1 /* SPDX-License-Identifier: GPL-2.0 2 * 3 * IO cost model based controller. 4 * 5 * Copyright (C) 2019 Tejun Heo <tj@kernel.org> 6 * Copyright (C) 2019 Andy Newell <newella@fb.com> 7 * Copyright (C) 2019 Facebook 8 * 9 * One challenge of controlling IO resources is the lack of trivially 10 * observable cost metric. This is distinguished from CPU and memory where 11 * wallclock time and the number of bytes can serve as accurate enough 12 * approximations. 13 * 14 * Bandwidth and iops are the most commonly used metrics for IO devices but 15 * depending on the type and specifics of the device, different IO patterns 16 * easily lead to multiple orders of magnitude variations rendering them 17 * useless for the purpose of IO capacity distribution. While on-device 18 * time, with a lot of clutches, could serve as a useful approximation for 19 * non-queued rotational devices, this is no longer viable with modern 20 * devices, even the rotational ones. 21 * 22 * While there is no cost metric we can trivially observe, it isn't a 23 * complete mystery. For example, on a rotational device, seek cost 24 * dominates while a contiguous transfer contributes a smaller amount 25 * proportional to the size. If we can characterize at least the relative 26 * costs of these different types of IOs, it should be possible to 27 * implement a reasonable work-conserving proportional IO resource 28 * distribution. 29 * 30 * 1. IO Cost Model 31 * 32 * IO cost model estimates the cost of an IO given its basic parameters and 33 * history (e.g. the end sector of the last IO). The cost is measured in 34 * device time. If a given IO is estimated to cost 10ms, the device should 35 * be able to process ~100 of those IOs in a second. 36 * 37 * Currently, there's only one builtin cost model - linear. Each IO is 38 * classified as sequential or random and given a base cost accordingly. 39 * On top of that, a size cost proportional to the length of the IO is 40 * added. While simple, this model captures the operational 41 * characteristics of a wide varienty of devices well enough. Default 42 * parameters for several different classes of devices are provided and the 43 * parameters can be configured from userspace via 44 * /sys/fs/cgroup/io.cost.model. 45 * 46 * If needed, tools/cgroup/iocost_coef_gen.py can be used to generate 47 * device-specific coefficients. 48 * 49 * 2. Control Strategy 50 * 51 * The device virtual time (vtime) is used as the primary control metric. 52 * The control strategy is composed of the following three parts. 53 * 54 * 2-1. Vtime Distribution 55 * 56 * When a cgroup becomes active in terms of IOs, its hierarchical share is 57 * calculated. Please consider the following hierarchy where the numbers 58 * inside parentheses denote the configured weights. 59 * 60 * root 61 * / \ 62 * A (w:100) B (w:300) 63 * / \ 64 * A0 (w:100) A1 (w:100) 65 * 66 * If B is idle and only A0 and A1 are actively issuing IOs, as the two are 67 * of equal weight, each gets 50% share. If then B starts issuing IOs, B 68 * gets 300/(100+300) or 75% share, and A0 and A1 equally splits the rest, 69 * 12.5% each. The distribution mechanism only cares about these flattened 70 * shares. They're called hweights (hierarchical weights) and always add 71 * upto 1 (WEIGHT_ONE). 72 * 73 * A given cgroup's vtime runs slower in inverse proportion to its hweight. 74 * For example, with 12.5% weight, A0's time runs 8 times slower (100/12.5) 75 * against the device vtime - an IO which takes 10ms on the underlying 76 * device is considered to take 80ms on A0. 77 * 78 * This constitutes the basis of IO capacity distribution. Each cgroup's 79 * vtime is running at a rate determined by its hweight. A cgroup tracks 80 * the vtime consumed by past IOs and can issue a new IO if doing so 81 * wouldn't outrun the current device vtime. Otherwise, the IO is 82 * suspended until the vtime has progressed enough to cover it. 83 * 84 * 2-2. Vrate Adjustment 85 * 86 * It's unrealistic to expect the cost model to be perfect. There are too 87 * many devices and even on the same device the overall performance 88 * fluctuates depending on numerous factors such as IO mixture and device 89 * internal garbage collection. The controller needs to adapt dynamically. 90 * 91 * This is achieved by adjusting the overall IO rate according to how busy 92 * the device is. If the device becomes overloaded, we're sending down too 93 * many IOs and should generally slow down. If there are waiting issuers 94 * but the device isn't saturated, we're issuing too few and should 95 * generally speed up. 96 * 97 * To slow down, we lower the vrate - the rate at which the device vtime 98 * passes compared to the wall clock. For example, if the vtime is running 99 * at the vrate of 75%, all cgroups added up would only be able to issue 100 * 750ms worth of IOs per second, and vice-versa for speeding up. 101 * 102 * Device business is determined using two criteria - rq wait and 103 * completion latencies. 104 * 105 * When a device gets saturated, the on-device and then the request queues 106 * fill up and a bio which is ready to be issued has to wait for a request 107 * to become available. When this delay becomes noticeable, it's a clear 108 * indication that the device is saturated and we lower the vrate. This 109 * saturation signal is fairly conservative as it only triggers when both 110 * hardware and software queues are filled up, and is used as the default 111 * busy signal. 112 * 113 * As devices can have deep queues and be unfair in how the queued commands 114 * are executed, soley depending on rq wait may not result in satisfactory 115 * control quality. For a better control quality, completion latency QoS 116 * parameters can be configured so that the device is considered saturated 117 * if N'th percentile completion latency rises above the set point. 118 * 119 * The completion latency requirements are a function of both the 120 * underlying device characteristics and the desired IO latency quality of 121 * service. There is an inherent trade-off - the tighter the latency QoS, 122 * the higher the bandwidth lossage. Latency QoS is disabled by default 123 * and can be set through /sys/fs/cgroup/io.cost.qos. 124 * 125 * 2-3. Work Conservation 126 * 127 * Imagine two cgroups A and B with equal weights. A is issuing a small IO 128 * periodically while B is sending out enough parallel IOs to saturate the 129 * device on its own. Let's say A's usage amounts to 100ms worth of IO 130 * cost per second, i.e., 10% of the device capacity. The naive 131 * distribution of half and half would lead to 60% utilization of the 132 * device, a significant reduction in the total amount of work done 133 * compared to free-for-all competition. This is too high a cost to pay 134 * for IO control. 135 * 136 * To conserve the total amount of work done, we keep track of how much 137 * each active cgroup is actually using and yield part of its weight if 138 * there are other cgroups which can make use of it. In the above case, 139 * A's weight will be lowered so that it hovers above the actual usage and 140 * B would be able to use the rest. 141 * 142 * As we don't want to penalize a cgroup for donating its weight, the 143 * surplus weight adjustment factors in a margin and has an immediate 144 * snapback mechanism in case the cgroup needs more IO vtime for itself. 145 * 146 * Note that adjusting down surplus weights has the same effects as 147 * accelerating vtime for other cgroups and work conservation can also be 148 * implemented by adjusting vrate dynamically. However, squaring who can 149 * donate and should take back how much requires hweight propagations 150 * anyway making it easier to implement and understand as a separate 151 * mechanism. 152 * 153 * 3. Monitoring 154 * 155 * Instead of debugfs or other clumsy monitoring mechanisms, this 156 * controller uses a drgn based monitoring script - 157 * tools/cgroup/iocost_monitor.py. For details on drgn, please see 158 * https://github.com/osandov/drgn. The output looks like the following. 159 * 160 * sdb RUN per=300ms cur_per=234.218:v203.695 busy= +1 vrate= 62.12% 161 * active weight hweight% inflt% dbt delay usages% 162 * test/a * 50/ 50 33.33/ 33.33 27.65 2 0*041 033:033:033 163 * test/b * 100/ 100 66.67/ 66.67 17.56 0 0*000 066:079:077 164 * 165 * - per : Timer period 166 * - cur_per : Internal wall and device vtime clock 167 * - vrate : Device virtual time rate against wall clock 168 * - weight : Surplus-adjusted and configured weights 169 * - hweight : Surplus-adjusted and configured hierarchical weights 170 * - inflt : The percentage of in-flight IO cost at the end of last period 171 * - del_ms : Deferred issuer delay induction level and duration 172 * - usages : Usage history 173 */ 174 175 #include <linux/kernel.h> 176 #include <linux/module.h> 177 #include <linux/timer.h> 178 #include <linux/time64.h> 179 #include <linux/parser.h> 180 #include <linux/sched/signal.h> 181 #include <asm/local.h> 182 #include <asm/local64.h> 183 #include "blk-rq-qos.h" 184 #include "blk-stat.h" 185 #include "blk-wbt.h" 186 #include "blk-cgroup.h" 187 188 #ifdef CONFIG_TRACEPOINTS 189 190 /* copied from TRACE_CGROUP_PATH, see cgroup-internal.h */ 191 #define TRACE_IOCG_PATH_LEN 1024 192 static DEFINE_SPINLOCK(trace_iocg_path_lock); 193 static char trace_iocg_path[TRACE_IOCG_PATH_LEN]; 194 195 #define TRACE_IOCG_PATH(type, iocg, ...) \ 196 do { \ 197 unsigned long flags; \ 198 if (trace_iocost_##type##_enabled()) { \ 199 spin_lock_irqsave(&trace_iocg_path_lock, flags); \ 200 cgroup_path(iocg_to_blkg(iocg)->blkcg->css.cgroup, \ 201 trace_iocg_path, TRACE_IOCG_PATH_LEN); \ 202 trace_iocost_##type(iocg, trace_iocg_path, \ 203 ##__VA_ARGS__); \ 204 spin_unlock_irqrestore(&trace_iocg_path_lock, flags); \ 205 } \ 206 } while (0) 207 208 #else /* CONFIG_TRACE_POINTS */ 209 #define TRACE_IOCG_PATH(type, iocg, ...) do { } while (0) 210 #endif /* CONFIG_TRACE_POINTS */ 211 212 enum { 213 MILLION = 1000000, 214 215 /* timer period is calculated from latency requirements, bound it */ 216 MIN_PERIOD = USEC_PER_MSEC, 217 MAX_PERIOD = USEC_PER_SEC, 218 219 /* 220 * iocg->vtime is targeted at 50% behind the device vtime, which 221 * serves as its IO credit buffer. Surplus weight adjustment is 222 * immediately canceled if the vtime margin runs below 10%. 223 */ 224 MARGIN_MIN_PCT = 10, 225 MARGIN_LOW_PCT = 20, 226 MARGIN_TARGET_PCT = 50, 227 228 INUSE_ADJ_STEP_PCT = 25, 229 230 /* Have some play in timer operations */ 231 TIMER_SLACK_PCT = 1, 232 233 /* 1/64k is granular enough and can easily be handled w/ u32 */ 234 WEIGHT_ONE = 1 << 16, 235 236 /* 237 * As vtime is used to calculate the cost of each IO, it needs to 238 * be fairly high precision. For example, it should be able to 239 * represent the cost of a single page worth of discard with 240 * suffificient accuracy. At the same time, it should be able to 241 * represent reasonably long enough durations to be useful and 242 * convenient during operation. 243 * 244 * 1s worth of vtime is 2^37. This gives us both sub-nanosecond 245 * granularity and days of wrap-around time even at extreme vrates. 246 */ 247 VTIME_PER_SEC_SHIFT = 37, 248 VTIME_PER_SEC = 1LLU << VTIME_PER_SEC_SHIFT, 249 VTIME_PER_USEC = VTIME_PER_SEC / USEC_PER_SEC, 250 VTIME_PER_NSEC = VTIME_PER_SEC / NSEC_PER_SEC, 251 252 /* bound vrate adjustments within two orders of magnitude */ 253 VRATE_MIN_PPM = 10000, /* 1% */ 254 VRATE_MAX_PPM = 100000000, /* 10000% */ 255 256 VRATE_MIN = VTIME_PER_USEC * VRATE_MIN_PPM / MILLION, 257 VRATE_CLAMP_ADJ_PCT = 4, 258 259 /* if IOs end up waiting for requests, issue less */ 260 RQ_WAIT_BUSY_PCT = 5, 261 262 /* unbusy hysterisis */ 263 UNBUSY_THR_PCT = 75, 264 265 /* 266 * The effect of delay is indirect and non-linear and a huge amount of 267 * future debt can accumulate abruptly while unthrottled. Linearly scale 268 * up delay as debt is going up and then let it decay exponentially. 269 * This gives us quick ramp ups while delay is accumulating and long 270 * tails which can help reducing the frequency of debt explosions on 271 * unthrottle. The parameters are experimentally determined. 272 * 273 * The delay mechanism provides adequate protection and behavior in many 274 * cases. However, this is far from ideal and falls shorts on both 275 * fronts. The debtors are often throttled too harshly costing a 276 * significant level of fairness and possibly total work while the 277 * protection against their impacts on the system can be choppy and 278 * unreliable. 279 * 280 * The shortcoming primarily stems from the fact that, unlike for page 281 * cache, the kernel doesn't have well-defined back-pressure propagation 282 * mechanism and policies for anonymous memory. Fully addressing this 283 * issue will likely require substantial improvements in the area. 284 */ 285 MIN_DELAY_THR_PCT = 500, 286 MAX_DELAY_THR_PCT = 25000, 287 MIN_DELAY = 250, 288 MAX_DELAY = 250 * USEC_PER_MSEC, 289 290 /* halve debts if avg usage over 100ms is under 50% */ 291 DFGV_USAGE_PCT = 50, 292 DFGV_PERIOD = 100 * USEC_PER_MSEC, 293 294 /* don't let cmds which take a very long time pin lagging for too long */ 295 MAX_LAGGING_PERIODS = 10, 296 297 /* switch iff the conditions are met for longer than this */ 298 AUTOP_CYCLE_NSEC = 10LLU * NSEC_PER_SEC, 299 300 /* 301 * Count IO size in 4k pages. The 12bit shift helps keeping 302 * size-proportional components of cost calculation in closer 303 * numbers of digits to per-IO cost components. 