iocc = kzalloc(sizeof(struct ioc_cgrp), gfp); 2944 if (!iocc) 2945 return NULL; 2946 2947 iocc->dfl_weight = CGROUP_WEIGHT_DFL * WEIGHT_ONE; 2948 return &iocc->cpd; 2949 } 2950 2951 static void ioc_cpd_free(struct blkcg_policy_data *cpd) 2952 { 2953 kfree(container_of(cpd, struct ioc_cgrp, cpd)); 2954 } 2955 2956 static struct blkg_policy_data *ioc_pd_alloc(struct gendisk *disk, 2957 struct blkcg *blkcg, gfp_t gfp) 2958 { 2959 int levels = blkcg->css.cgroup->level + 1; 2960 struct ioc_gq *iocg; 2961 2962 iocg = kzalloc_node(struct_size(iocg, ancestors, levels), gfp, 2963 disk->node_id); 2964 if (!iocg) 2965 return NULL; 2966 2967 iocg->pcpu_stat = alloc_percpu_gfp(struct iocg_pcpu_stat, gfp); 2968 if (!iocg->pcpu_stat) { 2969 kfree(iocg); 2970 return NULL; 2971 } 2972 2973 return &iocg->pd; 2974 } 2975 2976 static void ioc_pd_init(struct blkg_policy_data *pd) 2977 { 2978 struct ioc_gq *iocg = pd_to_iocg(pd); 2979 struct blkcg_gq *blkg = pd_to_blkg(&iocg->pd); 2980 struct ioc *ioc = q_to_ioc(blkg->q); 2981 struct ioc_now now; 2982 struct blkcg_gq *tblkg; 2983 unsigned long flags; 2984 2985 ioc_now(ioc, &now); 2986 2987 iocg->ioc = ioc; 2988 atomic64_set(&iocg->vtime, now.vnow); 2989 atomic64_set(&iocg->done_vtime, now.vnow); 2990 atomic64_set(&iocg->active_period, atomic64_read(&ioc->cur_period)); 2991 INIT_LIST_HEAD(&iocg->active_list); 2992 INIT_LIST_HEAD(&iocg->walk_list); 2993 INIT_LIST_HEAD(&iocg->surplus_list); 2994 iocg->hweight_active = WEIGHT_ONE; 2995 iocg->hweight_inuse = WEIGHT_ONE; 2996 2997 init_waitqueue_head(&iocg->waitq); 2998 hrtimer_init(&iocg->waitq_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS); 2999 iocg->waitq_timer.function = iocg_waitq_timer_fn; 3000 3001 iocg->level = blkg->blkcg->css.cgroup->level; 3002 3003 for (tblkg = blkg; tblkg; tblkg = tblkg->parent) { 3004 struct ioc_gq *tiocg = blkg_to_iocg(tblkg); 3005 iocg->ancestors[tiocg->level] = tiocg; 3006 } 3007 3008 spin_lock_irqsave(&ioc->lock, flags); 3009 weight_updated(iocg, &now); 3010 spin_unlock_irqrestore(&ioc->lock, flags); 3011 } 3012 3013 static void ioc_pd_free(struct blkg_policy_data *pd) 3014 { 3015 struct ioc_gq *iocg = pd_to_iocg(pd); 3016 struct ioc *ioc = iocg->ioc; 3017 unsigned long flags; 3018 3019 if (ioc) { 3020 spin_lock_irqsave(&ioc->lock, flags); 3021 3022 if (!list_empty(&iocg->active_list)) { 3023 struct ioc_now now; 3024 3025 ioc_now(ioc, &now); 3026 propagate_weights(iocg, 0, 0, false, &now); 3027 list_del_init(&iocg->active_list); 3028 } 3029 3030 WARN_ON_ONCE(!list_empty(&iocg->walk_list)); 3031 WARN_ON_ONCE(!list_empty(&iocg->surplus_list)); 3032 3033 