304 */ 305 IOC_PAGE_SHIFT = 12, 306 IOC_PAGE_SIZE = 1 << IOC_PAGE_SHIFT, 307 IOC_SECT_TO_PAGE_SHIFT = IOC_PAGE_SHIFT - SECTOR_SHIFT, 308 309 /* if apart further than 16M, consider randio for linear model */ 310 LCOEF_RANDIO_PAGES = 4096, 311 }; 312 313 enum ioc_running { 314 IOC_IDLE, 315 IOC_RUNNING, 316 IOC_STOP, 317 }; 318 319 /* io.cost.qos controls including per-dev enable of the whole controller */ 320 enum { 321 QOS_ENABLE, 322 QOS_CTRL, 323 NR_QOS_CTRL_PARAMS, 324 }; 325 326 /* io.cost.qos params */ 327 enum { 328 QOS_RPPM, 329 QOS_RLAT, 330 QOS_WPPM, 331 QOS_WLAT, 332 QOS_MIN, 333 QOS_MAX, 334 NR_QOS_PARAMS, 335 }; 336 337 /* io.cost.model controls */ 338 enum { 339 COST_CTRL, 340 COST_MODEL, 341 NR_COST_CTRL_PARAMS, 342 }; 343 344 /* builtin linear cost model coefficients */ 345 enum { 346 I_LCOEF_RBPS, 347 I_LCOEF_RSEQIOPS, 348 I_LCOEF_RRANDIOPS, 349 I_LCOEF_WBPS, 350 I_LCOEF_WSEQIOPS, 351 I_LCOEF_WRANDIOPS, 352 NR_I_LCOEFS, 353 }; 354 355 enum { 356 LCOEF_RPAGE, 357 LCOEF_RSEQIO, 358 LCOEF_RRANDIO, 359 LCOEF_WPAGE, 360 LCOEF_WSEQIO, 361 LCOEF_WRANDIO, 362 NR_LCOEFS, 363 }; 364 365 enum { 366 AUTOP_INVALID, 367 AUTOP_HDD, 368 AUTOP_SSD_QD1, 369 AUTOP_SSD_DFL, 370 AUTOP_SSD_FAST, 371 }; 372 373 struct ioc_params { 374 u32 qos[NR_QOS_PARAMS]; 375 u64 i_lcoefs[NR_I_LCOEFS]; 376 u64 lcoefs[NR_LCOEFS]; 377 u32 too_fast_vrate_pct; 378 u32 too_slow_vrate_pct; 379 }; 380 381 struct ioc_margins { 382 s64 min; 383 s64 low; 384 s64 target; 385 }; 386 387 struct ioc_missed { 388 local_t nr_met; 389 local_t nr_missed; 390 u32 last_met; 391 u32 last_missed; 392 }; 393 394 struct ioc_pcpu_stat { 395 struct ioc_missed missed[2]; 396 397 local64_t rq_wait_ns; 398 u64 last_rq_wait_ns; 399 }; 400 401 /* per device */ 402 struct ioc { 403 struct rq_qos rqos; 404 405 bool enabled; 406 407 struct ioc_params params; 408 struct ioc_margins margins; 409 u32 period_us; 410 u32 timer_slack_ns; 411 u64 vrate_min; 412 u64 vrate_max; 413 414 spinlock_t lock; 415 struct timer_list timer; 416 struct list_head active_iocgs; /* active cgroups */ 417 struct ioc_pcpu_stat __percpu *pcpu_stat; 418 419 enum ioc_running running; 420 atomic64_t vtime_rate; 421 u64 vtime_base_rate; 422 s64 vtime_err; 423 424 seqcount_spinlock_t period_seqcount; 425 u64 period_at; /* wallclock starttime */ 426 u64 period_at_vtime; /* vtime starttime */ 427 428 atomic64_t cur_period; /* inc'd each period */ 429 int busy_level; /* saturation history */ 430 431 bool weights_updated; 432 atomic_t hweight_gen; /* for lazy hweights */ 433 434 /* debt forgivness */ 435 u64 dfgv_period_at; 436 u64 dfgv_period_rem; 437 u64 dfgv_usage_us_sum; 438 439 u64 autop_too_fast_at; 440 u64 autop_too_slow_at; 441 int autop_idx; 442 bool user_qos_params:1; 443 bool user_cost_model:1; 444 }; 445 446 struct iocg_pcpu_stat { 447 local64_t abs_vusage; 448 }; 449 450 struct iocg_stat { 451 u64 usage_us; 452 u64 wait_us; 453 u64 indebt_us; 454 u64 indelay_us; 455 }; 456 457 /* per device-cgroup pair */ 458 struct ioc_gq { 459 struct blkg_policy_data pd; 460 struct ioc *ioc; 461 462 /* 463 * A iocg can get its weight from two sources - an explicit 464 * per-device-cgroup configuration or the default weight of the 465 * cgroup. `cfg_weight` is the explicit per-device-cgroup 466 * configuration. `weight` is the effective considering both 467 * sources. 468 * 469 * When an idle cgroup becomes active its `active` goes from 0 to 470 * `weight`. `inuse` is the surplus adjusted active weight. 471 * `active` and `inuse` are used to calculate `hweight_active` and 472 * `hweight_inuse`. 473 * 474 * `last_inuse` remembers `inuse` while an iocg is idle to persist 475 * surplus adjustments. 476 * 477 * `inuse` may be adjusted dynamically during period. `saved_*` are used 478 * to determine and track adjustments. 479 */ 480 u32 cfg_weight; 481 u32 weight; 482 u32 active; 483 u32 inuse; 484 485 u32 last_inuse; 486 s64 saved_margin; 487 488 sector_t cursor; /* to detect randio */ 489 490 /* 491 * `vtime` is this iocg's vtime cursor which progresses as IOs are 492 * issued. If lagging behind device vtime, the delta represents 493 * the currently available IO budget. If running ahead, the 494 * overage. 495 * 496 * `vtime_done` is the same but progressed on completion rather 497 * than issue. The delta behind `vtime` represents the cost of 498 * currently in-flight IOs. 499 */ 500 atomic64_t vtime; 501 atomic64_t done_vtime; 502 u64 abs_vdebt; 503 504 /* current delay in effect and when it started */ 505 u64 delay; 506 u64 delay_at; 507 508 /* 509 * The period this iocg was last active in. Used for deactivation 510 * and invalidating `vtime`. 511 */ 512 atomic64_t active_period; 513 struct list_head active_list; 514 515 /* see __propagate_weights() and current_hweight() for details */ 516 u64 child_active_sum; 517 u64 child_inuse_sum; 518 u64 child_adjusted_sum; 519 int hweight_gen; 520 u32 hweight_active; 521 u32 hweight_inuse; 522 u32 hweight_donating; 523 u32 hweight_after_donation; 524 525 struct list_head walk_list; 526 struct list_head surplus_list; 527 528 struct wait_queue_head waitq; 529 struct hrtimer waitq_timer; 530 531 /* timestamp at the latest activation */ 532 u64 activated_at; 533 534 /* statistics */ 535 struct iocg_pcpu_stat __percpu *pcpu_stat; 536 struct iocg_stat stat; 537 struct iocg_stat last_stat; 538 u64 last_stat_abs_vusage; 539 u64 usage_delta_us; 540 u64 wait_since; 541 u64 indebt_since; 542 u64 indelay_since; 543 544 /* this iocg's depth in the hierarchy and ancestors including self */ 545 int level; 546 struct ioc_gq *ancestors[]; 547 }; 548 549 /* per cgroup */ 550 struct ioc_cgrp { 551 struct blkcg_policy_data cpd; 552 unsigned int dfl_weight; 553 }; 554 555 struct ioc_now { 556 u64 now_ns; 557 u64 now; 558 u64 vnow; 559 u64 vrate; 560 }; 561 562 struct iocg_wait { 563 struct wait_queue_entry wait; 564 struct bio *bio; 565 u64 abs_cost; 566 bool committed; 567 }; 568 569 struct iocg_wake_ctx { 570 struct ioc_gq *iocg; 571 u32 hw_inuse; 572 s64 vbudget; 573 }; 574 575 static const struct ioc_params autop[] = { 576 [AUTOP_HDD] = { 577 .qos = { 578 [QOS_RLAT] = 250000, /* 250ms */ 579 [QOS_WLAT] = 250000, 580 [QOS_MIN] = VRATE_MIN_PPM, 581 [QOS_MAX] = VRATE_MAX_PPM, 582 }, 583 .i_lcoefs = { 584 [I_LCOEF_RBPS] = 174019176, 585 [I_LCOEF_RSEQIOPS] = 41708, 586 [I_LCOEF_RRANDIOPS] = 370, 587 [I_LCOEF_WBPS] = 178075866, 588 [I_LCOEF_WSEQIOPS] = 42705, 589 [I_LCOEF_WRANDIOPS] = 378, 590 }, 591 }, 592 [AUTOP_SSD_QD1] = { 593 .qos = { 594 [QOS_RLAT] = 25000, /* 25ms */ 595 [QOS_WLAT] = 25000, 596 [QOS_MIN] = VRATE_MIN_PPM, 597 [QOS_MAX] = VRATE_MAX_PPM, 598 }, 599 .i_lcoefs = { 600 [I_LCOEF_RBPS] = 245855193, 601 [I_LCOEF_RSEQIOPS] = 61575, 602 [I_LCOEF_RRANDIOPS] = 6946, 603 [I_LCOEF_WBPS] = 141365009, 604 [I_LCOEF_WSEQIOPS] = 33716, 605 [I_LCOEF_WRANDIOPS] = 26796, 606 }, 607 }, 608 [AUTOP_SSD_DFL] = { 609 .qos = { 610 [QOS_RLAT] = 25000, /* 25ms */ 611 [QOS_WLAT] = 25000, 612 [QOS_MIN] = VRATE_MIN_PPM, 613 [QOS_MAX] = VRATE_MAX_PPM, 614 }, 615 .i_lcoefs = { 616 [I_LCOEF_RBPS] = 488636629, 617 [I_LCOEF_RSEQIOPS] = 8932, 618 [I_LCOEF_RRANDIOPS] = 8518, 619 [I_LCOEF_WBPS] = 427891549, 620 [I_LCOEF_WSEQIOPS] = 28755, 621 [I_LCOEF_WRANDIOPS] = 21940, 622 }, 623 .too_fast_vrate_pct = 500, 624 }, 625 [AUTOP_SSD_FAST] = { 626 .qos = { 627 [QOS_RLAT] = 5000, /* 5ms */ 628 [QOS_WLAT] = 5000, 629 [QOS_MIN] = VRATE_MIN_PPM, 630 [QOS_MAX] = VRATE_MAX_PPM, 631 }, 632 .i_lcoefs = { 633 [I_LCOEF_RBPS] = 3102524156LLU, 634 [I_LCOEF_RSEQIOPS] = 724816, 635 [I_LCOEF_RRANDIOPS] = 778122, 636 [I_LCOEF_WBPS] = 1742780862LLU, 637 [I_LCOEF_WSEQIOPS] = 425702, 638 [I_LCOEF_WRANDIOPS] = 443193, 639 }, 640 .too_slow_vrate_pct = 10, 641 }, 642 }; 643 644 /* 645 * vrate adjust percentages indexed by ioc->busy_level. We adjust up on 646 * vtime credit shortage and down on device saturation. 647 */ 648 static u32 vrate_adj_pct[] = 649 { 0, 0, 0, 0, 650 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 651 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 652 4, 4, 4, 4, 4, 4, 4, 4, 8, 8, 8, 8, 8, 8, 8, 8, 16 }; 653 654 static struct blkcg_policy blkcg_policy_iocost; 655 656 /* accessors and helpers */ 657 static struct ioc *rqos_to_ioc(struct rq_qos *rqos) 658 { 659 return container_of(rqos, struct ioc, rqos); 660 } 661 662 static struct ioc *q_to_ioc(struct request_queue *q) 663 { 664 return rqos_to_ioc(rq_qos_id(q, RQ_QOS_COST)); 665 } 666 667 static const char __maybe_unused *ioc_name(struct ioc *ioc) 668 { 669 struct gendisk *disk = ioc->rqos.q->disk; 670 671 if (!disk) 672 return "<unknown>"; 673 return disk->disk_name; 674 } 675 676 static struct ioc_gq *pd_to_iocg(struct blkg_policy_data *pd) 677 { 678 return pd ? container_of(pd, struct ioc_gq, pd) : NULL; 679 } 680 681 static struct ioc_gq *blkg_to_iocg(struct blkcg_gq *blkg) 682 { 683 return pd_to_iocg(blkg_to_pd(blkg, &blkcg_policy_iocost)); 684 } 685 686 static struct blkcg_gq *iocg_to_blkg(struct ioc_gq *iocg) 687 { 688 return pd_to_blkg(&iocg->pd); 689 } 690 691 static struct ioc_cgrp *blkcg_to_iocc(struct blkcg *blkcg) 692 { 693 return container_of(blkcg_to_cpd(blkcg, &blkcg_policy_iocost), 694 struct ioc_cgrp, cpd); 695 } 696 697 /* 698 * Scale @abs_cost to the inverse of @hw_inuse. The lower the hierarchical 699 * weight, the more expensive each IO. Must round up. 700 */ 701 static u64 abs_cost_to_cost(u64 abs_cost, u32 hw_inuse) 702 { 703 return DIV64_U64_ROUND_UP(abs_cost * WEIGHT_ONE, hw_inuse); 704 } 705 706 /* 707 * The inverse of abs_cost_to_cost(). Must round up. 708 */ 709 static u64 cost_to_abs_cost(u64 cost, u32 hw_inuse) 710 { 711 return DIV64_U64_ROUND_UP(cost * hw_inuse, WEIGHT_ONE); 712 } 713 714 static void iocg_commit_bio(struct ioc_gq *iocg, struct bio *bio, 715 u64 abs_cost, u64 cost) 716 { 717 struct iocg_pcpu_stat *gcs; 718 719 bio->bi_iocost_cost = cost; 720 atomic64_add(cost, &iocg->vtime); 721 722 gcs = get_cpu_ptr(iocg->pcpu_stat); 723 local64_add(abs_cost, &gcs->abs_vusage); 724 put_cpu_ptr(gcs); 725 } 726 727 static void iocg_lock(struct ioc_gq *iocg, bool lock_ioc, unsigned long *flags) 728 { 729 if (lock_ioc) { 730 spin_lock_irqsave(&iocg->ioc->lock, *flags); 731 spin_lock(&iocg->waitq.lock); 732 } else { 733 spin_lock_irqsave(&iocg->waitq.lock, *flags); 734 } 735 } 736 737 static void iocg_unlock(struct ioc_gq *iocg, bool unlock_ioc, unsigned long *flags) 738 { 739 if (unlock_ioc) { 740 spin_unlock(&iocg->waitq.lock); 741 spin_unlock_irqrestore(&iocg->ioc->lock, *flags); 742 } else { 743 spin_unlock_irqrestore(&iocg->waitq.lock, *flags); 744 } 745 } 746 747 #define CREATE_TRACE_POINTS 748 #include <trace/events/iocost.h> 749 750 static void ioc_refresh_margins(struct ioc *ioc) 751 { 752 struct ioc_margins *margins = &ioc->margins; 753 u32 period_us = ioc->period_us; 754 u64 vrate = ioc->vtime_base_rate; 755 756 margins->min = (period_us * MARGIN_MIN_PCT / 100) * vrate; 757 margins->low = (period_us * MARGIN_LOW_PCT / 100) * vrate; 758 margins->target = (period_us * MARGIN_TARGET_PCT / 100) * vrate; 759 } 760 761 /* latency Qos params changed, update period_us and all the dependent params */ 762 static void ioc_refresh_period_us(struct ioc *ioc) 763 { 764 u32 ppm, lat, multi, period_us; 765 766 lockdep_assert_held(&ioc->lock); 767 768 /* pick the higher latency target */ 769 if (ioc->params.qos[QOS_RLAT] >= ioc->params.qos[QOS_WLAT]) { 770 ppm = ioc->params.qos[QOS_RPPM]; 771 lat = ioc->params.qos[QOS_RLAT]; 772 } else { 773 ppm = ioc->params.qos[QOS_WPPM]; 774 lat = ioc->params.qos[QOS_WLAT]; 775 } 776 777 /* 778 * We want the period to be long enough to contain a healthy number 779 * of IOs while short enough for granular control. Define it as a 780 * multiple of the latency target. Ideally, the multiplier should 781 * be scaled according to the percentile so that it would nominally 782 * contain a certain number of requests. Let's be simpler and 783 * scale it linearly so that it's 2x >= pct(90) and 10x at pct(50). 784 */ 785 if (ppm) 786 multi = max_t(u32, (MILLION - ppm) / 50000, 2); 787 else 788 multi = 2; 789 period_us = multi * lat; 790 period_us = clamp_t(u32, period_us, MIN_PERIOD, MAX_PERIOD); 791 792 /* calculate dependent params */ 793 ioc->period_us = period_us; 794 ioc->timer_slack_ns = div64_u64( 795 (u64)period_us * NSEC_PER_USEC * TIMER_SLACK_PCT, 796 100); 797 ioc_refresh_margins(ioc); 798 } 799 800 static int ioc_autop_idx(struct ioc *ioc) 801 { 802 int idx = ioc->autop_idx; 803 const struct ioc_params *p = &autop[idx]; 804 u32 vrate_pct; 805 u64 now_ns; 806 807 /* rotational? */ 808 if (!blk_queue_nonrot(ioc->rqos.q)) 809 return AUTOP_HDD; 810 811 /* handle SATA SSDs w/ broken NCQ */ 812 if (blk_queue_depth(ioc->rqos.q) == 1) 813 return AUTOP_SSD_QD1; 814 815 /* use one of the normal ssd sets */ 816 if (idx < AUTOP_SSD_DFL) 817 return AUTOP_SSD_DFL; 818 819 /* if user is overriding anything, maintain what was there */ 820 if (ioc->user_qos_params || ioc->user_cost_model) 821 return idx; 822 823 /* step up/down based on the vrate */ 824 vrate_pct = div64_u64(ioc->vtime_base_rate * 100, VTIME_PER_USEC); 825 now_ns = ktime_get_ns(); 826 827 if (p->too_fast_vrate_pct && p->too_fast_vrate_pct <= vrate_pct) { 828 if (!ioc->autop_too_fast_at) 829 ioc->autop_too_fast_at = now_ns; 830 if (now_ns - ioc->autop_too_fast_at >= AUTOP_CYCLE_NSEC) 831 return idx + 1; 832 } else { 833 ioc->autop_too_fast_at = 0; 834 } 835 836 if (p->too_slow_vrate_pct && p->too_slow_vrate_pct >= vrate_pct) { 837 if (!ioc->autop_too_slow_at) 838 ioc->autop_too_slow_at = now_ns; 839 if (now_ns - ioc->autop_too_slow_at >= AUTOP_CYCLE_NSEC) 840 return idx - 1; 841 } else { 842 ioc->autop_too_slow_at = 0; 843 } 844 845 return idx; 846 } 847 848 /* 849 * Take the followings as input 850 * 851 * @bps maximum sequential throughput 852 * @seqiops maximum sequential 4k iops 853 * @randiops maximum random 4k iops 854 * 855 * and calculate the linear model cost coefficients. 856 * 857 * *@page per-page cost 1s / (@bps / 4096) 858 * *@seqio base cost of a seq IO max((1s / @seqiops) - *@page, 0) 859 * @randiops base cost of a rand IO max((1s / @randiops) - *@page, 0) 860 */ 861 static void calc_lcoefs(u64 bps, u64 seqiops, u64 randiops, 862 u64 *page, u64 *seqio, u64 *randio) 863 { 864 u64 v; 865 866 *page = *seqio = *randio = 0; 867 868 if (bps) 869 *page = DIV64_U64_ROUND_UP(VTIME_PER_SEC, 870 DIV_ROUND_UP_ULL(bps, IOC_PAGE_SIZE)); 871 872 if (seqiops) { 873 v = DIV64_U64_ROUND_UP(VTIME_PER_SEC, seqiops); 874 if (v > *page) 875 *seqio = v - *page; 876 } 877 878 if (randiops) { 879 v = DIV64_U64_ROUND_UP(VTIME_PER_SEC, randiops); 880 if (v > *page) 881 *randio = v - *page; 882 } 883 } 884 885 static void ioc_refresh_lcoefs(struct ioc *ioc) 886 { 887 u64 *u = ioc->params.i_lcoefs; 888 u64 *c = ioc->params.lcoefs; 889 890 calc_lcoefs(u[I_LCOEF_RBPS], u[I_LCOEF_RSEQIOPS], u[I_LCOEF_RRANDIOPS], 891 &c[LCOEF_RPAGE], &c[LCOEF_RSEQIO], &c[LCOEF_RRANDIO]); 892 calc_lcoefs(u[I_LCOEF_WBPS], u[I_LCOEF_WSEQIOPS], u[I_LCOEF_WRANDIOPS], 893 &c[LCOEF_WPAGE], &c[LCOEF_WSEQIO], &c[LCOEF_WRANDIO]); 894 } 895 896 static bool ioc_refresh_params(struct ioc *ioc, bool force) 897 { 898 const struct ioc_params *p; 899 int idx; 900 901 lockdep_assert_held(&ioc->lock); 902 903 idx = ioc_autop_idx(ioc); 904 p = &autop[idx]; 905 906 if (idx == ioc->autop_idx && !force) 907 return false; 908 909 if (idx != ioc->autop_idx) 910 atomic64_set(&ioc->vtime_rate, VTIME_PER_USEC); 911 912 ioc->autop_idx = idx; 913 ioc->autop_too_fast_at = 0; 914 ioc->autop_too_slow_at = 0; 915 916 if (!ioc->user_qos_params) 917 memcpy(ioc->params.qos, p->qos, sizeof(p->qos)); 918 if (!ioc->user_cost_model) 919 memcpy(ioc->params.i_lcoefs, p->i_lcoefs, sizeof(p->i_lcoefs)); 920 921 ioc_refresh_period_us(ioc); 922 ioc_refresh_lcoefs(ioc); 923 924 ioc->vrate_min = DIV64_U64_ROUND_UP((u64)ioc->params.qos[QOS_MIN] * 925 VTIME_PER_USEC, MILLION); 926 ioc->vrate_max = div64_u64((u64)ioc->params.qos[QOS_MAX] * 927 VTIME_PER_USEC, MILLION); 928 929 return true; 930 } 931 932 /* 933 * When an iocg accumulates too much vtime or gets deactivated, we throw away 934 * some vtime, which lowers the overall device utilization. As the exact amount 935 * which is being thrown away is known, we can compensate by accelerating the 936 * vrate accordingly so that the extra vtime generated in the current period 937 * matches what got lost. 938 */ 939 static void ioc_refresh_vrate(struct ioc *ioc, struct ioc_now *now) 940 { 941 s64 pleft = ioc->period_at + ioc->period_us - now->now; 942 s64 vperiod = ioc->period_us * ioc->vtime_base_rate; 943 s64 vcomp, vcomp_min, vcomp_max; 944 945 lockdep_assert_held(&ioc->lock); 946 947 /* we need some time left in this period */ 948 if (pleft <= 0) 949 goto done; 950 951 /* 952 * Calculate how much vrate should be adjusted to offset the error. 953 * Limit the amount of adjustment and deduct the adjusted amount from 954 * the error. 955 */ 956 vcomp = -div64_s64(ioc->vtime_err, pleft); 957 vcomp_min = -(ioc->vtime_base_rate >> 1); 958 vcomp_max = ioc->vtime_base_rate; 959 vcomp = clamp(vcomp, vcomp_min, vcomp_max); 960 961 ioc->vtime_err += vcomp * pleft; 962 963 atomic64_set(&ioc->vtime_rate, ioc->vtime_base_rate + vcomp); 964 done: 965 /* bound how much error can accumulate */ 966 ioc->vtime_err = clamp(ioc->vtime_err, -vperiod, vperiod); 967 } 968 969 static void ioc_adjust_base_vrate(struct ioc *ioc, u32 rq_wait_pct, 970 int nr_lagging, int nr_shortages, 971 int prev_busy_level, u32 *missed_ppm) 972 { 973 u64 vrate = ioc->vtime_base_rate; 974 u64 vrate_min = ioc->vrate_min, vrate_max = ioc->vrate_max; 975 976 if (!ioc->busy_level || (ioc->busy_level < 0 && nr_lagging)) { 977 if (ioc->busy_level != prev_busy_level || nr_lagging) 978 trace_iocost_ioc_vrate_adj(ioc, atomic64_read(&ioc->vtime_rate), 979 missed_ppm, rq_wait_pct, 980 nr_lagging, nr_shortages); 981 982 return; 983 } 984 985 /* 986 * If vrate is out of bounds, apply clamp gradually as the 987 * bounds can change abruptly. Otherwise, apply busy_level 988 * based adjustment. 989 */ 990 if (vrate < vrate_min) { 991 vrate = div64_u64(vrate * (100 + VRATE_CLAMP_ADJ_PCT), 100); 992 vrate = min(vrate, vrate_min); 993 } else if (vrate > vrate_max) { 994 vrate = div64_u64(vrate * (100 - VRATE_CLAMP_ADJ_PCT), 100); 995 vrate = max(vrate, vrate_max); 996 } else { 997 int idx = min_t(int, abs(ioc->busy_level), 998 ARRAY_SIZE(vrate_adj_pct) - 1); 999 u32 adj_pct = vrate_adj_pct[idx]; 1000 1001 if (ioc->busy_level > 0) 1002 adj_pct = 100 - adj_pct; 1003 else 1004 adj_pct = 100 + adj_pct; 1005 1006 vrate = clamp(DIV64_U64_ROUND_UP(vrate * adj_pct, 100), 1007 vrate_min, vrate_max); 1008 } 1009 1010 trace_iocost_ioc_vrate_adj(ioc, vrate, missed_ppm, rq_wait_pct, 1011 nr_lagging, nr_shortages); 1012 1013 ioc->vtime_base_rate = vrate; 1014 ioc_refresh_margins(ioc); 1015 } 1016 1017 /* take a snapshot of the current [v]time and vrate */ 1018 static void ioc_now(struct ioc *ioc, struct ioc_now *now) 1019 { 1020 unsigned seq; 1021 1022 now->now_ns = ktime_get(); 1023 now->now = ktime_to_us(now->now_ns); 1024 now->vrate = atomic64_read(&ioc->vtime_rate); 1025 1026 /* 1027 * The current vtime is 1028 * 1029 * vtime at period start + (wallclock time since the start) * vrate 1030 * 1031 * As a consistent snapshot of `period_at_vtime` and `period_at` is 1032 * needed, they're seqcount protected. 1033 */ 1034 do { 1035 seq = read_seqcount_begin(&ioc->period_seqcount); 1036 now->vnow = ioc->period_at_vtime + 1037 (now->now - ioc->period_at) * now->vrate; 1038 } while (read_seqcount_retry(&ioc->period_seqcount, seq)); 1039 } 1040 1041 static void ioc_start_period(struct ioc *ioc, struct ioc_now *now) 1042 { 1043 WARN_ON_ONCE(ioc->running != IOC_RUNNING); 1044 1045 write_seqcount_begin(&ioc->period_seqcount); 1046 ioc->period_at = now->now; 1047 ioc->period_at_vtime = now->vnow; 1048 write_seqcount_end(&ioc->period_seqcount); 1049 1050 ioc->timer.expires = jiffies + usecs_to_jiffies(ioc->period_us); 1051 add_timer(&ioc->timer); 1052 } 1053 1054 /* 1055 * Update @iocg's `active` and `inuse` to @active and @inuse, update level 1056 * weight sums and propagate upwards accordingly. If @save, the current margin 1057 * is saved to be used as reference for later inuse in-period adjustments. 1058 */ 1059 static void __propagate_weights(struct ioc_gq *iocg, u32 active, u32 inuse, 1060 bool save, struct ioc_now *now) 1061 { 1062 struct ioc *ioc = iocg->ioc; 1063 int lvl; 1064 1065 lockdep_assert_held(&ioc->lock); 1066 1067 /* 1068 * For an active leaf node, its inuse shouldn't be zero or exceed 1069 * @active. An active internal node's inuse is solely determined by the 1070 * inuse to active ratio of its children regardless of @inuse. 1071 */ 1072 if (list_empty(&iocg->active_list) && iocg->child_active_sum) { 1073 inuse = DIV64_U64_ROUND_UP(active * iocg->child_inuse_sum, 1074 iocg->child_active_sum); 1075 } else { 1076 inuse = clamp_t(u32, inuse, 1, active); 1077 } 1078 1079 iocg->last_inuse = iocg->inuse; 1080 if (save) 1081 iocg->saved_margin = now->vnow - atomic64_read(&iocg->vtime); 1082 1083 if (active == iocg->active && inuse == iocg->inuse) 1084 return; 1085 1086 for (lvl = iocg->level - 1; lvl >= 0; lvl--) { 1087 struct ioc_gq *parent = iocg->ancestors[lvl]; 1088 struct ioc_gq *child = iocg->ancestors[lvl + 1]; 1089 u32 parent_active = 0, parent_inuse = 0; 1090 1091 /* update the level sums */ 1092 parent->child_active_sum += (s32)(active - child->active); 1093 parent->child_inuse_sum += (s32)(inuse - child->inuse); 1094 /* apply the updates */ 1095 child->active = active; 1096 child->inuse = inuse; 1097 1098 /* 1099 * The delta between inuse and active sums indicates that 1100 * much of weight is being given away. Parent's inuse 1101 * and active should reflect the ratio. 1102 */ 1103 if (parent->child_active_sum) { 1104 parent_active = parent->weight; 1105 parent_inuse = DIV64_U64_ROUND_UP( 1106 parent_active * parent->child_inuse_sum, 1107 parent->child_active_sum); 1108 } 1109 1110 /* do we need to keep walking up? */ 1111 if (parent_active == parent->active && 1112 parent_inuse == parent->inuse) 1113 break; 1114 1115 active = parent_active; 1116 inuse = parent_inuse; 1117 } 1118 1119 ioc->weights_updated = true; 1120 } 1121 1122 static void commit_weights(struct ioc *ioc) 1123 { 1124 lockdep_assert_held(&ioc->lock); 1125 1126 if (ioc->weights_updated) { 1127 /* paired with rmb in current_hweight(), see there */ 1128 smp_wmb(); 1129 atomic_inc(&ioc->hweight_gen); 1130 ioc->weights_updated = false; 1131 } 1132 } 1133 1134 static void propagate_weights(struct ioc_gq *iocg, u32 active, u32 inuse, 1135 bool save, struct ioc_now *now) 1136 { 1137 __propagate_weights(iocg, active, inuse, save, now); 1138 commit_weights(iocg->ioc); 1139 } 1140 1141 static void current_hweight(struct ioc_gq *iocg, u32 *hw_activep, u32 *hw_inusep) 1142 { 1143 struct ioc *ioc = iocg->ioc; 1144 int lvl; 1145 u32 hwa, hwi; 1146 int ioc_gen; 1147 1148 /* hot path - if uptodate, use cached */ 1149 ioc_gen = atomic_read(&ioc->hweight_gen); 1150 if (ioc_gen == iocg->hweight_gen) 1151 goto out; 1152 1153 /* 1154 * Paired with wmb in commit_weights(). If we saw the updated 1155 * hweight_gen, all the weight updates from __propagate_weights() are 1156 * visible too. 1157 * 1158 * We can race with weight updates during calculation and get it 1159 * wrong. However, hweight_gen would have changed and a future 1160 * reader will recalculate and we're guaranteed to discard the 1161 * wrong result soon. 1162 */ 1163 smp_rmb(); 1164 1165 hwa = hwi = WEIGHT_ONE; 1166 for (lvl = 0; lvl <= iocg->level - 1; lvl++) { 1167 struct ioc_gq *parent = iocg->ancestors[lvl]; 1168 struct ioc_gq *child = iocg->ancestors[lvl + 1]; 1169 u64 active_sum = READ_ONCE(parent->child_active_sum); 1170 u64 inuse_sum = READ_ONCE(parent->child_inuse_sum); 1171 u32 active = READ_ONCE(child->active); 1172 u32 inuse = READ_ONCE(child->inuse); 1173 1174 /* we can race with deactivations and either may read as zero */ 1175 if (!active_sum || !inuse_sum) 1176 continue; 1177 1178 active_sum = max_t(u64, active, active_sum); 1179 hwa = div64_u64((u64)hwa * active, active_sum); 1180 1181 inuse_sum = max_t(u64, inuse, inuse_sum); 1182 hwi = div64_u64((u64)hwi * inuse, inuse_sum); 1183 } 1184 1185 iocg->hweight_active = max_t(u32, hwa, 1); 1186 iocg->hweight_inuse = max_t(u32, hwi, 1); 1187 iocg->hweight_gen = ioc_gen; 1188 out: 1189 if (hw_activep) 1190 *hw_activep = iocg->hweight_active; 1191 if (hw_inusep) 1192 *hw_inusep = iocg->hweight_inuse; 1193 } 1194 1195 /* 1196 * Calculate the hweight_inuse @iocg would get with max @inuse assuming all the 1197 * other weights stay unchanged. 1198 */ 1199 static u32 current_hweight_max(struct ioc_gq *iocg) 1200 { 1201 u32 hwm = WEIGHT_ONE; 1202 u32 inuse = iocg->active; 1203 u64 child_inuse_sum; 1204 int lvl; 1205 1206 lockdep_assert_held(&iocg->ioc->lock); 1207 1208 for (lvl = iocg->level - 1; lvl >= 0; lvl--) { 1209 struct ioc_gq *parent = iocg->ancestors[lvl]; 1210 struct ioc_gq *child = iocg->ancestors[lvl + 1]; 1211 1212 child_inuse_sum = parent->child_inuse_sum + inuse - child->inuse; 1213 hwm = div64_u64((u64)hwm * inuse, child_inuse_sum); 1214 inuse = DIV64_U64_ROUND_UP(parent->active * child_inuse_sum, 1215 parent->child_active_sum); 1216 } 1217 1218 return max_t(u32, hwm, 1); 1219 } 1220 1221 static void weight_updated(struct ioc_gq *iocg, struct ioc_now *now) 1222 { 1223 struct ioc *ioc = iocg->ioc; 1224 struct blkcg_gq *blkg = iocg_to_blkg(iocg); 1225 struct ioc_cgrp *iocc = blkcg_to_iocc(blkg->blkcg); 1226 u32 weight; 1227 1228 lockdep_assert_held(&ioc->lock); 1229 1230 weight = iocg->cfg_weight ?: iocc->dfl_weight; 1231 if (weight != iocg->weight && iocg->active) 1232 propagate_weights(iocg, weight, iocg->inuse, true, now); 1233 iocg->weight = weight; 1234 } 1235 1236 static bool iocg_activate(struct ioc_gq *iocg, struct ioc_now *now) 1237 { 1238 struct ioc *ioc = iocg->ioc; 1239 u64 last_period, cur_period; 1240 u64 vtime, vtarget; 1241 int i; 1242 1243 /* 1244 * If seem to be already active, just update the stamp to tell the 1245 * timer that we're still active. We don't mind occassional races. 1246 */ 1247 if (!list_empty(&iocg->active_list)) { 1248 ioc_now(ioc, now); 1249 cur_period = atomic64_read(&ioc->cur_period); 1250 if (atomic64_read(&iocg->active_period) != cur_period) 1251 atomic64_set(&iocg->active_period, cur_period); 1252 return true; 1253 } 1254 1255 /* racy check on internal node IOs, treat as root level IOs */ 1256 if (iocg->child_active_sum) 1257 return false; 1258 1259 spin_lock_irq(&ioc->lock); 1260 1261 ioc_now(ioc, now); 1262 1263 /* update period */ 1264 cur_period = atomic64_read(&ioc->cur_period); 1265 last_period = atomic64_read(&iocg->active_period); 1266 atomic64_set(&iocg->active_period, cur_period); 1267 1268 /* already activated or breaking leaf-only constraint? */ 1269 if (!list_empty(&iocg->active_list)) 1270 goto succeed_unlock; 1271 for (i = iocg->level - 1; i > 0; i--) 1272 if (!list_empty(&iocg->ancestors[i]->active_list)) 1273 goto fail_unlock; 1274 1275 if (iocg->child_active_sum) 1276 goto fail_unlock; 1277 1278 /* 1279 * Always start with the target budget. On deactivation, we throw away 1280 * anything above it. 1281 */ 1282 vtarget = now->vnow - ioc->margins.target; 1283 vtime = atomic64_read(&iocg->vtime); 1284 1285 atomic64_add(vtarget - vtime, &iocg->vtime); 1286 atomic64_add(vtarget - vtime, &iocg->done_vtime); 1287 vtime = vtarget; 1288 1289 /* 1290 * Activate, propagate weight and start period timer if not 1291 * running. Reset hweight_gen to avoid accidental match from 1292 * wrapping. 