spin_unlock_irqrestore(&ioc->lock, flags); 3034 3035 hrtimer_cancel(&iocg->waitq_timer); 3036 } 3037 free_percpu(iocg->pcpu_stat); 3038 kfree(iocg); 3039 } 3040 3041 static void ioc_pd_stat(struct blkg_policy_data *pd, struct seq_file *s) 3042 { 3043 struct ioc_gq *iocg = pd_to_iocg(pd); 3044 struct ioc *ioc = iocg->ioc; 3045 3046 if (!ioc->enabled) 3047 return; 3048 3049 if (iocg->level == 0) { 3050 unsigned vp10k = DIV64_U64_ROUND_CLOSEST( 3051 ioc->vtime_base_rate * 10000, 3052 VTIME_PER_USEC); 3053 seq_printf(s, " cost.vrate=%u.%02u", vp10k / 100, vp10k % 100); 3054 } 3055 3056 seq_printf(s, " cost.usage=%llu", iocg->last_stat.usage_us); 3057 3058 if (blkcg_debug_stats) 3059 seq_printf(s, " cost.wait=%llu cost.indebt=%llu cost.indelay=%llu", 3060 iocg->last_stat.wait_us, 3061 iocg->last_stat.indebt_us, 3062 iocg->last_stat.indelay_us); 3063 } 3064 3065 static u64 ioc_weight_prfill(struct seq_file *sf, struct blkg_policy_data *pd, 3066 int off) 3067 { 3068 const char *dname = blkg_dev_name(pd->blkg); 3069 struct ioc_gq *iocg = pd_to_iocg(pd); 3070 3071 if (dname && iocg->cfg_weight) 3072 seq_printf(sf, "%s %u\n", dname, iocg->cfg_weight / WEIGHT_ONE); 3073 return 0; 3074 } 3075 3076 3077 static int ioc_weight_show(struct seq_file *sf, void *v) 3078 { 3079 struct blkcg *blkcg = css_to_blkcg(seq_css(sf)); 3080 struct ioc_cgrp *iocc = blkcg_to_iocc(blkcg); 3081 3082 seq_printf(sf, "default %u\n", iocc->dfl_weight / WEIGHT_ONE); 3083 blkcg_print_blkgs(sf, blkcg, ioc_weight_prfill, 3084 &blkcg_policy_iocost, seq_cft(sf)->private, false); 3085 return 0; 3086 } 3087 3088 static ssize_t ioc_weight_write(struct kernfs_open_file *of, char *buf, 3089 size_t nbytes, loff_t off) 3090 { 3091 struct blkcg *blkcg = css_to_blkcg(of_css(of)); 3092 struct ioc_cgrp *iocc = blkcg_to_iocc(blkcg); 3093 struct blkg_conf_ctx ctx; 3094 struct ioc_now now; 3095 struct ioc_gq *iocg; 3096 u32 v; 3097 int ret; 3098 3099 if (!strchr(buf, ':')) { 3100 struct blkcg_gq *blkg; 3101 3102 if (!sscanf(buf, "default %u", &v) && !sscanf(buf, "%u", &v)) 3103 return -EINVAL; 3104 3105 if (v < CGROUP_WEIGHT_MIN || v > CGROUP_WEIGHT_MAX) 3106 return -EINVAL; 3107 3108 spin_lock_irq(&blkcg->lock); 3109 iocc->dfl_weight = v * WEIGHT_ONE; 3110 hlist_for_each_entry(blkg, &blkcg->blkg_list, blkcg_node) { 3111 struct ioc_gq *iocg = blkg_to_iocg(blkg); 3112 3113 if (iocg) { 3114 spin_lock(&iocg->ioc->lock); 3115 ioc_now(iocg->ioc, &now); 3116 weight_updated(iocg, &now); 3117 spin_unlock(&iocg->ioc->lock); 3118 } 3119 } 3120 spin_unlock_irq(&blkcg->lock); 3121 3122 return nbytes; 3123 } 3124 3125 blkg_conf_init(&ctx, buf); 