1293 */ 1294 iocg->hweight_gen = atomic_read(&ioc->hweight_gen) - 1; 1295 list_add(&iocg->active_list, &ioc->active_iocgs); 1296 1297 propagate_weights(iocg, iocg->weight, 1298 iocg->last_inuse ?: iocg->weight, true, now); 1299 1300 TRACE_IOCG_PATH(iocg_activate, iocg, now, 1301 last_period, cur_period, vtime); 1302 1303 iocg->activated_at = now->now; 1304 1305 if (ioc->running == IOC_IDLE) { 1306 ioc->running = IOC_RUNNING; 1307 ioc->dfgv_period_at = now->now; 1308 ioc->dfgv_period_rem = 0; 1309 ioc_start_period(ioc, now); 1310 } 1311 1312 succeed_unlock: 1313 spin_unlock_irq(&ioc->lock); 1314 return true; 1315 1316 fail_unlock: 1317 spin_unlock_irq(&ioc->lock); 1318 return false; 1319 } 1320 1321 static bool iocg_kick_delay(struct ioc_gq *iocg, struct ioc_now *now) 1322 { 1323 struct ioc *ioc = iocg->ioc; 1324 struct blkcg_gq *blkg = iocg_to_blkg(iocg); 1325 u64 tdelta, delay, new_delay; 1326 s64 vover, vover_pct; 1327 u32 hwa; 1328 1329 lockdep_assert_held(&iocg->waitq.lock); 1330 1331 /* calculate the current delay in effect - 1/2 every second */ 1332 tdelta = now->now - iocg->delay_at; 1333 if (iocg->delay) 1334 delay = iocg->delay >> div64_u64(tdelta, USEC_PER_SEC); 1335 else 1336 delay = 0; 1337 1338 /* calculate the new delay from the debt amount */ 1339 current_hweight(iocg, &hwa, NULL); 1340 vover = atomic64_read(&iocg->vtime) + 1341 abs_cost_to_cost(iocg->abs_vdebt, hwa) - now->vnow; 1342 vover_pct = div64_s64(100 * vover, 1343 ioc->period_us * ioc->vtime_base_rate); 1344 1345 if (vover_pct <= MIN_DELAY_THR_PCT) 1346 new_delay = 0; 1347 else if (vover_pct >= MAX_DELAY_THR_PCT) 1348 new_delay = MAX_DELAY; 1349 else 1350 new_delay = MIN_DELAY + 1351 div_u64((MAX_DELAY - MIN_DELAY) * 1352 (vover_pct - MIN_DELAY_THR_PCT), 1353 MAX_DELAY_THR_PCT - MIN_DELAY_THR_PCT); 1354 1355 /* pick the higher one and apply */ 1356 if (new_delay > delay) { 1357 iocg->delay = new_delay; 1358 iocg->delay_at = now->now; 1359 delay = new_delay; 1360 } 1361 1362 if (delay >= MIN_DELAY) { 1363 if (!iocg->indelay_since) 1364 iocg->indelay_since = now->now; 1365 blkcg_set_delay(blkg, delay * NSEC_PER_USEC); 1366 return true; 1367 } else { 1368 if (iocg->indelay_since) { 1369 iocg->stat.indelay_us += now->now - iocg->indelay_since; 1370 iocg->indelay_since = 0; 1371 } 1372 iocg->delay = 0; 1373 blkcg_clear_delay(blkg); 1374 return false; 1375 } 1376 } 1377 1378 static void iocg_incur_debt(struct ioc_gq *iocg, u64 abs_cost, 1379 struct ioc_now *now) 1380 { 1381 struct iocg_pcpu_stat *gcs; 1382 1383 lockdep_assert_held(&iocg->ioc->lock); 1384 lockdep_assert_held(&iocg->waitq.lock); 1385 WARN_ON_ONCE(list_empty(&iocg->active_list)); 1386 1387 /* 1388 * Once in debt, debt handling owns inuse. @iocg stays at the minimum 1389 * inuse donating all of it share to others until its debt is paid off. 1390 */ 1391 if (!iocg->abs_vdebt && abs_cost) { 1392 iocg->indebt_since = now->now; 1393 propagate_weights(iocg, iocg->active, 0, false, now); 1394 } 1395 1396 iocg->abs_vdebt += abs_cost; 1397 1398 gcs = get_cpu_ptr(iocg->pcpu_stat); 1399 local64_add(abs_cost, &gcs->abs_vusage); 1400 put_cpu_ptr(gcs); 1401 } 1402 1403 static void iocg_pay_debt(struct ioc_gq *iocg, u64 abs_vpay, 1404 struct ioc_now *now) 1405 { 1406 lockdep_assert_held(&iocg->ioc->lock); 1407 lockdep_assert_held(&iocg->waitq.lock); 1408 1409 /* make sure that nobody messed with @iocg */ 1410 WARN_ON_ONCE(list_empty(&iocg->active_list)); 1411 WARN_ON_ONCE(iocg->inuse > 1); 1412 1413 iocg->abs_vdebt -= min(abs_vpay, iocg->abs_vdebt); 1414 1415 /* if debt is paid in full, restore inuse */ 1416 if (!iocg->abs_vdebt) { 1417 iocg->stat.indebt_us += now->now - iocg->indebt_since; 1418 iocg->indebt_since = 0; 1419 1420 propagate_weights(iocg, iocg->active, iocg->last_inuse, 1421 false, now); 1422 } 1423 } 1424 1425 static int iocg_wake_fn(struct wait_queue_entry *wq_entry, unsigned mode, 1426 int flags, void *key) 1427 { 1428 struct iocg_wait *wait = container_of(wq_entry, struct iocg_wait, wait); 1429 struct iocg_wake_ctx *ctx = key; 1430 u64 cost = abs_cost_to_cost(wait->abs_cost, ctx->hw_inuse); 1431 1432 ctx->vbudget -= cost; 1433 1434 if (ctx->vbudget < 0) 1435 return -1; 1436 1437 iocg_commit_bio(ctx->iocg, wait->bio, wait->abs_cost, cost); 1438 wait->committed = true; 1439 1440 /* 1441 * autoremove_wake_function() removes the wait entry only when it 1442 * actually changed the task state. We want the wait always removed. 1443 * Remove explicitly and use default_wake_function(). Note that the 1444 * order of operations is important as finish_wait() tests whether 1445 * @wq_entry is removed without grabbing the lock. 1446 */ 1447 default_wake_function(wq_entry, mode, flags, key); 1448 list_del_init_careful(&wq_entry->entry); 1449 return 0; 1450 } 1451 1452 /* 1453 * Calculate the accumulated budget, pay debt if @pay_debt and wake up waiters 1454 * accordingly. When @pay_debt is %true, the caller must be holding ioc->lock in 1455 * addition to iocg->waitq.lock. 1456 */ 1457 static void iocg_kick_waitq(struct ioc_gq *iocg, bool pay_debt, 1458 struct ioc_now *now) 1459 { 1460 struct ioc *ioc = iocg->ioc; 1461 struct iocg_wake_ctx ctx = { .iocg = iocg }; 1462 u64 vshortage, expires, oexpires; 1463 s64 vbudget; 1464 u32 hwa; 1465 1466 lockdep_assert_held(&iocg->waitq.lock); 1467 1468 current_hweight(iocg, &hwa, NULL); 1469 vbudget = now->vnow - atomic64_read(&iocg->vtime); 1470 1471 /* pay off debt */ 1472 if (pay_debt && iocg->abs_vdebt && vbudget > 0) { 1473 u64 abs_vbudget = cost_to_abs_cost(vbudget, hwa); 1474 u64 abs_vpay = min_t(u64, abs_vbudget, iocg->abs_vdebt); 1475 u64 vpay = abs_cost_to_cost(abs_vpay, hwa); 1476 1477 lockdep_assert_held(&ioc->lock); 1478 1479 atomic64_add(vpay, &iocg->vtime); 1480 atomic64_add(vpay, &iocg->done_vtime); 1481 iocg_pay_debt(iocg, abs_vpay, now); 1482 vbudget -= vpay; 1483 } 1484 1485 if (iocg->abs_vdebt || iocg->delay) 1486 iocg_kick_delay(iocg, now); 1487 1488 /* 1489 * Debt can still be outstanding if we haven't paid all yet or the 1490 * caller raced and called without @pay_debt. Shouldn't wake up waiters 1491 * under debt. Make sure @vbudget reflects the outstanding amount and is 1492 * not positive. 1493 */ 1494 if (iocg->abs_vdebt) { 1495 s64 vdebt = abs_cost_to_cost(iocg->abs_vdebt, hwa); 1496 vbudget = min_t(s64, 0, vbudget - vdebt); 1497 } 1498 1499 /* 1500 * Wake up the ones which are due and see how much vtime we'll need for 1501 * the next one. As paying off debt restores hw_inuse, it must be read 1502 * after the above debt payment. 1503 */ 1504 ctx.vbudget = vbudget; 1505 current_hweight(iocg, NULL, &ctx.hw_inuse); 1506 1507 __wake_up_locked_key(&iocg->waitq, TASK_NORMAL, &ctx); 1508 1509 if (!waitqueue_active(&iocg->waitq)) { 1510 if (iocg->wait_since) { 1511 iocg->stat.wait_us += now->now - iocg->wait_since; 1512 iocg->wait_since = 0; 1513 } 1514 return; 1515 } 1516 1517 if (!iocg->wait_since) 1518 iocg->wait_since = now->now; 1519 1520 if (WARN_ON_ONCE(ctx.vbudget >= 0)) 1521 return; 1522 1523 /* determine next wakeup, add a timer margin to guarantee chunking */ 1524 vshortage = -ctx.vbudget; 1525 expires = now->now_ns + 1526 DIV64_U64_ROUND_UP(vshortage, ioc->vtime_base_rate) * 1527 NSEC_PER_USEC; 1528 expires += ioc->timer_slack_ns; 1529 1530 /* if already active and close enough, don't bother */ 1531 oexpires = ktime_to_ns(hrtimer_get_softexpires(&iocg->waitq_timer)); 1532 if (hrtimer_is_queued(&iocg->waitq_timer) && 1533 abs(oexpires - expires) <= ioc->timer_slack_ns) 1534 return; 1535 1536 hrtimer_start_range_ns(&iocg->waitq_timer, ns_to_ktime(expires), 1537 ioc->timer_slack_ns, HRTIMER_MODE_ABS); 1538 } 1539 1540 static enum hrtimer_restart iocg_waitq_timer_fn(struct hrtimer *timer) 1541 { 1542 struct ioc_gq *iocg = container_of(timer, struct ioc_gq, waitq_timer); 1543 bool pay_debt = READ_ONCE(iocg->abs_vdebt); 1544 struct ioc_now now; 1545 unsigned long flags; 1546 1547 ioc_now(iocg->ioc, &now); 1548 1549 iocg_lock(iocg, pay_debt, &flags); 1550 iocg_kick_waitq(iocg, pay_debt, &now); 1551 iocg_unlock(iocg, pay_debt, &flags); 1552 1553 return HRTIMER_NORESTART; 1554 } 1555 1556 static void ioc_lat_stat(struct ioc *ioc, u32 *missed_ppm_ar, u32 *rq_wait_pct_p) 1557 { 1558 u32 nr_met[2] = { }; 1559 u32 nr_missed[2] = { }; 1560 u64 rq_wait_ns = 0; 1561 int cpu, rw; 1562 1563 for_each_online_cpu(cpu) { 1564 struct ioc_pcpu_stat *stat = per_cpu_ptr(ioc->pcpu_stat, cpu); 1565 u64 this_rq_wait_ns; 1566 1567 for (rw = READ; rw <= WRITE; rw++) { 1568 u32 this_met = local_read(&stat->missed[rw].nr_met); 1569 u32 this_missed = local_read(&stat->missed[rw].nr_missed); 1570 1571 nr_met[rw] += this_met - stat->missed[rw].last_met; 1572 nr_missed[rw] += this_missed - stat->missed[rw].last_missed; 1573 stat->missed[rw].last_met = this_met; 1574 stat->missed[rw].last_missed = this_missed; 1575 } 1576 1577 this_rq_wait_ns = local64_read(&stat->rq_wait_ns); 1578 rq_wait_ns += this_rq_wait_ns - stat->last_rq_wait_ns; 1579 stat->last_rq_wait_ns = this_rq_wait_ns; 1580 } 1581 1582 for (rw = READ; rw <= WRITE; rw++) { 1583 if (nr_met[rw] + nr_missed[rw]) 1584 missed_ppm_ar[rw] = 1585 DIV64_U64_ROUND_UP((u64)nr_missed[rw] * MILLION, 1586 nr_met[rw] + nr_missed[rw]); 1587 else 1588 missed_ppm_ar[rw] = 0; 1589 } 1590 1591 *rq_wait_pct_p = div64_u64(rq_wait_ns * 100, 1592 ioc->period_us * NSEC_PER_USEC); 1593 } 1594 1595 /* was iocg idle this period? */ 1596 static bool iocg_is_idle(struct ioc_gq *iocg) 1597 { 1598 struct ioc *ioc = iocg->ioc; 1599 1600 /* did something get issued this period? */ 1601 if (atomic64_read(&iocg->active_period) == 1602 atomic64_read(&ioc->cur_period)) 1603 return false; 1604 1605 /* is something in flight? */ 1606 if (atomic64_read(&iocg->done_vtime) != atomic64_read(&iocg->vtime)) 1607 return false; 1608 1609 return true; 1610 } 1611 1612 /* 1613 * Call this function on the target leaf @iocg's to build pre-order traversal 1614 * list of all the ancestors in @inner_walk. The inner nodes are linked through 1615 * ->walk_list and the caller is responsible for dissolving the list after use. 1616 */ 1617 static void iocg_build_inner_walk(struct ioc_gq *iocg, 1618 struct list_head *inner_walk) 1619 { 1620 int lvl; 1621 1622 WARN_ON_ONCE(!list_empty(&iocg->walk_list)); 1623 1624 /* find the first ancestor which hasn't been visited yet */ 1625 for (lvl = iocg->level - 1; lvl >= 0; lvl--) { 1626 if (!list_empty(&iocg->ancestors[lvl]->walk_list)) 1627 break; 1628 } 1629 1630 /* walk down and visit the inner nodes to get pre-order traversal */ 1631 while (++lvl <= iocg->level - 1) { 1632 struct ioc_gq *inner = iocg->ancestors[lvl]; 1633 1634 /* record traversal order */ 1635 list_add_tail(&inner->walk_list, inner_walk); 1636 } 1637 } 1638 1639 /* propagate the deltas to the parent */ 1640 static void iocg_flush_stat_upward(struct ioc_gq *iocg) 1641 { 1642 if (iocg->level > 0) { 1643 struct iocg_stat *parent_stat = 1644 &iocg->ancestors[iocg->level - 1]->stat; 1645 1646 parent_stat->usage_us += 1647 iocg->stat.usage_us - iocg->last_stat.usage_us; 1648 parent_stat->wait_us += 1649 iocg->stat.wait_us - iocg->last_stat.wait_us; 1650 parent_stat->indebt_us += 1651 iocg->stat.indebt_us - iocg->last_stat.indebt_us; 1652 parent_stat->indelay_us += 1653 iocg->stat.indelay_us - iocg->last_stat.indelay_us; 1654 } 1655 1656 iocg->last_stat = iocg->stat; 1657 } 1658 1659 /* collect per-cpu counters and propagate the deltas to the parent */ 1660 static void iocg_flush_stat_leaf(struct ioc_gq *iocg, struct ioc_now *now) 1661 { 1662 struct ioc *ioc = iocg->ioc; 1663 u64 abs_vusage = 0; 1664 u64 vusage_delta; 1665 int cpu; 1666 1667 lockdep_assert_held(&iocg->ioc->lock); 1668 1669 /* collect per-cpu counters */ 1670 for_each_possible_cpu(cpu) { 1671 abs_vusage += local64_read( 1672 per_cpu_ptr(&iocg->pcpu_stat->abs_vusage, cpu)); 1673 } 1674 vusage_delta = abs_vusage - iocg->last_stat_abs_vusage; 1675 iocg->last_stat_abs_vusage = abs_vusage; 1676 1677 iocg->usage_delta_us = div64_u64(vusage_delta, ioc->vtime_base_rate); 1678 iocg->stat.usage_us += iocg->usage_delta_us; 1679 1680 iocg_flush_stat_upward(iocg); 1681 } 1682 1683 /* get stat counters ready for reading on all active iocgs */ 1684 static void iocg_flush_stat(struct list_head *target_iocgs, struct ioc_now *now) 1685 { 1686 LIST_HEAD(inner_walk); 1687 struct ioc_gq *iocg, *tiocg; 1688 1689 /* flush leaves and build inner node walk list */ 1690 list_for_each_entry(iocg, target_iocgs, active_list) { 1691 iocg_flush_stat_leaf(iocg, now); 1692 iocg_build_inner_walk(iocg, &inner_walk); 1693 } 1694 1695 /* keep flushing upwards by walking the inner list backwards */ 1696 list_for_each_entry_safe_reverse(iocg, tiocg, &inner_walk, walk_list) { 1697 iocg_flush_stat_upward(iocg); 1698 list_del_init(&iocg->walk_list); 1699 } 1700 } 1701 1702 /* 1703 * Determine what @iocg's hweight_inuse should be after donating unused 1704 * capacity. @hwm is the upper bound and used to signal no donation. This 1705 * function also throws away @iocg's excess budget. 