3126 3127 ret = blkg_conf_prep(blkcg, &blkcg_policy_iocost, &ctx); 3128 if (ret) 3129 goto err; 3130 3131 iocg = blkg_to_iocg(ctx.blkg); 3132 3133 if (!strncmp(ctx.body, "default", 7)) { 3134 v = 0; 3135 } else { 3136 if (!sscanf(ctx.body, "%u", &v)) 3137 goto einval; 3138 if (v < CGROUP_WEIGHT_MIN || v > CGROUP_WEIGHT_MAX) 3139 goto einval; 3140 } 3141 3142 spin_lock(&iocg->ioc->lock); 3143 iocg->cfg_weight = v * WEIGHT_ONE; 3144 ioc_now(iocg->ioc, &now); 3145 weight_updated(iocg, &now); 3146 spin_unlock(&iocg->ioc->lock); 3147 3148 blkg_conf_exit(&ctx); 3149 return nbytes; 3150 3151 einval: 3152 ret = -EINVAL; 3153 err: 3154 blkg_conf_exit(&ctx); 3155 return ret; 3156 } 3157 3158 static u64 ioc_qos_prfill(struct seq_file *sf, struct blkg_policy_data *pd, 3159 int off) 3160 { 3161 const char *dname = blkg_dev_name(pd->blkg); 3162 struct ioc *ioc = pd_to_iocg(pd)->ioc; 3163 3164 if (!dname) 3165 return 0; 3166 3167 spin_lock_irq(&ioc->lock); 3168 seq_printf(sf, "%s enable=%d ctrl=%s rpct=%u.%02u rlat=%u wpct=%u.%02u wlat=%u min=%u.%02u max=%u.%02u\n", 3169 dname, ioc->enabled, ioc->user_qos_params ? "user" : "auto", 3170 ioc->params.qos[QOS_RPPM] / 10000, 3171 ioc->params.qos[QOS_RPPM] % 10000 / 100, 3172 ioc->params.qos[QOS_RLAT], 3173 ioc->params.qos[QOS_WPPM] / 10000, 3174 ioc->params.qos[QOS_WPPM] % 10000 / 100, 3175 ioc->params.qos[QOS_WLAT], 3176 ioc->params.qos[QOS_MIN] / 10000, 3177 ioc->params.qos[QOS_MIN] % 10000 / 100, 3178 ioc->params.qos[QOS_MAX] / 10000, 3179 ioc->params.qos[QOS_MAX] % 10000 / 100); 3180 spin_unlock_irq(&ioc->lock); 3181 return 0; 3182 } 3183 3184 static int ioc_qos_show(struct seq_file *sf, void *v) 3185 { 3186 struct blkcg *blkcg = css_to_blkcg(seq_css(sf)); 3187 3188 blkcg_print_blkgs(sf, blkcg, ioc_qos_prfill, 3189 &blkcg_policy_iocost, seq_cft(sf)->private, false); 3190 return 0; 3191 } 3192 3193 static const match_table_t qos_ctrl_tokens = { 3194 { QOS_ENABLE, "enable=%u" }, 3195 { QOS_CTRL, "ctrl=%s" }, 3196 { NR_QOS_CTRL_PARAMS, NULL }, 3197 }; 3198 3199 static const match_table_t qos_tokens = { 3200 { QOS_RPPM, "rpct=%s" }, 3201 { QOS_RLAT, "rlat=%u" }, 3202 { QOS_WPPM, "wpct=%s" }, 3203 { QOS_WLAT, "wlat=%u" }, 3204 { QOS_MIN, "min=%s" }, 3205 { QOS_MAX, "max=%s" }, 3206 { NR_QOS_PARAMS, NULL }, 3207 }; 3208 3209 static ssize_t ioc_qos_write(struct kernfs_open_file *of, char *input, 3210 size_t nbytes, loff_t off) 3211 { 3212 struct blkg_conf_ctx ctx; 3213 struct gendisk *disk; 3214 struct ioc *ioc; 3215 u32 qos[NR_QOS_PARAMS]; 3216 bool enable, user; 3217 char *body, *p; 3218 int ret; 3219 3220 blkg_conf_init(&ctx, input); 3221 3222 