1706 */ 1707 static u32 hweight_after_donation(struct ioc_gq *iocg, u32 old_hwi, u32 hwm, 1708 u32 usage, struct ioc_now *now) 1709 { 1710 struct ioc *ioc = iocg->ioc; 1711 u64 vtime = atomic64_read(&iocg->vtime); 1712 s64 excess, delta, target, new_hwi; 1713 1714 /* debt handling owns inuse for debtors */ 1715 if (iocg->abs_vdebt) 1716 return 1; 1717 1718 /* see whether minimum margin requirement is met */ 1719 if (waitqueue_active(&iocg->waitq) || 1720 time_after64(vtime, now->vnow - ioc->margins.min)) 1721 return hwm; 1722 1723 /* throw away excess above target */ 1724 excess = now->vnow - vtime - ioc->margins.target; 1725 if (excess > 0) { 1726 atomic64_add(excess, &iocg->vtime); 1727 atomic64_add(excess, &iocg->done_vtime); 1728 vtime += excess; 1729 ioc->vtime_err -= div64_u64(excess * old_hwi, WEIGHT_ONE); 1730 } 1731 1732 /* 1733 * Let's say the distance between iocg's and device's vtimes as a 1734 * fraction of period duration is delta. Assuming that the iocg will 1735 * consume the usage determined above, we want to determine new_hwi so 1736 * that delta equals MARGIN_TARGET at the end of the next period. 1737 * 1738 * We need to execute usage worth of IOs while spending the sum of the 1739 * new budget (1 - MARGIN_TARGET) and the leftover from the last period 1740 * (delta): 1741 * 1742 * usage = (1 - MARGIN_TARGET + delta) * new_hwi 1743 * 1744 * Therefore, the new_hwi is: 1745 * 1746 * new_hwi = usage / (1 - MARGIN_TARGET + delta) 1747 */ 1748 delta = div64_s64(WEIGHT_ONE * (now->vnow - vtime), 1749 now->vnow - ioc->period_at_vtime); 1750 target = WEIGHT_ONE * MARGIN_TARGET_PCT / 100; 1751 new_hwi = div64_s64(WEIGHT_ONE * usage, WEIGHT_ONE - target + delta); 1752 1753 return clamp_t(s64, new_hwi, 1, hwm); 1754 } 1755 1756 /* 1757 * For work-conservation, an iocg which isn't using all of its share should 1758 * donate the leftover to other iocgs. There are two ways to achieve this - 1. 1759 * bumping up vrate accordingly 2. lowering the donating iocg's inuse weight. 1760 * 1761 * #1 is mathematically simpler but has the drawback of requiring synchronous 1762 * global hweight_inuse updates when idle iocg's get activated or inuse weights 1763 * change due to donation snapbacks as it has the possibility of grossly 1764 * overshooting what's allowed by the model and vrate. 1765 * 1766 * #2 is inherently safe with local operations. The donating iocg can easily 1767 * snap back to higher weights when needed without worrying about impacts on 1768 * other nodes as the impacts will be inherently correct. This also makes idle 1769 * iocg activations safe. The only effect activations have is decreasing 1770 * hweight_inuse of others, the right solution to which is for those iocgs to 1771 * snap back to higher weights. 1772 * 1773 * So, we go with #2. The challenge is calculating how each donating iocg's 1774 * inuse should be adjusted to achieve the target donation amounts. This is done 1775 * using Andy's method described in the following pdf. 1776 * 1777 * https://drive.google.com/file/d/1PsJwxPFtjUnwOY1QJ5AeICCcsL7BM3bo 1778 * 1779 * Given the weights and target after-donation hweight_inuse values, Andy's 1780 * method determines how the proportional distribution should look like at each 1781 * sibling level to maintain the relative relationship between all non-donating 1782 * pairs. To roughly summarize, it divides the tree into donating and 1783 * non-donating parts, calculates global donation rate which is used to 1784 * determine the target hweight_inuse for each node, and then derives per-level 1785 * proportions. 1786 * 1787 * The following pdf shows that global distribution calculated this way can be 1788 * achieved by scaling inuse weights of donating leaves and propagating the 1789 * adjustments upwards proportionally. 1790 * 1791 * https://drive.google.com/file/d/1vONz1-fzVO7oY5DXXsLjSxEtYYQbOvsE 1792 * 1793 * Combining the above two, we can determine how each leaf iocg's inuse should 1794 * be adjusted to achieve the target donation. 1795 * 1796 * https://drive.google.com/file/d/1WcrltBOSPN0qXVdBgnKm4mdp9FhuEFQN 1797 * 1798 * The inline comments use symbols from the last pdf. 1799 * 1800 * b is the sum of the absolute budgets in the subtree. 1 for the root node. 1801 * f is the sum of the absolute budgets of non-donating nodes in the subtree. 1802 * t is the sum of the absolute budgets of donating nodes in the subtree. 1803 * w is the weight of the node. w = w_f + w_t 1804 * w_f is the non-donating portion of w. w_f = w * f / b 1805 * w_b is the donating portion of w. w_t = w * t / b 1806 * s is the sum of all sibling weights. s = Sum(w) for siblings 1807 * s_f and s_t are the non-donating and donating portions of s. 1808 * 1809 * Subscript p denotes the parent's counterpart and ' the adjusted value - e.g. 1810 * w_pt is the donating portion of the parent's weight and w'_pt the same value 1811 * after adjustments. Subscript r denotes the root node's values. 1812 */ 1813 static void transfer_surpluses(struct list_head *surpluses, struct ioc_now *now) 1814 { 1815 LIST_HEAD(over_hwa); 1816 LIST_HEAD(inner_walk); 1817 struct ioc_gq *iocg, *tiocg, *root_iocg; 1818 u32 after_sum, over_sum, over_target, gamma; 1819 1820 /* 1821 * It's pretty unlikely but possible for the total sum of 1822 * hweight_after_donation's to be higher than WEIGHT_ONE, which will 1823 * confuse the following calculations. If such condition is detected, 1824 * scale down everyone over its full share equally to keep the sum below 1825 * WEIGHT_ONE. 1826 */ 1827 after_sum = 0; 1828 over_sum = 0; 1829 list_for_each_entry(iocg, surpluses, surplus_list) { 1830 u32 hwa; 1831 1832 current_hweight(iocg, &hwa, NULL); 1833 after_sum += iocg->hweight_after_donation; 1834 1835 if (iocg->hweight_after_donation > hwa) { 1836 over_sum += iocg->hweight_after_donation; 1837 list_add(&iocg->walk_list, &over_hwa); 1838 } 1839 } 1840 1841 if (after_sum >= WEIGHT_ONE) { 1842 /* 1843 * The delta should be deducted from the over_sum, calculate 1844 * target over_sum value. 1845 */ 1846 u32 over_delta = after_sum - (WEIGHT_ONE - 1); 1847 WARN_ON_ONCE(over_sum <= over_delta); 1848 over_target = over_sum - over_delta; 1849 } else { 1850 over_target = 0; 1851 } 1852 1853 list_for_each_entry_safe(iocg, tiocg, &over_hwa, walk_list) { 1854 if (over_target) 1855 iocg->hweight_after_donation = 1856 div_u64((u64)iocg->hweight_after_donation * 1857 over_target, over_sum); 1858 list_del_init(&iocg->walk_list); 1859 } 1860 1861 /* 1862 * Build pre-order inner node walk list and prepare for donation 1863 * adjustment calculations. 1864 */ 1865 list_for_each_entry(iocg, surpluses, surplus_list) { 1866 iocg_build_inner_walk(iocg, &inner_walk); 1867 } 1868 1869 root_iocg = list_first_entry(&inner_walk, struct ioc_gq, walk_list); 1870 WARN_ON_ONCE(root_iocg->level > 0); 1871 1872 list_for_each_entry(iocg, &inner_walk, walk_list) { 1873 iocg->child_adjusted_sum = 0; 1874 iocg->hweight_donating = 0; 1875 iocg->hweight_after_donation = 0; 1876 } 1877 1878 /* 1879 * Propagate the donating budget (b_t) and after donation budget (b'_t) 1880 * up the hierarchy. 1881 */ 1882 list_for_each_entry(iocg, surpluses, surplus_list) { 1883 struct ioc_gq *parent = iocg->ancestors[iocg->level - 1]; 1884 1885 parent->hweight_donating += iocg->hweight_donating; 1886 parent->hweight_after_donation += iocg->hweight_after_donation; 1887 } 1888 1889 list_for_each_entry_reverse(iocg, &inner_walk, walk_list) { 1890 if (iocg->level > 0) { 1891 struct ioc_gq *parent = iocg->ancestors[iocg->level - 1]; 1892 1893 parent->hweight_donating += iocg->hweight_donating; 1894 parent->hweight_after_donation += iocg->hweight_after_donation; 1895 } 1896 } 1897 1898 /* 1899 * Calculate inner hwa's (b) and make sure the donation values are 1900 * within the accepted ranges as we're doing low res calculations with 1901 * roundups. 1902 */ 1903 list_for_each_entry(iocg, &inner_walk, walk_list) { 1904 if (iocg->level) { 1905 struct ioc_gq *parent = iocg->ancestors[iocg->level - 1]; 1906 1907 iocg->hweight_active = DIV64_U64_ROUND_UP( 1908 (u64)parent->hweight_active * iocg->active, 1909 parent->child_active_sum); 1910 1911 } 1912 1913 iocg->hweight_donating = min(iocg->hweight_donating, 1914 iocg->hweight_active); 1915 iocg->hweight_after_donation = min(iocg->hweight_after_donation, 1916 iocg->hweight_donating - 1); 1917 if (WARN_ON_ONCE(iocg->hweight_active <= 1 || 1918 iocg->hweight_donating <= 1 || 1919 iocg->hweight_after_donation == 0)) { 1920 pr_warn("iocg: invalid donation weights in "); 1921 pr_cont_cgroup_path(iocg_to_blkg(iocg)->blkcg->css.cgroup); 1922 pr_cont(": active=%u donating=%u after=%u\n", 1923 iocg->hweight_active, iocg->hweight_donating, 1924 iocg->hweight_after_donation); 1925 } 1926 } 1927 1928 /* 1929 * Calculate the global donation rate (gamma) - the rate to adjust 1930 * non-donating budgets by. 1931 * 1932 * No need to use 64bit multiplication here as the first operand is 1933 * guaranteed to be smaller than WEIGHT_ONE (1<<16). 1934 * 1935 * We know that there are beneficiary nodes and the sum of the donating 1936 * hweights can't be whole; however, due to the round-ups during hweight 1937 * calculations, root_iocg->hweight_donating might still end up equal to 1938 * or greater than whole. Limit the range when calculating the divider. 1939 * 1940 * gamma = (1 - t_r') / (1 - t_r) 1941 */ 1942 gamma = DIV_ROUND_UP( 1943 (WEIGHT_ONE - root_iocg->hweight_after_donation) * WEIGHT_ONE, 1944 WEIGHT_ONE - min_t(u32, root_iocg->hweight_donating, WEIGHT_ONE - 1)); 1945 1946 /* 1947 * Calculate adjusted hwi, child_adjusted_sum and inuse for the inner 1948 * nodes. 1949 */ 1950 list_for_each_entry(iocg, &inner_walk, walk_list) { 1951 struct ioc_gq *parent; 1952 u32 inuse, wpt, wptp; 1953 u64 st, sf; 1954 1955 if (iocg->level == 0) { 1956 /* adjusted weight sum for 1st level: s' = s * b_pf / b'_pf */ 1957 iocg->child_adjusted_sum = DIV64_U64_ROUND_UP( 1958 iocg->child_active_sum * (WEIGHT_ONE - iocg->hweight_donating), 1959 WEIGHT_ONE - iocg->hweight_after_donation); 1960 continue; 1961 } 1962 1963 parent = iocg->ancestors[iocg->level - 1]; 1964 1965 /* b' = gamma * b_f + b_t' */ 1966 iocg->hweight_inuse = DIV64_U64_ROUND_UP( 1967 (u64)gamma * (iocg->hweight_active - iocg->hweight_donating), 1968 WEIGHT_ONE) + iocg->hweight_after_donation; 1969 1970 /* w' = s' * b' / b'_p */ 1971 inuse = DIV64_U64_ROUND_UP( 1972 (u64)parent->child_adjusted_sum * iocg->hweight_inuse, 1973 parent->hweight_inuse); 1974 1975 /* adjusted weight sum for children: s' = s_f + s_t * w'_pt / w_pt */ 1976 st = DIV64_U64_ROUND_UP( 1977 iocg->child_active_sum * iocg->hweight_donating, 1978 iocg->hweight_active); 1979 sf = iocg->child_active_sum - st; 1980 wpt = DIV64_U64_ROUND_UP( 1981 (u64)iocg->active * iocg->hweight_donating, 1982 iocg->hweight_active); 1983 wptp = DIV64_U64_ROUND_UP( 1984 (u64)inuse * iocg->hweight_after_donation, 1985 iocg->hweight_inuse); 1986 1987 iocg->child_adjusted_sum = sf + DIV64_U64_ROUND_UP(st * wptp, wpt); 1988 } 1989 1990 /* 1991 * All inner nodes now have ->hweight_inuse and ->child_adjusted_sum and 1992 * we can finally determine leaf adjustments. 1993 */ 1994 list_for_each_entry(iocg, surpluses, surplus_list) { 1995 struct ioc_gq *parent = iocg->ancestors[iocg->level - 1]; 1996 u32 inuse; 1997 1998 /* 1999 * In-debt iocgs participated in the donation calculation with 2000 * the minimum target hweight_inuse. Configuring inuse 2001 * accordingly would work fine but debt handling expects 2002 * @iocg->inuse stay at the minimum and we don't wanna 2003 * interfere. 2004 */ 2005 if (iocg->abs_vdebt) { 2006 WARN_ON_ONCE(iocg->inuse > 1); 2007 continue; 2008 } 2009 2010 /* w' = s' * b' / b'_p, note that b' == b'_t for donating leaves */ 2011 inuse = DIV64_U64_ROUND_UP( 2012 parent->child_adjusted_sum * iocg->hweight_after_donation, 2013 parent->hweight_inuse); 2014 2015 TRACE_IOCG_PATH(inuse_transfer, iocg, now, 2016 iocg->inuse, inuse, 2017 iocg->hweight_inuse, 2018 iocg->hweight_after_donation); 2019 2020 __propagate_weights(iocg, iocg->active, inuse, true, now); 2021 } 2022 2023 /* walk list should be dissolved after use */ 2024 list_for_each_entry_safe(iocg, tiocg, &inner_walk, walk_list) 2025 list_del_init(&iocg->walk_list); 2026 } 2027 2028 /* 2029 * A low weight iocg can amass a large amount of debt, for example, when 2030 * anonymous memory gets reclaimed aggressively. If the system has a lot of 2031 * memory paired with a slow IO device, the debt can span multiple seconds or 2032 * more. If there are no other subsequent IO issuers, the in-debt iocg may end 2033 * up blocked paying its debt while the IO device is idle. 2034 * 2035 * The following protects against such cases. If the device has been 2036 * sufficiently idle for a while, the debts are halved and delays are 2037 * recalculated. 2038 */ 2039 static void ioc_forgive_debts(struct ioc *ioc, u64 usage_us_sum, int nr_debtors, 2040 struct ioc_now *now) 2041 { 2042 struct ioc_gq *iocg; 2043 u64 dur, usage_pct, nr_cycles; 2044 2045 /* if no debtor, reset the cycle */ 2046 if (!nr_debtors) { 2047 ioc->dfgv_period_at = now->now; 2048 ioc->dfgv_period_rem = 0; 2049 ioc->dfgv_usage_us_sum = 0; 2050 return; 2051 } 2052 2053 /* 2054 * Debtors can pass through a lot of writes choking the device and we 2055 * don't want to be forgiving debts while the device is struggling from 2056 * write bursts. If we're missing latency targets, consider the device 2057 * fully utilized. 2058 */ 2059 if (ioc->busy_level > 0) 2060 usage_us_sum = max_t(u64, usage_us_sum, ioc->period_us); 2061 2062 ioc->dfgv_usage_us_sum += usage_us_sum; 2063 if (time_before64(now->now, ioc->dfgv_period_at + DFGV_PERIOD)) 2064 return; 2065 2066 /* 2067 * At least DFGV_PERIOD has passed since the last period. Calculate the 2068 * average usage and reset the period counters. 2069 */ 2070 dur = now->now - ioc->dfgv_period_at; 2071 usage_pct = div64_u64(100 * ioc->dfgv_usage_us_sum, dur); 2072 2073 ioc->dfgv_period_at = now->now; 2074 ioc->dfgv_usage_us_sum = 0; 2075 2076 /* if was too busy, reset everything */ 2077 if (usage_pct > DFGV_USAGE_PCT) { 2078 ioc->dfgv_period_rem = 0; 2079 return; 2080 } 2081 2082 /* 2083 * Usage is lower than threshold. Let's forgive some debts. Debt 2084 * forgiveness runs off of the usual ioc timer but its period usually 2085 * doesn't match ioc's. Compensate the difference by performing the 2086 * reduction as many times as would fit in the duration since the last 2087 * run and carrying over the left-over duration in @ioc->dfgv_period_rem 2088 * - if ioc period is 75% of DFGV_PERIOD, one out of three consecutive 2089 * reductions is doubled. 2090 */ 2091 nr_cycles = dur + ioc->dfgv_period_rem; 2092 ioc->dfgv_period_rem = do_div(nr_cycles, DFGV_PERIOD); 2093 2094 list_for_each_entry(iocg, &ioc->active_iocgs, active_list) { 2095 u64 __maybe_unused old_debt, __maybe_unused old_delay; 2096 2097 if (!iocg->abs_vdebt && !iocg->delay) 2098 continue; 2099 2100 spin_lock(&iocg->waitq.lock); 2101 2102 old_debt = iocg->abs_vdebt; 2103 old_delay = iocg->delay; 2104 2105 if (iocg->abs_vdebt) 2106 iocg->abs_vdebt = iocg->abs_vdebt >> nr_cycles ?: 1; 2107 if (iocg->delay) 2108 iocg->delay = iocg->delay >> nr_cycles ?: 1; 2109 2110 iocg_kick_waitq(iocg, true, now); 2111 2112 TRACE_IOCG_PATH(iocg_forgive_debt, iocg, now, usage_pct, 2113 old_debt, iocg->abs_vdebt, 2114 old_delay, iocg->delay); 2115 2116 spin_unlock(&iocg->waitq.lock); 2117 } 2118 } 2119 2120 /* 2121 * Check the active iocgs' state to avoid oversleeping and deactive 2122 * idle iocgs. 2123 * 2124 * Since waiters determine the sleep durations based on the vrate 2125 * they saw at the time of sleep, if vrate has increased, some 2126 * waiters could be sleeping for too long. Wake up tardy waiters 2127 * which should have woken up in the last period and expire idle 2128 * iocgs. 2129 */ 2130 static int ioc_check_iocgs(struct ioc *ioc, struct ioc_now *now) 2131 { 2132 int nr_debtors = 0; 2133 struct ioc_gq *iocg, *tiocg; 2134 2135 list_for_each_entry_safe(iocg, tiocg, &ioc->active_iocgs, active_list) { 2136 if (!waitqueue_active(&iocg->waitq) && !iocg->abs_vdebt && 2137 !iocg->delay && !iocg_is_idle(iocg)) 2138 continue; 2139 2140 spin_lock(&iocg->waitq.lock); 2141 2142 /* flush wait and indebt stat deltas */ 2143 if (iocg->wait_since) { 2144 iocg->stat.wait_us += now->now - iocg->wait_since; 2145 iocg->wait_since = now->now; 2146 } 2147 if (iocg->indebt_since) { 2148 iocg->stat.indebt_us += 2149 now->now - iocg->indebt_since; 2150 iocg->indebt_since = now->now; 2151 } 2152 if (iocg->indelay_since) { 2153 iocg->stat.indelay_us += 2154 now->now - iocg->indelay_since; 2155 iocg->indelay_since = now->now; 2156 } 2157 2158 if (waitqueue_active(&iocg->waitq) || iocg->abs_vdebt || 2159 iocg->delay) { 2160 /* might be oversleeping vtime / hweight changes, kick */ 2161 iocg_kick_waitq(iocg, true, now); 2162 if (iocg->abs_vdebt || iocg->delay) 2163 nr_debtors++; 2164 } else if (iocg_is_idle(iocg)) { 2165 /* no waiter and idle, deactivate */ 2166 u64 vtime = atomic64_read(&iocg->vtime); 2167 s64 excess; 2168 2169 /* 2170 * @iocg has been inactive for a full duration and will 2171 * have a high budget. Account anything above target as 2172 * error and throw away. On reactivation, it'll start 2173 * with the target budget. 2174 */ 2175 excess = now->vnow - vtime - ioc->margins.target; 2176 if (excess > 0) { 2177 u32 old_hwi; 2178 2179 current_hweight(iocg, NULL, &old_hwi); 2180 ioc->vtime_err -= div64_u64(excess * old_hwi, 2181 WEIGHT_ONE); 2182 } 2183 2184 TRACE_IOCG_PATH(iocg_idle, iocg, now, 2185 atomic64_read(&iocg->active_period), 2186 atomic64_read(&ioc->cur_period), vtime); 2187 __propagate_weights(iocg, 0, 0, false, now); 2188 list_del_init(&iocg->active_list); 2189 } 2190 2191 spin_unlock(&iocg->waitq.lock); 2192 } 2193 2194 commit_weights(ioc); 2195 return nr_debtors; 2196 } 2197 2198 static void ioc_timer_fn(struct timer_list *timer) 2199 { 2200 struct ioc *ioc = container_of(timer, struct ioc, timer); 2201 struct ioc_gq *iocg, *tiocg; 2202 struct ioc_now now; 2203 LIST_HEAD(surpluses); 2204 int nr_debtors, nr_shortages = 0, nr_lagging = 0; 2205 u64 usage_us_sum = 0; 2206 u32 ppm_rthr = MILLION - ioc->params.qos[QOS_RPPM]; 2207 u32 ppm_wthr = MILLION - ioc->params.qos[QOS_WPPM]; 2208 u32 missed_ppm[2], rq_wait_pct; 2209 u64 period_vtime; 2210 int prev_busy_level; 2211 2212 /* how were the latencies during the period? */ 2213 ioc_lat_stat(ioc, missed_ppm, &rq_wait_pct); 2214 2215 /* take care of active iocgs */ 2216 spin_lock_irq(&ioc->lock); 2217 2218 ioc_now(ioc, &now); 2219 2220 period_vtime = now.vnow - ioc->period_at_vtime; 2221 if (WARN_ON_ONCE(!period_vtime)) { 2222 spin_unlock_irq(&ioc->lock); 2223 return; 2224 } 2225 2226 nr_debtors = ioc_check_iocgs(ioc, &now); 2227 2228 /* 2229 * Wait and indebt stat are flushed above and the donation calculation 2230 * below needs updated usage stat. Let's bring stat up-to-date. 2231 */ 2232 iocg_flush_stat(&ioc->active_iocgs, &now); 2233 2234 /* calc usage and see whether some weights need to be moved around */ 2235 list_for_each_entry(iocg, &ioc->active_iocgs, active_list) { 2236 u64 vdone, vtime, usage_us; 2237 u32 hw_active, hw_inuse; 2238 2239 /* 2240 * Collect unused and wind vtime closer to vnow to prevent 2241 * iocgs from accumulating a large amount of budget. 2242 */ 2243 vdone = atomic64_read(&iocg->done_vtime); 2244 vtime = atomic64_read(&iocg->vtime); 2245 current_hweight(iocg, &hw_active, &hw_inuse); 2246 2247 /* 2248 * Latency QoS detection doesn't account for IOs which are 2249 * in-flight for longer than a period. Detect them by 2250 * comparing vdone against period start. If lagging behind 2251 * IOs from past periods, don't increase vrate. 2252 */ 2253 if ((ppm_rthr != MILLION || ppm_wthr != MILLION) && 2254 !atomic_read(&iocg_to_blkg(iocg)->use_delay) && 2255 time_after64(vtime, vdone) && 2256 time_after64(vtime, now.vnow - 2257 MAX_LAGGING_PERIODS * period_vtime) && 2258 time_before64(vdone, now.vnow - period_vtime)) 2259 nr_lagging++; 2260 2261 /* 2262 * Determine absolute usage factoring in in-flight IOs to avoid 2263 * high-latency completions appearing as idle. 2264 */ 2265 usage_us = iocg->usage_delta_us; 2266 usage_us_sum += usage_us; 2267 2268 /* see whether there's surplus vtime */ 2269 WARN_ON_ONCE(!list_empty(&iocg->surplus_list)); 2270 if (hw_inuse < hw_active || 2271 (!waitqueue_active(&iocg->waitq) && 2272 time_before64(vtime, now.vnow - ioc->margins.low))) { 2273 u32 hwa, old_hwi, hwm, new_hwi, usage; 2274 u64 usage_dur; 2275 2276 if (vdone != vtime) { 2277 u64 inflight_us = DIV64_U64_ROUND_UP( 2278 cost_to_abs_cost(vtime - vdone, hw_inuse), 2279 ioc->vtime_base_rate); 2280 2281 usage_us = max(usage_us, inflight_us); 2282 } 2283 2284 /* convert to hweight based usage ratio */ 2285 if (time_after64(iocg->activated_at, ioc->period_at)) 2286 usage_dur = max_t(u64, now.now - iocg->activated_at, 1); 2287 else 2288 usage_dur = max_t(u64, now.now - ioc->period_at, 1); 2289 2290 usage = clamp_t(u32, 2291 DIV64_U64_ROUND_UP(usage_us * WEIGHT_ONE, 2292 usage_dur), 2293 1, WEIGHT_ONE); 2294 2295 /* 2296 * Already donating or accumulated enough to start. 2297 * Determine the donation amount. 2298 */ 2299 current_hweight(iocg, &hwa, &old_hwi); 2300 hwm = current_hweight_max(iocg); 2301 new_hwi = hweight_after_donation(iocg, old_hwi, hwm, 2302 usage, &now); 2303 /* 2304 * Donation calculation assumes hweight_after_donation 2305 * to be positive, a condition that a donor w/ hwa < 2 2306 * can't meet. Don't bother with donation if hwa is 2307 * below 2. It's not gonna make a meaningful difference 2308 * anyway. 2309 */ 2310 if (new_hwi < hwm && hwa >= 2) { 2311 iocg->hweight_donating = hwa; 2312 iocg->hweight_after_donation = new_hwi; 2313 list_add(&iocg->surplus_list, &surpluses); 2314 } else if (!iocg->abs_vdebt) { 2315 /* 2316 * @iocg doesn't have enough to donate. Reset 2317 * its inuse to active. 2318 * 2319 * Don't reset debtors as their inuse's are 2320 * owned by debt handling. This shouldn't affect 2321 * donation calculuation in any meaningful way 2322 * as @iocg doesn't have a meaningful amount of 2323 * share anyway. 2324 */ 2325 TRACE_IOCG_PATH(inuse_shortage, iocg, &now, 2326 iocg->inuse, iocg->active, 2327 iocg->hweight_inuse, new_hwi); 2328 2329 __propagate_weights(iocg, iocg->active, 2330 iocg->active, true, &now); 2331 nr_shortages++; 2332 } 2333 } else { 2334 /* genuinely short on vtime */ 2335 nr_shortages++; 2336 } 2337 } 2338 2339 if (!list_empty(&surpluses) && nr_shortages) 2340 transfer_surpluses(&surpluses, &now); 2341 2342 commit_weights(ioc); 2343 2344 /* surplus list should be dissolved after use */ 2345 list_for_each_entry_safe(iocg, tiocg, &surpluses, surplus_list) 2346 list_del_init(&iocg->surplus_list); 2347 2348 /* 2349 * If q is getting clogged or we're missing too much, we're issuing 2350 * too much IO and should lower vtime rate. If we're not missing 2351 * and experiencing shortages but not surpluses, we're too stingy 2352 * and should increase vtime rate. 2353 */ 2354 prev_busy_level = ioc->busy_level; 2355 if (rq_wait_pct > RQ_WAIT_BUSY_PCT || 2356 missed_ppm[READ] > ppm_rthr || 2357 missed_ppm[WRITE] > ppm_wthr) { 2358 /* clearly missing QoS targets, slow down vrate */ 2359 ioc->busy_level = max(ioc->busy_level, 0); 2360 ioc->busy_level++; 2361 } else if (rq_wait_pct <= RQ_WAIT_BUSY_PCT * UNBUSY_THR_PCT / 100 && 2362 missed_ppm[READ] <= ppm_rthr * UNBUSY_THR_PCT / 100 && 2363 missed_ppm[WRITE] <= ppm_wthr * UNBUSY_THR_PCT / 100) { 2364 /* QoS targets are being met with >25% margin */ 2365 if (nr_shortages) { 2366 /* 2367 * We're throttling while the device has spare 2368 * capacity. If vrate was being slowed down, stop. 2369 */ 2370 ioc->busy_level = min(ioc->busy_level, 0); 2371 2372 /* 2373 * If there are IOs spanning multiple periods, wait 2374 * them out before pushing the device harder. 2375 */ 2376 if (!nr_lagging) 2377 ioc->busy_level--; 2378 } else { 2379 /* 2380 * Nobody is being throttled and the users aren't 2381 * issuing enough IOs to saturate the device. We 2382 * simply don't know how close the device is to 2383 * saturation. Coast. 2384 */ 2385 ioc->busy_level = 0; 2386 } 2387 } else { 2388 /* inside the hysterisis margin, we're good */ 2389 ioc->busy_level = 0; 2390 } 2391 2392 ioc->busy_level = clamp(ioc->busy_level, -1000, 1000); 2393 2394 ioc_adjust_base_vrate(ioc, rq_wait_pct, nr_lagging, nr_shortages, 2395 prev_busy_level, missed_ppm); 2396 2397 ioc_refresh_params(ioc, false); 2398 2399 ioc_forgive_debts(ioc, usage_us_sum, nr_debtors, &now); 2400 2401 /* 2402 * This period is done. Move onto the next one. If nothing's 2403 * going on with the device, stop the timer. 2404 */ 2405 atomic64_inc(&ioc->cur_period); 2406 2407 if (ioc->running != IOC_STOP) { 2408 if (!list_empty(&ioc->active_iocgs)) { 2409 ioc_start_period(ioc, &now); 2410 } else { 2411 ioc->busy_level = 0; 2412 ioc->vtime_err = 0; 2413 ioc->running = IOC_IDLE; 2414 } 2415 2416 ioc_refresh_vrate(ioc, &now); 2417 } 2418 2419 spin_unlock_irq(&ioc->lock); 2420 } 2421 2422 static u64 adjust_inuse_and_calc_cost(struct ioc_gq *iocg, u64 vtime, 2423 u64 abs_cost, struct ioc_now *now) 2424 { 2425 struct ioc *ioc = iocg->ioc; 2426 struct ioc_margins *margins = &ioc->margins; 2427 u32 __maybe_unused old_inuse = iocg->inuse, __maybe_unused old_hwi; 2428 u32 hwi, adj_step; 2429 s64 margin; 2430 u64 cost, new_inuse; 2431 2432 current_hweight(iocg, NULL, &hwi); 2433 old_hwi = hwi; 2434 cost = abs_cost_to_cost(abs_cost, hwi); 2435 margin = now->vnow - vtime - cost; 2436 2437 /* debt handling owns inuse for debtors */ 2438 if (iocg->abs_vdebt) 2439 return cost; 2440 2441 /* 2442 * We only increase inuse during period and do so if the margin has 2443 * deteriorated since the previous adjustment. 2444 */ 2445 if (margin >= iocg->saved_margin || margin >= margins->low || 2446 iocg->inuse == iocg->active) 2447 return cost; 2448 2449 spin_lock_irq(&ioc->lock); 2450 2451 /* we own inuse only when @iocg is in the normal active state */ 2452 if (iocg->abs_vdebt || list_empty(&iocg->active_list)) { 2453 spin_unlock_irq(&ioc->lock); 2454 return cost; 2455 } 2456 2457 /* 2458 * Bump up inuse till @abs_cost fits in the existing budget. 