ret = blkg_conf_open_bdev(&ctx); 3223 if (ret) 3224 goto err; 3225 3226 body = ctx.body; 3227 disk = ctx.bdev->bd_disk; 3228 if (!queue_is_mq(disk->queue)) { 3229 ret = -EOPNOTSUPP; 3230 goto err; 3231 } 3232 3233 ioc = q_to_ioc(disk->queue); 3234 if (!ioc) { 3235 ret = blk_iocost_init(disk); 3236 if (ret) 3237 goto err; 3238 ioc = q_to_ioc(disk->queue); 3239 } 3240 3241 blk_mq_freeze_queue(disk->queue); 3242 blk_mq_quiesce_queue(disk->queue); 3243 3244 spin_lock_irq(&ioc->lock); 3245 memcpy(qos, ioc->params.qos, sizeof(qos)); 3246 enable = ioc->enabled; 3247 user = ioc->user_qos_params; 3248 3249 while ((p = strsep(&body, " \t\n"))) { 3250 substring_t args[MAX_OPT_ARGS]; 3251 char buf[32]; 3252 int tok; 3253 s64 v; 3254 3255 if (!*p) 3256 continue; 3257 3258 switch (match_token(p, qos_ctrl_tokens, args)) { 3259 case QOS_ENABLE: 3260 if (match_u64(&args[0], &v)) 3261 goto einval; 3262 enable = v; 3263 continue; 3264 case QOS_CTRL: 3265 match_strlcpy(buf, &args[0], sizeof(buf)); 3266 if (!strcmp(buf, "auto")) 3267 user = false; 3268 else if (!strcmp(buf, "user")) 3269 user = true; 3270 else 3271 goto einval; 3272 continue; 3273 } 3274 3275 tok = match_token(p, qos_tokens, args); 3276 switch (tok) { 3277 case QOS_RPPM: 3278 case QOS_WPPM: 3279 if (match_strlcpy(buf, &args[0], sizeof(buf)) >= 3280 sizeof(buf)) 3281 goto einval; 3282 if (cgroup_parse_float(buf, 2, &v)) 3283 goto einval; 3284 if (v < 0 || v > 10000) 3285 goto einval; 3286 qos[tok] = v * 100; 3287 break; 3288 case QOS_RLAT: 3289 case QOS_WLAT: 3290 if (match_u64(&args[0], &v)) 3291 goto einval; 3292 qos[tok] = v; 3293 break; 3294 case QOS_MIN: 3295 case QOS_MAX: 3296 if (match_strlcpy(buf, &args[0], sizeof(buf)) >= 3297 sizeof(buf)) 3298 goto einval; 3299 if (cgroup_parse_float(buf, 2, &v)) 3300 goto einval; 3301 if (v < 0) 3302 goto einval; 3303 qos[tok] = clamp_t(s64, v * 100, 3304 VRATE_MIN_PPM, VRATE_MAX_PPM); 3305 break; 3306 default: 3307 goto einval; 3308 } 3309 user = true; 3310 } 3311 3312 if (qos[QOS_MIN] > qos[QOS_MAX]) 3313 goto einval; 3314 3315 if (enable && !ioc->enabled) { 3316 blk_stat_enable_accounting(disk->queue); 3317 blk_queue_flag_set(QUEUE_FLAG_RQ_ALLOC_TIME, disk->queue); 3318 ioc->enabled = true; 3319 } else if (!enable && ioc->enabled) { 3320 blk_stat_disable_accounting(disk->queue); 3321 blk_queue_flag_clear(QUEUE_FLAG_RQ_ALLOC_TIME, disk->queue); 3322 ioc->enabled = false; 3323 } 3324 3325 if (user) { 3326 memcpy(ioc->params.qos, qos, sizeof(qos)); 3327 ioc->user_qos_params = true; 3328 } else { 3329 ioc->user_qos_params = false; 3330 } 3331 3332 ioc_refresh_params(ioc, true); 3333 spin_unlock_irq(&ioc->lock); 3334 3335 if (enable) 3336 wbt_disable_default(disk); 3337 else 3338 wbt_enable_default(disk); 3339 3340 blk_mq_unquiesce_queue(disk->queue); 3341 blk_mq_unfreeze_queue(disk->queue); 3342 3343 blkg_conf_exit(&ctx); 3344 return nbytes; 3345 einval: 3346 spin_unlock_irq(&ioc->lock); 3347 3348 blk_mq_unquiesce_queue(disk->queue); 3349 blk_mq_unfreeze_queue(disk->queue); 3350 3351 ret = -EINVAL; 3352 err: 3353 blkg_conf_exit(&ctx); 3354 return ret; 3355 } 3356 3357 static u64 ioc_cost_model_prfill(struct seq_file *sf, 3358 struct blkg_policy_data *pd, int off) 3359 { 3360 const char *dname = blkg_dev_name(pd->blkg); 3361 struct ioc *ioc = pd_to_iocg(pd)->ioc; 3362 u64 *u = ioc->params.i_lcoefs; 3363 3364 if (!dname) 3365 return 0; 3366 3367 spin_lock_irq(&ioc->lock); 3368 seq_printf(sf, "%s ctrl=%s model=linear " 3369 "rbps=%llu rseqiops=%llu rrandiops=%llu " 3370 "wbps=%llu wseqiops=%llu wrandiops=%llu\n", 3371 dname, ioc->user_cost_model ? "user" : "auto", 3372 u[I_LCOEF_RBPS], u[I_LCOEF_RSEQIOPS], u[I_LCOEF_RRANDIOPS], 3373 u[I_LCOEF_WBPS], u[I_LCOEF_WSEQIOPS], u[I_LCOEF_WRANDIOPS]); 3374 spin_unlock_irq(&ioc->lock); 3375 return 0; 3376 } 3377 3378 static int ioc_cost_model_show(struct seq_file *sf, void *v) 3379 { 3380 struct blkcg *blkcg = css_to_blkcg(seq_css(sf)); 3381 3382 blkcg_print_blkgs(sf, blkcg, ioc_cost_model_prfill, 3383 &blkcg_policy_iocost, seq_cft(sf)->private, false); 3384 return 0; 3385 } 3386 3387 static const match_table_t cost_ctrl_tokens = { 3388 { COST_CTRL, "ctrl=%s" }, 3389 { COST_MODEL, "model=%s" }, 3390 { NR_COST_CTRL_PARAMS, NULL }, 3391 }; 3392 3393 static const match_table_t i_lcoef_tokens = { 3394 { I_LCOEF_RBPS, "rbps=%u" }, 3395 { I_LCOEF_RSEQIOPS, "rseqiops=%u" }, 3396 { I_LCOEF_RRANDIOPS, "rrandiops=%u" }, 3397 { I_LCOEF_WBPS, "wbps=%u" }, 3398 { I_LCOEF_WSEQIOPS, "wseqiops=%u" }, 3399 { I_LCOEF_WRANDIOPS, "wrandiops=%u" }, 3400 { NR_I_LCOEFS, NULL }, 3401 }; 3402 3403 static ssize_t ioc_cost_model_write(struct kernfs_open_file *of, char *input, 3404 size_t nbytes, loff_t off) 3405 { 3406 struct blkg_conf_ctx ctx; 3407 struct request_queue *q; 3408 struct ioc *ioc; 3409 u64 u[NR_I_LCOEFS]; 3410 bool user; 3411 char *body, *p; 3412 int ret; 3413 3414 blkg_conf_init(&ctx, input); 3415 3416 ret = blkg_conf_open_bdev(&ctx); 3417 if (ret) 3418 goto err; 3419 3420 body = ctx.body; 3421 q = bdev_get_queue(ctx.bdev); 3422 if (!queue_is_mq(q)) { 3423 ret = -EOPNOTSUPP; 3424 goto err; 3425 } 3426 3427 ioc = q_to_ioc(q); 3428 if (!ioc) { 3429 ret = blk_iocost_init(ctx.bdev->bd_disk); 3430 if (ret) 3431 goto err; 3432 ioc = q_to_ioc(q); 3433 } 3434 3435 blk_mq_freeze_queue(q); 3436 blk_mq_quiesce_queue(q); 3437 3438 spin_lock_irq(&ioc->lock); 3439 memcpy(u, ioc->params.i_lcoefs, sizeof(u)); 3440 user = ioc->user_cost_model; 3441 3442 while ((p = strsep(&body, " \t\n"))) { 3443 substring_t args[MAX_OPT_ARGS]; 3444 char buf[32]; 3445 int tok; 3446 u64 v; 3447 3448 if (!