2459 * adj_step must be determined after acquiring ioc->lock - we might 2460 * have raced and lost to another thread for activation and could 2461 * be reading 0 iocg->active before ioc->lock which will lead to 2462 * infinite loop. 2463 */ 2464 new_inuse = iocg->inuse; 2465 adj_step = DIV_ROUND_UP(iocg->active * INUSE_ADJ_STEP_PCT, 100); 2466 do { 2467 new_inuse = new_inuse + adj_step; 2468 propagate_weights(iocg, iocg->active, new_inuse, true, now); 2469 current_hweight(iocg, NULL, &hwi); 2470 cost = abs_cost_to_cost(abs_cost, hwi); 2471 } while (time_after64(vtime + cost, now->vnow) && 2472 iocg->inuse != iocg->active); 2473 2474 spin_unlock_irq(&ioc->lock); 2475 2476 TRACE_IOCG_PATH(inuse_adjust, iocg, now, 2477 old_inuse, iocg->inuse, old_hwi, hwi); 2478 2479 return cost; 2480 } 2481 2482 static void calc_vtime_cost_builtin(struct bio *bio, struct ioc_gq *iocg, 2483 bool is_merge, u64 *costp) 2484 { 2485 struct ioc *ioc = iocg->ioc; 2486 u64 coef_seqio, coef_randio, coef_page; 2487 u64 pages = max_t(u64, bio_sectors(bio) >> IOC_SECT_TO_PAGE_SHIFT, 1); 2488 u64 seek_pages = 0; 2489 u64 cost = 0; 2490 2491 switch (bio_op(bio)) { 2492 case REQ_OP_READ: 2493 coef_seqio = ioc->params.lcoefs[LCOEF_RSEQIO]; 2494 coef_randio = ioc->params.lcoefs[LCOEF_RRANDIO]; 2495 coef_page = ioc->params.lcoefs[LCOEF_RPAGE]; 2496 break; 2497 case REQ_OP_WRITE: 2498 coef_seqio = ioc->params.lcoefs[LCOEF_WSEQIO]; 2499 coef_randio = ioc->params.lcoefs[LCOEF_WRANDIO]; 2500 coef_page = ioc->params.lcoefs[LCOEF_WPAGE]; 2501 break; 2502 default: 2503 goto out; 2504 } 2505 2506 if (iocg->cursor) { 2507 seek_pages = abs(bio->bi_iter.bi_sector - iocg->cursor); 2508 seek_pages >>= IOC_SECT_TO_PAGE_SHIFT; 2509 } 2510 2511 if (!is_merge) { 2512 if (seek_pages > LCOEF_RANDIO_PAGES) { 2513 cost += coef_randio; 2514 } else { 2515 cost += coef_seqio; 2516 } 2517 } 2518 cost += pages * coef_page; 2519 out: 2520 *costp = cost; 2521 } 2522 2523 static u64 calc_vtime_cost(struct bio *bio, struct ioc_gq *iocg, bool is_merge) 2524 { 2525 u64 cost; 2526 2527 calc_vtime_cost_builtin(bio, iocg, is_merge, &cost); 2528 return cost; 2529 } 2530 2531 static void calc_size_vtime_cost_builtin(struct request *rq, struct ioc *ioc, 2532 u64 *costp) 2533 { 2534 unsigned int pages = blk_rq_stats_sectors(rq) >> IOC_SECT_TO_PAGE_SHIFT; 2535 2536 switch (req_op(rq)) { 2537 case REQ_OP_READ: 2538 *costp = pages * ioc->params.lcoefs[LCOEF_RPAGE]; 2539 break; 2540 case REQ_OP_WRITE: 2541 *costp = pages * ioc->params.lcoefs[LCOEF_WPAGE]; 2542 break; 2543 default: 2544 *costp = 0; 2545 } 2546 } 2547 2548 static u64 calc_size_vtime_cost(struct request *rq, struct ioc *ioc) 2549 { 2550 u64 cost; 2551 2552 calc_size_vtime_cost_builtin(rq, ioc, &cost); 2553 return cost; 2554 } 2555 2556 static void ioc_rqos_throttle(struct rq_qos *rqos, struct bio *bio) 2557 { 2558 struct blkcg_gq *blkg = bio->bi_blkg; 2559 struct ioc *ioc = rqos_to_ioc(rqos); 2560 struct ioc_gq *iocg = blkg_to_iocg(blkg); 2561 struct ioc_now now; 2562 struct iocg_wait wait; 2563 u64 abs_cost, cost, vtime; 2564 bool use_debt, ioc_locked; 2565 unsigned long flags; 2566 2567 /* bypass IOs if disabled, still initializing, or for root cgroup */ 2568 if (!ioc->enabled || !iocg || !iocg->level) 2569 return; 2570 2571 /* calculate the absolute vtime cost */ 2572 abs_cost = calc_vtime_cost(bio, iocg, false); 2573 if (!abs_cost) 2574 return; 2575 2576 if (!iocg_activate(iocg, &now)) 2577 return; 2578 2579 iocg->cursor = bio_end_sector(bio); 2580 vtime = atomic64_read(&iocg->vtime); 2581 cost = adjust_inuse_and_calc_cost(iocg, vtime, abs_cost, &now); 2582 2583 /* 2584 * If no one's waiting and within budget, issue right away. The 2585 * tests are racy but the races aren't systemic - we only miss once 2586 * in a while which is fine. 2587 */ 2588 if (!waitqueue_active(&iocg->waitq) && !iocg->abs_vdebt && 2589 time_before_eq64(vtime + cost, now.vnow)) { 2590 iocg_commit_bio(iocg, bio, abs_cost, cost); 2591 return; 2592 } 2593 2594 /* 2595 * We're over budget. This can be handled in two ways. IOs which may 2596 * cause priority inversions are punted to @ioc->aux_iocg and charged as 2597 * debt. Otherwise, the issuer is blocked on @iocg->waitq. Debt handling 2598 * requires @ioc->lock, waitq handling @iocg->waitq.lock. Determine 2599 * whether debt handling is needed and acquire locks accordingly. 2600 */ 2601 use_debt = bio_issue_as_root_blkg(bio) || fatal_signal_pending(current); 2602 ioc_locked = use_debt || READ_ONCE(iocg->abs_vdebt); 2603 retry_lock: 2604 iocg_lock(iocg, ioc_locked, &flags); 2605 2606 /* 2607 * @iocg must stay activated for debt and waitq handling. Deactivation 2608 * is synchronized against both ioc->lock and waitq.lock and we won't 2609 * get deactivated as long as we're waiting or has debt, so we're good 2610 * if we're activated here. In the unlikely cases that we aren't, just 2611 * issue the IO. 2612 */ 2613 if (unlikely(list_empty(&iocg->active_list))) { 2614 iocg_unlock(iocg, ioc_locked, &flags); 2615 iocg_commit_bio(iocg, bio, abs_cost, cost); 2616 return; 2617 } 2618 2619 /* 2620 * We're over budget. If @bio has to be issued regardless, remember 2621 * the abs_cost instead of advancing vtime. iocg_kick_waitq() will pay 2622 * off the debt before waking more IOs. 2623 * 2624 * This way, the debt is continuously paid off each period with the 2625 * actual budget available to the cgroup. If we just wound vtime, we 2626 * would incorrectly use the current hw_inuse for the entire amount 2627 * which, for example, can lead to the cgroup staying blocked for a 2628 * long time even with substantially raised hw_inuse. 2629 * 2630 * An iocg with vdebt should stay online so that the timer can keep 2631 * deducting its vdebt and [de]activate use_delay mechanism 2632 * accordingly. We don't want to race against the timer trying to 2633 * clear them and leave @iocg inactive w/ dangling use_delay heavily 2634 * penalizing the cgroup and its descendants. 2635 */ 2636 if (use_debt) { 2637 iocg_incur_debt(iocg, abs_cost, &now); 2638 if (iocg_kick_delay(iocg, &now)) 2639 blkcg_schedule_throttle(rqos->q->disk, 2640 (bio->bi_opf & REQ_SWAP) == REQ_SWAP); 2641 iocg_unlock(iocg, ioc_locked, &flags); 2642 return; 2643 } 2644 2645 /* guarantee that iocgs w/ waiters have maximum inuse */ 2646 if (!iocg->abs_vdebt && iocg->inuse != iocg->active) { 2647 if (!ioc_locked) { 2648 iocg_unlock(iocg, false, &flags); 2649 ioc_locked = true; 2650 goto retry_lock; 2651 } 2652 propagate_weights(iocg, iocg->active, iocg->active, true, 2653 &now); 2654 } 2655 2656 /* 2657 * Append self to the waitq and schedule the wakeup timer if we're 2658 * the first waiter. The timer duration is calculated based on the 2659 * current vrate. vtime and hweight changes can make it too short 2660 * or too long. Each wait entry records the absolute cost it's 2661 * waiting for to allow re-evaluation using a custom wait entry. 2662 * 2663 * If too short, the timer simply reschedules itself. If too long, 2664 * the period timer will notice and trigger wakeups. 2665 * 2666 * All waiters are on iocg->waitq and the wait states are 2667 * synchronized using waitq.lock. 2668 */ 2669 init_waitqueue_func_entry(&wait.wait, iocg_wake_fn); 2670 wait.wait.private = current; 2671 wait.bio = bio; 2672 wait.abs_cost = abs_cost; 2673 wait.committed = false; /* will be set true by waker */ 2674 2675 __add_wait_queue_entry_tail(&iocg->waitq, &wait.wait); 2676 iocg_kick_waitq(iocg, ioc_locked, &now); 2677 2678 iocg_unlock(iocg, ioc_locked, &flags); 2679 2680 while (true) { 2681 set_current_state(TASK_UNINTERRUPTIBLE); 2682 if (wait.committed) 2683 break; 2684 io_schedule(); 2685 } 2686 2687 /* waker already committed us, proceed */ 2688 finish_wait(&iocg->waitq, &wait.wait); 2689 } 2690 2691 static void ioc_rqos_merge(struct rq_qos *rqos, struct request *rq, 2692 struct bio *bio) 2693 { 2694 struct ioc_gq *iocg = blkg_to_iocg(bio->bi_blkg); 2695 struct ioc *ioc = rqos_to_ioc(rqos); 2696 sector_t bio_end = bio_end_sector(bio); 2697 struct ioc_now now; 2698 u64 vtime, abs_cost, cost; 2699 unsigned long flags; 2700 2701 /* bypass if disabled, still initializing, or for root cgroup */ 2702 if (!ioc->enabled || !iocg || !iocg->level) 2703 return; 2704 2705 abs_cost = calc_vtime_cost(bio, iocg, true); 2706 if (!abs_cost) 2707 return; 2708 2709 ioc_now(ioc, &now); 2710 2711 vtime = atomic64_read(&iocg->vtime); 2712 cost = adjust_inuse_and_calc_cost(iocg, vtime, abs_cost, &now); 2713 2714 /* update cursor if backmerging into the request at the cursor */ 2715 if (blk_rq_pos(rq) < bio_end && 2716 blk_rq_pos(rq) + blk_rq_sectors(rq) == iocg->cursor) 2717 iocg->cursor = bio_end; 2718 2719 /* 2720 * Charge if there's enough vtime budget and the existing request has 2721 * cost assigned. 2722 */ 2723 if (rq->bio && rq->bio->bi_iocost_cost && 2724 time_before_eq64(atomic64_read(&iocg->vtime) + cost, now.vnow)) { 2725 iocg_commit_bio(iocg, bio, abs_cost, cost); 2726 return; 2727 } 2728 2729 /* 2730 * Otherwise, account it as debt if @iocg is online, which it should 2731 * be for the vast majority of cases. See debt handling in 2732 * ioc_rqos_throttle() for details. 2733 */ 2734 spin_lock_irqsave(&ioc->lock, flags); 2735 spin_lock(&iocg->waitq.lock); 2736 2737 if (likely(!list_empty(&iocg->active_list))) { 2738 iocg_incur_debt(iocg, abs_cost, &now); 2739 if (iocg_kick_delay(iocg, &now)) 2740 blkcg_schedule_throttle(rqos->q->disk, 2741 (bio->bi_opf & REQ_SWAP) == REQ_SWAP); 2742 } else { 2743 iocg_commit_bio(iocg, bio, abs_cost, cost); 2744 } 2745 2746 spin_unlock(&iocg->waitq.lock); 2747 spin_unlock_irqrestore(&ioc->lock, flags); 2748 } 2749 2750 static void ioc_rqos_done_bio(struct rq_qos *rqos, struct bio *bio) 2751 { 2752 struct ioc_gq *iocg = blkg_to_iocg(bio->bi_blkg); 2753 2754 if (iocg && bio->bi_iocost_cost) 2755 atomic64_add(bio->bi_iocost_cost, &iocg->done_vtime); 2756 } 2757 2758 static void ioc_rqos_done(struct rq_qos *rqos, struct request *rq) 2759 { 2760 struct ioc *ioc = rqos_to_ioc(rqos); 2761 struct ioc_pcpu_stat *ccs; 2762 u64 on_q_ns, rq_wait_ns, size_nsec; 2763 int pidx, rw; 2764 2765 if (!ioc->enabled || !rq->alloc_time_ns || !rq->start_time_ns) 2766 return; 2767 2768 switch (req_op(rq)) { 2769 case REQ_OP_READ: 2770 pidx = QOS_RLAT; 2771 rw = READ; 2772 break; 2773 case REQ_OP_WRITE: 2774 pidx = QOS_WLAT; 2775 rw = WRITE; 2776 break; 2777 default: 2778 return; 2779 } 2780 2781 on_q_ns = ktime_get_ns() - rq->alloc_time_ns; 2782 rq_wait_ns = rq->start_time_ns - rq->alloc_time_ns; 2783 size_nsec = div64_u64(calc_size_vtime_cost(rq, ioc), VTIME_PER_NSEC); 2784 2785 ccs = get_cpu_ptr(ioc->pcpu_stat); 2786 2787 if (on_q_ns <= size_nsec || 2788 on_q_ns - size_nsec <= ioc->params.qos[pidx] * NSEC_PER_USEC) 2789 local_inc(&ccs->missed[rw].nr_met); 2790 else 2791 local_inc(&ccs->missed[rw].nr_missed); 2792 2793 local64_add(rq_wait_ns, &ccs->rq_wait_ns); 2794 2795 put_cpu_ptr(ccs); 2796 } 2797 2798 static void ioc_rqos_queue_depth_changed(struct rq_qos *rqos) 2799 { 2800 struct ioc *ioc = rqos_to_ioc(rqos); 2801 2802 spin_lock_irq(&ioc->lock); 2803 ioc_refresh_params(ioc, false); 2804 spin_unlock_irq(&ioc->lock); 2805 } 2806 2807 static void ioc_rqos_exit(struct rq_qos *rqos) 2808 { 2809 struct ioc *ioc = rqos_to_ioc(rqos); 2810 2811 blkcg_deactivate_policy(rqos->q, &blkcg_policy_iocost); 2812 2813 spin_lock_irq(&ioc->lock); 2814 ioc->running = IOC_STOP; 2815 spin_unlock_irq(&ioc->lock); 2816 2817 del_timer_sync(&ioc->timer); 2818 free_percpu(ioc->pcpu_stat); 2819 kfree(ioc); 2820 } 2821 2822 static struct rq_qos_ops ioc_rqos_ops = { 2823 .throttle = ioc_rqos_throttle, 2824 .merge = ioc_rqos_merge, 2825 .done_bio = ioc_rqos_done_bio, 2826 .done = ioc_rqos_done, 2827 .queue_depth_changed = ioc_rqos_queue_depth_changed, 2828 .exit = ioc_rqos_exit, 2829 }; 2830 2831 static int blk_iocost_init(struct gendisk *disk) 2832 { 2833 struct request_queue *q = disk->queue; 2834 struct ioc *ioc; 2835 struct rq_qos *rqos; 2836 int i, cpu, ret; 2837 2838 ioc = kzalloc(sizeof(*ioc), GFP_KERNEL); 2839 if (!ioc) 2840 return -ENOMEM; 2841 2842 ioc->pcpu_stat = alloc_percpu(struct ioc_pcpu_stat); 2843 if (!ioc->pcpu_stat) { 2844 kfree(ioc); 2845 return -ENOMEM; 2846 } 2847 2848 for_each_possible_cpu(cpu) { 2849 struct ioc_pcpu_stat *ccs = per_cpu_ptr(ioc->pcpu_stat, cpu); 2850 2851 for (i = 0; i < ARRAY_SIZE(ccs->missed); i++) { 2852 local_set(&ccs->missed[i].nr_met, 0); 2853 local_set(&ccs->missed[i].nr_missed, 0); 2854 } 2855 local64_set(&ccs->rq_wait_ns, 0); 2856 } 2857 2858 rqos = &ioc->rqos; 2859 rqos->id = RQ_QOS_COST; 2860 rqos->ops = &ioc_rqos_ops; 2861 rqos->q = q; 2862 2863 spin_lock_init(&ioc->lock); 2864 timer_setup(&ioc->timer, ioc_timer_fn, 0); 2865 INIT_LIST_HEAD(&ioc->active_iocgs); 2866 2867 ioc->running = IOC_IDLE; 2868 ioc->vtime_base_rate = VTIME_PER_USEC; 2869 atomic64_set(&ioc->vtime_rate, VTIME_PER_USEC); 2870 seqcount_spinlock_init(&ioc->period_seqcount, &ioc->lock); 2871 ioc->period_at = ktime_to_us(ktime_get()); 2872 atomic64_set(&ioc->cur_period, 0); 2873 atomic_set(&ioc->hweight_gen, 0); 2874 2875 spin_lock_irq(&ioc->lock); 2876 ioc->autop_idx = AUTOP_INVALID; 2877 ioc_refresh_params(ioc, true); 2878 spin_unlock_irq(&ioc->lock); 2879 2880 /* 2881 * rqos must be added before activation to allow iocg_pd_init() to 2882 * lookup the ioc from q. This means that the rqos methods may get 2883 * called before policy activation completion, can't assume that the 2884 * target bio has an iocg associated and need to test for NULL iocg. 2885 */ 2886 ret = rq_qos_add(q, rqos); 2887 if (ret) 2888 goto err_free_ioc; 2889 2890 ret = blkcg_activate_policy(q, &blkcg_policy_iocost); 2891 if (ret) 2892 goto err_del_qos; 2893 return 0; 2894 2895 err_del_qos: 2896 rq_qos_del(q, rqos); 2897 err_free_ioc: 2898 free_percpu(ioc->pcpu_stat); 2899 kfree(ioc); 2900 return ret; 2901 } 2902 2903 static struct blkcg_policy_data *ioc_cpd_alloc(gfp_t gfp) 2904 { 2905 struct ioc_cgrp *iocc; 2906 2907 iocc = kzalloc(sizeof(struct ioc_cgrp), gfp); 2908 if (!iocc) 2909 return NULL; 2910 2911 iocc->dfl_weight = CGROUP_WEIGHT_DFL * WEIGHT_ONE; 2912 return &iocc->cpd; 2913 } 2914 2915 static void ioc_cpd_free(struct blkcg_policy_data *cpd) 2916 { 2917 kfree(container_of(cpd, struct ioc_cgrp, cpd)); 2918 } 2919 2920 static struct blkg_policy_data *ioc_pd_alloc(gfp_t gfp, struct request_queue *q, 2921 struct blkcg *blkcg) 2922 { 2923 int levels = blkcg->css.cgroup->level + 1; 2924 struct ioc_gq *iocg; 2925 2926 iocg = kzalloc_node(struct_size(iocg, ancestors, levels), gfp, q->node); 2927 if (!iocg) 2928 return NULL; 2929 2930 iocg->pcpu_stat = alloc_percpu_gfp(struct iocg_pcpu_stat, gfp); 2931 if (!iocg->pcpu_stat) { 2932 kfree(iocg); 2933 return NULL; 2934 } 2935 2936 return &iocg->pd; 2937 } 2938 2939 static void ioc_pd_init(struct blkg_policy_data *pd) 2940 { 2941 struct ioc_gq *iocg = pd_to_iocg(pd); 2942 struct blkcg_gq *blkg = pd_to_blkg(&iocg->pd); 2943 struct ioc *ioc = q_to_ioc(blkg->q); 