*p) 3449 continue; 3450 3451 switch (match_token(p, cost_ctrl_tokens, args)) { 3452 case COST_CTRL: 3453 match_strlcpy(buf, &args[0], sizeof(buf)); 3454 if (!strcmp(buf, "auto")) 3455 user = false; 3456 else if (!strcmp(buf, "user")) 3457 user = true; 3458 else 3459 goto einval; 3460 continue; 3461 case COST_MODEL: 3462 match_strlcpy(buf, &args[0], sizeof(buf)); 3463 if (strcmp(buf, "linear")) 3464 goto einval; 3465 continue; 3466 } 3467 3468 tok = match_token(p, i_lcoef_tokens, args); 3469 if (tok == NR_I_LCOEFS) 3470 goto einval; 3471 if (match_u64(&args[0], &v)) 3472 goto einval; 3473 u[tok] = v; 3474 user = true; 3475 } 3476 3477 if (user) { 3478 memcpy(ioc->params.i_lcoefs, u, sizeof(u)); 3479 ioc->user_cost_model = true; 3480 } else { 3481 ioc->user_cost_model = false; 3482 } 3483 ioc_refresh_params(ioc, true); 3484 spin_unlock_irq(&ioc->lock); 3485 3486 blk_mq_unquiesce_queue(q); 3487 blk_mq_unfreeze_queue(q); 3488 3489 blkg_conf_exit(&ctx); 3490 return nbytes; 3491 3492 einval: 3493 spin_unlock_irq(&ioc->lock); 3494 3495 blk_mq_unquiesce_queue(q); 3496 blk_mq_unfreeze_queue(q); 3497 3498 ret = -EINVAL; 3499 err: 3500 blkg_conf_exit(&ctx); 3501 return ret; 3502 } 3503 3504 static struct cftype ioc_files[] = { 3505 { 3506 .name = "weight", 3507 .flags = CFTYPE_NOT_ON_ROOT, 3508 .seq_show = ioc_weight_show, 3509 .write = ioc_weight_write, 3510 }, 3511 { 3512 .name = "cost.qos", 3513 .flags = CFTYPE_ONLY_ON_ROOT, 3514 .seq_show = ioc_qos_show, 3515 .write = ioc_qos_write, 3516 }, 3517 { 3518 .name = "cost.model", 3519 .flags = CFTYPE_ONLY_ON_ROOT, 3520 .seq_show = ioc_cost_model_show, 3521 .write = ioc_cost_model_write, 3522 }, 3523 {} 3524 }; 3525 3526 static struct blkcg_policy blkcg_policy_iocost = { 3527 .dfl_cftypes = ioc_files, 3528 .cpd_alloc_fn = ioc_cpd_alloc, 3529 .cpd_free_fn = ioc_cpd_free, 3530 .pd_alloc_fn = ioc_pd_alloc, 3531 .pd_init_fn = ioc_pd_init, 3532 .pd_free_fn = ioc_pd_free, 3533 .pd_stat_fn = ioc_pd_stat, 3534 }; 3535 3536 static int __init ioc_init(void) 3537 { 3538 return blkcg_policy_register(&blkcg_policy_iocost); 3539 } 3540 3541 static void __exit ioc_exit(void) 3542 { 3543 blkcg_policy_unregister(&blkcg_policy_iocost); 3544 } 3545 3546 module_init(ioc_init); 3547 module_exit(ioc_exit); 3548