2944 struct ioc_now now; 2945 struct blkcg_gq *tblkg; 2946 unsigned long flags; 2947 2948 ioc_now(ioc, &now); 2949 2950 iocg->ioc = ioc; 2951 atomic64_set(&iocg->vtime, now.vnow); 2952 atomic64_set(&iocg->done_vtime, now.vnow); 2953 atomic64_set(&iocg->active_period, atomic64_read(&ioc->cur_period)); 2954 INIT_LIST_HEAD(&iocg->active_list); 2955 INIT_LIST_HEAD(&iocg->walk_list); 2956 INIT_LIST_HEAD(&iocg->surplus_list); 2957 iocg->hweight_active = WEIGHT_ONE; 2958 iocg->hweight_inuse = WEIGHT_ONE; 2959 2960 init_waitqueue_head(&iocg->waitq); 2961 hrtimer_init(&iocg->waitq_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS); 2962 iocg->waitq_timer.function = iocg_waitq_timer_fn; 2963 2964 iocg->level = blkg->blkcg->css.cgroup->level; 2965 2966 for (tblkg = blkg; tblkg; tblkg = tblkg->parent) { 2967 struct ioc_gq *tiocg = blkg_to_iocg(tblkg); 2968 iocg->ancestors[tiocg->level] = tiocg; 2969 } 2970 2971 spin_lock_irqsave(&ioc->lock, flags); 2972 weight_updated(iocg, &now); 2973 spin_unlock_irqrestore(&ioc->lock, flags); 2974 } 2975 2976 static void ioc_pd_free(struct blkg_policy_data *pd) 2977 { 2978 struct ioc_gq *iocg = pd_to_iocg(pd); 2979 struct ioc *ioc = iocg->ioc; 2980 unsigned long flags; 2981 2982 if (ioc) { 2983 spin_lock_irqsave(&ioc->lock, flags); 2984 2985 if (!list_empty(&iocg->active_list)) { 2986 struct ioc_now now; 2987 2988 ioc_now(ioc, &now); 2989 propagate_weights(iocg, 0, 0, false, &now); 2990 list_del_init(&iocg->active_list); 2991 } 2992 2993 WARN_ON_ONCE(!list_empty(&iocg->walk_list)); 2994 WARN_ON_ONCE(!list_empty(&iocg->surplus_list)); 2995 2996 spin_unlock_irqrestore(&ioc->lock, flags); 2997 2998 hrtimer_cancel(&iocg->waitq_timer); 2999 } 3000 free_percpu(iocg->pcpu_stat); 3001 kfree(iocg); 3002 } 3003 3004 static void ioc_pd_stat(struct blkg_policy_data *pd, struct seq_file *s) 3005 { 3006 struct ioc_gq *iocg = pd_to_iocg(pd); 3007 struct ioc *ioc = iocg->ioc; 3008 3009 if (!ioc->enabled) 3010 return; 3011 3012 if (iocg->level == 0) { 3013 unsigned vp10k = DIV64_U64_ROUND_CLOSEST( 3014 ioc->vtime_base_rate * 10000, 3015 VTIME_PER_USEC); 3016 seq_printf(s, " cost.vrate=%u.%02u", vp10k / 100, vp10k % 100); 3017 } 3018 3019 seq_printf(s, " cost.usage=%llu", iocg->last_stat.usage_us); 3020 3021 if (blkcg_debug_stats) 3022 seq_printf(s, " cost.wait=%llu cost.indebt=%llu cost.indelay=%llu", 3023 iocg->last_stat.wait_us, 3024 iocg->last_stat.indebt_us, 3025 iocg->last_stat.indelay_us); 3026 } 3027 3028 static u64 ioc_weight_prfill(struct seq_file *sf, struct blkg_policy_data *pd, 3029 int off) 3030 { 3031 const char *dname = blkg_dev_name(pd->blkg); 3032 struct ioc_gq *iocg = pd_to_iocg(pd); 3033 3034 if (dname && iocg->cfg_weight) 3035 seq_printf(sf, "%s %u\n", dname, iocg->cfg_weight / WEIGHT_ONE); 3036 return 0; 3037 } 3038 3039 3040 static int ioc_weight_show(struct seq_file *sf, void *v) 3041 { 3042 struct blkcg *blkcg = css_to_blkcg(seq_css(sf)); 3043 struct ioc_cgrp *iocc = blkcg_to_iocc(blkcg); 3044 3045 seq_printf(sf, "default %u\n", iocc->dfl_weight / WEIGHT_ONE); 3046 blkcg_print_blkgs(sf, blkcg, ioc_weight_prfill, 3047 &blkcg_policy_iocost, seq_cft(sf)->private, false); 3048 return 0; 3049 } 3050 3051 static ssize_t ioc_weight_write(struct kernfs_open_file *of, char *buf, 3052 size_t nbytes, loff_t off) 3053 { 3054 struct blkcg *blkcg = css_to_blkcg(of_css(of)); 3055 struct ioc_cgrp *iocc = blkcg_to_iocc(blkcg); 3056 struct blkg_conf_ctx ctx; 3057 struct ioc_now now; 3058 struct ioc_gq *iocg; 3059 u32 v; 3060 int ret; 3061 3062 if (!strchr(buf, ':')) { 3063 struct blkcg_gq *blkg; 3064 3065 if (!sscanf(buf, "default %u", &v) && !sscanf(buf, "%u", &v)) 3066 return -EINVAL; 3067 3068 if (v < CGROUP_WEIGHT_MIN || v > CGROUP_WEIGHT_MAX) 3069 return -EINVAL; 3070 3071 spin_lock_irq(&blkcg->lock); 3072 iocc->dfl_weight = v * WEIGHT_ONE; 3073 hlist_for_each_entry(blkg, &blkcg->blkg_list, blkcg_node) { 3074 struct ioc_gq *iocg = blkg_to_iocg(blkg); 3075 3076 if (iocg) { 3077 spin_lock(&iocg->ioc->lock); 3078 ioc_now(iocg->ioc, &now); 3079 weight_updated(iocg, &now); 3080 spin_unlock(&iocg->ioc->lock); 3081 } 3082 } 3083 spin_unlock_irq(&blkcg->lock); 3084 3085 return nbytes; 3086 } 3087 3088 ret = blkg_conf_prep(blkcg, &blkcg_policy_iocost, buf, &ctx); 3089 if (ret) 3090 return ret; 3091 3092 iocg = blkg_to_iocg(ctx.blkg); 3093 3094 if (!strncmp(ctx.body, "default", 7)) { 3095 v = 0; 3096 } else { 3097 if (!sscanf(ctx.body, "%u", &v)) 3098 goto einval; 3099 if (v < CGROUP_WEIGHT_MIN || v > CGROUP_WEIGHT_MAX) 3100 goto einval; 3101 } 3102 3103 spin_lock(&iocg->ioc->lock); 3104 iocg->cfg_weight = v * WEIGHT_ONE; 3105 ioc_now(iocg->ioc, &now); 3106 weight_updated(iocg, &now); 3107 spin_unlock(&iocg->ioc->lock); 3108 3109 blkg_conf_finish(&ctx); 3110 return nbytes; 3111 3112 einval: 3113 blkg_conf_finish(&ctx); 3114 return -EINVAL; 3115 } 3116 3117 static u64 ioc_qos_prfill(struct seq_file *sf, struct blkg_policy_data *pd, 3118 int off) 3119 { 3120 const char *dname = blkg_dev_name(pd->blkg); 3121 struct ioc *ioc = pd_to_iocg(pd)->ioc; 3122 3123 if (!dname) 3124 return 0; 3125 3126 seq_printf(sf, "%s enable=%d ctrl=%s rpct=%u.%02u rlat=%u wpct=%u.%02u wlat=%u min=%u.%02u max=%u.%02u\n", 3127 dname, ioc->enabled, ioc->user_qos_params ? "user" : "auto", 3128 ioc->params.qos[QOS_RPPM] / 10000, 3129 ioc->params.qos[QOS_RPPM] % 10000 / 100, 3130 ioc->params.qos[QOS_RLAT], 3131 ioc->params.qos[QOS_WPPM] / 10000, 3132 ioc->params.qos[QOS_WPPM] % 10000 / 100, 3133 ioc->params.qos[QOS_WLAT], 3134 ioc->params.qos[QOS_MIN] / 10000, 3135 ioc->params.qos[QOS_MIN] % 10000 / 100, 3136 ioc->params.qos[QOS_MAX] / 10000, 3137 ioc->params.qos[QOS_MAX] % 10000 / 100); 3138 return 0; 3139 } 3140 3141 static int ioc_qos_show(struct seq_file *sf, void *v) 3142 { 3143 struct blkcg *blkcg = css_to_blkcg(seq_css(sf)); 3144 3145 blkcg_print_blkgs(sf, blkcg, ioc_qos_prfill, 3146 &blkcg_policy_iocost, seq_cft(sf)->private, false); 3147 return 0; 3148 } 3149 3150 static const match_table_t qos_ctrl_tokens = { 3151 { QOS_ENABLE, "enable=%u" }, 3152 { QOS_CTRL, "ctrl=%s" }, 3153 { NR_QOS_CTRL_PARAMS, NULL }, 3154 }; 3155 3156 static const match_table_t qos_tokens = { 3157 { QOS_RPPM, "rpct=%s" }, 3158 { QOS_RLAT, "rlat=%u" }, 3159 { QOS_WPPM, "wpct=%s" }, 3160 { QOS_WLAT, "wlat=%u" }, 3161 { QOS_MIN, "min=%s" }, 3162 { QOS_MAX, "max=%s" }, 3163 { NR_QOS_PARAMS, NULL }, 3164 }; 3165 3166 static ssize_t ioc_qos_write(struct kernfs_open_file *of, char *input, 3167 size_t nbytes, loff_t off) 3168 { 3169 struct block_device *bdev; 3170 struct gendisk *disk; 3171 struct ioc *ioc; 3172 u32 qos[NR_QOS_PARAMS]; 3173 bool enable, user; 3174 char *p; 3175 int ret; 3176 3177 bdev = blkcg_conf_open_bdev(&input); 3178 if (IS_ERR(bdev)) 3179 return PTR_ERR(bdev); 3180 3181 disk = bdev->bd_disk; 3182 ioc = q_to_ioc(disk->queue); 3183 if (!ioc) { 3184 ret = blk_iocost_init(disk); 3185 if (ret) 3186 goto err; 3187 ioc = q_to_ioc(disk->queue); 3188 } 3189 3190 spin_lock_irq(&ioc->lock); 3191 memcpy(qos, ioc->params.qos, sizeof(qos)); 3192 enable = ioc->enabled; 3193 user = ioc->user_qos_params; 3194 spin_unlock_irq(&ioc->lock); 3195 3196 while ((p = strsep(&input, " \t\n"))) { 3197 substring_t args[MAX_OPT_ARGS]; 3198 char buf[32]; 3199 int tok; 3200 s64 v; 3201 3202 if (!*p) 3203 continue; 3204 3205 switch (match_token(p, qos_ctrl_tokens, args)) { 3206 case QOS_ENABLE: 3207 match_u64(&args[0], &v); 3208 enable = v; 3209 continue; 3210 case QOS_CTRL: 3211 match_strlcpy(buf, &args[0], sizeof(buf)); 3212 if (!strcmp(buf, "auto")) 3213 user = false; 3214 else if (!strcmp(buf, "user")) 3215 user = true; 3216 else 3217 goto einval; 3218 continue; 3219 } 3220 3221 tok = match_token(p, qos_tokens, args); 3222 switch (tok) { 3223 case QOS_RPPM: 3224 case QOS_WPPM: 3225 if (match_strlcpy(buf, &args[0], sizeof(buf)) >= 3226 sizeof(buf)) 3227 goto einval; 3228 if (cgroup_parse_float(buf, 2, &v)) 3229 goto einval; 3230 if (v < 0 || v > 10000) 3231 goto einval; 3232 qos[tok] = v * 100; 3233 break; 3234 case QOS_RLAT: 3235 case QOS_WLAT: 3236 if (match_u64(&args[0], &v)) 3237 goto einval; 3238 qos[tok] = v; 3239 break; 3240 case QOS_MIN: 3241 case QOS_MAX: 3242 if (match_strlcpy(buf, &args[0], sizeof(buf)) >= 3243 sizeof(buf)) 3244 goto einval; 3245 if (cgroup_parse_float(buf, 2, &v)) 3246 goto einval; 3247 if (v < 0) 3248 goto einval; 3249 qos[tok] = clamp_t(s64, v * 100, 3250 VRATE_MIN_PPM, VRATE_MAX_PPM); 3251 break; 3252 default: 3253 goto einval; 3254 } 3255 user = true; 3256 } 3257 3258 if (qos[QOS_MIN] > qos[QOS_MAX]) 3259 goto einval; 3260 3261 spin_lock_irq(&ioc->lock); 3262 3263 if (enable) { 3264 blk_stat_enable_accounting(disk->queue); 3265 blk_queue_flag_set(QUEUE_FLAG_RQ_ALLOC_TIME, disk->queue); 3266 ioc->enabled = true; 3267 } else { 3268 blk_queue_flag_clear(QUEUE_FLAG_RQ_ALLOC_TIME, disk->queue); 3269 ioc->enabled = false; 3270 } 3271 3272 if (user) { 3273 memcpy(ioc->params.qos, qos, sizeof(qos)); 3274 ioc->user_qos_params = true; 3275 } else { 3276 ioc->user_qos_params = false; 3277 } 3278 3279 ioc_refresh_params(ioc, true); 3280 spin_unlock_irq(&ioc->lock); 3281 3282 blkdev_put_no_open(bdev); 3283 return nbytes; 3284 einval: 3285 ret = -EINVAL; 3286 err: 3287 blkdev_put_no_open(bdev); 3288 return ret; 3289 } 3290 3291 static u64 ioc_cost_model_prfill(struct seq_file *sf, 3292 struct blkg_policy_data *pd, int off) 3293 { 3294 const char *dname = blkg_dev_name(pd->blkg); 3295 struct ioc *ioc = pd_to_iocg(pd)->ioc; 3296 u64 *u = ioc->params.i_lcoefs; 3297 3298 if (!dname) 3299 return 0; 3300 3301 seq_printf(sf, "%s ctrl=%s model=linear " 3302 "rbps=%llu rseqiops=%llu rrandiops=%llu " 3303 "wbps=%llu wseqiops=%llu wrandiops=%llu\n", 3304 dname, ioc->user_cost_model ? "user" : "auto", 3305 u[I_LCOEF_RBPS], u[I_LCOEF_RSEQIOPS], u[I_LCOEF_RRANDIOPS], 3306 u[I_LCOEF_WBPS], u[I_LCOEF_WSEQIOPS], u[I_LCOEF_WRANDIOPS]); 3307 return 0; 3308 } 3309 3310 static int ioc_cost_model_show(struct seq_file *sf, void *v) 3311 { 3312 struct blkcg *blkcg = css_to_blkcg(seq_css(sf)); 3313 3314 blkcg_print_blkgs(sf, blkcg, ioc_cost_model_prfill, 3315 &blkcg_policy_iocost, seq_cft(sf)->private, false); 3316 return 0; 3317 } 3318 3319 static const match_table_t cost_ctrl_tokens = { 3320 { COST_CTRL, "ctrl=%s" }, 3321 { COST_MODEL, "model=%s" }, 3322 { NR_COST_CTRL_PARAMS, NULL }, 3323 }; 3324 3325 static const match_table_t i_lcoef_tokens = { 3326 { I_LCOEF_RBPS, "rbps=%u" }, 3327 { I_LCOEF_RSEQIOPS, "rseqiops=%u" }, 3328 { I_LCOEF_RRANDIOPS, "rrandiops=%u" }, 3329 { I_LCOEF_WBPS, "wbps=%u" }, 3330 { I_LCOEF_WSEQIOPS, "wseqiops=%u" }, 3331 { I_LCOEF_WRANDIOPS, "wrandiops=%u" }, 3332 { NR_I_LCOEFS, NULL }, 3333 }; 3334 3335 static ssize_t ioc_cost_model_write(struct kernfs_open_file *of, char *input, 3336 size_t nbytes, loff_t off) 3337 { 3338 struct block_device *bdev; 3339 struct ioc *ioc; 3340 u64 u[NR_I_LCOEFS]; 3341 bool user; 3342 char *p; 3343 int ret; 3344 3345 bdev = blkcg_conf_open_bdev(&input); 3346 if (IS_ERR(bdev)) 3347 return PTR_ERR(bdev); 3348 3349 ioc = q_to_ioc(bdev_get_queue(bdev)); 3350 if (!ioc) { 3351 ret = blk_iocost_init(bdev->bd_disk); 3352 if (ret) 3353 goto err; 3354 ioc = q_to_ioc(bdev_get_queue(bdev)); 3355 } 3356 3357 spin_lock_irq(&ioc->lock); 3358 memcpy(u, ioc->params.i_lcoefs, sizeof(u)); 3359 user = ioc->user_cost_model; 3360 spin_unlock_irq(&ioc->lock); 3361 3362 while ((p = strsep(&input, " \t\n"))) { 3363 substring_t args[MAX_OPT_ARGS]; 3364 char buf[32]; 3365 int tok; 3366 u64 v; 3367 3368 if (!*p) 3369 continue; 3370 3371 switch (match_token(p, cost_ctrl_tokens, args)) { 3372 case COST_CTRL: 3373 match_strlcpy(buf, &args[0], sizeof(buf)); 3374 if (!strcmp(buf, "auto")) 3375 user = false; 3376 else if (!strcmp(buf, "user")) 3377 user = true; 3378 else 3379 goto einval; 3380 continue; 3381 case COST_MODEL: 3382 match_strlcpy(buf, &args[0], sizeof(buf)); 3383 if (strcmp(buf, "linear")) 3384 goto einval; 3385 continue; 3386 } 3387 3388 tok = match_token(p, i_lcoef_tokens, args); 3389 if (tok == NR_I_LCOEFS) 3390 goto einval; 3391 if (match_u64(&args[0], &v)) 3392 goto einval; 3393 u[tok] = v; 3394 user = true; 3395 } 3396 3397 spin_lock_irq(&ioc->lock); 3398 if (user) { 3399 memcpy(ioc->params.i_lcoefs, u, sizeof(u)); 3400 ioc->user_cost_model = true; 3401 } else { 3402 ioc->user_cost_model = false; 3403 } 3404 ioc_refresh_params(ioc, true); 3405 spin_unlock_irq(&ioc->lock); 3406 3407 blkdev_put_no_open(bdev); 3408 return nbytes; 3409 3410 einval: 3411 ret = -EINVAL; 3412 err: 3413 blkdev_put_no_open(bdev); 3414 return ret; 3415 } 3416 3417 static struct cftype ioc_files[] = { 3418 { 3419 .name = "weight", 3420 .flags = CFTYPE_NOT_ON_ROOT, 3421 .seq_show = ioc_weight_show, 3422 .write = ioc_weight_write, 3423 }, 3424 { 3425 .name = "cost.qos", 3426 .flags = CFTYPE_ONLY_ON_ROOT, 3427 .seq_show = ioc_qos_show, 3428 .write = ioc_qos_write, 3429 }, 3430 { 3431 .name = "cost.model", 3432 .flags = CFTYPE_ONLY_ON_ROOT, 3433 .seq_show = ioc_cost_model_show, 3434 .write = ioc_cost_model_write, 3435 }, 3436 {} 3437 }; 3438 3439 static struct blkcg_policy blkcg_policy_iocost = { 3440 .dfl_cftypes = ioc_files, 3441 .cpd_alloc_fn = ioc_cpd_alloc, 3442 .cpd_free_fn = ioc_cpd_free, 3443 .pd_alloc_fn = ioc_pd_alloc, 3444 .pd_init_fn = ioc_pd_init, 3445 .pd_free_fn = ioc_pd_free, 3446 .pd_stat_fn = ioc_pd_stat, 3447 }; 3448 3449 static int __init ioc_init(void) 3450 { 3451 return blkcg_policy_register(&blkcg_policy_iocost); 3452 } 3453 3454 static void __exit ioc_exit(void) 3455 { 3456 blkcg_policy_unregister(&blkcg_policy_iocost); 3457 } 3458 3459 module_init(ioc_init); 3460 module_exit(ioc_exit); 3461